diff options
Diffstat (limited to 'js/src/jit/mips64')
-rw-r--r-- | js/src/jit/mips64/Architecture-mips64.cpp | 88 | ||||
-rw-r--r-- | js/src/jit/mips64/Architecture-mips64.h | 233 | ||||
-rw-r--r-- | js/src/jit/mips64/Assembler-mips64.cpp | 371 | ||||
-rw-r--r-- | js/src/jit/mips64/Assembler-mips64.h | 293 | ||||
-rw-r--r-- | js/src/jit/mips64/CodeGenerator-mips64.cpp | 588 | ||||
-rw-r--r-- | js/src/jit/mips64/CodeGenerator-mips64.h | 65 | ||||
-rw-r--r-- | js/src/jit/mips64/LIR-mips64.h | 147 | ||||
-rw-r--r-- | js/src/jit/mips64/Lowering-mips64.cpp | 201 | ||||
-rw-r--r-- | js/src/jit/mips64/Lowering-mips64.h | 56 | ||||
-rw-r--r-- | js/src/jit/mips64/MacroAssembler-mips64-inl.h | 845 | ||||
-rw-r--r-- | js/src/jit/mips64/MacroAssembler-mips64.cpp | 2877 | ||||
-rw-r--r-- | js/src/jit/mips64/MacroAssembler-mips64.h | 855 | ||||
-rw-r--r-- | js/src/jit/mips64/MoveEmitter-mips64.cpp | 149 | ||||
-rw-r--r-- | js/src/jit/mips64/MoveEmitter-mips64.h | 31 | ||||
-rw-r--r-- | js/src/jit/mips64/SharedICRegisters-mips64.h | 45 | ||||
-rw-r--r-- | js/src/jit/mips64/Simulator-mips64.cpp | 3889 | ||||
-rw-r--r-- | js/src/jit/mips64/Simulator-mips64.h | 536 | ||||
-rw-r--r-- | js/src/jit/mips64/Trampoline-mips64.cpp | 796 |
18 files changed, 12065 insertions, 0 deletions
diff --git a/js/src/jit/mips64/Architecture-mips64.cpp b/js/src/jit/mips64/Architecture-mips64.cpp new file mode 100644 index 0000000000..54ae127954 --- /dev/null +++ b/js/src/jit/mips64/Architecture-mips64.cpp @@ -0,0 +1,88 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/mips64/Architecture-mips64.h" + +#include "jit/RegisterSets.h" + +namespace js { +namespace jit { + +const char* const Registers::RegNames[] = { + "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "a4", "a5", "a6", + "a7", "t0", "t1", "t2", "t3", "s0", "s1", "s2", "s3", "s4", "s5", + "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra"}; + +const uint32_t Allocatable = 22; + +const Registers::SetType Registers::ArgRegMask = + Registers::SharedArgRegMask | (1 << a4) | (1 << a5) | (1 << a6) | (1 << a7); + +const Registers::SetType Registers::JSCallMask = (1 << Registers::v1); + +const Registers::SetType Registers::CallMask = (1 << Registers::v0); + +FloatRegisters::Encoding FloatRegisters::FromName(const char* name) { + for (size_t i = 0; i < Total; i++) { + if (strcmp(GetName(Encoding(i)), name) == 0) { + return Encoding(i); + } + } + + return Invalid; +} + +FloatRegister FloatRegister::singleOverlay() const { + MOZ_ASSERT(!isInvalid()); + if (kind_ == Codes::Double) { + return FloatRegister(reg_, Codes::Single); + } + return *this; +} + +FloatRegister FloatRegister::doubleOverlay() const { + MOZ_ASSERT(!isInvalid()); + if (kind_ != Codes::Double) { + return FloatRegister(reg_, Codes::Double); + } + return *this; +} + +FloatRegisterSet FloatRegister::ReduceSetForPush(const FloatRegisterSet& s) { +#ifdef ENABLE_WASM_SIMD +# error "Needs more careful logic if SIMD is enabled" +#endif + + LiveFloatRegisterSet mod; + for (FloatRegisterIterator iter(s); iter.more(); ++iter) { + if ((*iter).isSingle()) { + // Even for single size registers save complete double register. + mod.addUnchecked((*iter).doubleOverlay()); + } else { + mod.addUnchecked(*iter); + } + } + return mod.set(); +} + +uint32_t FloatRegister::GetPushSizeInBytes(const FloatRegisterSet& s) { +#ifdef ENABLE_WASM_SIMD +# error "Needs more careful logic if SIMD is enabled" +#endif + + FloatRegisterSet ss = s.reduceSetForPush(); + uint64_t bits = ss.bits(); + // We are only pushing double registers. + MOZ_ASSERT((bits & 0xffffffff) == 0); + uint32_t ret = mozilla::CountPopulation32(bits >> 32) * sizeof(double); + return ret; +} +uint32_t FloatRegister::getRegisterDumpOffsetInBytes() { + return id() * sizeof(double); +} + +} // namespace jit +} // namespace js diff --git a/js/src/jit/mips64/Architecture-mips64.h b/js/src/jit/mips64/Architecture-mips64.h new file mode 100644 index 0000000000..d3db37ea2c --- /dev/null +++ b/js/src/jit/mips64/Architecture-mips64.h @@ -0,0 +1,233 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_mips64_Architecture_mips64_h +#define jit_mips64_Architecture_mips64_h + +#include "mozilla/MathAlgorithms.h" + +#include <limits.h> +#include <stdint.h> + +#include "jit/mips-shared/Architecture-mips-shared.h" + +#include "js/Utility.h" + +namespace js { +namespace jit { + +// Shadow stack space is not required on MIPS64. +static const uint32_t ShadowStackSpace = 0; + +// MIPS64 have 64 bit floating-point coprocessor. There are 32 double +// precision register which can also be used as single precision registers. +class FloatRegisters : public FloatRegistersMIPSShared { + public: + enum ContentType { Single, Double, NumTypes }; + + static const char* GetName(uint32_t i) { + MOZ_ASSERT(i < TotalPhys); + return FloatRegistersMIPSShared::GetName(Encoding(i)); + } + + static Encoding FromName(const char* name); + + static const uint32_t Total = 32 * NumTypes; +#ifdef MIPSR6 + static const uint32_t Allocatable = 60; +#else + static const uint32_t Allocatable = 62; +#endif + // When saving all registers we only need to do is save double registers. + static const uint32_t TotalPhys = 32; + + static_assert(sizeof(SetType) * 8 >= Total, + "SetType should be large enough to enumerate all registers."); + + // Magic values which are used to duplicate a mask of physical register for + // a specific type of register. A multiplication is used to copy and shift + // the bits of the physical register mask. + static const SetType SpreadSingle = SetType(1) + << (uint32_t(Single) * TotalPhys); + static const SetType SpreadDouble = SetType(1) + << (uint32_t(Double) * TotalPhys); + static const SetType SpreadScalar = SpreadSingle | SpreadDouble; + static const SetType SpreadVector = 0; + static const SetType Spread = SpreadScalar | SpreadVector; + + static const SetType AllPhysMask = ((SetType(1) << TotalPhys) - 1); + static const SetType AllMask = AllPhysMask * Spread; + static const SetType AllSingleMask = AllPhysMask * SpreadSingle; + static const SetType AllDoubleMask = AllPhysMask * SpreadDouble; + + static const SetType NonVolatileMask = + ((1U << FloatRegisters::f24) | (1U << FloatRegisters::f25) | + (1U << FloatRegisters::f26) | (1U << FloatRegisters::f27) | + (1U << FloatRegisters::f28) | (1U << FloatRegisters::f29) | + (1U << FloatRegisters::f30) | (1U << FloatRegisters::f31)) * + SpreadScalar | + AllPhysMask * SpreadVector; + + static const SetType VolatileMask = AllMask & ~NonVolatileMask; + + static const SetType WrapperMask = VolatileMask; + +#ifdef MIPSR6 + static const SetType NonAllocatableMask = + ((1U << FloatRegisters::f23) | (1U << FloatRegisters::f24)) * Spread; +#else + static const SetType NonAllocatableMask = + (1U << FloatRegisters::f23) * Spread; +#endif + + static const SetType AllocatableMask = AllMask & ~NonAllocatableMask; +}; + +template <typename T> +class TypedRegisterSet; + +class FloatRegister : public FloatRegisterMIPSShared { + public: + typedef FloatRegisters Codes; + typedef size_t Code; + typedef Codes::Encoding Encoding; + typedef Codes::ContentType ContentType; + + Encoding reg_ : 6; + + private: + ContentType kind_ : 3; + + public: + constexpr FloatRegister(uint32_t r, ContentType kind = Codes::Double) + : reg_(Encoding(r)), kind_(kind) {} + constexpr FloatRegister() + : reg_(Encoding(FloatRegisters::invalid_freg)), kind_(Codes::Double) {} + + static uint32_t SetSize(SetType x) { + // Count the number of non-aliased registers. + x |= x >> Codes::TotalPhys; + x &= Codes::AllPhysMask; + static_assert(Codes::AllPhysMask <= 0xffffffff, + "We can safely use CountPopulation32"); + return mozilla::CountPopulation32(x); + } + + bool operator==(const FloatRegister& other) const { + MOZ_ASSERT(!isInvalid()); + MOZ_ASSERT(!other.isInvalid()); + return kind_ == other.kind_ && reg_ == other.reg_; + } + bool equiv(const FloatRegister& other) const { return other.kind_ == kind_; } + size_t size() const { + return (kind_ == Codes::Double) ? sizeof(double) : sizeof(float); + } + // Always push doubles to maintain 8-byte stack alignment. + size_t pushSize() const { return sizeof(double); } + bool isInvalid() const { return reg_ == FloatRegisters::invalid_freg; } + + bool isSingle() const { return kind_ == Codes::Single; } + bool isDouble() const { return kind_ == Codes::Double; } + bool isSimd128() const { return false; } + + FloatRegister singleOverlay() const; + FloatRegister doubleOverlay() const; + + FloatRegister asSingle() const { return singleOverlay(); } + FloatRegister asDouble() const { return doubleOverlay(); } + FloatRegister asSimd128() const { MOZ_CRASH("NYI"); } + + Code code() const { + MOZ_ASSERT(!isInvalid()); + return Code(reg_ | (kind_ << 5)); + } + Encoding encoding() const { + MOZ_ASSERT(!isInvalid()); + MOZ_ASSERT(uint32_t(reg_) < Codes::TotalPhys); + return reg_; + } + uint32_t id() const { return reg_; } + static FloatRegister FromCode(uint32_t i) { + uint32_t code = i & 0x1f; + uint32_t kind = i >> 5; + return FloatRegister(Code(code), ContentType(kind)); + } + + bool volatile_() const { + return !!((1 << reg_) & FloatRegisters::VolatileMask); + } + const char* name() const { return FloatRegisters::GetName(reg_); } + bool operator!=(const FloatRegister& other) const { + return kind_ != other.kind_ || reg_ != other.reg_; + } + bool aliases(const FloatRegister& other) { return reg_ == other.reg_; } + uint32_t numAliased() const { return 2; } + FloatRegister aliased(uint32_t aliasIdx) { + if (aliasIdx == 0) { + return *this; + } + MOZ_ASSERT(aliasIdx == 1); + if (isDouble()) { + return singleOverlay(); + } + return doubleOverlay(); + } + uint32_t numAlignedAliased() const { return 2; } + FloatRegister alignedAliased(uint32_t aliasIdx) { + MOZ_ASSERT(isDouble()); + if (aliasIdx == 0) { + return *this; + } + MOZ_ASSERT(aliasIdx == 1); + return singleOverlay(); + } + + SetType alignedOrDominatedAliasedSet() const { return Codes::Spread << reg_; } + + static constexpr RegTypeName DefaultType = RegTypeName::Float64; + + template <RegTypeName = DefaultType> + static SetType LiveAsIndexableSet(SetType s) { + return SetType(0); + } + + template <RegTypeName Name = DefaultType> + static SetType AllocatableAsIndexableSet(SetType s) { + static_assert(Name != RegTypeName::Any, "Allocatable set are not iterable"); + return LiveAsIndexableSet<Name>(s); + } + + static Code FromName(const char* name) { + return FloatRegisters::FromName(name); + } + static TypedRegisterSet<FloatRegister> ReduceSetForPush( + const TypedRegisterSet<FloatRegister>& s); + static uint32_t GetPushSizeInBytes(const TypedRegisterSet<FloatRegister>& s); + uint32_t getRegisterDumpOffsetInBytes(); +}; + +template <> +inline FloatRegister::SetType +FloatRegister::LiveAsIndexableSet<RegTypeName::Float32>(SetType set) { + return set & FloatRegisters::AllSingleMask; +} + +template <> +inline FloatRegister::SetType +FloatRegister::LiveAsIndexableSet<RegTypeName::Float64>(SetType set) { + return set & FloatRegisters::AllDoubleMask; +} + +template <> +inline FloatRegister::SetType +FloatRegister::LiveAsIndexableSet<RegTypeName::Any>(SetType set) { + return set; +} + +} // namespace jit +} // namespace js + +#endif /* jit_mips64_Architecture_mips64_h */ diff --git a/js/src/jit/mips64/Assembler-mips64.cpp b/js/src/jit/mips64/Assembler-mips64.cpp new file mode 100644 index 0000000000..c524f47048 --- /dev/null +++ b/js/src/jit/mips64/Assembler-mips64.cpp @@ -0,0 +1,371 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/mips64/Assembler-mips64.h" + +#include "mozilla/DebugOnly.h" +#include "mozilla/Maybe.h" + +#include "jit/AutoWritableJitCode.h" + +using mozilla::DebugOnly; + +using namespace js; +using namespace js::jit; + +ABIArgGenerator::ABIArgGenerator() + : regIndex_(0), stackOffset_(0), current_() {} + +ABIArg ABIArgGenerator::next(MIRType type) { + static_assert(NumIntArgRegs == NumFloatArgRegs); + if (regIndex_ == NumIntArgRegs) { + if (type != MIRType::Simd128) { + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint64_t); + } else { + // Mips platform does not support simd yet. + MOZ_CRASH("Unexpected argument type"); + } + return current_; + } + switch (type) { + case MIRType::Int32: + case MIRType::Int64: + case MIRType::Pointer: + case MIRType::WasmAnyRef: + case MIRType::StackResults: { + Register destReg; + GetIntArgReg(regIndex_++, &destReg); + current_ = ABIArg(destReg); + break; + } + case MIRType::Float32: + case MIRType::Double: { + FloatRegister::ContentType contentType; + contentType = (type == MIRType::Double) ? FloatRegisters::Double + : FloatRegisters::Single; + FloatRegister destFReg; + GetFloatArgReg(regIndex_++, &destFReg); + current_ = ABIArg(FloatRegister(destFReg.id(), contentType)); + break; + } + default: + MOZ_CRASH("Unexpected argument type"); + } + return current_; +} + +uint32_t js::jit::RT(FloatRegister r) { + MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys); + return r.id() << RTShift; +} + +uint32_t js::jit::RD(FloatRegister r) { + MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys); + return r.id() << RDShift; +} + +uint32_t js::jit::RZ(FloatRegister r) { + MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys); + return r.id() << RZShift; +} + +uint32_t js::jit::SA(FloatRegister r) { + MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys); + return r.id() << SAShift; +} + +void Assembler::executableCopy(uint8_t* buffer) { + MOZ_ASSERT(isFinished); + m_buffer.executableCopy(buffer); +} + +uintptr_t Assembler::GetPointer(uint8_t* instPtr) { + Instruction* inst = (Instruction*)instPtr; + return Assembler::ExtractLoad64Value(inst); +} + +static JitCode* CodeFromJump(Instruction* jump) { + uint8_t* target = (uint8_t*)Assembler::ExtractLoad64Value(jump); + return JitCode::FromExecutable(target); +} + +void Assembler::TraceJumpRelocations(JSTracer* trc, JitCode* code, + CompactBufferReader& reader) { + while (reader.more()) { + JitCode* child = + CodeFromJump((Instruction*)(code->raw() + reader.readUnsigned())); + TraceManuallyBarrieredEdge(trc, &child, "rel32"); + } +} + +static void TraceOneDataRelocation(JSTracer* trc, + mozilla::Maybe<AutoWritableJitCode>& awjc, + JitCode* code, Instruction* inst) { + void* ptr = (void*)Assembler::ExtractLoad64Value(inst); + void* prior = ptr; + + // Data relocations can be for Values or for raw pointers. If a Value is + // zero-tagged, we can trace it as if it were a raw pointer. If a Value + // is not zero-tagged, we have to interpret it as a Value to ensure that the + // tag bits are masked off to recover the actual pointer. + uintptr_t word = reinterpret_cast<uintptr_t>(ptr); + if (word >> JSVAL_TAG_SHIFT) { + // This relocation is a Value with a non-zero tag. + Value v = Value::fromRawBits(word); + TraceManuallyBarrieredEdge(trc, &v, "jit-masm-value"); + ptr = (void*)v.bitsAsPunboxPointer(); + } else { + // This relocation is a raw pointer or a Value with a zero tag. + // No barrier needed since these are constants. + TraceManuallyBarrieredGenericPointerEdge( + trc, reinterpret_cast<gc::Cell**>(&ptr), "jit-masm-ptr"); + } + + if (ptr != prior) { + if (awjc.isNothing()) { + awjc.emplace(code); + } + Assembler::UpdateLoad64Value(inst, uint64_t(ptr)); + } +} + +/* static */ +void Assembler::TraceDataRelocations(JSTracer* trc, JitCode* code, + CompactBufferReader& reader) { + mozilla::Maybe<AutoWritableJitCode> awjc; + while (reader.more()) { + size_t offset = reader.readUnsigned(); + Instruction* inst = (Instruction*)(code->raw() + offset); + TraceOneDataRelocation(trc, awjc, code, inst); + } +} + +void Assembler::Bind(uint8_t* rawCode, const CodeLabel& label) { + if (label.patchAt().bound()) { + auto mode = label.linkMode(); + intptr_t offset = label.patchAt().offset(); + intptr_t target = label.target().offset(); + + if (mode == CodeLabel::RawPointer) { + *reinterpret_cast<const void**>(rawCode + offset) = rawCode + target; + } else { + MOZ_ASSERT(mode == CodeLabel::MoveImmediate || + mode == CodeLabel::JumpImmediate); + Instruction* inst = (Instruction*)(rawCode + offset); + Assembler::UpdateLoad64Value(inst, (uint64_t)(rawCode + target)); + } + } +} + +void Assembler::bind(InstImm* inst, uintptr_t branch, uintptr_t target) { + int64_t offset = target - branch; + InstImm inst_bgezal = InstImm(op_regimm, zero, rt_bgezal, BOffImm16(0)); + InstImm inst_beq = InstImm(op_beq, zero, zero, BOffImm16(0)); + + // If encoded offset is 4, then the jump must be short + if (BOffImm16(inst[0]).decode() == 4) { + MOZ_ASSERT(BOffImm16::IsInRange(offset)); + inst[0].setBOffImm16(BOffImm16(offset)); + inst[1].makeNop(); + return; + } + + // Generate the long jump for calls because return address has to be the + // address after the reserved block. + if (inst[0].encode() == inst_bgezal.encode()) { + addLongJump(BufferOffset(branch), BufferOffset(target)); + Assembler::WriteLoad64Instructions(inst, ScratchRegister, + LabelBase::INVALID_OFFSET); + inst[4] = InstReg(op_special, ScratchRegister, zero, ra, ff_jalr).encode(); + // There is 1 nop after this. + return; + } + + if (BOffImm16::IsInRange(offset)) { + // Don't skip trailing nops can improve performance + // on Loongson3 platform. + bool skipNops = + !isLoongson() && (inst[0].encode() != inst_bgezal.encode() && + inst[0].encode() != inst_beq.encode()); + + inst[0].setBOffImm16(BOffImm16(offset)); + inst[1].makeNop(); + + if (skipNops) { + inst[2] = + InstImm(op_regimm, zero, rt_bgez, BOffImm16(5 * sizeof(uint32_t))) + .encode(); + // There are 4 nops after this + } + return; + } + + if (inst[0].encode() == inst_beq.encode()) { + // Handle long unconditional jump. + addLongJump(BufferOffset(branch), BufferOffset(target)); + Assembler::WriteLoad64Instructions(inst, ScratchRegister, + LabelBase::INVALID_OFFSET); +#ifdef MIPSR6 + inst[4] = + InstReg(op_special, ScratchRegister, zero, zero, ff_jalr).encode(); +#else + inst[4] = InstReg(op_special, ScratchRegister, zero, zero, ff_jr).encode(); +#endif + // There is 1 nop after this. + } else { + // Handle long conditional jump. + inst[0] = invertBranch(inst[0], BOffImm16(7 * sizeof(uint32_t))); + // No need for a "nop" here because we can clobber scratch. + addLongJump(BufferOffset(branch + sizeof(uint32_t)), BufferOffset(target)); + Assembler::WriteLoad64Instructions(&inst[1], ScratchRegister, + LabelBase::INVALID_OFFSET); +#ifdef MIPSR6 + inst[5] = + InstReg(op_special, ScratchRegister, zero, zero, ff_jalr).encode(); +#else + inst[5] = InstReg(op_special, ScratchRegister, zero, zero, ff_jr).encode(); +#endif + // There is 1 nop after this. + } +} + +void Assembler::processCodeLabels(uint8_t* rawCode) { + for (const CodeLabel& label : codeLabels_) { + Bind(rawCode, label); + } +} + +uint32_t Assembler::PatchWrite_NearCallSize() { + // Load an address needs 4 instructions, and a jump with a delay slot. + return (4 + 2) * sizeof(uint32_t); +} + +void Assembler::PatchWrite_NearCall(CodeLocationLabel start, + CodeLocationLabel toCall) { + Instruction* inst = (Instruction*)start.raw(); + uint8_t* dest = toCall.raw(); + + // Overwrite whatever instruction used to be here with a call. + // Always use long jump for two reasons: + // - Jump has to be the same size because of PatchWrite_NearCallSize. + // - Return address has to be at the end of replaced block. + // Short jump wouldn't be more efficient. + Assembler::WriteLoad64Instructions(inst, ScratchRegister, (uint64_t)dest); + inst[4] = InstReg(op_special, ScratchRegister, zero, ra, ff_jalr); + inst[5] = InstNOP(); +} + +uint64_t Assembler::ExtractLoad64Value(Instruction* inst0) { + InstImm* i0 = (InstImm*)inst0; + InstImm* i1 = (InstImm*)i0->next(); + InstReg* i2 = (InstReg*)i1->next(); + InstImm* i3 = (InstImm*)i2->next(); + InstImm* i5 = (InstImm*)i3->next()->next(); + + MOZ_ASSERT(i0->extractOpcode() == ((uint32_t)op_lui >> OpcodeShift)); + MOZ_ASSERT(i1->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift)); + MOZ_ASSERT(i3->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift)); + + if ((i2->extractOpcode() == ((uint32_t)op_special >> OpcodeShift)) && + (i2->extractFunctionField() == ff_dsrl32)) { + uint64_t value = (uint64_t(i0->extractImm16Value()) << 32) | + (uint64_t(i1->extractImm16Value()) << 16) | + uint64_t(i3->extractImm16Value()); + return uint64_t((int64_t(value) << 16) >> 16); + } + + MOZ_ASSERT(i5->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift)); + uint64_t value = (uint64_t(i0->extractImm16Value()) << 48) | + (uint64_t(i1->extractImm16Value()) << 32) | + (uint64_t(i3->extractImm16Value()) << 16) | + uint64_t(i5->extractImm16Value()); + return value; +} + +void Assembler::UpdateLoad64Value(Instruction* inst0, uint64_t value) { + InstImm* i0 = (InstImm*)inst0; + InstImm* i1 = (InstImm*)i0->next(); + InstReg* i2 = (InstReg*)i1->next(); + InstImm* i3 = (InstImm*)i2->next(); + InstImm* i5 = (InstImm*)i3->next()->next(); + + MOZ_ASSERT(i0->extractOpcode() == ((uint32_t)op_lui >> OpcodeShift)); + MOZ_ASSERT(i1->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift)); + MOZ_ASSERT(i3->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift)); + + if ((i2->extractOpcode() == ((uint32_t)op_special >> OpcodeShift)) && + (i2->extractFunctionField() == ff_dsrl32)) { + i0->setImm16(Imm16::Lower(Imm32(value >> 32))); + i1->setImm16(Imm16::Upper(Imm32(value))); + i3->setImm16(Imm16::Lower(Imm32(value))); + return; + } + + MOZ_ASSERT(i5->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift)); + + i0->setImm16(Imm16::Upper(Imm32(value >> 32))); + i1->setImm16(Imm16::Lower(Imm32(value >> 32))); + i3->setImm16(Imm16::Upper(Imm32(value))); + i5->setImm16(Imm16::Lower(Imm32(value))); +} + +void Assembler::WriteLoad64Instructions(Instruction* inst0, Register reg, + uint64_t value) { + Instruction* inst1 = inst0->next(); + Instruction* inst2 = inst1->next(); + Instruction* inst3 = inst2->next(); + + *inst0 = InstImm(op_lui, zero, reg, Imm16::Lower(Imm32(value >> 32))); + *inst1 = InstImm(op_ori, reg, reg, Imm16::Upper(Imm32(value))); + *inst2 = InstReg(op_special, rs_one, reg, reg, 48 - 32, ff_dsrl32); + *inst3 = InstImm(op_ori, reg, reg, Imm16::Lower(Imm32(value))); +} + +void Assembler::PatchDataWithValueCheck(CodeLocationLabel label, + ImmPtr newValue, ImmPtr expectedValue) { + PatchDataWithValueCheck(label, PatchedImmPtr(newValue.value), + PatchedImmPtr(expectedValue.value)); +} + +void Assembler::PatchDataWithValueCheck(CodeLocationLabel label, + PatchedImmPtr newValue, + PatchedImmPtr expectedValue) { + Instruction* inst = (Instruction*)label.raw(); + + // Extract old Value + DebugOnly<uint64_t> value = Assembler::ExtractLoad64Value(inst); + MOZ_ASSERT(value == uint64_t(expectedValue.value)); + + // Replace with new value + Assembler::UpdateLoad64Value(inst, uint64_t(newValue.value)); +} + +uint64_t Assembler::ExtractInstructionImmediate(uint8_t* code) { + InstImm* inst = (InstImm*)code; + return Assembler::ExtractLoad64Value(inst); +} + +void Assembler::ToggleCall(CodeLocationLabel inst_, bool enabled) { + Instruction* inst = (Instruction*)inst_.raw(); + InstImm* i0 = (InstImm*)inst; + InstImm* i1 = (InstImm*)i0->next(); + InstImm* i3 = (InstImm*)i1->next()->next(); + Instruction* i4 = (Instruction*)i3->next(); + + MOZ_ASSERT(i0->extractOpcode() == ((uint32_t)op_lui >> OpcodeShift)); + MOZ_ASSERT(i1->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift)); + MOZ_ASSERT(i3->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift)); + + if (enabled) { + MOZ_ASSERT(i4->extractOpcode() != ((uint32_t)op_lui >> OpcodeShift)); + InstReg jalr = InstReg(op_special, ScratchRegister, zero, ra, ff_jalr); + *i4 = jalr; + } else { + InstNOP nop; + *i4 = nop; + } +} diff --git a/js/src/jit/mips64/Assembler-mips64.h b/js/src/jit/mips64/Assembler-mips64.h new file mode 100644 index 0000000000..0ac84a79fe --- /dev/null +++ b/js/src/jit/mips64/Assembler-mips64.h @@ -0,0 +1,293 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_mips64_Assembler_mips64_h +#define jit_mips64_Assembler_mips64_h + +#include <iterator> + +#include "jit/mips-shared/Assembler-mips-shared.h" + +#include "jit/mips64/Architecture-mips64.h" + +namespace js { +namespace jit { + +static constexpr Register CallTempReg4 = a4; +static constexpr Register CallTempReg5 = a5; + +static constexpr Register CallTempNonArgRegs[] = {t0, t1, t2, t3}; +static const uint32_t NumCallTempNonArgRegs = std::size(CallTempNonArgRegs); + +class ABIArgGenerator { + unsigned regIndex_; + uint32_t stackOffset_; + ABIArg current_; + + public: + ABIArgGenerator(); + ABIArg next(MIRType argType); + ABIArg& current() { return current_; } + + uint32_t stackBytesConsumedSoFar() const { return stackOffset_; } + void increaseStackOffset(uint32_t bytes) { stackOffset_ += bytes; } +}; + +// These registers may be volatile or nonvolatile. +static constexpr Register ABINonArgReg0 = t0; +static constexpr Register ABINonArgReg1 = t1; +static constexpr Register ABINonArgReg2 = t2; +static constexpr Register ABINonArgReg3 = t3; + +// This register may be volatile or nonvolatile. Avoid f23 which is the +// ScratchDoubleReg. +static constexpr FloatRegister ABINonArgDoubleReg{FloatRegisters::f21, + FloatRegisters::Double}; + +// These registers may be volatile or nonvolatile. +// Note: these three registers are all guaranteed to be different +static constexpr Register ABINonArgReturnReg0 = t0; +static constexpr Register ABINonArgReturnReg1 = t1; +static constexpr Register ABINonVolatileReg = s0; + +// This register is guaranteed to be clobberable during the prologue and +// epilogue of an ABI call which must preserve both ABI argument, return +// and non-volatile registers. +static constexpr Register ABINonArgReturnVolatileReg = t0; + +// TLS pointer argument register for WebAssembly functions. This must not alias +// any other register used for passing function arguments or return values. +// Preserved by WebAssembly functions. +static constexpr Register InstanceReg = s5; + +// Registers used for wasm table calls. These registers must be disjoint +// from the ABI argument registers, InstanceReg and each other. +static constexpr Register WasmTableCallScratchReg0 = ABINonArgReg0; +static constexpr Register WasmTableCallScratchReg1 = ABINonArgReg1; +static constexpr Register WasmTableCallSigReg = ABINonArgReg2; +static constexpr Register WasmTableCallIndexReg = ABINonArgReg3; + +// Registers used for ref calls. +static constexpr Register WasmCallRefCallScratchReg0 = ABINonArgReg0; +static constexpr Register WasmCallRefCallScratchReg1 = ABINonArgReg1; +static constexpr Register WasmCallRefReg = ABINonArgReg3; + +// Registers used for wasm tail calls operations. +static constexpr Register WasmTailCallInstanceScratchReg = ABINonArgReg1; +static constexpr Register WasmTailCallRAScratchReg = ra; +static constexpr Register WasmTailCallFPScratchReg = ABINonArgReg3; + +// Register used as a scratch along the return path in the fast js -> wasm stub +// code. This must not overlap ReturnReg, JSReturnOperand, or InstanceReg. +// It must be a volatile register. +static constexpr Register WasmJitEntryReturnScratch = t1; + +static constexpr Register InterpreterPCReg = t5; + +static constexpr Register JSReturnReg = v1; +static constexpr Register JSReturnReg_Type = JSReturnReg; +static constexpr Register JSReturnReg_Data = JSReturnReg; +static constexpr Register64 ReturnReg64(ReturnReg); +static constexpr FloatRegister ReturnFloat32Reg = {FloatRegisters::f0, + FloatRegisters::Single}; +static constexpr FloatRegister ReturnDoubleReg = {FloatRegisters::f0, + FloatRegisters::Double}; +static constexpr FloatRegister ScratchFloat32Reg = {FloatRegisters::f23, + FloatRegisters::Single}; +static constexpr FloatRegister ScratchDoubleReg = {FloatRegisters::f23, + FloatRegisters::Double}; + +struct ScratchFloat32Scope : public AutoFloatRegisterScope { + explicit ScratchFloat32Scope(MacroAssembler& masm) + : AutoFloatRegisterScope(masm, ScratchFloat32Reg) {} +}; + +struct ScratchDoubleScope : public AutoFloatRegisterScope { + explicit ScratchDoubleScope(MacroAssembler& masm) + : AutoFloatRegisterScope(masm, ScratchDoubleReg) {} +}; + +static constexpr FloatRegister f0 = {FloatRegisters::f0, + FloatRegisters::Double}; +static constexpr FloatRegister f1 = {FloatRegisters::f1, + FloatRegisters::Double}; +static constexpr FloatRegister f2 = {FloatRegisters::f2, + FloatRegisters::Double}; +static constexpr FloatRegister f3 = {FloatRegisters::f3, + FloatRegisters::Double}; +static constexpr FloatRegister f4 = {FloatRegisters::f4, + FloatRegisters::Double}; +static constexpr FloatRegister f5 = {FloatRegisters::f5, + FloatRegisters::Double}; +static constexpr FloatRegister f6 = {FloatRegisters::f6, + FloatRegisters::Double}; +static constexpr FloatRegister f7 = {FloatRegisters::f7, + FloatRegisters::Double}; +static constexpr FloatRegister f8 = {FloatRegisters::f8, + FloatRegisters::Double}; +static constexpr FloatRegister f9 = {FloatRegisters::f9, + FloatRegisters::Double}; +static constexpr FloatRegister f10 = {FloatRegisters::f10, + FloatRegisters::Double}; +static constexpr FloatRegister f11 = {FloatRegisters::f11, + FloatRegisters::Double}; +static constexpr FloatRegister f12 = {FloatRegisters::f12, + FloatRegisters::Double}; +static constexpr FloatRegister f13 = {FloatRegisters::f13, + FloatRegisters::Double}; +static constexpr FloatRegister f14 = {FloatRegisters::f14, + FloatRegisters::Double}; +static constexpr FloatRegister f15 = {FloatRegisters::f15, + FloatRegisters::Double}; +static constexpr FloatRegister f16 = {FloatRegisters::f16, + FloatRegisters::Double}; +static constexpr FloatRegister f17 = {FloatRegisters::f17, + FloatRegisters::Double}; +static constexpr FloatRegister f18 = {FloatRegisters::f18, + FloatRegisters::Double}; +static constexpr FloatRegister f19 = {FloatRegisters::f19, + FloatRegisters::Double}; +static constexpr FloatRegister f20 = {FloatRegisters::f20, + FloatRegisters::Double}; +static constexpr FloatRegister f21 = {FloatRegisters::f21, + FloatRegisters::Double}; +static constexpr FloatRegister f22 = {FloatRegisters::f22, + FloatRegisters::Double}; +static constexpr FloatRegister f23 = {FloatRegisters::f23, + FloatRegisters::Double}; +static constexpr FloatRegister f24 = {FloatRegisters::f24, + FloatRegisters::Double}; +static constexpr FloatRegister f25 = {FloatRegisters::f25, + FloatRegisters::Double}; +static constexpr FloatRegister f26 = {FloatRegisters::f26, + FloatRegisters::Double}; +static constexpr FloatRegister f27 = {FloatRegisters::f27, + FloatRegisters::Double}; +static constexpr FloatRegister f28 = {FloatRegisters::f28, + FloatRegisters::Double}; +static constexpr FloatRegister f29 = {FloatRegisters::f29, + FloatRegisters::Double}; +static constexpr FloatRegister f30 = {FloatRegisters::f30, + FloatRegisters::Double}; +static constexpr FloatRegister f31 = {FloatRegisters::f31, + FloatRegisters::Double}; + +// MIPS64 CPUs can only load multibyte data that is "naturally" +// eight-byte-aligned, sp register should be sixteen-byte-aligned. +static constexpr uint32_t ABIStackAlignment = 16; +static constexpr uint32_t JitStackAlignment = 16; + +static constexpr uint32_t JitStackValueAlignment = + JitStackAlignment / sizeof(Value); +static_assert(JitStackAlignment % sizeof(Value) == 0 && + JitStackValueAlignment >= 1, + "Stack alignment should be a non-zero multiple of sizeof(Value)"); + +// TODO this is just a filler to prevent a build failure. The MIPS SIMD +// alignment requirements still need to be explored. +// TODO Copy the static_asserts from x64/x86 assembler files. +static constexpr uint32_t SimdMemoryAlignment = 16; + +static constexpr uint32_t WasmStackAlignment = SimdMemoryAlignment; +static const uint32_t WasmTrapInstructionLength = 4; + +// See comments in wasm::GenerateFunctionPrologue. The difference between these +// is the size of the largest callable prologue on the platform. +static constexpr uint32_t WasmCheckedCallEntryOffset = 0u; + +static constexpr Scale ScalePointer = TimesEight; + +class Assembler : public AssemblerMIPSShared { + public: + Assembler() : AssemblerMIPSShared() {} + + static uintptr_t GetPointer(uint8_t*); + + using AssemblerMIPSShared::bind; + + static void Bind(uint8_t* rawCode, const CodeLabel& label); + + void processCodeLabels(uint8_t* rawCode); + + static void TraceJumpRelocations(JSTracer* trc, JitCode* code, + CompactBufferReader& reader); + static void TraceDataRelocations(JSTracer* trc, JitCode* code, + CompactBufferReader& reader); + + void bind(InstImm* inst, uintptr_t branch, uintptr_t target); + + // Copy the assembly code to the given buffer, and perform any pending + // relocations relying on the target address. + void executableCopy(uint8_t* buffer); + + static uint32_t PatchWrite_NearCallSize(); + + static uint64_t ExtractLoad64Value(Instruction* inst0); + static void UpdateLoad64Value(Instruction* inst0, uint64_t value); + static void WriteLoad64Instructions(Instruction* inst0, Register reg, + uint64_t value); + + static void PatchWrite_NearCall(CodeLocationLabel start, + CodeLocationLabel toCall); + static void PatchDataWithValueCheck(CodeLocationLabel label, ImmPtr newValue, + ImmPtr expectedValue); + static void PatchDataWithValueCheck(CodeLocationLabel label, + PatchedImmPtr newValue, + PatchedImmPtr expectedValue); + + static uint64_t ExtractInstructionImmediate(uint8_t* code); + + static void ToggleCall(CodeLocationLabel inst_, bool enabled); +}; // Assembler + +static const uint32_t NumIntArgRegs = 8; +static const uint32_t NumFloatArgRegs = NumIntArgRegs; + +static inline bool GetIntArgReg(uint32_t usedArgSlots, Register* out) { + if (usedArgSlots < NumIntArgRegs) { + *out = Register::FromCode(a0.code() + usedArgSlots); + return true; + } + return false; +} + +static inline bool GetFloatArgReg(uint32_t usedArgSlots, FloatRegister* out) { + if (usedArgSlots < NumFloatArgRegs) { + *out = FloatRegister::FromCode(f12.code() + usedArgSlots); + return true; + } + return false; +} + +// Get a register in which we plan to put a quantity that will be used as an +// integer argument. This differs from GetIntArgReg in that if we have no more +// actual argument registers to use we will fall back on using whatever +// CallTempReg* don't overlap the argument registers, and only fail once those +// run out too. +static inline bool GetTempRegForIntArg(uint32_t usedIntArgs, + uint32_t usedFloatArgs, Register* out) { + // NOTE: We can't properly determine which regs are used if there are + // float arguments. If this is needed, we will have to guess. + MOZ_ASSERT(usedFloatArgs == 0); + + if (GetIntArgReg(usedIntArgs, out)) { + return true; + } + // Unfortunately, we have to assume things about the point at which + // GetIntArgReg returns false, because we need to know how many registers it + // can allocate. + usedIntArgs -= NumIntArgRegs; + if (usedIntArgs >= NumCallTempNonArgRegs) { + return false; + } + *out = CallTempNonArgRegs[usedIntArgs]; + return true; +} + +} // namespace jit +} // namespace js + +#endif /* jit_mips64_Assembler_mips64_h */ diff --git a/js/src/jit/mips64/CodeGenerator-mips64.cpp b/js/src/jit/mips64/CodeGenerator-mips64.cpp new file mode 100644 index 0000000000..7c4f34340c --- /dev/null +++ b/js/src/jit/mips64/CodeGenerator-mips64.cpp @@ -0,0 +1,588 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/mips64/CodeGenerator-mips64.h" + +#include "mozilla/MathAlgorithms.h" + +#include "jit/CodeGenerator.h" +#include "jit/MIR.h" +#include "jit/MIRGraph.h" +#include "js/Conversions.h" +#include "vm/Shape.h" + +#include "jit/MacroAssembler-inl.h" +#include "jit/shared/CodeGenerator-shared-inl.h" + +using namespace js; +using namespace js::jit; + +ValueOperand CodeGeneratorMIPS64::ToValue(LInstruction* ins, size_t pos) { + return ValueOperand(ToRegister(ins->getOperand(pos))); +} + +ValueOperand CodeGeneratorMIPS64::ToTempValue(LInstruction* ins, size_t pos) { + return ValueOperand(ToRegister(ins->getTemp(pos))); +} + +void CodeGenerator::visitBox(LBox* box) { + const LAllocation* in = box->getOperand(0); + ValueOperand result = ToOutValue(box); + + masm.moveValue(TypedOrValueRegister(box->type(), ToAnyRegister(in)), result); +} + +void CodeGenerator::visitUnbox(LUnbox* unbox) { + MUnbox* mir = unbox->mir(); + + Register result = ToRegister(unbox->output()); + + if (mir->fallible()) { + const ValueOperand value = ToValue(unbox, LUnbox::Input); + Label bail; + switch (mir->type()) { + case MIRType::Int32: + masm.fallibleUnboxInt32(value, result, &bail); + break; + case MIRType::Boolean: + masm.fallibleUnboxBoolean(value, result, &bail); + break; + case MIRType::Object: + masm.fallibleUnboxObject(value, result, &bail); + break; + case MIRType::String: + masm.fallibleUnboxString(value, result, &bail); + break; + case MIRType::Symbol: + masm.fallibleUnboxSymbol(value, result, &bail); + break; + case MIRType::BigInt: + masm.fallibleUnboxBigInt(value, result, &bail); + break; + default: + MOZ_CRASH("Given MIRType cannot be unboxed."); + } + bailoutFrom(&bail, unbox->snapshot()); + return; + } + + LAllocation* input = unbox->getOperand(LUnbox::Input); + if (input->isRegister()) { + Register inputReg = ToRegister(input); + switch (mir->type()) { + case MIRType::Int32: + masm.unboxInt32(inputReg, result); + break; + case MIRType::Boolean: + masm.unboxBoolean(inputReg, result); + break; + case MIRType::Object: + masm.unboxObject(inputReg, result); + break; + case MIRType::String: + masm.unboxString(inputReg, result); + break; + case MIRType::Symbol: + masm.unboxSymbol(inputReg, result); + break; + case MIRType::BigInt: + masm.unboxBigInt(inputReg, result); + break; + default: + MOZ_CRASH("Given MIRType cannot be unboxed."); + } + return; + } + + Address inputAddr = ToAddress(input); + switch (mir->type()) { + case MIRType::Int32: + masm.unboxInt32(inputAddr, result); + break; + case MIRType::Boolean: + masm.unboxBoolean(inputAddr, result); + break; + case MIRType::Object: + masm.unboxObject(inputAddr, result); + break; + case MIRType::String: + masm.unboxString(inputAddr, result); + break; + case MIRType::Symbol: + masm.unboxSymbol(inputAddr, result); + break; + case MIRType::BigInt: + masm.unboxBigInt(inputAddr, result); + break; + default: + MOZ_CRASH("Given MIRType cannot be unboxed."); + } +} + +void CodeGeneratorMIPS64::splitTagForTest(const ValueOperand& value, + ScratchTagScope& tag) { + masm.splitTag(value.valueReg(), tag); +} + +void CodeGenerator::visitCompareI64(LCompareI64* lir) { + MCompare* mir = lir->mir(); + MOZ_ASSERT(mir->compareType() == MCompare::Compare_Int64 || + mir->compareType() == MCompare::Compare_UInt64); + + const LInt64Allocation lhs = lir->getInt64Operand(LCompareI64::Lhs); + const LInt64Allocation rhs = lir->getInt64Operand(LCompareI64::Rhs); + Register lhsReg = ToRegister64(lhs).reg; + Register output = ToRegister(lir->output()); + Register rhsReg; + ScratchRegisterScope scratch(masm); + + if (IsConstant(rhs)) { + rhsReg = scratch; + masm.ma_li(rhsReg, ImmWord(ToInt64(rhs))); + } else if (rhs.value().isGeneralReg()) { + rhsReg = ToRegister64(rhs).reg; + } else { + rhsReg = scratch; + masm.loadPtr(ToAddress(rhs.value()), rhsReg); + } + + bool isSigned = mir->compareType() == MCompare::Compare_Int64; + masm.cmpPtrSet(JSOpToCondition(lir->jsop(), isSigned), lhsReg, rhsReg, + output); +} + +void CodeGenerator::visitCompareI64AndBranch(LCompareI64AndBranch* lir) { + MCompare* mir = lir->cmpMir(); + MOZ_ASSERT(mir->compareType() == MCompare::Compare_Int64 || + mir->compareType() == MCompare::Compare_UInt64); + + const LInt64Allocation lhs = lir->getInt64Operand(LCompareI64::Lhs); + const LInt64Allocation rhs = lir->getInt64Operand(LCompareI64::Rhs); + Register lhsReg = ToRegister64(lhs).reg; + Register rhsReg; + ScratchRegisterScope scratch(masm); + + if (IsConstant(rhs)) { + rhsReg = scratch; + masm.ma_li(rhsReg, ImmWord(ToInt64(rhs))); + } else if (rhs.value().isGeneralReg()) { + rhsReg = ToRegister64(rhs).reg; + } else { + rhsReg = scratch; + masm.loadPtr(ToAddress(rhs.value()), rhsReg); + } + + bool isSigned = mir->compareType() == MCompare::Compare_Int64; + Assembler::Condition cond = JSOpToCondition(lir->jsop(), isSigned); + emitBranch(lhsReg, rhsReg, cond, lir->ifTrue(), lir->ifFalse()); +} + +void CodeGenerator::visitDivOrModI64(LDivOrModI64* lir) { + Register lhs = ToRegister(lir->lhs()); + Register rhs = ToRegister(lir->rhs()); + Register output = ToRegister(lir->output()); + + Label done; + + // Handle divide by zero. + if (lir->canBeDivideByZero()) { + Label nonZero; + masm.ma_b(rhs, rhs, &nonZero, Assembler::NonZero); + masm.wasmTrap(wasm::Trap::IntegerDivideByZero, lir->bytecodeOffset()); + masm.bind(&nonZero); + } + + // Handle an integer overflow exception from INT64_MIN / -1. + if (lir->canBeNegativeOverflow()) { + Label notOverflow; + masm.branchPtr(Assembler::NotEqual, lhs, ImmWord(INT64_MIN), ¬Overflow); + masm.branchPtr(Assembler::NotEqual, rhs, ImmWord(-1), ¬Overflow); + if (lir->mir()->isMod()) { + masm.ma_xor(output, output); + } else { + masm.wasmTrap(wasm::Trap::IntegerOverflow, lir->bytecodeOffset()); + } + masm.jump(&done); + masm.bind(¬Overflow); + } + +#ifdef MIPSR6 + if (lir->mir()->isMod()) { + masm.as_dmod(output, lhs, rhs); + } else { + masm.as_ddiv(output, lhs, rhs); + } +#else + masm.as_ddiv(lhs, rhs); + if (lir->mir()->isMod()) { + masm.as_mfhi(output); + } else { + masm.as_mflo(output); + } +#endif + masm.bind(&done); +} + +void CodeGenerator::visitUDivOrModI64(LUDivOrModI64* lir) { + Register lhs = ToRegister(lir->lhs()); + Register rhs = ToRegister(lir->rhs()); + Register output = ToRegister(lir->output()); + + Label done; + + // Prevent divide by zero. + if (lir->canBeDivideByZero()) { + Label nonZero; + masm.ma_b(rhs, rhs, &nonZero, Assembler::NonZero); + masm.wasmTrap(wasm::Trap::IntegerDivideByZero, lir->bytecodeOffset()); + masm.bind(&nonZero); + } + +#ifdef MIPSR6 + if (lir->mir()->isMod()) { + masm.as_dmodu(output, lhs, rhs); + } else { + masm.as_ddivu(output, lhs, rhs); + } +#else + masm.as_ddivu(lhs, rhs); + if (lir->mir()->isMod()) { + masm.as_mfhi(output); + } else { + masm.as_mflo(output); + } +#endif + masm.bind(&done); +} + +void CodeGeneratorMIPS64::emitBigIntDiv(LBigIntDiv* ins, Register dividend, + Register divisor, Register output, + Label* fail) { + // Callers handle division by zero and integer overflow. + +#ifdef MIPSR6 + masm.as_ddiv(/* result= */ dividend, dividend, divisor); +#else + masm.as_ddiv(dividend, divisor); + masm.as_mflo(dividend); +#endif + + // Create and return the result. + masm.newGCBigInt(output, divisor, initialBigIntHeap(), fail); + masm.initializeBigInt(output, dividend); +} + +void CodeGeneratorMIPS64::emitBigIntMod(LBigIntMod* ins, Register dividend, + Register divisor, Register output, + Label* fail) { + // Callers handle division by zero and integer overflow. + +#ifdef MIPSR6 + masm.as_dmod(/* result= */ dividend, dividend, divisor); +#else + masm.as_ddiv(dividend, divisor); + masm.as_mfhi(dividend); +#endif + + // Create and return the result. + masm.newGCBigInt(output, divisor, initialBigIntHeap(), fail); + masm.initializeBigInt(output, dividend); +} + +template <typename T> +void CodeGeneratorMIPS64::emitWasmLoadI64(T* lir) { + const MWasmLoad* mir = lir->mir(); + + Register memoryBase = ToRegister(lir->memoryBase()); + Register ptrScratch = InvalidReg; + if (!lir->ptrCopy()->isBogusTemp()) { + ptrScratch = ToRegister(lir->ptrCopy()); + } + + Register ptrReg = ToRegister(lir->ptr()); + if (mir->base()->type() == MIRType::Int32) { + // See comment in visitWasmLoad re the type of 'base'. + masm.move32ZeroExtendToPtr(ptrReg, ptrReg); + } + + if (IsUnaligned(mir->access())) { + masm.wasmUnalignedLoadI64(mir->access(), memoryBase, ptrReg, ptrScratch, + ToOutRegister64(lir), + ToRegister(lir->getTemp(1))); + } else { + masm.wasmLoadI64(mir->access(), memoryBase, ptrReg, ptrScratch, + ToOutRegister64(lir)); + } +} + +void CodeGenerator::visitWasmLoadI64(LWasmLoadI64* lir) { + emitWasmLoadI64(lir); +} + +void CodeGenerator::visitWasmUnalignedLoadI64(LWasmUnalignedLoadI64* lir) { + emitWasmLoadI64(lir); +} + +template <typename T> +void CodeGeneratorMIPS64::emitWasmStoreI64(T* lir) { + const MWasmStore* mir = lir->mir(); + + Register memoryBase = ToRegister(lir->memoryBase()); + Register ptrScratch = InvalidReg; + if (!lir->ptrCopy()->isBogusTemp()) { + ptrScratch = ToRegister(lir->ptrCopy()); + } + + Register ptrReg = ToRegister(lir->ptr()); + if (mir->base()->type() == MIRType::Int32) { + // See comment in visitWasmLoad re the type of 'base'. + masm.move32ZeroExtendToPtr(ptrReg, ptrReg); + } + + if (IsUnaligned(mir->access())) { + masm.wasmUnalignedStoreI64(mir->access(), ToRegister64(lir->value()), + memoryBase, ptrReg, ptrScratch, + ToRegister(lir->getTemp(1))); + } else { + masm.wasmStoreI64(mir->access(), ToRegister64(lir->value()), memoryBase, + ptrReg, ptrScratch); + } +} + +void CodeGenerator::visitWasmStoreI64(LWasmStoreI64* lir) { + emitWasmStoreI64(lir); +} + +void CodeGenerator::visitWasmUnalignedStoreI64(LWasmUnalignedStoreI64* lir) { + emitWasmStoreI64(lir); +} + +void CodeGenerator::visitWasmSelectI64(LWasmSelectI64* lir) { + MOZ_ASSERT(lir->mir()->type() == MIRType::Int64); + + Register cond = ToRegister(lir->condExpr()); + const LInt64Allocation falseExpr = lir->falseExpr(); + + Register64 out = ToOutRegister64(lir); + MOZ_ASSERT(ToRegister64(lir->trueExpr()) == out, + "true expr is reused for input"); + + if (falseExpr.value().isRegister()) { + masm.as_movz(out.reg, ToRegister(falseExpr.value()), cond); + } else { + Label done; + masm.ma_b(cond, cond, &done, Assembler::NonZero, ShortJump); + masm.loadPtr(ToAddress(falseExpr.value()), out.reg); + masm.bind(&done); + } +} + +void CodeGenerator::visitWasmReinterpretFromI64(LWasmReinterpretFromI64* lir) { + MOZ_ASSERT(lir->mir()->type() == MIRType::Double); + MOZ_ASSERT(lir->mir()->input()->type() == MIRType::Int64); + masm.as_dmtc1(ToRegister(lir->input()), ToFloatRegister(lir->output())); +} + +void CodeGenerator::visitWasmReinterpretToI64(LWasmReinterpretToI64* lir) { + MOZ_ASSERT(lir->mir()->type() == MIRType::Int64); + MOZ_ASSERT(lir->mir()->input()->type() == MIRType::Double); + masm.as_dmfc1(ToRegister(lir->output()), ToFloatRegister(lir->input())); +} + +void CodeGenerator::visitExtendInt32ToInt64(LExtendInt32ToInt64* lir) { + const LAllocation* input = lir->getOperand(0); + Register output = ToRegister(lir->output()); + + if (lir->mir()->isUnsigned()) { + masm.ma_dext(output, ToRegister(input), Imm32(0), Imm32(32)); + } else { + masm.ma_sll(output, ToRegister(input), Imm32(0)); + } +} + +void CodeGenerator::visitWrapInt64ToInt32(LWrapInt64ToInt32* lir) { + const LAllocation* input = lir->getOperand(0); + Register output = ToRegister(lir->output()); + + if (lir->mir()->bottomHalf()) { + if (input->isMemory()) { + masm.load32(ToAddress(input), output); + } else { + masm.ma_sll(output, ToRegister(input), Imm32(0)); + } + } else { + MOZ_CRASH("Not implemented."); + } +} + +void CodeGenerator::visitSignExtendInt64(LSignExtendInt64* lir) { + Register64 input = ToRegister64(lir->getInt64Operand(0)); + Register64 output = ToOutRegister64(lir); + switch (lir->mode()) { + case MSignExtendInt64::Byte: + masm.move32To64SignExtend(input.reg, output); + masm.move8SignExtend(output.reg, output.reg); + break; + case MSignExtendInt64::Half: + masm.move32To64SignExtend(input.reg, output); + masm.move16SignExtend(output.reg, output.reg); + break; + case MSignExtendInt64::Word: + masm.move32To64SignExtend(input.reg, output); + break; + } +} + +void CodeGenerator::visitWasmExtendU32Index(LWasmExtendU32Index* lir) { + Register input = ToRegister(lir->input()); + Register output = ToRegister(lir->output()); + MOZ_ASSERT(input == output); + masm.move32To64ZeroExtend(input, Register64(output)); +} + +void CodeGenerator::visitWasmWrapU32Index(LWasmWrapU32Index* lir) { + Register input = ToRegister(lir->input()); + Register output = ToRegister(lir->output()); + MOZ_ASSERT(input == output); + masm.move64To32(Register64(input), output); +} + +void CodeGenerator::visitClzI64(LClzI64* lir) { + Register64 input = ToRegister64(lir->getInt64Operand(0)); + Register64 output = ToOutRegister64(lir); + masm.clz64(input, output.reg); +} + +void CodeGenerator::visitCtzI64(LCtzI64* lir) { + Register64 input = ToRegister64(lir->getInt64Operand(0)); + Register64 output = ToOutRegister64(lir); + masm.ctz64(input, output.reg); +} + +void CodeGenerator::visitNotI64(LNotI64* lir) { + Register64 input = ToRegister64(lir->getInt64Operand(0)); + Register output = ToRegister(lir->output()); + + masm.ma_cmp_set(output, input.reg, zero, Assembler::Equal); +} + +void CodeGenerator::visitBitNotI64(LBitNotI64* ins) { + const LAllocation* input = ins->getOperand(0); + MOZ_ASSERT(!input->isConstant()); + Register inputReg = ToRegister(input); + MOZ_ASSERT(inputReg == ToRegister(ins->output())); + masm.ma_not(inputReg, inputReg); +} + +void CodeGenerator::visitWasmTruncateToInt64(LWasmTruncateToInt64* lir) { + FloatRegister input = ToFloatRegister(lir->input()); + Register64 output = ToOutRegister64(lir); + + MWasmTruncateToInt64* mir = lir->mir(); + MIRType fromType = mir->input()->type(); + + MOZ_ASSERT(fromType == MIRType::Double || fromType == MIRType::Float32); + + auto* ool = new (alloc()) OutOfLineWasmTruncateCheck(mir, input, output); + addOutOfLineCode(ool, mir); + + Label* oolEntry = ool->entry(); + Label* oolRejoin = ool->rejoin(); + bool isSaturating = mir->isSaturating(); + + if (fromType == MIRType::Double) { + if (mir->isUnsigned()) { + masm.wasmTruncateDoubleToUInt64(input, output, isSaturating, oolEntry, + oolRejoin, InvalidFloatReg); + } else { + masm.wasmTruncateDoubleToInt64(input, output, isSaturating, oolEntry, + oolRejoin, InvalidFloatReg); + } + } else { + if (mir->isUnsigned()) { + masm.wasmTruncateFloat32ToUInt64(input, output, isSaturating, oolEntry, + oolRejoin, InvalidFloatReg); + } else { + masm.wasmTruncateFloat32ToInt64(input, output, isSaturating, oolEntry, + oolRejoin, InvalidFloatReg); + } + } +} + +void CodeGenerator::visitInt64ToFloatingPoint(LInt64ToFloatingPoint* lir) { + Register64 input = ToRegister64(lir->getInt64Operand(0)); + FloatRegister output = ToFloatRegister(lir->output()); + + MIRType outputType = lir->mir()->type(); + MOZ_ASSERT(outputType == MIRType::Double || outputType == MIRType::Float32); + + if (outputType == MIRType::Double) { + if (lir->mir()->isUnsigned()) { + masm.convertUInt64ToDouble(input, output, Register::Invalid()); + } else { + masm.convertInt64ToDouble(input, output); + } + } else { + if (lir->mir()->isUnsigned()) { + masm.convertUInt64ToFloat32(input, output, Register::Invalid()); + } else { + masm.convertInt64ToFloat32(input, output); + } + } +} + +void CodeGenerator::visitTestI64AndBranch(LTestI64AndBranch* lir) { + Register64 input = ToRegister64(lir->getInt64Operand(0)); + MBasicBlock* ifTrue = lir->ifTrue(); + MBasicBlock* ifFalse = lir->ifFalse(); + + emitBranch(input.reg, Imm32(0), Assembler::NonZero, ifTrue, ifFalse); +} + +void CodeGenerator::visitAtomicLoad64(LAtomicLoad64* lir) { + Register elements = ToRegister(lir->elements()); + Register temp = ToRegister(lir->temp()); + Register64 temp64 = ToRegister64(lir->temp64()); + Register out = ToRegister(lir->output()); + const MLoadUnboxedScalar* mir = lir->mir(); + + Scalar::Type storageType = mir->storageType(); + + auto sync = Synchronization::Load(); + masm.memoryBarrierBefore(sync); + if (lir->index()->isConstant()) { + Address source = + ToAddress(elements, lir->index(), storageType, mir->offsetAdjustment()); + masm.load64(source, temp64); + } else { + BaseIndex source(elements, ToRegister(lir->index()), + ScaleFromScalarType(storageType), mir->offsetAdjustment()); + masm.load64(source, temp64); + } + masm.memoryBarrierAfter(sync); + emitCreateBigInt(lir, storageType, temp64, out, temp); +} + +void CodeGenerator::visitAtomicStore64(LAtomicStore64* lir) { + Register elements = ToRegister(lir->elements()); + Register value = ToRegister(lir->value()); + Register64 temp1 = ToRegister64(lir->temp1()); + + Scalar::Type writeType = lir->mir()->writeType(); + + masm.loadBigInt64(value, temp1); + auto sync = Synchronization::Store(); + masm.memoryBarrierBefore(sync); + if (lir->index()->isConstant()) { + Address dest = ToAddress(elements, lir->index(), writeType); + masm.store64(temp1, dest); + } else { + BaseIndex dest(elements, ToRegister(lir->index()), + ScaleFromScalarType(writeType)); + masm.store64(temp1, dest); + } + masm.memoryBarrierAfter(sync); +} diff --git a/js/src/jit/mips64/CodeGenerator-mips64.h b/js/src/jit/mips64/CodeGenerator-mips64.h new file mode 100644 index 0000000000..81c30c913e --- /dev/null +++ b/js/src/jit/mips64/CodeGenerator-mips64.h @@ -0,0 +1,65 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_mips64_CodeGenerator_mips64_h +#define jit_mips64_CodeGenerator_mips64_h + +#include "jit/mips-shared/CodeGenerator-mips-shared.h" + +namespace js { +namespace jit { + +class CodeGeneratorMIPS64 : public CodeGeneratorMIPSShared { + protected: + CodeGeneratorMIPS64(MIRGenerator* gen, LIRGraph* graph, MacroAssembler* masm) + : CodeGeneratorMIPSShared(gen, graph, masm) {} + + void testNullEmitBranch(Assembler::Condition cond, const ValueOperand& value, + MBasicBlock* ifTrue, MBasicBlock* ifFalse) { + MOZ_ASSERT(value.valueReg() != SecondScratchReg); + masm.splitTag(value.valueReg(), SecondScratchReg); + emitBranch(SecondScratchReg, ImmTag(JSVAL_TAG_NULL), cond, ifTrue, ifFalse); + } + void testUndefinedEmitBranch(Assembler::Condition cond, + const ValueOperand& value, MBasicBlock* ifTrue, + MBasicBlock* ifFalse) { + MOZ_ASSERT(value.valueReg() != SecondScratchReg); + masm.splitTag(value.valueReg(), SecondScratchReg); + emitBranch(SecondScratchReg, ImmTag(JSVAL_TAG_UNDEFINED), cond, ifTrue, + ifFalse); + } + void testObjectEmitBranch(Assembler::Condition cond, + const ValueOperand& value, MBasicBlock* ifTrue, + MBasicBlock* ifFalse) { + MOZ_ASSERT(value.valueReg() != SecondScratchReg); + masm.splitTag(value.valueReg(), SecondScratchReg); + emitBranch(SecondScratchReg, ImmTag(JSVAL_TAG_OBJECT), cond, ifTrue, + ifFalse); + } + + void emitBigIntDiv(LBigIntDiv* ins, Register dividend, Register divisor, + Register output, Label* fail); + void emitBigIntMod(LBigIntMod* ins, Register dividend, Register divisor, + Register output, Label* fail); + + template <typename T> + void emitWasmLoadI64(T* ins); + template <typename T> + void emitWasmStoreI64(T* ins); + + ValueOperand ToValue(LInstruction* ins, size_t pos); + ValueOperand ToTempValue(LInstruction* ins, size_t pos); + + // Functions for LTestVAndBranch. + void splitTagForTest(const ValueOperand& value, ScratchTagScope& tag); +}; + +typedef CodeGeneratorMIPS64 CodeGeneratorSpecific; + +} // namespace jit +} // namespace js + +#endif /* jit_mips64_CodeGenerator_mips64_h */ diff --git a/js/src/jit/mips64/LIR-mips64.h b/js/src/jit/mips64/LIR-mips64.h new file mode 100644 index 0000000000..4d8228418c --- /dev/null +++ b/js/src/jit/mips64/LIR-mips64.h @@ -0,0 +1,147 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_mips64_LIR_mips64_h +#define jit_mips64_LIR_mips64_h + +namespace js { +namespace jit { + +class LUnbox : public LInstructionHelper<1, 1, 0> { + protected: + LUnbox(LNode::Opcode opcode, const LAllocation& input) + : LInstructionHelper(opcode) { + setOperand(0, input); + } + + public: + LIR_HEADER(Unbox); + + explicit LUnbox(const LAllocation& input) : LInstructionHelper(classOpcode) { + setOperand(0, input); + } + + static const size_t Input = 0; + + MUnbox* mir() const { return mir_->toUnbox(); } + const char* extraName() const { return StringFromMIRType(mir()->type()); } +}; + +class LUnboxFloatingPoint : public LUnbox { + MIRType type_; + + public: + LIR_HEADER(UnboxFloatingPoint); + + LUnboxFloatingPoint(const LAllocation& input, MIRType type) + : LUnbox(classOpcode, input), type_(type) {} + + MIRType type() const { return type_; } +}; + +class LDivOrModI64 : public LBinaryMath<1> { + public: + LIR_HEADER(DivOrModI64) + + LDivOrModI64(const LAllocation& lhs, const LAllocation& rhs, + const LDefinition& temp) + : LBinaryMath(classOpcode) { + setOperand(0, lhs); + setOperand(1, rhs); + setTemp(0, temp); + } + + const LDefinition* remainder() { return getTemp(0); } + MBinaryArithInstruction* mir() const { + MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); + return static_cast<MBinaryArithInstruction*>(mir_); + } + + bool canBeDivideByZero() const { + if (mir_->isMod()) { + return mir_->toMod()->canBeDivideByZero(); + } + return mir_->toDiv()->canBeDivideByZero(); + } + bool canBeNegativeOverflow() const { + if (mir_->isMod()) { + return mir_->toMod()->canBeNegativeDividend(); + } + return mir_->toDiv()->canBeNegativeOverflow(); + } + wasm::BytecodeOffset bytecodeOffset() const { + MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); + if (mir_->isMod()) { + return mir_->toMod()->bytecodeOffset(); + } + return mir_->toDiv()->bytecodeOffset(); + } +}; + +class LUDivOrModI64 : public LBinaryMath<1> { + public: + LIR_HEADER(UDivOrModI64); + + LUDivOrModI64(const LAllocation& lhs, const LAllocation& rhs, + const LDefinition& temp) + : LBinaryMath(classOpcode) { + setOperand(0, lhs); + setOperand(1, rhs); + setTemp(0, temp); + } + + const LDefinition* remainder() { return getTemp(0); } + const char* extraName() const { + return mir()->isTruncated() ? "Truncated" : nullptr; + } + + MBinaryArithInstruction* mir() const { + MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); + return static_cast<MBinaryArithInstruction*>(mir_); + } + bool canBeDivideByZero() const { + if (mir_->isMod()) { + return mir_->toMod()->canBeDivideByZero(); + } + return mir_->toDiv()->canBeDivideByZero(); + } + wasm::BytecodeOffset bytecodeOffset() const { + MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); + if (mir_->isMod()) { + return mir_->toMod()->bytecodeOffset(); + } + return mir_->toDiv()->bytecodeOffset(); + } +}; + +class LWasmTruncateToInt64 : public LInstructionHelper<1, 1, 0> { + public: + LIR_HEADER(WasmTruncateToInt64); + + explicit LWasmTruncateToInt64(const LAllocation& in) + : LInstructionHelper(classOpcode) { + setOperand(0, in); + } + + MWasmTruncateToInt64* mir() const { return mir_->toWasmTruncateToInt64(); } +}; + +class LInt64ToFloatingPoint : public LInstructionHelper<1, 1, 0> { + public: + LIR_HEADER(Int64ToFloatingPoint); + + explicit LInt64ToFloatingPoint(const LInt64Allocation& in) + : LInstructionHelper(classOpcode) { + setInt64Operand(0, in); + } + + MInt64ToFloatingPoint* mir() const { return mir_->toInt64ToFloatingPoint(); } +}; + +} // namespace jit +} // namespace js + +#endif /* jit_mips64_LIR_mips64_h */ diff --git a/js/src/jit/mips64/Lowering-mips64.cpp b/js/src/jit/mips64/Lowering-mips64.cpp new file mode 100644 index 0000000000..e9cda9299c --- /dev/null +++ b/js/src/jit/mips64/Lowering-mips64.cpp @@ -0,0 +1,201 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/mips64/Lowering-mips64.h" + +#include "jit/Lowering.h" +#include "jit/mips64/Assembler-mips64.h" +#include "jit/MIR.h" + +#include "jit/shared/Lowering-shared-inl.h" + +using namespace js; +using namespace js::jit; + +void LIRGeneratorMIPS64::defineInt64Phi(MPhi* phi, size_t lirIndex) { + defineTypedPhi(phi, lirIndex); +} + +void LIRGeneratorMIPS64::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition, + LBlock* block, size_t lirIndex) { + lowerTypedPhiInput(phi, inputPosition, block, lirIndex); +} + +LBoxAllocation LIRGeneratorMIPS64::useBoxFixed(MDefinition* mir, Register reg1, + Register reg2, bool useAtStart) { + MOZ_ASSERT(mir->type() == MIRType::Value); + + ensureDefined(mir); + return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart)); +} + +void LIRGeneratorMIPS64::lowerDivI64(MDiv* div) { + if (div->isUnsigned()) { + lowerUDivI64(div); + return; + } + + LDivOrModI64* lir = new (alloc()) + LDivOrModI64(useRegister(div->lhs()), useRegister(div->rhs()), temp()); + defineInt64(lir, div); +} + +void LIRGeneratorMIPS64::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) { + MOZ_CRASH("We don't use runtime div for this architecture"); +} + +void LIRGeneratorMIPS64::lowerModI64(MMod* mod) { + if (mod->isUnsigned()) { + lowerUModI64(mod); + return; + } + + LDivOrModI64* lir = new (alloc()) + LDivOrModI64(useRegister(mod->lhs()), useRegister(mod->rhs()), temp()); + defineInt64(lir, mod); +} + +void LIRGeneratorMIPS64::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) { + MOZ_CRASH("We don't use runtime mod for this architecture"); +} + +void LIRGeneratorMIPS64::lowerUDivI64(MDiv* div) { + LUDivOrModI64* lir = new (alloc()) + LUDivOrModI64(useRegister(div->lhs()), useRegister(div->rhs()), temp()); + defineInt64(lir, div); +} + +void LIRGeneratorMIPS64::lowerUModI64(MMod* mod) { + LUDivOrModI64* lir = new (alloc()) + LUDivOrModI64(useRegister(mod->lhs()), useRegister(mod->rhs()), temp()); + defineInt64(lir, mod); +} + +void LIRGeneratorMIPS64::lowerBigIntDiv(MBigIntDiv* ins) { + auto* lir = new (alloc()) LBigIntDiv(useRegister(ins->lhs()), + useRegister(ins->rhs()), temp(), temp()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorMIPS64::lowerBigIntMod(MBigIntMod* ins) { + auto* lir = new (alloc()) LBigIntMod(useRegister(ins->lhs()), + useRegister(ins->rhs()), temp(), temp()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorMIPS64::lowerAtomicLoad64(MLoadUnboxedScalar* ins) { + const LUse elements = useRegister(ins->elements()); + const LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->storageType()); + + auto* lir = new (alloc()) LAtomicLoad64(elements, index, temp(), tempInt64()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorMIPS64::lowerAtomicStore64(MStoreUnboxedScalar* ins) { + LUse elements = useRegister(ins->elements()); + LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->writeType()); + LAllocation value = useRegister(ins->value()); + + add(new (alloc()) LAtomicStore64(elements, index, value, tempInt64()), ins); +} + +void LIRGenerator::visitBox(MBox* box) { + MDefinition* opd = box->getOperand(0); + + // If the operand is a constant, emit near its uses. + if (opd->isConstant() && box->canEmitAtUses()) { + emitAtUses(box); + return; + } + + if (opd->isConstant()) { + define(new (alloc()) LValue(opd->toConstant()->toJSValue()), box, + LDefinition(LDefinition::BOX)); + } else { + LBox* ins = new (alloc()) LBox(useRegister(opd), opd->type()); + define(ins, box, LDefinition(LDefinition::BOX)); + } +} + +void LIRGenerator::visitUnbox(MUnbox* unbox) { + MDefinition* box = unbox->getOperand(0); + MOZ_ASSERT(box->type() == MIRType::Value); + + LUnbox* lir; + if (IsFloatingPointType(unbox->type())) { + lir = new (alloc()) + LUnboxFloatingPoint(useRegisterAtStart(box), unbox->type()); + } else if (unbox->fallible()) { + // If the unbox is fallible, load the Value in a register first to + // avoid multiple loads. + lir = new (alloc()) LUnbox(useRegisterAtStart(box)); + } else { + lir = new (alloc()) LUnbox(useAtStart(box)); + } + + if (unbox->fallible()) { + assignSnapshot(lir, unbox->bailoutKind()); + } + + define(lir, unbox); +} + +void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) { + MOZ_ASSERT(opd->type() == MIRType::Value); + + LReturn* ins = new (alloc()) LReturn(isGenerator); + ins->setOperand(0, useFixed(opd, JSReturnReg)); + add(ins); +} + +void LIRGeneratorMIPS64::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, + LBlock* block, size_t lirIndex) { + lowerTypedPhiInput(phi, inputPosition, block, lirIndex); +} + +void LIRGeneratorMIPS64::lowerTruncateDToInt32(MTruncateToInt32* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Double); + + define(new (alloc()) LTruncateDToInt32(useRegister(opd), tempDouble()), ins); +} + +void LIRGeneratorMIPS64::lowerTruncateFToInt32(MTruncateToInt32* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Float32); + + define(new (alloc()) LTruncateFToInt32(useRegister(opd), tempFloat32()), ins); +} + +void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); + + defineInt64(new (alloc()) LWasmTruncateToInt64(useRegister(opd)), ins); +} + +void LIRGeneratorMIPS64::lowerWasmBuiltinTruncateToInt64( + MWasmBuiltinTruncateToInt64* ins) { + MOZ_CRASH("We don't use it for this architecture"); +} + +void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Int64); + MOZ_ASSERT(IsFloatingPointType(ins->type())); + + define(new (alloc()) LInt64ToFloatingPoint(useInt64Register(opd)), ins); +} + +void LIRGeneratorMIPS64::lowerBuiltinInt64ToFloatingPoint( + MBuiltinInt64ToFloatingPoint* ins) { + MOZ_CRASH("We don't use it for this architecture"); +} diff --git a/js/src/jit/mips64/Lowering-mips64.h b/js/src/jit/mips64/Lowering-mips64.h new file mode 100644 index 0000000000..b8543de6d2 --- /dev/null +++ b/js/src/jit/mips64/Lowering-mips64.h @@ -0,0 +1,56 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_mips64_Lowering_mips64_h +#define jit_mips64_Lowering_mips64_h + +#include "jit/mips-shared/Lowering-mips-shared.h" + +namespace js { +namespace jit { + +class LIRGeneratorMIPS64 : public LIRGeneratorMIPSShared { + protected: + LIRGeneratorMIPS64(MIRGenerator* gen, MIRGraph& graph, LIRGraph& lirGraph) + : LIRGeneratorMIPSShared(gen, graph, lirGraph) {} + + void lowerInt64PhiInput(MPhi*, uint32_t, LBlock*, size_t); + void defineInt64Phi(MPhi*, size_t); + + // Returns a box allocation. reg2 is ignored on 64-bit platforms. + LBoxAllocation useBoxFixed(MDefinition* mir, Register reg1, Register reg2, + bool useAtStart = false); + + inline LDefinition tempToUnbox() { return temp(); } + + void lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, + size_t lirIndex); + + void lowerBuiltinInt64ToFloatingPoint(MBuiltinInt64ToFloatingPoint* ins); + void lowerWasmBuiltinTruncateToInt64(MWasmBuiltinTruncateToInt64* ins); + void lowerTruncateDToInt32(MTruncateToInt32* ins); + void lowerTruncateFToInt32(MTruncateToInt32* ins); + + void lowerDivI64(MDiv* div); + void lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div); + void lowerModI64(MMod* mod); + void lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod); + void lowerUDivI64(MDiv* div); + void lowerUModI64(MMod* mod); + + void lowerBigIntDiv(MBigIntDiv* ins); + void lowerBigIntMod(MBigIntMod* ins); + + void lowerAtomicLoad64(MLoadUnboxedScalar* ins); + void lowerAtomicStore64(MStoreUnboxedScalar* ins); +}; + +typedef LIRGeneratorMIPS64 LIRGeneratorSpecific; + +} // namespace jit +} // namespace js + +#endif /* jit_mips64_Lowering_mips64_h */ diff --git a/js/src/jit/mips64/MacroAssembler-mips64-inl.h b/js/src/jit/mips64/MacroAssembler-mips64-inl.h new file mode 100644 index 0000000000..ec166851a3 --- /dev/null +++ b/js/src/jit/mips64/MacroAssembler-mips64-inl.h @@ -0,0 +1,845 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_mips64_MacroAssembler_mips64_inl_h +#define jit_mips64_MacroAssembler_mips64_inl_h + +#include "jit/mips64/MacroAssembler-mips64.h" + +#include "vm/BigIntType.h" // JS::BigInt + +#include "jit/mips-shared/MacroAssembler-mips-shared-inl.h" + +namespace js { +namespace jit { + +//{{{ check_macroassembler_style + +void MacroAssembler::move64(Register64 src, Register64 dest) { + movePtr(src.reg, dest.reg); +} + +void MacroAssembler::move64(Imm64 imm, Register64 dest) { + movePtr(ImmWord(imm.value), dest.reg); +} + +void MacroAssembler::moveDoubleToGPR64(FloatRegister src, Register64 dest) { + moveFromDouble(src, dest.reg); +} + +void MacroAssembler::moveGPR64ToDouble(Register64 src, FloatRegister dest) { + moveToDouble(src.reg, dest); +} + +void MacroAssembler::move64To32(Register64 src, Register dest) { + ma_sll(dest, src.reg, Imm32(0)); +} + +void MacroAssembler::move32To64ZeroExtend(Register src, Register64 dest) { + ma_dext(dest.reg, src, Imm32(0), Imm32(32)); +} + +void MacroAssembler::move8To64SignExtend(Register src, Register64 dest) { + move32To64SignExtend(src, dest); + move8SignExtend(dest.reg, dest.reg); +} + +void MacroAssembler::move16To64SignExtend(Register src, Register64 dest) { + move32To64SignExtend(src, dest); + move16SignExtend(dest.reg, dest.reg); +} + +void MacroAssembler::move32To64SignExtend(Register src, Register64 dest) { + ma_sll(dest.reg, src, Imm32(0)); +} + +void MacroAssembler::move32SignExtendToPtr(Register src, Register dest) { + ma_sll(dest, src, Imm32(0)); +} + +void MacroAssembler::move32ZeroExtendToPtr(Register src, Register dest) { + ma_dext(dest, src, Imm32(0), Imm32(32)); +} + +// =============================================================== +// Load instructions + +void MacroAssembler::load32SignExtendToPtr(const Address& src, Register dest) { + load32(src, dest); +} + +// =============================================================== +// Logical instructions + +void MacroAssembler::notPtr(Register reg) { ma_not(reg, reg); } + +void MacroAssembler::andPtr(Register src, Register dest) { ma_and(dest, src); } + +void MacroAssembler::andPtr(Imm32 imm, Register dest) { ma_and(dest, imm); } + +void MacroAssembler::and64(Imm64 imm, Register64 dest) { + ma_li(ScratchRegister, ImmWord(imm.value)); + ma_and(dest.reg, ScratchRegister); +} + +void MacroAssembler::and64(Register64 src, Register64 dest) { + ma_and(dest.reg, src.reg); +} + +void MacroAssembler::and64(const Operand& src, Register64 dest) { + if (src.getTag() == Operand::MEM) { + Register64 scratch(ScratchRegister); + + load64(src.toAddress(), scratch); + and64(scratch, dest); + } else { + and64(Register64(src.toReg()), dest); + } +} + +void MacroAssembler::or64(Imm64 imm, Register64 dest) { + ma_li(ScratchRegister, ImmWord(imm.value)); + ma_or(dest.reg, ScratchRegister); +} + +void MacroAssembler::xor64(Imm64 imm, Register64 dest) { + ma_li(ScratchRegister, ImmWord(imm.value)); + ma_xor(dest.reg, ScratchRegister); +} + +void MacroAssembler::orPtr(Register src, Register dest) { ma_or(dest, src); } + +void MacroAssembler::orPtr(Imm32 imm, Register dest) { ma_or(dest, imm); } + +void MacroAssembler::or64(Register64 src, Register64 dest) { + ma_or(dest.reg, src.reg); +} + +void MacroAssembler::or64(const Operand& src, Register64 dest) { + if (src.getTag() == Operand::MEM) { + Register64 scratch(ScratchRegister); + + load64(src.toAddress(), scratch); + or64(scratch, dest); + } else { + or64(Register64(src.toReg()), dest); + } +} + +void MacroAssembler::xor64(Register64 src, Register64 dest) { + ma_xor(dest.reg, src.reg); +} + +void MacroAssembler::xor64(const Operand& src, Register64 dest) { + if (src.getTag() == Operand::MEM) { + Register64 scratch(ScratchRegister); + + load64(src.toAddress(), scratch); + xor64(scratch, dest); + } else { + xor64(Register64(src.toReg()), dest); + } +} + +void MacroAssembler::xorPtr(Register src, Register dest) { ma_xor(dest, src); } + +void MacroAssembler::xorPtr(Imm32 imm, Register dest) { ma_xor(dest, imm); } + +// =============================================================== +// Swap instructions + +void MacroAssembler::byteSwap64(Register64 reg64) { + Register reg = reg64.reg; + ma_dsbh(reg, reg); + ma_dshd(reg, reg); +} + +// =============================================================== +// Arithmetic functions + +void MacroAssembler::addPtr(Register src, Register dest) { + ma_daddu(dest, src); +} + +void MacroAssembler::addPtr(Imm32 imm, Register dest) { ma_daddu(dest, imm); } + +void MacroAssembler::addPtr(ImmWord imm, Register dest) { + movePtr(imm, ScratchRegister); + addPtr(ScratchRegister, dest); +} + +void MacroAssembler::add64(Register64 src, Register64 dest) { + addPtr(src.reg, dest.reg); +} + +void MacroAssembler::add64(const Operand& src, Register64 dest) { + if (src.getTag() == Operand::MEM) { + Register64 scratch(ScratchRegister); + + load64(src.toAddress(), scratch); + add64(scratch, dest); + } else { + add64(Register64(src.toReg()), dest); + } +} + +void MacroAssembler::add64(Imm32 imm, Register64 dest) { + ma_daddu(dest.reg, imm); +} + +void MacroAssembler::add64(Imm64 imm, Register64 dest) { + MOZ_ASSERT(dest.reg != ScratchRegister); + mov(ImmWord(imm.value), ScratchRegister); + ma_daddu(dest.reg, ScratchRegister); +} + +CodeOffset MacroAssembler::sub32FromStackPtrWithPatch(Register dest) { + CodeOffset offset = CodeOffset(currentOffset()); + MacroAssemblerMIPSShared::ma_liPatchable(dest, Imm32(0)); + as_dsubu(dest, StackPointer, dest); + return offset; +} + +void MacroAssembler::patchSub32FromStackPtr(CodeOffset offset, Imm32 imm) { + Instruction* lui = + (Instruction*)m_buffer.getInst(BufferOffset(offset.offset())); + MOZ_ASSERT(lui->extractOpcode() == ((uint32_t)op_lui >> OpcodeShift)); + MOZ_ASSERT(lui->next()->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift)); + + MacroAssemblerMIPSShared::UpdateLuiOriValue(lui, lui->next(), imm.value); +} + +void MacroAssembler::subPtr(Register src, Register dest) { + as_dsubu(dest, dest, src); +} + +void MacroAssembler::subPtr(Imm32 imm, Register dest) { + ma_dsubu(dest, dest, imm); +} + +void MacroAssembler::sub64(Register64 src, Register64 dest) { + as_dsubu(dest.reg, dest.reg, src.reg); +} + +void MacroAssembler::sub64(const Operand& src, Register64 dest) { + if (src.getTag() == Operand::MEM) { + Register64 scratch(ScratchRegister); + + load64(src.toAddress(), scratch); + sub64(scratch, dest); + } else { + sub64(Register64(src.toReg()), dest); + } +} + +void MacroAssembler::sub64(Imm64 imm, Register64 dest) { + MOZ_ASSERT(dest.reg != ScratchRegister); + mov(ImmWord(imm.value), ScratchRegister); + as_dsubu(dest.reg, dest.reg, ScratchRegister); +} + +void MacroAssembler::mulHighUnsigned32(Imm32 imm, Register src, Register dest) { + ScratchRegisterScope scratch(*this); + MOZ_ASSERT(src != scratch); + move32(imm, scratch); +#ifdef MIPSR6 + as_muhu(dest, src, scratch); +#else + as_multu(src, scratch); + as_mfhi(dest); +#endif +} + +void MacroAssembler::mulPtr(Register rhs, Register srcDest) { +#ifdef MIPSR6 + as_dmulu(srcDest, srcDest, rhs); +#else + as_dmultu(srcDest, rhs); + as_mflo(srcDest); +#endif +} + +void MacroAssembler::mul64(Imm64 imm, const Register64& dest) { + MOZ_ASSERT(dest.reg != ScratchRegister); + mov(ImmWord(imm.value), ScratchRegister); +#ifdef MIPSR6 + as_dmulu(dest.reg, ScratchRegister, dest.reg); +#else + as_dmultu(dest.reg, ScratchRegister); + as_mflo(dest.reg); +#endif +} + +void MacroAssembler::mul64(Imm64 imm, const Register64& dest, + const Register temp) { + MOZ_ASSERT(temp == InvalidReg); + mul64(imm, dest); +} + +void MacroAssembler::mul64(const Register64& src, const Register64& dest, + const Register temp) { + MOZ_ASSERT(temp == InvalidReg); +#ifdef MIPSR6 + as_dmulu(dest.reg, src.reg, dest.reg); +#else + as_dmultu(dest.reg, src.reg); + as_mflo(dest.reg); +#endif +} + +void MacroAssembler::mul64(const Operand& src, const Register64& dest, + const Register temp) { + if (src.getTag() == Operand::MEM) { + Register64 scratch(ScratchRegister); + + load64(src.toAddress(), scratch); + mul64(scratch, dest, temp); + } else { + mul64(Register64(src.toReg()), dest, temp); + } +} + +void MacroAssembler::mulBy3(Register src, Register dest) { + MOZ_ASSERT(src != ScratchRegister); + as_daddu(ScratchRegister, src, src); + as_daddu(dest, ScratchRegister, src); +} + +void MacroAssembler::inc64(AbsoluteAddress dest) { + ma_li(ScratchRegister, ImmWord(uintptr_t(dest.addr))); + as_ld(SecondScratchReg, ScratchRegister, 0); + as_daddiu(SecondScratchReg, SecondScratchReg, 1); + as_sd(SecondScratchReg, ScratchRegister, 0); +} + +void MacroAssembler::neg64(Register64 reg) { as_dsubu(reg.reg, zero, reg.reg); } + +void MacroAssembler::negPtr(Register reg) { as_dsubu(reg, zero, reg); } + +// =============================================================== +// Shift functions + +void MacroAssembler::lshiftPtr(Imm32 imm, Register dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 64); + ma_dsll(dest, dest, imm); +} + +void MacroAssembler::lshiftPtr(Register shift, Register dest) { + ma_dsll(dest, dest, shift); +} + +void MacroAssembler::lshift64(Imm32 imm, Register64 dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 64); + ma_dsll(dest.reg, dest.reg, imm); +} + +void MacroAssembler::lshift64(Register shift, Register64 dest) { + ma_dsll(dest.reg, dest.reg, shift); +} + +void MacroAssembler::rshiftPtr(Imm32 imm, Register dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 64); + ma_dsrl(dest, dest, imm); +} + +void MacroAssembler::rshiftPtr(Register shift, Register dest) { + ma_dsrl(dest, dest, shift); +} + +void MacroAssembler::rshift64(Imm32 imm, Register64 dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 64); + ma_dsrl(dest.reg, dest.reg, imm); +} + +void MacroAssembler::rshift64(Register shift, Register64 dest) { + ma_dsrl(dest.reg, dest.reg, shift); +} + +void MacroAssembler::rshiftPtrArithmetic(Imm32 imm, Register dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 64); + ma_dsra(dest, dest, imm); +} + +void MacroAssembler::rshift64Arithmetic(Imm32 imm, Register64 dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 64); + ma_dsra(dest.reg, dest.reg, imm); +} + +void MacroAssembler::rshift64Arithmetic(Register shift, Register64 dest) { + ma_dsra(dest.reg, dest.reg, shift); +} + +// =============================================================== +// Rotation functions + +void MacroAssembler::rotateLeft64(Imm32 count, Register64 src, Register64 dest, + Register temp) { + MOZ_ASSERT(temp == InvalidReg); + + if (count.value) { + ma_drol(dest.reg, src.reg, count); + } else { + ma_move(dest.reg, src.reg); + } +} + +void MacroAssembler::rotateLeft64(Register count, Register64 src, + Register64 dest, Register temp) { + MOZ_ASSERT(temp == InvalidReg); + ma_drol(dest.reg, src.reg, count); +} + +void MacroAssembler::rotateRight64(Imm32 count, Register64 src, Register64 dest, + Register temp) { + MOZ_ASSERT(temp == InvalidReg); + + if (count.value) { + ma_dror(dest.reg, src.reg, count); + } else { + ma_move(dest.reg, src.reg); + } +} + +void MacroAssembler::rotateRight64(Register count, Register64 src, + Register64 dest, Register temp) { + MOZ_ASSERT(temp == InvalidReg); + ma_dror(dest.reg, src.reg, count); +} + +// =============================================================== +// Condition functions + +template <typename T1, typename T2> +void MacroAssembler::cmpPtrSet(Condition cond, T1 lhs, T2 rhs, Register dest) { + ma_cmp_set(dest, lhs, rhs, cond); +} + +// Also see below for specializations of cmpPtrSet. + +template <typename T1, typename T2> +void MacroAssembler::cmp32Set(Condition cond, T1 lhs, T2 rhs, Register dest) { + ma_cmp_set(dest, lhs, rhs, cond); +} + +void MacroAssembler::cmp64Set(Condition cond, Address lhs, Imm64 rhs, + Register dest) { + ma_cmp_set(dest, lhs, ImmWord(uint64_t(rhs.value)), cond); +} + +// =============================================================== +// Bit counting functions + +void MacroAssembler::clz64(Register64 src, Register dest) { + as_dclz(dest, src.reg); +} + +void MacroAssembler::ctz64(Register64 src, Register dest) { + ma_dctz(dest, src.reg); +} + +void MacroAssembler::popcnt64(Register64 input, Register64 output, + Register tmp) { + ma_move(output.reg, input.reg); + ma_dsra(tmp, input.reg, Imm32(1)); + ma_li(ScratchRegister, ImmWord(0x5555555555555555UL)); + ma_and(tmp, ScratchRegister); + ma_dsubu(output.reg, tmp); + ma_dsra(tmp, output.reg, Imm32(2)); + ma_li(ScratchRegister, ImmWord(0x3333333333333333UL)); + ma_and(output.reg, ScratchRegister); + ma_and(tmp, ScratchRegister); + ma_daddu(output.reg, tmp); + ma_dsrl(tmp, output.reg, Imm32(4)); + ma_daddu(output.reg, tmp); + ma_li(ScratchRegister, ImmWord(0xF0F0F0F0F0F0F0FUL)); + ma_and(output.reg, ScratchRegister); + ma_dsll(tmp, output.reg, Imm32(8)); + ma_daddu(output.reg, tmp); + ma_dsll(tmp, output.reg, Imm32(16)); + ma_daddu(output.reg, tmp); + ma_dsll(tmp, output.reg, Imm32(32)); + ma_daddu(output.reg, tmp); + ma_dsra(output.reg, output.reg, Imm32(56)); +} + +// =============================================================== +// Branch functions + +void MacroAssembler::branch64(Condition cond, Register64 lhs, Imm64 val, + Label* success, Label* fail) { + MOZ_ASSERT(cond == Assembler::NotEqual || cond == Assembler::Equal || + cond == Assembler::LessThan || + cond == Assembler::LessThanOrEqual || + cond == Assembler::GreaterThan || + cond == Assembler::GreaterThanOrEqual || + cond == Assembler::Below || cond == Assembler::BelowOrEqual || + cond == Assembler::Above || cond == Assembler::AboveOrEqual, + "other condition codes not supported"); + + branchPtr(cond, lhs.reg, ImmWord(val.value), success); + if (fail) { + jump(fail); + } +} + +void MacroAssembler::branch64(Condition cond, Register64 lhs, Register64 rhs, + Label* success, Label* fail) { + MOZ_ASSERT(cond == Assembler::NotEqual || cond == Assembler::Equal || + cond == Assembler::LessThan || + cond == Assembler::LessThanOrEqual || + cond == Assembler::GreaterThan || + cond == Assembler::GreaterThanOrEqual || + cond == Assembler::Below || cond == Assembler::BelowOrEqual || + cond == Assembler::Above || cond == Assembler::AboveOrEqual, + "other condition codes not supported"); + + branchPtr(cond, lhs.reg, rhs.reg, success); + if (fail) { + jump(fail); + } +} + +void MacroAssembler::branch64(Condition cond, const Address& lhs, Imm64 val, + Label* label) { + MOZ_ASSERT(cond == Assembler::NotEqual || cond == Assembler::Equal, + "other condition codes not supported"); + + branchPtr(cond, lhs, ImmWord(val.value), label); +} + +void MacroAssembler::branch64(Condition cond, const Address& lhs, + Register64 rhs, Label* label) { + MOZ_ASSERT(cond == Assembler::NotEqual || cond == Assembler::Equal, + "other condition codes not supported"); + + branchPtr(cond, lhs, rhs.reg, label); +} + +void MacroAssembler::branch64(Condition cond, const Address& lhs, + const Address& rhs, Register scratch, + Label* label) { + MOZ_ASSERT(cond == Assembler::NotEqual || cond == Assembler::Equal, + "other condition codes not supported"); + MOZ_ASSERT(lhs.base != scratch); + MOZ_ASSERT(rhs.base != scratch); + + loadPtr(rhs, scratch); + branchPtr(cond, lhs, scratch, label); +} + +void MacroAssembler::branchPrivatePtr(Condition cond, const Address& lhs, + Register rhs, Label* label) { + branchPtr(cond, lhs, rhs, label); +} + +template <class L> +void MacroAssembler::branchTest64(Condition cond, Register64 lhs, + Register64 rhs, Register temp, L label) { + branchTestPtr(cond, lhs.reg, rhs.reg, label); +} + +void MacroAssembler::branchTestUndefined(Condition cond, + const ValueOperand& value, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + splitTag(value, scratch2); + branchTestUndefined(cond, scratch2, label); +} + +void MacroAssembler::branchTestInt32(Condition cond, const ValueOperand& value, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + splitTag(value, scratch2); + branchTestInt32(cond, scratch2, label); +} + +void MacroAssembler::branchTestInt32Truthy(bool b, const ValueOperand& value, + Label* label) { + ScratchRegisterScope scratch(*this); + ma_dext(scratch, value.valueReg(), Imm32(0), Imm32(32)); + ma_b(scratch, scratch, label, b ? NonZero : Zero); +} + +void MacroAssembler::branchTestDouble(Condition cond, Register tag, + Label* label) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + Condition actual = (cond == Equal) ? BelowOrEqual : Above; + ma_b(tag, ImmTag(JSVAL_TAG_MAX_DOUBLE), label, actual); +} + +void MacroAssembler::branchTestDouble(Condition cond, const ValueOperand& value, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + splitTag(value, scratch2); + branchTestDouble(cond, scratch2, label); +} + +void MacroAssembler::branchTestNumber(Condition cond, const ValueOperand& value, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + splitTag(value, scratch2); + branchTestNumber(cond, scratch2, label); +} + +void MacroAssembler::branchTestBoolean(Condition cond, + const ValueOperand& value, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + splitTag(value, scratch2); + branchTestBoolean(cond, scratch2, label); +} + +void MacroAssembler::branchTestBooleanTruthy(bool b, const ValueOperand& value, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + unboxBoolean(value, scratch2); + ma_b(scratch2, scratch2, label, b ? NonZero : Zero); +} + +void MacroAssembler::branchTestString(Condition cond, const ValueOperand& value, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + splitTag(value, scratch2); + branchTestString(cond, scratch2, label); +} + +void MacroAssembler::branchTestStringTruthy(bool b, const ValueOperand& value, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + unboxString(value, scratch2); + load32(Address(scratch2, JSString::offsetOfLength()), scratch2); + ma_b(scratch2, Imm32(0), label, b ? NotEqual : Equal); +} + +void MacroAssembler::branchTestSymbol(Condition cond, const ValueOperand& value, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + splitTag(value, scratch2); + branchTestSymbol(cond, scratch2, label); +} + +void MacroAssembler::branchTestBigInt(Condition cond, const BaseIndex& address, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + computeEffectiveAddress(address, scratch2); + splitTag(scratch2, scratch2); + branchTestBigInt(cond, scratch2, label); +} + +void MacroAssembler::branchTestBigInt(Condition cond, const ValueOperand& value, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + splitTag(value, scratch2); + branchTestBigInt(cond, scratch2, label); +} + +void MacroAssembler::branchTestBigIntTruthy(bool b, const ValueOperand& value, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + unboxBigInt(value, scratch2); + load32(Address(scratch2, BigInt::offsetOfDigitLength()), scratch2); + ma_b(scratch2, Imm32(0), label, b ? NotEqual : Equal); +} + +void MacroAssembler::branchTestNull(Condition cond, const ValueOperand& value, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + splitTag(value, scratch2); + branchTestNull(cond, scratch2, label); +} + +void MacroAssembler::branchTestObject(Condition cond, const ValueOperand& value, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + splitTag(value, scratch2); + branchTestObject(cond, scratch2, label); +} + +void MacroAssembler::branchTestPrimitive(Condition cond, + const ValueOperand& value, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + splitTag(value, scratch2); + branchTestPrimitive(cond, scratch2, label); +} + +template <class L> +void MacroAssembler::branchTestMagic(Condition cond, const ValueOperand& value, + L label) { + SecondScratchRegisterScope scratch2(*this); + splitTag(value, scratch2); + ma_b(scratch2, ImmTag(JSVAL_TAG_MAGIC), label, cond); +} + +void MacroAssembler::branchTestMagic(Condition cond, const Address& valaddr, + JSWhyMagic why, Label* label) { + uint64_t magic = MagicValue(why).asRawBits(); + SecondScratchRegisterScope scratch(*this); + loadPtr(valaddr, scratch); + ma_b(scratch, ImmWord(magic), label, cond); +} + +void MacroAssembler::branchTestValue(Condition cond, const BaseIndex& lhs, + const ValueOperand& rhs, Label* label) { + MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual); + branchPtr(cond, lhs, rhs.valueReg(), label); +} + +void MacroAssembler::branchTruncateDoubleMaybeModUint32(FloatRegister src, + Register dest, + Label* fail) { + as_truncld(ScratchDoubleReg, src); + as_cfc1(ScratchRegister, Assembler::FCSR); + moveFromDouble(ScratchDoubleReg, dest); + ma_ext(ScratchRegister, ScratchRegister, Assembler::CauseV, 1); + ma_b(ScratchRegister, Imm32(0), fail, Assembler::NotEqual); + + as_sll(dest, dest, 0); +} + +void MacroAssembler::branchTruncateFloat32MaybeModUint32(FloatRegister src, + Register dest, + Label* fail) { + as_truncls(ScratchDoubleReg, src); + as_cfc1(ScratchRegister, Assembler::FCSR); + moveFromDouble(ScratchDoubleReg, dest); + ma_ext(ScratchRegister, ScratchRegister, Assembler::CauseV, 1); + ma_b(ScratchRegister, Imm32(0), fail, Assembler::NotEqual); + + as_sll(dest, dest, 0); +} + +void MacroAssembler::branchTruncateDoubleToInt32(FloatRegister src, + Register dest, Label* fail) { + ScratchRegisterScope scratch(asMasm()); + ScratchDoubleScope fpscratch(asMasm()); + + // Convert scalar to signed 64-bit fixed-point, rounding toward zero. + // In the case of -0, the output is zero. + // In the case of overflow, the output is: + // - MIPS64R2: 2^63-1 + // - MIPS64R6: saturated + // In the case of NaN, the output is: + // - MIPS64R2: 2^63-1 + // - MIPS64R6: 0 + as_truncld(fpscratch, src); + moveFromDouble(fpscratch, dest); + + // Fail on overflow cases, besides MIPS64R2 will also fail here on NaN cases. + as_sll(scratch, dest, 0); + ma_b(dest, scratch, fail, Assembler::NotEqual); +} + +void MacroAssembler::fallibleUnboxPtr(const ValueOperand& src, Register dest, + JSValueType type, Label* fail) { + MOZ_ASSERT(type == JSVAL_TYPE_OBJECT || type == JSVAL_TYPE_STRING || + type == JSVAL_TYPE_SYMBOL || type == JSVAL_TYPE_BIGINT); + // dest := src XOR mask + // scratch := dest >> JSVAL_TAG_SHIFT + // fail if scratch != 0 + // + // Note: src and dest can be the same register + ScratchRegisterScope scratch(asMasm()); + mov(ImmWord(JSVAL_TYPE_TO_SHIFTED_TAG(type)), scratch); + ma_xor(scratch, src.valueReg()); + ma_move(dest, scratch); + ma_dsrl(scratch, scratch, Imm32(JSVAL_TAG_SHIFT)); + ma_b(scratch, Imm32(0), fail, Assembler::NotEqual); +} + +void MacroAssembler::fallibleUnboxPtr(const Address& src, Register dest, + JSValueType type, Label* fail) { + loadValue(src, ValueOperand(dest)); + fallibleUnboxPtr(ValueOperand(dest), dest, type, fail); +} + +void MacroAssembler::fallibleUnboxPtr(const BaseIndex& src, Register dest, + JSValueType type, Label* fail) { + loadValue(src, ValueOperand(dest)); + fallibleUnboxPtr(ValueOperand(dest), dest, type, fail); +} + +//}}} check_macroassembler_style +// =============================================================== + +// The specializations for cmpPtrSet are outside the braces because +// check_macroassembler_style can't yet deal with specializations. + +template <> +inline void MacroAssembler::cmpPtrSet(Assembler::Condition cond, Address lhs, + ImmPtr rhs, Register dest) { + loadPtr(lhs, SecondScratchReg); + cmpPtrSet(cond, SecondScratchReg, rhs, dest); +} + +template <> +inline void MacroAssembler::cmpPtrSet(Assembler::Condition cond, Register lhs, + Address rhs, Register dest) { + MOZ_ASSERT(lhs != ScratchRegister); + loadPtr(rhs, ScratchRegister); + cmpPtrSet(cond, lhs, ScratchRegister, dest); +} + +template <> +inline void MacroAssembler::cmpPtrSet(Assembler::Condition cond, Address lhs, + Register rhs, Register dest) { + MOZ_ASSERT(rhs != ScratchRegister); + loadPtr(lhs, ScratchRegister); + cmpPtrSet(cond, ScratchRegister, rhs, dest); +} + +template <> +inline void MacroAssembler::cmp32Set(Assembler::Condition cond, Register lhs, + Address rhs, Register dest) { + MOZ_ASSERT(lhs != ScratchRegister); + load32(rhs, ScratchRegister); + cmp32Set(cond, lhs, ScratchRegister, dest); +} + +template <> +inline void MacroAssembler::cmp32Set(Assembler::Condition cond, Address lhs, + Register rhs, Register dest) { + MOZ_ASSERT(rhs != ScratchRegister); + load32(lhs, ScratchRegister); + cmp32Set(cond, ScratchRegister, rhs, dest); +} + +void MacroAssembler::cmpPtrMovePtr(Condition cond, Register lhs, Register rhs, + Register src, Register dest) { + Register scratch = ScratchRegister; + MOZ_ASSERT(src != scratch && dest != scratch); + cmpPtrSet(cond, lhs, rhs, scratch); +#ifdef MIPSR6 + as_selnez(src, src, scratch); + as_seleqz(dest, dest, scratch); + as_or(dest, dest, src); +#else + as_movn(dest, src, scratch); +#endif +} + +void MacroAssembler::cmpPtrMovePtr(Condition cond, Register lhs, + const Address& rhs, Register src, + Register dest) { + MOZ_CRASH("NYI"); +} + +void MacroAssemblerMIPS64Compat::incrementInt32Value(const Address& addr) { + asMasm().add32(Imm32(1), addr); +} + +void MacroAssemblerMIPS64Compat::retn(Imm32 n) { + // pc <- [sp]; sp += n + loadPtr(Address(StackPointer, 0), ra); + asMasm().addPtr(n, StackPointer); + as_jr(ra); + as_nop(); +} + +} // namespace jit +} // namespace js + +#endif /* jit_mips64_MacroAssembler_mips64_inl_h */ diff --git a/js/src/jit/mips64/MacroAssembler-mips64.cpp b/js/src/jit/mips64/MacroAssembler-mips64.cpp new file mode 100644 index 0000000000..cbf66ccac4 --- /dev/null +++ b/js/src/jit/mips64/MacroAssembler-mips64.cpp @@ -0,0 +1,2877 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/mips64/MacroAssembler-mips64.h" + +#include "mozilla/DebugOnly.h" +#include "mozilla/MathAlgorithms.h" + +#include "jit/Bailouts.h" +#include "jit/BaselineFrame.h" +#include "jit/JitFrames.h" +#include "jit/JitRuntime.h" +#include "jit/MacroAssembler.h" +#include "jit/mips64/Simulator-mips64.h" +#include "jit/MoveEmitter.h" +#include "jit/SharedICRegisters.h" +#include "util/Memory.h" +#include "vm/JitActivation.h" // js::jit::JitActivation +#include "vm/JSContext.h" + +#include "jit/MacroAssembler-inl.h" + +using namespace js; +using namespace jit; + +using mozilla::Abs; + +static_assert(sizeof(intptr_t) == 8, "Not 32-bit clean."); + +void MacroAssemblerMIPS64Compat::convertBoolToInt32(Register src, + Register dest) { + // Note that C++ bool is only 1 byte, so zero extend it to clear the + // higher-order bits. + ma_and(dest, src, Imm32(0xff)); +} + +void MacroAssemblerMIPS64Compat::convertInt32ToDouble(Register src, + FloatRegister dest) { + as_mtc1(src, dest); + as_cvtdw(dest, dest); +} + +void MacroAssemblerMIPS64Compat::convertInt32ToDouble(const Address& src, + FloatRegister dest) { + ma_ls(dest, src); + as_cvtdw(dest, dest); +} + +void MacroAssemblerMIPS64Compat::convertInt32ToDouble(const BaseIndex& src, + FloatRegister dest) { + computeScaledAddress(src, ScratchRegister); + convertInt32ToDouble(Address(ScratchRegister, src.offset), dest); +} + +void MacroAssemblerMIPS64Compat::convertUInt32ToDouble(Register src, + FloatRegister dest) { + ma_dext(ScratchRegister, src, Imm32(0), Imm32(32)); + asMasm().convertInt64ToDouble(Register64(ScratchRegister), dest); +} + +void MacroAssemblerMIPS64Compat::convertUInt64ToDouble(Register src, + FloatRegister dest) { + Label positive, done; + ma_b(src, src, &positive, NotSigned, ShortJump); + + MOZ_ASSERT(src != ScratchRegister); + MOZ_ASSERT(src != SecondScratchReg); + + ma_and(ScratchRegister, src, Imm32(1)); + ma_dsrl(SecondScratchReg, src, Imm32(1)); + ma_or(ScratchRegister, SecondScratchReg); + as_dmtc1(ScratchRegister, dest); + as_cvtdl(dest, dest); + asMasm().addDouble(dest, dest); + ma_b(&done, ShortJump); + + bind(&positive); + as_dmtc1(src, dest); + as_cvtdl(dest, dest); + + bind(&done); +} + +void MacroAssemblerMIPS64Compat::convertUInt32ToFloat32(Register src, + FloatRegister dest) { + ma_dext(ScratchRegister, src, Imm32(0), Imm32(32)); + asMasm().convertInt64ToFloat32(Register64(ScratchRegister), dest); +} + +void MacroAssemblerMIPS64Compat::convertDoubleToFloat32(FloatRegister src, + FloatRegister dest) { + as_cvtsd(dest, src); +} + +const int CauseBitPos = int(Assembler::CauseI); +const int CauseBitCount = 1 + int(Assembler::CauseV) - int(Assembler::CauseI); +const int CauseIOrVMask = ((1 << int(Assembler::CauseI)) | + (1 << int(Assembler::CauseV))) >> + int(Assembler::CauseI); + +// Checks whether a double is representable as a 32-bit integer. If so, the +// integer is written to the output register. Otherwise, a bailout is taken to +// the given snapshot. This function overwrites the scratch float register. +void MacroAssemblerMIPS64Compat::convertDoubleToInt32(FloatRegister src, + Register dest, + Label* fail, + bool negativeZeroCheck) { + if (negativeZeroCheck) { + moveFromDouble(src, dest); + ma_drol(dest, dest, Imm32(1)); + ma_b(dest, Imm32(1), fail, Assembler::Equal); + } + + // Truncate double to int ; if result is inexact or invalid fail. + as_truncwd(ScratchFloat32Reg, src); + as_cfc1(ScratchRegister, Assembler::FCSR); + moveFromFloat32(ScratchFloat32Reg, dest); + ma_ext(ScratchRegister, ScratchRegister, CauseBitPos, CauseBitCount); + as_andi(ScratchRegister, ScratchRegister, + CauseIOrVMask); // masking for Inexact and Invalid flag. + ma_b(ScratchRegister, Imm32(0), fail, Assembler::NotEqual); +} + +void MacroAssemblerMIPS64Compat::convertDoubleToPtr(FloatRegister src, + Register dest, Label* fail, + bool negativeZeroCheck) { + if (negativeZeroCheck) { + moveFromDouble(src, dest); + ma_drol(dest, dest, Imm32(1)); + ma_b(dest, Imm32(1), fail, Assembler::Equal); + } + as_truncld(ScratchDoubleReg, src); + as_cfc1(ScratchRegister, Assembler::FCSR); + moveFromDouble(ScratchDoubleReg, dest); + ma_ext(ScratchRegister, ScratchRegister, CauseBitPos, CauseBitCount); + as_andi(ScratchRegister, ScratchRegister, CauseIOrVMask); + ma_b(ScratchRegister, Imm32(0), fail, Assembler::NotEqual); +} + +// Checks whether a float32 is representable as a 32-bit integer. If so, the +// integer is written to the output register. Otherwise, a bailout is taken to +// the given snapshot. This function overwrites the scratch float register. +void MacroAssemblerMIPS64Compat::convertFloat32ToInt32(FloatRegister src, + Register dest, + Label* fail, + bool negativeZeroCheck) { + if (negativeZeroCheck) { + moveFromFloat32(src, dest); + ma_b(dest, Imm32(INT32_MIN), fail, Assembler::Equal); + } + + as_truncws(ScratchFloat32Reg, src); + as_cfc1(ScratchRegister, Assembler::FCSR); + moveFromFloat32(ScratchFloat32Reg, dest); + ma_ext(ScratchRegister, ScratchRegister, CauseBitPos, CauseBitCount); + as_andi(ScratchRegister, ScratchRegister, CauseIOrVMask); + ma_b(ScratchRegister, Imm32(0), fail, Assembler::NotEqual); +} + +void MacroAssemblerMIPS64Compat::convertFloat32ToDouble(FloatRegister src, + FloatRegister dest) { + as_cvtds(dest, src); +} + +void MacroAssemblerMIPS64Compat::convertInt32ToFloat32(Register src, + FloatRegister dest) { + as_mtc1(src, dest); + as_cvtsw(dest, dest); +} + +void MacroAssemblerMIPS64Compat::convertInt32ToFloat32(const Address& src, + FloatRegister dest) { + ma_ls(dest, src); + as_cvtsw(dest, dest); +} + +void MacroAssembler::convertIntPtrToDouble(Register src, FloatRegister dest) { + convertInt64ToDouble(Register64(src), dest); +} + +void MacroAssemblerMIPS64Compat::movq(Register rs, Register rd) { + ma_move(rd, rs); +} + +void MacroAssemblerMIPS64::ma_li(Register dest, CodeLabel* label) { + BufferOffset bo = m_buffer.nextOffset(); + ma_liPatchable(dest, ImmWord(/* placeholder */ 0)); + label->patchAt()->bind(bo.getOffset()); + label->setLinkMode(CodeLabel::MoveImmediate); +} + +void MacroAssemblerMIPS64::ma_li(Register dest, ImmWord imm) { + int64_t value = imm.value; + + if (-1 == (value >> 15) || 0 == (value >> 15)) { + as_addiu(dest, zero, value); + return; + } + if (0 == (value >> 16)) { + as_ori(dest, zero, value); + return; + } + + if (-1 == (value >> 31) || 0 == (value >> 31)) { + as_lui(dest, uint16_t(value >> 16)); + } else if (0 == (value >> 32)) { + as_lui(dest, uint16_t(value >> 16)); + as_dinsu(dest, zero, 32, 32); + } else if (-1 == (value >> 47) || 0 == (value >> 47)) { + as_lui(dest, uint16_t(value >> 32)); + if (uint16_t(value >> 16)) { + as_ori(dest, dest, uint16_t(value >> 16)); + } + as_dsll(dest, dest, 16); + } else if (0 == (value >> 48)) { + as_lui(dest, uint16_t(value >> 32)); + as_dinsu(dest, zero, 32, 32); + if (uint16_t(value >> 16)) { + as_ori(dest, dest, uint16_t(value >> 16)); + } + as_dsll(dest, dest, 16); + } else { + as_lui(dest, uint16_t(value >> 48)); + if (uint16_t(value >> 32)) { + as_ori(dest, dest, uint16_t(value >> 32)); + } + if (uint16_t(value >> 16)) { + as_dsll(dest, dest, 16); + as_ori(dest, dest, uint16_t(value >> 16)); + as_dsll(dest, dest, 16); + } else { + as_dsll32(dest, dest, 32); + } + } + if (uint16_t(value)) { + as_ori(dest, dest, uint16_t(value)); + } +} + +// This method generates lui, dsll and ori instruction block that can be +// modified by UpdateLoad64Value, either during compilation (eg. +// Assembler::bind), or during execution (eg. jit::PatchJump). +void MacroAssemblerMIPS64::ma_liPatchable(Register dest, ImmPtr imm) { + return ma_liPatchable(dest, ImmWord(uintptr_t(imm.value))); +} + +void MacroAssemblerMIPS64::ma_liPatchable(Register dest, ImmWord imm, + LiFlags flags) { + if (Li64 == flags) { + m_buffer.ensureSpace(6 * sizeof(uint32_t)); + as_lui(dest, Imm16::Upper(Imm32(imm.value >> 32)).encode()); + as_ori(dest, dest, Imm16::Lower(Imm32(imm.value >> 32)).encode()); + as_dsll(dest, dest, 16); + as_ori(dest, dest, Imm16::Upper(Imm32(imm.value)).encode()); + as_dsll(dest, dest, 16); + as_ori(dest, dest, Imm16::Lower(Imm32(imm.value)).encode()); + } else { + m_buffer.ensureSpace(4 * sizeof(uint32_t)); + as_lui(dest, Imm16::Lower(Imm32(imm.value >> 32)).encode()); + as_ori(dest, dest, Imm16::Upper(Imm32(imm.value)).encode()); + as_drotr32(dest, dest, 48); + as_ori(dest, dest, Imm16::Lower(Imm32(imm.value)).encode()); + } +} + +void MacroAssemblerMIPS64::ma_dnegu(Register rd, Register rs) { + as_dsubu(rd, zero, rs); +} + +// Shifts +void MacroAssemblerMIPS64::ma_dsll(Register rd, Register rt, Imm32 shift) { + if (31 < shift.value) { + as_dsll32(rd, rt, shift.value); + } else { + as_dsll(rd, rt, shift.value); + } +} + +void MacroAssemblerMIPS64::ma_dsrl(Register rd, Register rt, Imm32 shift) { + if (31 < shift.value) { + as_dsrl32(rd, rt, shift.value); + } else { + as_dsrl(rd, rt, shift.value); + } +} + +void MacroAssemblerMIPS64::ma_dsra(Register rd, Register rt, Imm32 shift) { + if (31 < shift.value) { + as_dsra32(rd, rt, shift.value); + } else { + as_dsra(rd, rt, shift.value); + } +} + +void MacroAssemblerMIPS64::ma_dror(Register rd, Register rt, Imm32 shift) { + if (31 < shift.value) { + as_drotr32(rd, rt, shift.value); + } else { + as_drotr(rd, rt, shift.value); + } +} + +void MacroAssemblerMIPS64::ma_drol(Register rd, Register rt, Imm32 shift) { + uint32_t s = 64 - shift.value; + + if (31 < s) { + as_drotr32(rd, rt, s); + } else { + as_drotr(rd, rt, s); + } +} + +void MacroAssemblerMIPS64::ma_dsll(Register rd, Register rt, Register shift) { + as_dsllv(rd, rt, shift); +} + +void MacroAssemblerMIPS64::ma_dsrl(Register rd, Register rt, Register shift) { + as_dsrlv(rd, rt, shift); +} + +void MacroAssemblerMIPS64::ma_dsra(Register rd, Register rt, Register shift) { + as_dsrav(rd, rt, shift); +} + +void MacroAssemblerMIPS64::ma_dror(Register rd, Register rt, Register shift) { + as_drotrv(rd, rt, shift); +} + +void MacroAssemblerMIPS64::ma_drol(Register rd, Register rt, Register shift) { + as_dsubu(ScratchRegister, zero, shift); + as_drotrv(rd, rt, ScratchRegister); +} + +void MacroAssemblerMIPS64::ma_dins(Register rt, Register rs, Imm32 pos, + Imm32 size) { + if (pos.value >= 0 && pos.value < 32) { + if (pos.value + size.value > 32) { + as_dinsm(rt, rs, pos.value, size.value); + } else { + as_dins(rt, rs, pos.value, size.value); + } + } else { + as_dinsu(rt, rs, pos.value, size.value); + } +} + +void MacroAssemblerMIPS64::ma_dext(Register rt, Register rs, Imm32 pos, + Imm32 size) { + if (pos.value >= 0 && pos.value < 32) { + if (size.value > 32) { + as_dextm(rt, rs, pos.value, size.value); + } else { + as_dext(rt, rs, pos.value, size.value); + } + } else { + as_dextu(rt, rs, pos.value, size.value); + } +} + +void MacroAssemblerMIPS64::ma_dsbh(Register rd, Register rt) { + as_dsbh(rd, rt); +} + +void MacroAssemblerMIPS64::ma_dshd(Register rd, Register rt) { + as_dshd(rd, rt); +} + +void MacroAssemblerMIPS64::ma_dctz(Register rd, Register rs) { + ma_dnegu(ScratchRegister, rs); + as_and(rd, ScratchRegister, rs); + as_dclz(rd, rd); + ma_dnegu(SecondScratchReg, rd); + ma_daddu(SecondScratchReg, Imm32(0x3f)); +#ifdef MIPS64 + as_selnez(SecondScratchReg, SecondScratchReg, ScratchRegister); + as_seleqz(rd, rd, ScratchRegister); + as_or(rd, rd, SecondScratchReg); +#else + as_movn(rd, SecondScratchReg, ScratchRegister); +#endif +} + +// Arithmetic-based ops. + +// Add. +void MacroAssemblerMIPS64::ma_daddu(Register rd, Register rs, Imm32 imm) { + if (Imm16::IsInSignedRange(imm.value)) { + as_daddiu(rd, rs, imm.value); + } else { + ma_li(ScratchRegister, imm); + as_daddu(rd, rs, ScratchRegister); + } +} + +void MacroAssemblerMIPS64::ma_daddu(Register rd, Register rs) { + as_daddu(rd, rd, rs); +} + +void MacroAssemblerMIPS64::ma_daddu(Register rd, Imm32 imm) { + ma_daddu(rd, rd, imm); +} + +void MacroAssemblerMIPS64::ma_add32TestOverflow(Register rd, Register rs, + Register rt, Label* overflow) { + as_daddu(SecondScratchReg, rs, rt); + as_addu(rd, rs, rt); + ma_b(rd, SecondScratchReg, overflow, Assembler::NotEqual); +} + +void MacroAssemblerMIPS64::ma_add32TestOverflow(Register rd, Register rs, + Imm32 imm, Label* overflow) { + // Check for signed range because of as_daddiu + if (Imm16::IsInSignedRange(imm.value)) { + as_daddiu(SecondScratchReg, rs, imm.value); + as_addiu(rd, rs, imm.value); + ma_b(rd, SecondScratchReg, overflow, Assembler::NotEqual); + } else { + ma_li(ScratchRegister, imm); + ma_add32TestOverflow(rd, rs, ScratchRegister, overflow); + } +} + +void MacroAssemblerMIPS64::ma_addPtrTestOverflow(Register rd, Register rs, + Register rt, Label* overflow) { + SecondScratchRegisterScope scratch2(asMasm()); + MOZ_ASSERT(rd != rt); + MOZ_ASSERT(rd != scratch2); + + if (rs == rt) { + as_daddu(rd, rs, rs); + as_xor(scratch2, rs, rd); + } else { + ScratchRegisterScope scratch(asMasm()); + MOZ_ASSERT(rs != scratch2); + MOZ_ASSERT(rt != scratch2); + + // If the sign of rs and rt are different, no overflow + as_xor(scratch2, rs, rt); + as_nor(scratch2, scratch2, zero); + + as_daddu(rd, rs, rt); + as_xor(scratch, rd, rt); + as_and(scratch, scratch, scratch2); + } + + ma_b(scratch2, zero, overflow, Assembler::LessThan); +} + +void MacroAssemblerMIPS64::ma_addPtrTestOverflow(Register rd, Register rs, + Imm32 imm, Label* overflow) { + ma_li(ScratchRegister, imm); + ma_addPtrTestOverflow(rd, rs, ScratchRegister, overflow); +} + +void MacroAssemblerMIPS64::ma_addPtrTestOverflow(Register rd, Register rs, + ImmWord imm, Label* overflow) { + ScratchRegisterScope scratch(asMasm()); + ma_li(scratch, imm); + ma_addPtrTestOverflow(rd, rs, scratch, overflow); +} + +void MacroAssemblerMIPS64::ma_addPtrTestCarry(Condition cond, Register rd, + Register rs, Register rt, + Label* overflow) { + SecondScratchRegisterScope scratch2(asMasm()); + as_daddu(rd, rs, rt); + as_sltu(scratch2, rd, rt); + ma_b(scratch2, scratch2, overflow, + cond == Assembler::CarrySet ? Assembler::NonZero : Assembler::Zero); +} + +void MacroAssemblerMIPS64::ma_addPtrTestCarry(Condition cond, Register rd, + Register rs, Imm32 imm, + Label* overflow) { + // Check for signed range because of as_daddiu + if (Imm16::IsInSignedRange(imm.value)) { + SecondScratchRegisterScope scratch2(asMasm()); + as_daddiu(rd, rs, imm.value); + as_sltiu(scratch2, rd, imm.value); + ma_b(scratch2, scratch2, overflow, + cond == Assembler::CarrySet ? Assembler::NonZero : Assembler::Zero); + } else { + ma_li(ScratchRegister, imm); + ma_addPtrTestCarry(cond, rd, rs, ScratchRegister, overflow); + } +} + +void MacroAssemblerMIPS64::ma_addPtrTestCarry(Condition cond, Register rd, + Register rs, ImmWord imm, + Label* overflow) { + // Check for signed range because of as_daddiu + if (Imm16::IsInSignedRange(imm.value)) { + SecondScratchRegisterScope scratch2(asMasm()); + as_daddiu(rd, rs, imm.value); + as_sltiu(scratch2, rd, imm.value); + ma_b(scratch2, scratch2, overflow, + cond == Assembler::CarrySet ? Assembler::NonZero : Assembler::Zero); + } else { + ScratchRegisterScope scratch(asMasm()); + ma_li(scratch, imm); + ma_addPtrTestCarry(cond, rd, rs, scratch, overflow); + } +} + +// Subtract. +void MacroAssemblerMIPS64::ma_dsubu(Register rd, Register rs, Imm32 imm) { + if (Imm16::IsInSignedRange(-imm.value)) { + as_daddiu(rd, rs, -imm.value); + } else { + ma_li(ScratchRegister, imm); + as_dsubu(rd, rs, ScratchRegister); + } +} + +void MacroAssemblerMIPS64::ma_dsubu(Register rd, Register rs) { + as_dsubu(rd, rd, rs); +} + +void MacroAssemblerMIPS64::ma_dsubu(Register rd, Imm32 imm) { + ma_dsubu(rd, rd, imm); +} + +void MacroAssemblerMIPS64::ma_sub32TestOverflow(Register rd, Register rs, + Register rt, Label* overflow) { + as_dsubu(SecondScratchReg, rs, rt); + as_subu(rd, rs, rt); + ma_b(rd, SecondScratchReg, overflow, Assembler::NotEqual); +} + +void MacroAssemblerMIPS64::ma_subPtrTestOverflow(Register rd, Register rs, + Register rt, Label* overflow) { + SecondScratchRegisterScope scratch2(asMasm()); + MOZ_ASSERT_IF(rs == rd, rs != rt); + MOZ_ASSERT(rd != rt); + MOZ_ASSERT(rs != scratch2); + MOZ_ASSERT(rt != scratch2); + MOZ_ASSERT(rd != scratch2); + + Register rs_copy = rs; + + if (rs == rd) { + ma_move(scratch2, rs); + rs_copy = scratch2; + } + + { + ScratchRegisterScope scratch(asMasm()); + MOZ_ASSERT(rd != scratch); + + as_dsubu(rd, rs, rt); + // If the sign of rs and rt are the same, no overflow + as_xor(scratch, rs_copy, rt); + // Check if the sign of rd and rs are the same + as_xor(scratch2, rd, rs_copy); + as_and(scratch2, scratch2, scratch); + } + + ma_b(scratch2, zero, overflow, Assembler::LessThan); +} + +void MacroAssemblerMIPS64::ma_subPtrTestOverflow(Register rd, Register rs, + Imm32 imm, Label* overflow) { + ma_li(ScratchRegister, imm); + ma_subPtrTestOverflow(rd, rs, ScratchRegister, overflow); +} + +void MacroAssemblerMIPS64::ma_dmult(Register rs, Imm32 imm) { + ma_li(ScratchRegister, imm); +#ifdef MIPSR6 + as_dmul(rs, ScratchRegister, SecondScratchReg); + as_dmuh(rs, ScratchRegister, rs); + ma_move(rs, SecondScratchReg); +#else + as_dmult(rs, ScratchRegister); +#endif +} + +void MacroAssemblerMIPS64::ma_mulPtrTestOverflow(Register rd, Register rs, + Register rt, Label* overflow) { +#ifdef MIPSR6 + if (rd == rs) { + ma_move(SecondScratchReg, rs); + rs = SecondScratchReg; + } + as_dmul(rd, rs, rt); + as_dmuh(SecondScratchReg, rs, rt); +#else + as_dmult(rs, rt); + as_mflo(rd); + as_mfhi(SecondScratchReg); +#endif + as_dsra32(ScratchRegister, rd, 63); + ma_b(ScratchRegister, SecondScratchReg, overflow, Assembler::NotEqual); +} + +// Memory. +void MacroAssemblerMIPS64::ma_load(Register dest, Address address, + LoadStoreSize size, + LoadStoreExtension extension) { + int16_t encodedOffset; + Register base; + + if (isLoongson() && ZeroExtend != extension && + !Imm16::IsInSignedRange(address.offset)) { + ma_li(ScratchRegister, Imm32(address.offset)); + base = address.base; + + switch (size) { + case SizeByte: + as_gslbx(dest, base, ScratchRegister, 0); + break; + case SizeHalfWord: + as_gslhx(dest, base, ScratchRegister, 0); + break; + case SizeWord: + as_gslwx(dest, base, ScratchRegister, 0); + break; + case SizeDouble: + as_gsldx(dest, base, ScratchRegister, 0); + break; + default: + MOZ_CRASH("Invalid argument for ma_load"); + } + return; + } + + if (!Imm16::IsInSignedRange(address.offset)) { + ma_li(ScratchRegister, Imm32(address.offset)); + as_daddu(ScratchRegister, address.base, ScratchRegister); + base = ScratchRegister; + encodedOffset = Imm16(0).encode(); + } else { + encodedOffset = Imm16(address.offset).encode(); + base = address.base; + } + + switch (size) { + case SizeByte: + if (ZeroExtend == extension) { + as_lbu(dest, base, encodedOffset); + } else { + as_lb(dest, base, encodedOffset); + } + break; + case SizeHalfWord: + if (ZeroExtend == extension) { + as_lhu(dest, base, encodedOffset); + } else { + as_lh(dest, base, encodedOffset); + } + break; + case SizeWord: + if (ZeroExtend == extension) { + as_lwu(dest, base, encodedOffset); + } else { + as_lw(dest, base, encodedOffset); + } + break; + case SizeDouble: + as_ld(dest, base, encodedOffset); + break; + default: + MOZ_CRASH("Invalid argument for ma_load"); + } +} + +void MacroAssemblerMIPS64::ma_store(Register data, Address address, + LoadStoreSize size, + LoadStoreExtension extension) { + int16_t encodedOffset; + Register base; + + if (isLoongson() && !Imm16::IsInSignedRange(address.offset)) { + ma_li(ScratchRegister, Imm32(address.offset)); + base = address.base; + + switch (size) { + case SizeByte: + as_gssbx(data, base, ScratchRegister, 0); + break; + case SizeHalfWord: + as_gsshx(data, base, ScratchRegister, 0); + break; + case SizeWord: + as_gsswx(data, base, ScratchRegister, 0); + break; + case SizeDouble: + as_gssdx(data, base, ScratchRegister, 0); + break; + default: + MOZ_CRASH("Invalid argument for ma_store"); + } + return; + } + + if (!Imm16::IsInSignedRange(address.offset)) { + ma_li(ScratchRegister, Imm32(address.offset)); + as_daddu(ScratchRegister, address.base, ScratchRegister); + base = ScratchRegister; + encodedOffset = Imm16(0).encode(); + } else { + encodedOffset = Imm16(address.offset).encode(); + base = address.base; + } + + switch (size) { + case SizeByte: + as_sb(data, base, encodedOffset); + break; + case SizeHalfWord: + as_sh(data, base, encodedOffset); + break; + case SizeWord: + as_sw(data, base, encodedOffset); + break; + case SizeDouble: + as_sd(data, base, encodedOffset); + break; + default: + MOZ_CRASH("Invalid argument for ma_store"); + } +} + +void MacroAssemblerMIPS64Compat::computeScaledAddress(const BaseIndex& address, + Register dest) { + int32_t shift = Imm32::ShiftOf(address.scale).value; + if (shift) { + ma_dsll(ScratchRegister, address.index, Imm32(shift)); + as_daddu(dest, address.base, ScratchRegister); + } else { + as_daddu(dest, address.base, address.index); + } +} + +void MacroAssemblerMIPS64Compat::computeEffectiveAddress( + const BaseIndex& address, Register dest) { + computeScaledAddress(address, dest); + if (address.offset) { + asMasm().addPtr(Imm32(address.offset), dest); + } +} + +// Shortcut for when we know we're transferring 32 bits of data. +void MacroAssemblerMIPS64::ma_pop(Register r) { + as_ld(r, StackPointer, 0); + as_daddiu(StackPointer, StackPointer, sizeof(intptr_t)); +} + +void MacroAssemblerMIPS64::ma_push(Register r) { + if (r == sp) { + // Pushing sp requires one more instruction. + ma_move(ScratchRegister, sp); + r = ScratchRegister; + } + + as_daddiu(StackPointer, StackPointer, (int32_t) - sizeof(intptr_t)); + as_sd(r, StackPointer, 0); +} + +// Branches when done from within mips-specific code. +void MacroAssemblerMIPS64::ma_b(Register lhs, ImmWord imm, Label* label, + Condition c, JumpKind jumpKind) { + if (imm.value <= INT32_MAX) { + ma_b(lhs, Imm32(uint32_t(imm.value)), label, c, jumpKind); + } else { + MOZ_ASSERT(lhs != ScratchRegister); + ma_li(ScratchRegister, imm); + ma_b(lhs, ScratchRegister, label, c, jumpKind); + } +} + +void MacroAssemblerMIPS64::ma_b(Register lhs, Address addr, Label* label, + Condition c, JumpKind jumpKind) { + MOZ_ASSERT(lhs != ScratchRegister); + ma_load(ScratchRegister, addr, SizeDouble); + ma_b(lhs, ScratchRegister, label, c, jumpKind); +} + +void MacroAssemblerMIPS64::ma_b(Address addr, Imm32 imm, Label* label, + Condition c, JumpKind jumpKind) { + ma_load(SecondScratchReg, addr, SizeDouble); + ma_b(SecondScratchReg, imm, label, c, jumpKind); +} + +void MacroAssemblerMIPS64::ma_b(Address addr, ImmGCPtr imm, Label* label, + Condition c, JumpKind jumpKind) { + ma_load(SecondScratchReg, addr, SizeDouble); + ma_b(SecondScratchReg, imm, label, c, jumpKind); +} + +void MacroAssemblerMIPS64::ma_bal(Label* label, DelaySlotFill delaySlotFill) { + spew("branch .Llabel %p\n", label); + if (label->bound()) { + // Generate the long jump for calls because return address has to be + // the address after the reserved block. + addLongJump(nextOffset(), BufferOffset(label->offset())); + ma_liPatchable(ScratchRegister, ImmWord(LabelBase::INVALID_OFFSET)); + as_jalr(ScratchRegister); + if (delaySlotFill == FillDelaySlot) { + as_nop(); + } + return; + } + + // Second word holds a pointer to the next branch in label's chain. + uint32_t nextInChain = + label->used() ? label->offset() : LabelBase::INVALID_OFFSET; + + // Make the whole branch continous in the buffer. The '6' + // instructions are writing at below (contain delay slot). + m_buffer.ensureSpace(6 * sizeof(uint32_t)); + + spew("bal .Llabel %p\n", label); + BufferOffset bo = writeInst(getBranchCode(BranchIsCall).encode()); + writeInst(nextInChain); + if (!oom()) { + label->use(bo.getOffset()); + } + // Leave space for long jump. + as_nop(); + as_nop(); + as_nop(); + if (delaySlotFill == FillDelaySlot) { + as_nop(); + } +} + +void MacroAssemblerMIPS64::branchWithCode(InstImm code, Label* label, + JumpKind jumpKind) { + // simply output the pointer of one label as its id, + // notice that after one label destructor, the pointer will be reused. + spew("branch .Llabel %p", label); + MOZ_ASSERT(code.encode() != + InstImm(op_regimm, zero, rt_bgezal, BOffImm16(0)).encode()); + InstImm inst_beq = InstImm(op_beq, zero, zero, BOffImm16(0)); + + if (label->bound()) { + int32_t offset = label->offset() - m_buffer.nextOffset().getOffset(); + + if (BOffImm16::IsInRange(offset)) { + jumpKind = ShortJump; + } + + if (jumpKind == ShortJump) { + MOZ_ASSERT(BOffImm16::IsInRange(offset)); + code.setBOffImm16(BOffImm16(offset)); +#ifdef JS_JITSPEW + decodeBranchInstAndSpew(code); +#endif + writeInst(code.encode()); + as_nop(); + return; + } + + if (code.encode() == inst_beq.encode()) { + // Handle long jump + addLongJump(nextOffset(), BufferOffset(label->offset())); + ma_liPatchable(ScratchRegister, ImmWord(LabelBase::INVALID_OFFSET)); + as_jr(ScratchRegister); + as_nop(); + return; + } + + // Handle long conditional branch, the target offset is based on self, + // point to next instruction of nop at below. + spew("invert branch .Llabel %p", label); + InstImm code_r = invertBranch(code, BOffImm16(7 * sizeof(uint32_t))); +#ifdef JS_JITSPEW + decodeBranchInstAndSpew(code_r); +#endif + writeInst(code_r.encode()); + // No need for a "nop" here because we can clobber scratch. + addLongJump(nextOffset(), BufferOffset(label->offset())); + ma_liPatchable(ScratchRegister, ImmWord(LabelBase::INVALID_OFFSET)); + as_jr(ScratchRegister); + as_nop(); + return; + } + + // Generate open jump and link it to a label. + + // Second word holds a pointer to the next branch in label's chain. + uint32_t nextInChain = + label->used() ? label->offset() : LabelBase::INVALID_OFFSET; + + if (jumpKind == ShortJump) { + // Make the whole branch continous in the buffer. + m_buffer.ensureSpace(2 * sizeof(uint32_t)); + + // Indicate that this is short jump with offset 4. + code.setBOffImm16(BOffImm16(4)); +#ifdef JS_JITSPEW + decodeBranchInstAndSpew(code); +#endif + BufferOffset bo = writeInst(code.encode()); + writeInst(nextInChain); + if (!oom()) { + label->use(bo.getOffset()); + } + return; + } + + bool conditional = code.encode() != inst_beq.encode(); + + // Make the whole branch continous in the buffer. The '7' + // instructions are writing at below (contain conditional nop). + m_buffer.ensureSpace(7 * sizeof(uint32_t)); + +#ifdef JS_JITSPEW + decodeBranchInstAndSpew(code); +#endif + BufferOffset bo = writeInst(code.encode()); + writeInst(nextInChain); + if (!oom()) { + label->use(bo.getOffset()); + } + // Leave space for potential long jump. + as_nop(); + as_nop(); + as_nop(); + as_nop(); + if (conditional) { + as_nop(); + } +} + +void MacroAssemblerMIPS64::ma_cmp_set(Register rd, Register rs, ImmWord imm, + Condition c) { + if (imm.value <= INT32_MAX) { + ma_cmp_set(rd, rs, Imm32(uint32_t(imm.value)), c); + } else { + ma_li(ScratchRegister, imm); + ma_cmp_set(rd, rs, ScratchRegister, c); + } +} + +void MacroAssemblerMIPS64::ma_cmp_set(Register rd, Address address, ImmWord imm, + Condition c) { + SecondScratchRegisterScope scratch2(asMasm()); + ma_load(scratch2, address, SizeDouble); + ma_cmp_set(rd, scratch2, imm, c); +} + +void MacroAssemblerMIPS64::ma_cmp_set(Register rd, Register rs, ImmPtr imm, + Condition c) { + ma_cmp_set(rd, rs, ImmWord(uintptr_t(imm.value)), c); +} + +void MacroAssemblerMIPS64::ma_cmp_set(Register rd, Address address, Imm32 imm, + Condition c) { + SecondScratchRegisterScope scratch2(asMasm()); + ma_load(scratch2, address, SizeWord, SignExtend); + ma_cmp_set(rd, scratch2, imm, c); +} + +// fp instructions +void MacroAssemblerMIPS64::ma_lid(FloatRegister dest, double value) { + ImmWord imm(mozilla::BitwiseCast<uint64_t>(value)); + + if (imm.value != 0) { + ma_li(ScratchRegister, imm); + moveToDouble(ScratchRegister, dest); + } else { + moveToDouble(zero, dest); + } +} + +void MacroAssemblerMIPS64::ma_mv(FloatRegister src, ValueOperand dest) { + as_dmfc1(dest.valueReg(), src); +} + +void MacroAssemblerMIPS64::ma_mv(ValueOperand src, FloatRegister dest) { + as_dmtc1(src.valueReg(), dest); +} + +void MacroAssemblerMIPS64::ma_ls(FloatRegister ft, Address address) { + if (Imm16::IsInSignedRange(address.offset)) { + as_lwc1(ft, address.base, address.offset); + } else { + MOZ_ASSERT(address.base != ScratchRegister); + ma_li(ScratchRegister, Imm32(address.offset)); + if (isLoongson()) { + as_gslsx(ft, address.base, ScratchRegister, 0); + } else { + as_daddu(ScratchRegister, address.base, ScratchRegister); + as_lwc1(ft, ScratchRegister, 0); + } + } +} + +void MacroAssemblerMIPS64::ma_ld(FloatRegister ft, Address address) { + if (Imm16::IsInSignedRange(address.offset)) { + as_ldc1(ft, address.base, address.offset); + } else { + MOZ_ASSERT(address.base != ScratchRegister); + ma_li(ScratchRegister, Imm32(address.offset)); + if (isLoongson()) { + as_gsldx(ft, address.base, ScratchRegister, 0); + } else { + as_daddu(ScratchRegister, address.base, ScratchRegister); + as_ldc1(ft, ScratchRegister, 0); + } + } +} + +void MacroAssemblerMIPS64::ma_sd(FloatRegister ft, Address address) { + if (Imm16::IsInSignedRange(address.offset)) { + as_sdc1(ft, address.base, address.offset); + } else { + MOZ_ASSERT(address.base != ScratchRegister); + ma_li(ScratchRegister, Imm32(address.offset)); + if (isLoongson()) { + as_gssdx(ft, address.base, ScratchRegister, 0); + } else { + as_daddu(ScratchRegister, address.base, ScratchRegister); + as_sdc1(ft, ScratchRegister, 0); + } + } +} + +void MacroAssemblerMIPS64::ma_ss(FloatRegister ft, Address address) { + if (Imm16::IsInSignedRange(address.offset)) { + as_swc1(ft, address.base, address.offset); + } else { + MOZ_ASSERT(address.base != ScratchRegister); + ma_li(ScratchRegister, Imm32(address.offset)); + if (isLoongson()) { + as_gsssx(ft, address.base, ScratchRegister, 0); + } else { + as_daddu(ScratchRegister, address.base, ScratchRegister); + as_swc1(ft, ScratchRegister, 0); + } + } +} + +void MacroAssemblerMIPS64::ma_pop(FloatRegister f) { + as_ldc1(f, StackPointer, 0); + as_daddiu(StackPointer, StackPointer, sizeof(double)); +} + +void MacroAssemblerMIPS64::ma_push(FloatRegister f) { + as_daddiu(StackPointer, StackPointer, (int32_t) - sizeof(double)); + as_sdc1(f, StackPointer, 0); +} + +bool MacroAssemblerMIPS64Compat::buildOOLFakeExitFrame(void* fakeReturnAddr) { + asMasm().PushFrameDescriptor(FrameType::IonJS); // descriptor_ + asMasm().Push(ImmPtr(fakeReturnAddr)); + asMasm().Push(FramePointer); + return true; +} + +void MacroAssemblerMIPS64Compat::move32(Imm32 imm, Register dest) { + ma_li(dest, imm); +} + +void MacroAssemblerMIPS64Compat::move32(Register src, Register dest) { + ma_sll(dest, src, Imm32(0)); +} + +void MacroAssemblerMIPS64Compat::movePtr(Register src, Register dest) { + ma_move(dest, src); +} +void MacroAssemblerMIPS64Compat::movePtr(ImmWord imm, Register dest) { + ma_li(dest, imm); +} + +void MacroAssemblerMIPS64Compat::movePtr(ImmGCPtr imm, Register dest) { + ma_li(dest, imm); +} + +void MacroAssemblerMIPS64Compat::movePtr(ImmPtr imm, Register dest) { + movePtr(ImmWord(uintptr_t(imm.value)), dest); +} +void MacroAssemblerMIPS64Compat::movePtr(wasm::SymbolicAddress imm, + Register dest) { + append(wasm::SymbolicAccess(CodeOffset(nextOffset().getOffset()), imm)); + ma_liPatchable(dest, ImmWord(-1)); +} + +void MacroAssemblerMIPS64Compat::load8ZeroExtend(const Address& address, + Register dest) { + ma_load(dest, address, SizeByte, ZeroExtend); +} + +void MacroAssemblerMIPS64Compat::load8ZeroExtend(const BaseIndex& src, + Register dest) { + ma_load(dest, src, SizeByte, ZeroExtend); +} + +void MacroAssemblerMIPS64Compat::load8SignExtend(const Address& address, + Register dest) { + ma_load(dest, address, SizeByte, SignExtend); +} + +void MacroAssemblerMIPS64Compat::load8SignExtend(const BaseIndex& src, + Register dest) { + ma_load(dest, src, SizeByte, SignExtend); +} + +void MacroAssemblerMIPS64Compat::load16ZeroExtend(const Address& address, + Register dest) { + ma_load(dest, address, SizeHalfWord, ZeroExtend); +} + +void MacroAssemblerMIPS64Compat::load16ZeroExtend(const BaseIndex& src, + Register dest) { + ma_load(dest, src, SizeHalfWord, ZeroExtend); +} + +void MacroAssemblerMIPS64Compat::load16SignExtend(const Address& address, + Register dest) { + ma_load(dest, address, SizeHalfWord, SignExtend); +} + +void MacroAssemblerMIPS64Compat::load16SignExtend(const BaseIndex& src, + Register dest) { + ma_load(dest, src, SizeHalfWord, SignExtend); +} + +void MacroAssemblerMIPS64Compat::load32(const Address& address, Register dest) { + ma_load(dest, address, SizeWord); +} + +void MacroAssemblerMIPS64Compat::load32(const BaseIndex& address, + Register dest) { + ma_load(dest, address, SizeWord); +} + +void MacroAssemblerMIPS64Compat::load32(AbsoluteAddress address, + Register dest) { + movePtr(ImmPtr(address.addr), ScratchRegister); + load32(Address(ScratchRegister, 0), dest); +} + +void MacroAssemblerMIPS64Compat::load32(wasm::SymbolicAddress address, + Register dest) { + movePtr(address, ScratchRegister); + load32(Address(ScratchRegister, 0), dest); +} + +void MacroAssemblerMIPS64Compat::loadPtr(const Address& address, + Register dest) { + ma_load(dest, address, SizeDouble); +} + +void MacroAssemblerMIPS64Compat::loadPtr(const BaseIndex& src, Register dest) { + ma_load(dest, src, SizeDouble); +} + +void MacroAssemblerMIPS64Compat::loadPtr(AbsoluteAddress address, + Register dest) { + movePtr(ImmPtr(address.addr), ScratchRegister); + loadPtr(Address(ScratchRegister, 0), dest); +} + +void MacroAssemblerMIPS64Compat::loadPtr(wasm::SymbolicAddress address, + Register dest) { + movePtr(address, ScratchRegister); + loadPtr(Address(ScratchRegister, 0), dest); +} + +void MacroAssemblerMIPS64Compat::loadPrivate(const Address& address, + Register dest) { + loadPtr(address, dest); +} + +void MacroAssemblerMIPS64Compat::loadUnalignedDouble( + const wasm::MemoryAccessDesc& access, const BaseIndex& src, Register temp, + FloatRegister dest) { + computeScaledAddress(src, SecondScratchReg); + BufferOffset load; + if (Imm16::IsInSignedRange(src.offset) && + Imm16::IsInSignedRange(src.offset + 7)) { + load = as_ldl(temp, SecondScratchReg, src.offset + 7); + as_ldr(temp, SecondScratchReg, src.offset); + } else { + ma_li(ScratchRegister, Imm32(src.offset)); + as_daddu(ScratchRegister, SecondScratchReg, ScratchRegister); + load = as_ldl(temp, ScratchRegister, 7); + as_ldr(temp, ScratchRegister, 0); + } + append(access, load.getOffset()); + moveToDouble(temp, dest); +} + +void MacroAssemblerMIPS64Compat::loadUnalignedFloat32( + const wasm::MemoryAccessDesc& access, const BaseIndex& src, Register temp, + FloatRegister dest) { + computeScaledAddress(src, SecondScratchReg); + BufferOffset load; + if (Imm16::IsInSignedRange(src.offset) && + Imm16::IsInSignedRange(src.offset + 3)) { + load = as_lwl(temp, SecondScratchReg, src.offset + 3); + as_lwr(temp, SecondScratchReg, src.offset); + } else { + ma_li(ScratchRegister, Imm32(src.offset)); + as_daddu(ScratchRegister, SecondScratchReg, ScratchRegister); + load = as_lwl(temp, ScratchRegister, 3); + as_lwr(temp, ScratchRegister, 0); + } + append(access, load.getOffset()); + moveToFloat32(temp, dest); +} + +void MacroAssemblerMIPS64Compat::store8(Imm32 imm, const Address& address) { + ma_li(SecondScratchReg, imm); + ma_store(SecondScratchReg, address, SizeByte); +} + +void MacroAssemblerMIPS64Compat::store8(Register src, const Address& address) { + ma_store(src, address, SizeByte); +} + +void MacroAssemblerMIPS64Compat::store8(Imm32 imm, const BaseIndex& dest) { + ma_store(imm, dest, SizeByte); +} + +void MacroAssemblerMIPS64Compat::store8(Register src, const BaseIndex& dest) { + ma_store(src, dest, SizeByte); +} + +void MacroAssemblerMIPS64Compat::store16(Imm32 imm, const Address& address) { + ma_li(SecondScratchReg, imm); + ma_store(SecondScratchReg, address, SizeHalfWord); +} + +void MacroAssemblerMIPS64Compat::store16(Register src, const Address& address) { + ma_store(src, address, SizeHalfWord); +} + +void MacroAssemblerMIPS64Compat::store16(Imm32 imm, const BaseIndex& dest) { + ma_store(imm, dest, SizeHalfWord); +} + +void MacroAssemblerMIPS64Compat::store16(Register src, + const BaseIndex& address) { + ma_store(src, address, SizeHalfWord); +} + +void MacroAssemblerMIPS64Compat::store32(Register src, + AbsoluteAddress address) { + movePtr(ImmPtr(address.addr), ScratchRegister); + store32(src, Address(ScratchRegister, 0)); +} + +void MacroAssemblerMIPS64Compat::store32(Register src, const Address& address) { + ma_store(src, address, SizeWord); +} + +void MacroAssemblerMIPS64Compat::store32(Imm32 src, const Address& address) { + move32(src, SecondScratchReg); + ma_store(SecondScratchReg, address, SizeWord); +} + +void MacroAssemblerMIPS64Compat::store32(Imm32 imm, const BaseIndex& dest) { + ma_store(imm, dest, SizeWord); +} + +void MacroAssemblerMIPS64Compat::store32(Register src, const BaseIndex& dest) { + ma_store(src, dest, SizeWord); +} + +template <typename T> +void MacroAssemblerMIPS64Compat::storePtr(ImmWord imm, T address) { + ma_li(SecondScratchReg, imm); + ma_store(SecondScratchReg, address, SizeDouble); +} + +template void MacroAssemblerMIPS64Compat::storePtr<Address>(ImmWord imm, + Address address); +template void MacroAssemblerMIPS64Compat::storePtr<BaseIndex>( + ImmWord imm, BaseIndex address); + +template <typename T> +void MacroAssemblerMIPS64Compat::storePtr(ImmPtr imm, T address) { + storePtr(ImmWord(uintptr_t(imm.value)), address); +} + +template void MacroAssemblerMIPS64Compat::storePtr<Address>(ImmPtr imm, + Address address); +template void MacroAssemblerMIPS64Compat::storePtr<BaseIndex>( + ImmPtr imm, BaseIndex address); + +template <typename T> +void MacroAssemblerMIPS64Compat::storePtr(ImmGCPtr imm, T address) { + movePtr(imm, SecondScratchReg); + storePtr(SecondScratchReg, address); +} + +template void MacroAssemblerMIPS64Compat::storePtr<Address>(ImmGCPtr imm, + Address address); +template void MacroAssemblerMIPS64Compat::storePtr<BaseIndex>( + ImmGCPtr imm, BaseIndex address); + +void MacroAssemblerMIPS64Compat::storePtr(Register src, + const Address& address) { + ma_store(src, address, SizeDouble); +} + +void MacroAssemblerMIPS64Compat::storePtr(Register src, + const BaseIndex& address) { + ma_store(src, address, SizeDouble); +} + +void MacroAssemblerMIPS64Compat::storePtr(Register src, AbsoluteAddress dest) { + movePtr(ImmPtr(dest.addr), ScratchRegister); + storePtr(src, Address(ScratchRegister, 0)); +} + +void MacroAssemblerMIPS64Compat::storeUnalignedFloat32( + const wasm::MemoryAccessDesc& access, FloatRegister src, Register temp, + const BaseIndex& dest) { + computeScaledAddress(dest, SecondScratchReg); + moveFromFloat32(src, temp); + BufferOffset store; + if (Imm16::IsInSignedRange(dest.offset) && + Imm16::IsInSignedRange(dest.offset + 3)) { + store = as_swl(temp, SecondScratchReg, dest.offset + 3); + as_swr(temp, SecondScratchReg, dest.offset); + } else { + ma_li(ScratchRegister, Imm32(dest.offset)); + as_daddu(ScratchRegister, SecondScratchReg, ScratchRegister); + store = as_swl(temp, ScratchRegister, 3); + as_swr(temp, ScratchRegister, 0); + } + append(access, store.getOffset()); +} + +void MacroAssemblerMIPS64Compat::storeUnalignedDouble( + const wasm::MemoryAccessDesc& access, FloatRegister src, Register temp, + const BaseIndex& dest) { + computeScaledAddress(dest, SecondScratchReg); + moveFromDouble(src, temp); + + BufferOffset store; + if (Imm16::IsInSignedRange(dest.offset) && + Imm16::IsInSignedRange(dest.offset + 7)) { + store = as_sdl(temp, SecondScratchReg, dest.offset + 7); + as_sdr(temp, SecondScratchReg, dest.offset); + } else { + ma_li(ScratchRegister, Imm32(dest.offset)); + as_daddu(ScratchRegister, SecondScratchReg, ScratchRegister); + store = as_sdl(temp, ScratchRegister, 7); + as_sdr(temp, ScratchRegister, 0); + } + append(access, store.getOffset()); +} + +void MacroAssembler::clampDoubleToUint8(FloatRegister input, Register output) { + as_roundwd(ScratchDoubleReg, input); + ma_li(ScratchRegister, Imm32(255)); + as_mfc1(output, ScratchDoubleReg); +#ifdef MIPSR6 + as_slti(SecondScratchReg, output, 0); + as_seleqz(output, output, SecondScratchReg); + as_sltiu(SecondScratchReg, output, 255); + as_selnez(output, output, SecondScratchReg); + as_seleqz(ScratchRegister, ScratchRegister, SecondScratchReg); + as_or(output, output, ScratchRegister); +#else + zeroDouble(ScratchDoubleReg); + as_sltiu(SecondScratchReg, output, 255); + as_colt(DoubleFloat, ScratchDoubleReg, input); + // if res > 255; res = 255; + as_movz(output, ScratchRegister, SecondScratchReg); + // if !(input > 0); res = 0; + as_movf(output, zero); +#endif +} + +void MacroAssemblerMIPS64Compat::testNullSet(Condition cond, + const ValueOperand& value, + Register dest) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + splitTag(value, SecondScratchReg); + ma_cmp_set(dest, SecondScratchReg, ImmTag(JSVAL_TAG_NULL), cond); +} + +void MacroAssemblerMIPS64Compat::testObjectSet(Condition cond, + const ValueOperand& value, + Register dest) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + splitTag(value, SecondScratchReg); + ma_cmp_set(dest, SecondScratchReg, ImmTag(JSVAL_TAG_OBJECT), cond); +} + +void MacroAssemblerMIPS64Compat::testUndefinedSet(Condition cond, + const ValueOperand& value, + Register dest) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + splitTag(value, SecondScratchReg); + ma_cmp_set(dest, SecondScratchReg, ImmTag(JSVAL_TAG_UNDEFINED), cond); +} + +void MacroAssemblerMIPS64Compat::unboxInt32(const ValueOperand& operand, + Register dest) { + ma_sll(dest, operand.valueReg(), Imm32(0)); +} + +void MacroAssemblerMIPS64Compat::unboxInt32(Register src, Register dest) { + ma_sll(dest, src, Imm32(0)); +} + +void MacroAssemblerMIPS64Compat::unboxInt32(const Address& src, Register dest) { + load32(Address(src.base, src.offset), dest); +} + +void MacroAssemblerMIPS64Compat::unboxInt32(const BaseIndex& src, + Register dest) { + computeScaledAddress(src, SecondScratchReg); + load32(Address(SecondScratchReg, src.offset), dest); +} + +void MacroAssemblerMIPS64Compat::unboxBoolean(const ValueOperand& operand, + Register dest) { + ma_dext(dest, operand.valueReg(), Imm32(0), Imm32(32)); +} + +void MacroAssemblerMIPS64Compat::unboxBoolean(Register src, Register dest) { + ma_dext(dest, src, Imm32(0), Imm32(32)); +} + +void MacroAssemblerMIPS64Compat::unboxBoolean(const Address& src, + Register dest) { + ma_load(dest, Address(src.base, src.offset), SizeWord, ZeroExtend); +} + +void MacroAssemblerMIPS64Compat::unboxBoolean(const BaseIndex& src, + Register dest) { + computeScaledAddress(src, SecondScratchReg); + ma_load(dest, Address(SecondScratchReg, src.offset), SizeWord, ZeroExtend); +} + +void MacroAssemblerMIPS64Compat::unboxDouble(const ValueOperand& operand, + FloatRegister dest) { + as_dmtc1(operand.valueReg(), dest); +} + +void MacroAssemblerMIPS64Compat::unboxDouble(const Address& src, + FloatRegister dest) { + ma_ld(dest, Address(src.base, src.offset)); +} +void MacroAssemblerMIPS64Compat::unboxDouble(const BaseIndex& src, + FloatRegister dest) { + SecondScratchRegisterScope scratch(asMasm()); + loadPtr(src, scratch); + unboxDouble(ValueOperand(scratch), dest); +} + +void MacroAssemblerMIPS64Compat::unboxString(const ValueOperand& operand, + Register dest) { + unboxNonDouble(operand, dest, JSVAL_TYPE_STRING); +} + +void MacroAssemblerMIPS64Compat::unboxString(Register src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_STRING); +} + +void MacroAssemblerMIPS64Compat::unboxString(const Address& src, + Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_STRING); +} + +void MacroAssemblerMIPS64Compat::unboxSymbol(const ValueOperand& operand, + Register dest) { + unboxNonDouble(operand, dest, JSVAL_TYPE_SYMBOL); +} + +void MacroAssemblerMIPS64Compat::unboxSymbol(Register src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_SYMBOL); +} + +void MacroAssemblerMIPS64Compat::unboxSymbol(const Address& src, + Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_SYMBOL); +} + +void MacroAssemblerMIPS64Compat::unboxBigInt(const ValueOperand& operand, + Register dest) { + unboxNonDouble(operand, dest, JSVAL_TYPE_BIGINT); +} + +void MacroAssemblerMIPS64Compat::unboxBigInt(Register src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_BIGINT); +} + +void MacroAssemblerMIPS64Compat::unboxBigInt(const Address& src, + Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_BIGINT); +} + +void MacroAssemblerMIPS64Compat::unboxObject(const ValueOperand& src, + Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT); +} + +void MacroAssemblerMIPS64Compat::unboxObject(Register src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT); +} + +void MacroAssemblerMIPS64Compat::unboxObject(const Address& src, + Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT); +} + +void MacroAssemblerMIPS64Compat::unboxValue(const ValueOperand& src, + AnyRegister dest, + JSValueType type) { + if (dest.isFloat()) { + Label notInt32, end; + asMasm().branchTestInt32(Assembler::NotEqual, src, ¬Int32); + convertInt32ToDouble(src.valueReg(), dest.fpu()); + ma_b(&end, ShortJump); + bind(¬Int32); + unboxDouble(src, dest.fpu()); + bind(&end); + } else { + unboxNonDouble(src, dest.gpr(), type); + } +} + +void MacroAssemblerMIPS64Compat::boxDouble(FloatRegister src, + const ValueOperand& dest, + FloatRegister) { + as_dmfc1(dest.valueReg(), src); +} + +void MacroAssemblerMIPS64Compat::boxNonDouble(JSValueType type, Register src, + const ValueOperand& dest) { + MOZ_ASSERT(src != dest.valueReg()); + boxValue(type, src, dest.valueReg()); +} + +void MacroAssemblerMIPS64Compat::boolValueToDouble(const ValueOperand& operand, + FloatRegister dest) { + convertBoolToInt32(operand.valueReg(), ScratchRegister); + convertInt32ToDouble(ScratchRegister, dest); +} + +void MacroAssemblerMIPS64Compat::int32ValueToDouble(const ValueOperand& operand, + FloatRegister dest) { + convertInt32ToDouble(operand.valueReg(), dest); +} + +void MacroAssemblerMIPS64Compat::boolValueToFloat32(const ValueOperand& operand, + FloatRegister dest) { + convertBoolToInt32(operand.valueReg(), ScratchRegister); + convertInt32ToFloat32(ScratchRegister, dest); +} + +void MacroAssemblerMIPS64Compat::int32ValueToFloat32( + const ValueOperand& operand, FloatRegister dest) { + convertInt32ToFloat32(operand.valueReg(), dest); +} + +void MacroAssemblerMIPS64Compat::loadConstantFloat32(float f, + FloatRegister dest) { + ma_lis(dest, f); +} + +void MacroAssemblerMIPS64Compat::loadInt32OrDouble(const Address& src, + FloatRegister dest) { + Label notInt32, end; + // If it's an int, convert it to double. + loadPtr(Address(src.base, src.offset), ScratchRegister); + ma_dsrl(SecondScratchReg, ScratchRegister, Imm32(JSVAL_TAG_SHIFT)); + asMasm().branchTestInt32(Assembler::NotEqual, SecondScratchReg, ¬Int32); + loadPtr(Address(src.base, src.offset), SecondScratchReg); + convertInt32ToDouble(SecondScratchReg, dest); + ma_b(&end, ShortJump); + + // Not an int, just load as double. + bind(¬Int32); + unboxDouble(src, dest); + bind(&end); +} + +void MacroAssemblerMIPS64Compat::loadInt32OrDouble(const BaseIndex& addr, + FloatRegister dest) { + Label notInt32, end; + + // If it's an int, convert it to double. + computeScaledAddress(addr, SecondScratchReg); + // Since we only have one scratch, we need to stomp over it with the tag. + loadPtr(Address(SecondScratchReg, 0), ScratchRegister); + ma_dsrl(SecondScratchReg, ScratchRegister, Imm32(JSVAL_TAG_SHIFT)); + asMasm().branchTestInt32(Assembler::NotEqual, SecondScratchReg, ¬Int32); + + computeScaledAddress(addr, SecondScratchReg); + loadPtr(Address(SecondScratchReg, 0), SecondScratchReg); + convertInt32ToDouble(SecondScratchReg, dest); + ma_b(&end, ShortJump); + + // Not an int, just load as double. + bind(¬Int32); + // First, recompute the offset that had been stored in the scratch register + // since the scratch register was overwritten loading in the type. + computeScaledAddress(addr, SecondScratchReg); + unboxDouble(Address(SecondScratchReg, 0), dest); + bind(&end); +} + +void MacroAssemblerMIPS64Compat::loadConstantDouble(double dp, + FloatRegister dest) { + ma_lid(dest, dp); +} + +Register MacroAssemblerMIPS64Compat::extractObject(const Address& address, + Register scratch) { + loadPtr(Address(address.base, address.offset), scratch); + ma_dext(scratch, scratch, Imm32(0), Imm32(JSVAL_TAG_SHIFT)); + return scratch; +} + +Register MacroAssemblerMIPS64Compat::extractTag(const Address& address, + Register scratch) { + loadPtr(Address(address.base, address.offset), scratch); + ma_dext(scratch, scratch, Imm32(JSVAL_TAG_SHIFT), + Imm32(64 - JSVAL_TAG_SHIFT)); + return scratch; +} + +Register MacroAssemblerMIPS64Compat::extractTag(const BaseIndex& address, + Register scratch) { + computeScaledAddress(address, scratch); + return extractTag(Address(scratch, address.offset), scratch); +} + +///////////////////////////////////////////////////////////////// +// X86/X64-common/ARM/MIPS interface. +///////////////////////////////////////////////////////////////// +void MacroAssemblerMIPS64Compat::storeValue(ValueOperand val, Operand dst) { + storeValue(val, Address(Register::FromCode(dst.base()), dst.disp())); +} + +void MacroAssemblerMIPS64Compat::storeValue(ValueOperand val, + const BaseIndex& dest) { + computeScaledAddress(dest, SecondScratchReg); + storeValue(val, Address(SecondScratchReg, dest.offset)); +} + +void MacroAssemblerMIPS64Compat::storeValue(JSValueType type, Register reg, + BaseIndex dest) { + computeScaledAddress(dest, ScratchRegister); + + int32_t offset = dest.offset; + if (!Imm16::IsInSignedRange(offset)) { + ma_li(SecondScratchReg, Imm32(offset)); + as_daddu(ScratchRegister, ScratchRegister, SecondScratchReg); + offset = 0; + } + + storeValue(type, reg, Address(ScratchRegister, offset)); +} + +void MacroAssemblerMIPS64Compat::storeValue(ValueOperand val, + const Address& dest) { + storePtr(val.valueReg(), Address(dest.base, dest.offset)); +} + +void MacroAssemblerMIPS64Compat::storeValue(JSValueType type, Register reg, + Address dest) { + MOZ_ASSERT(dest.base != SecondScratchReg); + + if (type == JSVAL_TYPE_INT32 || type == JSVAL_TYPE_BOOLEAN) { + store32(reg, dest); + JSValueShiftedTag tag = (JSValueShiftedTag)JSVAL_TYPE_TO_SHIFTED_TAG(type); + store32(((Imm64(tag)).secondHalf()), Address(dest.base, dest.offset + 4)); + } else { + ma_li(SecondScratchReg, ImmTag(JSVAL_TYPE_TO_TAG(type))); + ma_dsll(SecondScratchReg, SecondScratchReg, Imm32(JSVAL_TAG_SHIFT)); + ma_dins(SecondScratchReg, reg, Imm32(0), Imm32(JSVAL_TAG_SHIFT)); + storePtr(SecondScratchReg, Address(dest.base, dest.offset)); + } +} + +void MacroAssemblerMIPS64Compat::storeValue(const Value& val, Address dest) { + if (val.isGCThing()) { + writeDataRelocation(val); + movWithPatch(ImmWord(val.asRawBits()), SecondScratchReg); + } else { + ma_li(SecondScratchReg, ImmWord(val.asRawBits())); + } + storePtr(SecondScratchReg, Address(dest.base, dest.offset)); +} + +void MacroAssemblerMIPS64Compat::storeValue(const Value& val, BaseIndex dest) { + computeScaledAddress(dest, ScratchRegister); + + int32_t offset = dest.offset; + if (!Imm16::IsInSignedRange(offset)) { + ma_li(SecondScratchReg, Imm32(offset)); + as_daddu(ScratchRegister, ScratchRegister, SecondScratchReg); + offset = 0; + } + storeValue(val, Address(ScratchRegister, offset)); +} + +void MacroAssemblerMIPS64Compat::loadValue(const BaseIndex& addr, + ValueOperand val) { + computeScaledAddress(addr, SecondScratchReg); + loadValue(Address(SecondScratchReg, addr.offset), val); +} + +void MacroAssemblerMIPS64Compat::loadValue(Address src, ValueOperand val) { + loadPtr(Address(src.base, src.offset), val.valueReg()); +} + +void MacroAssemblerMIPS64Compat::tagValue(JSValueType type, Register payload, + ValueOperand dest) { + MOZ_ASSERT(dest.valueReg() != ScratchRegister); + if (payload != dest.valueReg()) { + ma_move(dest.valueReg(), payload); + } + ma_li(ScratchRegister, ImmTag(JSVAL_TYPE_TO_TAG(type))); + ma_dins(dest.valueReg(), ScratchRegister, Imm32(JSVAL_TAG_SHIFT), + Imm32(64 - JSVAL_TAG_SHIFT)); + if (type == JSVAL_TYPE_INT32 || type == JSVAL_TYPE_BOOLEAN) { + ma_dins(dest.valueReg(), zero, Imm32(32), Imm32(JSVAL_TAG_SHIFT - 32)); + } +} + +void MacroAssemblerMIPS64Compat::pushValue(ValueOperand val) { + // Allocate stack slots for Value. One for each. + asMasm().subPtr(Imm32(sizeof(Value)), StackPointer); + // Store Value + storeValue(val, Address(StackPointer, 0)); +} + +void MacroAssemblerMIPS64Compat::pushValue(const Address& addr) { + // Load value before allocate stack, addr.base may be is sp. + loadPtr(Address(addr.base, addr.offset), ScratchRegister); + ma_dsubu(StackPointer, StackPointer, Imm32(sizeof(Value))); + storePtr(ScratchRegister, Address(StackPointer, 0)); +} + +void MacroAssemblerMIPS64Compat::popValue(ValueOperand val) { + as_ld(val.valueReg(), StackPointer, 0); + as_daddiu(StackPointer, StackPointer, sizeof(Value)); +} + +void MacroAssemblerMIPS64Compat::breakpoint() { as_break(0); } + +void MacroAssemblerMIPS64Compat::ensureDouble(const ValueOperand& source, + FloatRegister dest, + Label* failure) { + Label isDouble, done; + { + ScratchTagScope tag(asMasm(), source); + splitTagForTest(source, tag); + asMasm().branchTestDouble(Assembler::Equal, tag, &isDouble); + asMasm().branchTestInt32(Assembler::NotEqual, tag, failure); + } + + unboxInt32(source, ScratchRegister); + convertInt32ToDouble(ScratchRegister, dest); + jump(&done); + + bind(&isDouble); + unboxDouble(source, dest); + + bind(&done); +} + +void MacroAssemblerMIPS64Compat::checkStackAlignment() { +#ifdef DEBUG + Label aligned; + as_andi(ScratchRegister, sp, ABIStackAlignment - 1); + ma_b(ScratchRegister, zero, &aligned, Equal, ShortJump); + as_break(BREAK_STACK_UNALIGNED); + bind(&aligned); +#endif +} + +void MacroAssemblerMIPS64Compat::handleFailureWithHandlerTail( + Label* profilerExitTail, Label* bailoutTail) { + // Reserve space for exception information. + int size = (sizeof(ResumeFromException) + ABIStackAlignment) & + ~(ABIStackAlignment - 1); + asMasm().subPtr(Imm32(size), StackPointer); + ma_move(a0, StackPointer); // Use a0 since it is a first function argument + + // Call the handler. + using Fn = void (*)(ResumeFromException* rfe); + asMasm().setupUnalignedABICall(a1); + asMasm().passABIArg(a0); + asMasm().callWithABI<Fn, HandleException>( + ABIType::General, CheckUnsafeCallWithABI::DontCheckHasExitFrame); + + Label entryFrame; + Label catch_; + Label finally; + Label returnBaseline; + Label returnIon; + Label bailout; + Label wasm; + Label wasmCatch; + + // Already clobbered a0, so use it... + load32(Address(StackPointer, ResumeFromException::offsetOfKind()), a0); + asMasm().branch32(Assembler::Equal, a0, + Imm32(ExceptionResumeKind::EntryFrame), &entryFrame); + asMasm().branch32(Assembler::Equal, a0, Imm32(ExceptionResumeKind::Catch), + &catch_); + asMasm().branch32(Assembler::Equal, a0, Imm32(ExceptionResumeKind::Finally), + &finally); + asMasm().branch32(Assembler::Equal, a0, + Imm32(ExceptionResumeKind::ForcedReturnBaseline), + &returnBaseline); + asMasm().branch32(Assembler::Equal, a0, + Imm32(ExceptionResumeKind::ForcedReturnIon), &returnIon); + asMasm().branch32(Assembler::Equal, a0, Imm32(ExceptionResumeKind::Bailout), + &bailout); + asMasm().branch32(Assembler::Equal, a0, Imm32(ExceptionResumeKind::Wasm), + &wasm); + asMasm().branch32(Assembler::Equal, a0, Imm32(ExceptionResumeKind::WasmCatch), + &wasmCatch); + + breakpoint(); // Invalid kind. + + // No exception handler. Load the error value, restore state and return from + // the entry frame. + bind(&entryFrame); + asMasm().moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand); + loadPtr(Address(StackPointer, ResumeFromException::offsetOfFramePointer()), + FramePointer); + loadPtr(Address(StackPointer, ResumeFromException::offsetOfStackPointer()), + StackPointer); + + // We're going to be returning by the ion calling convention + ma_pop(ra); + as_jr(ra); + as_nop(); + + // If we found a catch handler, this must be a baseline frame. Restore + // state and jump to the catch block. + bind(&catch_); + loadPtr(Address(StackPointer, ResumeFromException::offsetOfTarget()), a0); + loadPtr(Address(StackPointer, ResumeFromException::offsetOfFramePointer()), + FramePointer); + loadPtr(Address(StackPointer, ResumeFromException::offsetOfStackPointer()), + StackPointer); + jump(a0); + + // If we found a finally block, this must be a baseline frame. Push three + // values expected by the finally block: the exception, the exception stack, + // and BooleanValue(true). + bind(&finally); + ValueOperand exception = ValueOperand(a1); + loadValue(Address(sp, ResumeFromException::offsetOfException()), exception); + + ValueOperand exceptionStack = ValueOperand(a2); + loadValue(Address(sp, ResumeFromException::offsetOfExceptionStack()), + exceptionStack); + + loadPtr(Address(sp, ResumeFromException::offsetOfTarget()), a0); + loadPtr(Address(sp, ResumeFromException::offsetOfFramePointer()), + FramePointer); + loadPtr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp); + + pushValue(exception); + pushValue(exceptionStack); + pushValue(BooleanValue(true)); + jump(a0); + + // Return BaselineFrame->returnValue() to the caller. + // Used in debug mode and for GeneratorReturn. + Label profilingInstrumentation; + bind(&returnBaseline); + loadPtr(Address(StackPointer, ResumeFromException::offsetOfFramePointer()), + FramePointer); + loadPtr(Address(StackPointer, ResumeFromException::offsetOfStackPointer()), + StackPointer); + loadValue(Address(FramePointer, BaselineFrame::reverseOffsetOfReturnValue()), + JSReturnOperand); + jump(&profilingInstrumentation); + + // Return the given value to the caller. + bind(&returnIon); + loadValue(Address(StackPointer, ResumeFromException::offsetOfException()), + JSReturnOperand); + loadPtr(Address(StackPointer, ResumeFromException::offsetOfFramePointer()), + FramePointer); + loadPtr(Address(StackPointer, ResumeFromException::offsetOfStackPointer()), + StackPointer); + + // If profiling is enabled, then update the lastProfilingFrame to refer to + // caller frame before returning. This code is shared by ForcedReturnIon + // and ForcedReturnBaseline. + bind(&profilingInstrumentation); + { + Label skipProfilingInstrumentation; + // Test if profiler enabled. + AbsoluteAddress addressOfEnabled( + asMasm().runtime()->geckoProfiler().addressOfEnabled()); + asMasm().branch32(Assembler::Equal, addressOfEnabled, Imm32(0), + &skipProfilingInstrumentation); + jump(profilerExitTail); + bind(&skipProfilingInstrumentation); + } + + ma_move(StackPointer, FramePointer); + pop(FramePointer); + ret(); + + // If we are bailing out to baseline to handle an exception, jump to + // the bailout tail stub. Load 1 (true) in ReturnReg to indicate success. + bind(&bailout); + loadPtr(Address(sp, ResumeFromException::offsetOfBailoutInfo()), a2); + loadPtr(Address(StackPointer, ResumeFromException::offsetOfStackPointer()), + StackPointer); + ma_li(ReturnReg, Imm32(1)); + jump(bailoutTail); + + // If we are throwing and the innermost frame was a wasm frame, reset SP and + // FP; SP is pointing to the unwound return address to the wasm entry, so + // we can just ret(). + bind(&wasm); + loadPtr(Address(StackPointer, ResumeFromException::offsetOfFramePointer()), + FramePointer); + loadPtr(Address(StackPointer, ResumeFromException::offsetOfStackPointer()), + StackPointer); + ma_li(InstanceReg, ImmWord(wasm::FailInstanceReg)); + ret(); + + // Found a wasm catch handler, restore state and jump to it. + bind(&wasmCatch); + loadPtr(Address(sp, ResumeFromException::offsetOfTarget()), a1); + loadPtr(Address(StackPointer, ResumeFromException::offsetOfFramePointer()), + FramePointer); + loadPtr(Address(StackPointer, ResumeFromException::offsetOfStackPointer()), + StackPointer); + jump(a1); +} + +CodeOffset MacroAssemblerMIPS64Compat::toggledJump(Label* label) { + CodeOffset ret(nextOffset().getOffset()); + ma_b(label); + return ret; +} + +CodeOffset MacroAssemblerMIPS64Compat::toggledCall(JitCode* target, + bool enabled) { + BufferOffset bo = nextOffset(); + CodeOffset offset(bo.getOffset()); + addPendingJump(bo, ImmPtr(target->raw()), RelocationKind::JITCODE); + ma_liPatchable(ScratchRegister, ImmPtr(target->raw())); + if (enabled) { + as_jalr(ScratchRegister); + as_nop(); + } else { + as_nop(); + as_nop(); + } + MOZ_ASSERT_IF(!oom(), nextOffset().getOffset() - offset.offset() == + ToggledCallSize(nullptr)); + return offset; +} + +void MacroAssemblerMIPS64Compat::profilerEnterFrame(Register framePtr, + Register scratch) { + asMasm().loadJSContext(scratch); + loadPtr(Address(scratch, offsetof(JSContext, profilingActivation_)), scratch); + storePtr(framePtr, + Address(scratch, JitActivation::offsetOfLastProfilingFrame())); + storePtr(ImmPtr(nullptr), + Address(scratch, JitActivation::offsetOfLastProfilingCallSite())); +} + +void MacroAssemblerMIPS64Compat::profilerExitFrame() { + jump(asMasm().runtime()->jitRuntime()->getProfilerExitFrameTail()); +} + +void MacroAssembler::subFromStackPtr(Imm32 imm32) { + if (imm32.value) { + asMasm().subPtr(imm32, StackPointer); + } +} + +//{{{ check_macroassembler_style +// =============================================================== +// Stack manipulation functions. + +size_t MacroAssembler::PushRegsInMaskSizeInBytes(LiveRegisterSet set) { + return set.gprs().size() * sizeof(intptr_t) + set.fpus().getPushSizeInBytes(); +} + +void MacroAssembler::PushRegsInMask(LiveRegisterSet set) { + int32_t diff = + set.gprs().size() * sizeof(intptr_t) + set.fpus().getPushSizeInBytes(); + const int32_t reserved = diff; + + reserveStack(reserved); + for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); ++iter) { + diff -= sizeof(intptr_t); + storePtr(*iter, Address(StackPointer, diff)); + } + +#ifdef ENABLE_WASM_SIMD +# error "Needs more careful logic if SIMD is enabled" +#endif + + for (FloatRegisterBackwardIterator iter(set.fpus().reduceSetForPush()); + iter.more(); ++iter) { + diff -= sizeof(double); + storeDouble(*iter, Address(StackPointer, diff)); + } + MOZ_ASSERT(diff == 0); +} + +void MacroAssembler::PopRegsInMaskIgnore(LiveRegisterSet set, + LiveRegisterSet ignore) { + int32_t diff = + set.gprs().size() * sizeof(intptr_t) + set.fpus().getPushSizeInBytes(); + const int32_t reserved = diff; + + for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); ++iter) { + diff -= sizeof(intptr_t); + if (!ignore.has(*iter)) { + loadPtr(Address(StackPointer, diff), *iter); + } + } + +#ifdef ENABLE_WASM_SIMD +# error "Needs more careful logic if SIMD is enabled" +#endif + + for (FloatRegisterBackwardIterator iter(set.fpus().reduceSetForPush()); + iter.more(); ++iter) { + diff -= sizeof(double); + if (!ignore.has(*iter)) { + loadDouble(Address(StackPointer, diff), *iter); + } + } + MOZ_ASSERT(diff == 0); + freeStack(reserved); +} + +void MacroAssembler::storeRegsInMask(LiveRegisterSet set, Address dest, + Register) { + FloatRegisterSet fpuSet(set.fpus().reduceSetForPush()); + unsigned numFpu = fpuSet.size(); + int32_t diffF = fpuSet.getPushSizeInBytes(); + int32_t diffG = set.gprs().size() * sizeof(intptr_t); + + MOZ_ASSERT(dest.offset >= diffG + diffF); + + for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); ++iter) { + diffG -= sizeof(intptr_t); + dest.offset -= sizeof(intptr_t); + storePtr(*iter, dest); + } + MOZ_ASSERT(diffG == 0); + +#ifdef ENABLE_WASM_SIMD +# error "Needs more careful logic if SIMD is enabled" +#endif + + for (FloatRegisterBackwardIterator iter(fpuSet); iter.more(); ++iter) { + FloatRegister reg = *iter; + diffF -= reg.size(); + numFpu -= 1; + dest.offset -= reg.size(); + if (reg.isDouble()) { + storeDouble(reg, dest); + } else if (reg.isSingle()) { + storeFloat32(reg, dest); + } else { + MOZ_CRASH("Unknown register type."); + } + } + MOZ_ASSERT(numFpu == 0); + diffF -= diffF % sizeof(uintptr_t); + MOZ_ASSERT(diffF == 0); +} + +void MacroAssembler::freeStackTo(uint32_t framePushed) { + MOZ_ASSERT(framePushed <= framePushed_); + ma_dsubu(StackPointer, FramePointer, Imm32(framePushed)); + framePushed_ = framePushed; +} + +// =============================================================== +// ABI function calls. + +void MacroAssembler::setupUnalignedABICall(Register scratch) { + MOZ_ASSERT(!IsCompilingWasm(), "wasm should only use aligned ABI calls"); + setupNativeABICall(); + dynamicAlignment_ = true; + + ma_move(scratch, StackPointer); + + // Force sp to be aligned + asMasm().subPtr(Imm32(sizeof(uintptr_t)), StackPointer); + ma_and(StackPointer, StackPointer, Imm32(~(ABIStackAlignment - 1))); + storePtr(scratch, Address(StackPointer, 0)); +} + +void MacroAssembler::callWithABIPre(uint32_t* stackAdjust, bool callFromWasm) { + MOZ_ASSERT(inCall_); + uint32_t stackForCall = abiArgs_.stackBytesConsumedSoFar(); + + // Reserve place for $ra. + stackForCall += sizeof(intptr_t); + + if (dynamicAlignment_) { + stackForCall += ComputeByteAlignment(stackForCall, ABIStackAlignment); + } else { + uint32_t alignmentAtPrologue = callFromWasm ? sizeof(wasm::Frame) : 0; + stackForCall += ComputeByteAlignment( + stackForCall + framePushed() + alignmentAtPrologue, ABIStackAlignment); + } + + *stackAdjust = stackForCall; + reserveStack(stackForCall); + + // Save $ra because call is going to clobber it. Restore it in + // callWithABIPost. NOTE: This is needed for calls from SharedIC. + // Maybe we can do this differently. + storePtr(ra, Address(StackPointer, stackForCall - sizeof(intptr_t))); + + // Position all arguments. + { + enoughMemory_ &= moveResolver_.resolve(); + if (!enoughMemory_) { + return; + } + + MoveEmitter emitter(*this); + emitter.emit(moveResolver_); + emitter.finish(); + } + + assertStackAlignment(ABIStackAlignment); +} + +void MacroAssembler::callWithABIPost(uint32_t stackAdjust, ABIType result, + bool callFromWasm) { + // Restore ra value (as stored in callWithABIPre()). + loadPtr(Address(StackPointer, stackAdjust - sizeof(intptr_t)), ra); + + if (dynamicAlignment_) { + // Restore sp value from stack (as stored in setupUnalignedABICall()). + loadPtr(Address(StackPointer, stackAdjust), StackPointer); + // Use adjustFrame instead of freeStack because we already restored sp. + adjustFrame(-stackAdjust); + } else { + freeStack(stackAdjust); + } + +#ifdef DEBUG + MOZ_ASSERT(inCall_); + inCall_ = false; +#endif +} + +void MacroAssembler::callWithABINoProfiler(Register fun, ABIType result) { + // Load the callee in t9, no instruction between the lw and call + // should clobber it. Note that we can't use fun.base because it may + // be one of the IntArg registers clobbered before the call. + ma_move(t9, fun); + uint32_t stackAdjust; + callWithABIPre(&stackAdjust); + call(t9); + callWithABIPost(stackAdjust, result); +} + +void MacroAssembler::callWithABINoProfiler(const Address& fun, ABIType result) { + // Load the callee in t9, as above. + loadPtr(Address(fun.base, fun.offset), t9); + uint32_t stackAdjust; + callWithABIPre(&stackAdjust); + call(t9); + callWithABIPost(stackAdjust, result); +} + +// =============================================================== +// Move + +void MacroAssembler::moveValue(const TypedOrValueRegister& src, + const ValueOperand& dest) { + if (src.hasValue()) { + moveValue(src.valueReg(), dest); + return; + } + + MIRType type = src.type(); + AnyRegister reg = src.typedReg(); + + if (!IsFloatingPointType(type)) { + boxNonDouble(ValueTypeFromMIRType(type), reg.gpr(), dest); + return; + } + + FloatRegister scratch = ScratchDoubleReg; + FloatRegister freg = reg.fpu(); + if (type == MIRType::Float32) { + convertFloat32ToDouble(freg, scratch); + freg = scratch; + } + boxDouble(freg, dest, scratch); +} + +void MacroAssembler::moveValue(const ValueOperand& src, + const ValueOperand& dest) { + if (src == dest) { + return; + } + movePtr(src.valueReg(), dest.valueReg()); +} + +void MacroAssembler::moveValue(const Value& src, const ValueOperand& dest) { + if (!src.isGCThing()) { + ma_li(dest.valueReg(), ImmWord(src.asRawBits())); + return; + } + + writeDataRelocation(src); + movWithPatch(ImmWord(src.asRawBits()), dest.valueReg()); +} + +// =============================================================== +// Branch functions + +void MacroAssembler::branchValueIsNurseryCell(Condition cond, + const Address& address, + Register temp, Label* label) { + branchValueIsNurseryCellImpl(cond, address, temp, label); +} + +void MacroAssembler::branchValueIsNurseryCell(Condition cond, + ValueOperand value, Register temp, + Label* label) { + branchValueIsNurseryCellImpl(cond, value, temp, label); +} + +template <typename T> +void MacroAssembler::branchValueIsNurseryCellImpl(Condition cond, + const T& value, Register temp, + Label* label) { + MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual); + Label done; + branchTestGCThing(Assembler::NotEqual, value, + cond == Assembler::Equal ? &done : label); + + // temp may be InvalidReg, use scratch2 instead. + SecondScratchRegisterScope scratch2(*this); + + getGCThingValueChunk(value, scratch2); + loadPtr(Address(scratch2, gc::ChunkStoreBufferOffset), scratch2); + branchPtr(InvertCondition(cond), scratch2, ImmWord(0), label); + + bind(&done); +} + +void MacroAssembler::branchTestValue(Condition cond, const ValueOperand& lhs, + const Value& rhs, Label* label) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(*this); + MOZ_ASSERT(lhs.valueReg() != scratch); + moveValue(rhs, ValueOperand(scratch)); + ma_b(lhs.valueReg(), scratch, label, cond); +} + +// ======================================================================== +// Memory access primitives. +template <typename T> +void MacroAssembler::storeUnboxedValue(const ConstantOrRegister& value, + MIRType valueType, const T& dest) { + MOZ_ASSERT(valueType < MIRType::Value); + + if (valueType == MIRType::Double) { + boxDouble(value.reg().typedReg().fpu(), dest); + return; + } + + if (value.constant()) { + storeValue(value.value(), dest); + } else { + storeValue(ValueTypeFromMIRType(valueType), value.reg().typedReg().gpr(), + dest); + } +} + +template void MacroAssembler::storeUnboxedValue(const ConstantOrRegister& value, + MIRType valueType, + const Address& dest); +template void MacroAssembler::storeUnboxedValue( + const ConstantOrRegister& value, MIRType valueType, + const BaseObjectElementIndex& dest); + +void MacroAssembler::PushBoxed(FloatRegister reg) { + subFromStackPtr(Imm32(sizeof(double))); + boxDouble(reg, Address(getStackPointer(), 0)); + adjustFrame(sizeof(double)); +} + +void MacroAssembler::wasmBoundsCheck32(Condition cond, Register index, + Register boundsCheckLimit, Label* ok) { + ma_b(index, boundsCheckLimit, ok, cond); +} + +void MacroAssembler::wasmBoundsCheck32(Condition cond, Register index, + Address boundsCheckLimit, Label* ok) { + SecondScratchRegisterScope scratch2(*this); + load32(boundsCheckLimit, scratch2); + ma_b(index, scratch2, ok, cond); +} + +void MacroAssembler::wasmBoundsCheck64(Condition cond, Register64 index, + Register64 boundsCheckLimit, Label* ok) { + ma_b(index.reg, boundsCheckLimit.reg, ok, cond); +} + +void MacroAssembler::wasmBoundsCheck64(Condition cond, Register64 index, + Address boundsCheckLimit, Label* ok) { + SecondScratchRegisterScope scratch2(*this); + loadPtr(boundsCheckLimit, scratch2); + ma_b(index.reg, scratch2, ok, cond); +} + +void MacroAssembler::widenInt32(Register r) { + // I *think* this is correct. It may be redundant. + move32To64SignExtend(r, Register64(r)); +} + +void MacroAssembler::wasmTruncateDoubleToUInt32(FloatRegister input, + Register output, + bool isSaturating, + Label* oolEntry) { + as_truncld(ScratchDoubleReg, input); + moveFromDouble(ScratchDoubleReg, output); + ma_dsrl(ScratchRegister, output, Imm32(32)); + as_sll(output, output, 0); + ma_b(ScratchRegister, Imm32(0), oolEntry, Assembler::NotEqual); +} + +void MacroAssembler::wasmTruncateFloat32ToUInt32(FloatRegister input, + Register output, + bool isSaturating, + Label* oolEntry) { + as_truncls(ScratchDoubleReg, input); + moveFromDouble(ScratchDoubleReg, output); + ma_dsrl(ScratchRegister, output, Imm32(32)); + as_sll(output, output, 0); + ma_b(ScratchRegister, Imm32(0), oolEntry, Assembler::NotEqual); +} + +void MacroAssembler::wasmLoadI64(const wasm::MemoryAccessDesc& access, + Register memoryBase, Register ptr, + Register ptrScratch, Register64 output) { + wasmLoadI64Impl(access, memoryBase, ptr, ptrScratch, output, InvalidReg); +} + +void MacroAssembler::wasmUnalignedLoadI64(const wasm::MemoryAccessDesc& access, + Register memoryBase, Register ptr, + Register ptrScratch, + Register64 output, Register tmp) { + wasmLoadI64Impl(access, memoryBase, ptr, ptrScratch, output, tmp); +} + +void MacroAssembler::wasmStoreI64(const wasm::MemoryAccessDesc& access, + Register64 value, Register memoryBase, + Register ptr, Register ptrScratch) { + wasmStoreI64Impl(access, value, memoryBase, ptr, ptrScratch, InvalidReg); +} + +void MacroAssembler::wasmUnalignedStoreI64(const wasm::MemoryAccessDesc& access, + Register64 value, + Register memoryBase, Register ptr, + Register ptrScratch, Register tmp) { + wasmStoreI64Impl(access, value, memoryBase, ptr, ptrScratch, tmp); +} + +void MacroAssembler::wasmTruncateDoubleToInt64( + FloatRegister input, Register64 output, bool isSaturating, Label* oolEntry, + Label* oolRejoin, FloatRegister tempDouble) { + MOZ_ASSERT(tempDouble.isInvalid()); + + as_truncld(ScratchDoubleReg, input); + as_cfc1(ScratchRegister, Assembler::FCSR); + moveFromDouble(ScratchDoubleReg, output.reg); + ma_ext(ScratchRegister, ScratchRegister, Assembler::CauseV, 1); + ma_b(ScratchRegister, Imm32(0), oolEntry, Assembler::NotEqual); + + if (isSaturating) { + bind(oolRejoin); + } +} + +void MacroAssembler::wasmTruncateDoubleToUInt64( + FloatRegister input, Register64 output_, bool isSaturating, Label* oolEntry, + Label* oolRejoin, FloatRegister tempDouble) { + MOZ_ASSERT(tempDouble.isInvalid()); + Register output = output_.reg; + + Label done; + + as_truncld(ScratchDoubleReg, input); + // ma_li INT64_MAX + ma_li(SecondScratchReg, Imm32(-1)); + ma_dext(SecondScratchReg, SecondScratchReg, Imm32(0), Imm32(63)); + moveFromDouble(ScratchDoubleReg, output); + // For numbers in -1.[ : ]INT64_MAX range do nothing more + ma_b(output, SecondScratchReg, &done, Assembler::Below, ShortJump); + + loadConstantDouble(double(INT64_MAX + 1ULL), ScratchDoubleReg); + // ma_li INT64_MIN + ma_daddu(SecondScratchReg, Imm32(1)); + as_subd(ScratchDoubleReg, input, ScratchDoubleReg); + as_truncld(ScratchDoubleReg, ScratchDoubleReg); + as_cfc1(ScratchRegister, Assembler::FCSR); + moveFromDouble(ScratchDoubleReg, output); + ma_ext(ScratchRegister, ScratchRegister, Assembler::CauseV, 1); + ma_daddu(output, SecondScratchReg); + + // Guard against negative values that result in 0 due the precision loss. + as_sltiu(SecondScratchReg, output, 1); + ma_or(ScratchRegister, SecondScratchReg); + + ma_b(ScratchRegister, Imm32(0), oolEntry, Assembler::NotEqual); + + bind(&done); + + if (isSaturating) { + bind(oolRejoin); + } +} + +void MacroAssembler::wasmTruncateFloat32ToInt64( + FloatRegister input, Register64 output, bool isSaturating, Label* oolEntry, + Label* oolRejoin, FloatRegister tempFloat) { + MOZ_ASSERT(tempFloat.isInvalid()); + + as_truncls(ScratchDoubleReg, input); + as_cfc1(ScratchRegister, Assembler::FCSR); + moveFromDouble(ScratchDoubleReg, output.reg); + ma_ext(ScratchRegister, ScratchRegister, Assembler::CauseV, 1); + ma_b(ScratchRegister, Imm32(0), oolEntry, Assembler::NotEqual); + + if (isSaturating) { + bind(oolRejoin); + } +} + +void MacroAssembler::wasmTruncateFloat32ToUInt64( + FloatRegister input, Register64 output_, bool isSaturating, Label* oolEntry, + Label* oolRejoin, FloatRegister tempFloat) { + MOZ_ASSERT(tempFloat.isInvalid()); + Register output = output_.reg; + + Label done; + + as_truncls(ScratchDoubleReg, input); + // ma_li INT64_MAX + ma_li(SecondScratchReg, Imm32(-1)); + ma_dext(SecondScratchReg, SecondScratchReg, Imm32(0), Imm32(63)); + moveFromDouble(ScratchDoubleReg, output); + // For numbers in -1.[ : ]INT64_MAX range do nothing more + ma_b(output, SecondScratchReg, &done, Assembler::Below, ShortJump); + + loadConstantFloat32(float(INT64_MAX + 1ULL), ScratchFloat32Reg); + // ma_li INT64_MIN + ma_daddu(SecondScratchReg, Imm32(1)); + as_subs(ScratchFloat32Reg, input, ScratchFloat32Reg); + as_truncls(ScratchDoubleReg, ScratchFloat32Reg); + as_cfc1(ScratchRegister, Assembler::FCSR); + moveFromDouble(ScratchDoubleReg, output); + ma_ext(ScratchRegister, ScratchRegister, Assembler::CauseV, 1); + ma_daddu(output, SecondScratchReg); + + // Guard against negative values that result in 0 due the precision loss. + as_sltiu(SecondScratchReg, output, 1); + ma_or(ScratchRegister, SecondScratchReg); + + ma_b(ScratchRegister, Imm32(0), oolEntry, Assembler::NotEqual); + + bind(&done); + + if (isSaturating) { + bind(oolRejoin); + } +} + +void MacroAssemblerMIPS64Compat::wasmLoadI64Impl( + const wasm::MemoryAccessDesc& access, Register memoryBase, Register ptr, + Register ptrScratch, Register64 output, Register tmp) { + access.assertOffsetInGuardPages(); + uint32_t offset = access.offset(); + MOZ_ASSERT_IF(offset, ptrScratch != InvalidReg); + + MOZ_ASSERT(!access.isZeroExtendSimd128Load()); + MOZ_ASSERT(!access.isSplatSimd128Load()); + MOZ_ASSERT(!access.isWidenSimd128Load()); + + // Maybe add the offset. + if (offset) { + asMasm().addPtr(ImmWord(offset), ptrScratch); + ptr = ptrScratch; + } + + unsigned byteSize = access.byteSize(); + bool isSigned; + + switch (access.type()) { + case Scalar::Int8: + isSigned = true; + break; + case Scalar::Uint8: + isSigned = false; + break; + case Scalar::Int16: + isSigned = true; + break; + case Scalar::Uint16: + isSigned = false; + break; + case Scalar::Int32: + isSigned = true; + break; + case Scalar::Uint32: + isSigned = false; + break; + case Scalar::Int64: + isSigned = true; + break; + default: + MOZ_CRASH("unexpected array type"); + } + + BaseIndex address(memoryBase, ptr, TimesOne); + if (IsUnaligned(access)) { + MOZ_ASSERT(tmp != InvalidReg); + asMasm().ma_load_unaligned(access, output.reg, address, tmp, + static_cast<LoadStoreSize>(8 * byteSize), + isSigned ? SignExtend : ZeroExtend); + return; + } + + asMasm().memoryBarrierBefore(access.sync()); + asMasm().ma_load(output.reg, address, + static_cast<LoadStoreSize>(8 * byteSize), + isSigned ? SignExtend : ZeroExtend); + asMasm().append(access, asMasm().size() - 4); + asMasm().memoryBarrierAfter(access.sync()); +} + +void MacroAssemblerMIPS64Compat::wasmStoreI64Impl( + const wasm::MemoryAccessDesc& access, Register64 value, Register memoryBase, + Register ptr, Register ptrScratch, Register tmp) { + access.assertOffsetInGuardPages(); + uint32_t offset = access.offset(); + MOZ_ASSERT_IF(offset, ptrScratch != InvalidReg); + + // Maybe add the offset. + if (offset) { + asMasm().addPtr(ImmWord(offset), ptrScratch); + ptr = ptrScratch; + } + + unsigned byteSize = access.byteSize(); + bool isSigned; + switch (access.type()) { + case Scalar::Int8: + isSigned = true; + break; + case Scalar::Uint8: + isSigned = false; + break; + case Scalar::Int16: + isSigned = true; + break; + case Scalar::Uint16: + isSigned = false; + break; + case Scalar::Int32: + isSigned = true; + break; + case Scalar::Uint32: + isSigned = false; + break; + case Scalar::Int64: + isSigned = true; + break; + default: + MOZ_CRASH("unexpected array type"); + } + + BaseIndex address(memoryBase, ptr, TimesOne); + + if (IsUnaligned(access)) { + MOZ_ASSERT(tmp != InvalidReg); + asMasm().ma_store_unaligned(access, value.reg, address, tmp, + static_cast<LoadStoreSize>(8 * byteSize), + isSigned ? SignExtend : ZeroExtend); + return; + } + + asMasm().memoryBarrierBefore(access.sync()); + asMasm().ma_store(value.reg, address, + static_cast<LoadStoreSize>(8 * byteSize), + isSigned ? SignExtend : ZeroExtend); + asMasm().append(access, asMasm().size() - 4); + asMasm().memoryBarrierAfter(access.sync()); +} + +template <typename T> +static void CompareExchange64(MacroAssembler& masm, + const wasm::MemoryAccessDesc* access, + const Synchronization& sync, const T& mem, + Register64 expect, Register64 replace, + Register64 output) { + MOZ_ASSERT(expect != output && replace != output); + masm.computeEffectiveAddress(mem, SecondScratchReg); + + Label tryAgain; + Label exit; + + masm.memoryBarrierBefore(sync); + + masm.bind(&tryAgain); + + if (access) { + masm.append(*access, masm.size()); + } + masm.as_lld(output.reg, SecondScratchReg, 0); + + masm.ma_b(output.reg, expect.reg, &exit, Assembler::NotEqual, ShortJump); + masm.movePtr(replace.reg, ScratchRegister); + masm.as_scd(ScratchRegister, SecondScratchReg, 0); + masm.ma_b(ScratchRegister, ScratchRegister, &tryAgain, Assembler::Zero, + ShortJump); + + masm.memoryBarrierAfter(sync); + + masm.bind(&exit); +} + +void MacroAssembler::wasmCompareExchange64(const wasm::MemoryAccessDesc& access, + const Address& mem, + Register64 expect, + Register64 replace, + Register64 output) { + CompareExchange64(*this, &access, access.sync(), mem, expect, replace, + output); +} + +void MacroAssembler::wasmCompareExchange64(const wasm::MemoryAccessDesc& access, + const BaseIndex& mem, + Register64 expect, + Register64 replace, + Register64 output) { + CompareExchange64(*this, &access, access.sync(), mem, expect, replace, + output); +} + +void MacroAssembler::compareExchange64(const Synchronization& sync, + const Address& mem, Register64 expect, + Register64 replace, Register64 output) { + CompareExchange64(*this, nullptr, sync, mem, expect, replace, output); +} + +void MacroAssembler::compareExchange64(const Synchronization& sync, + const BaseIndex& mem, Register64 expect, + Register64 replace, Register64 output) { + CompareExchange64(*this, nullptr, sync, mem, expect, replace, output); +} + +template <typename T> +static void AtomicExchange64(MacroAssembler& masm, + const wasm::MemoryAccessDesc* access, + const Synchronization& sync, const T& mem, + Register64 value, Register64 output) { + MOZ_ASSERT(value != output); + masm.computeEffectiveAddress(mem, SecondScratchReg); + + Label tryAgain; + + masm.memoryBarrierBefore(sync); + + masm.bind(&tryAgain); + + if (access) { + masm.append(*access, masm.size()); + } + + masm.as_lld(output.reg, SecondScratchReg, 0); + masm.movePtr(value.reg, ScratchRegister); + masm.as_scd(ScratchRegister, SecondScratchReg, 0); + masm.ma_b(ScratchRegister, ScratchRegister, &tryAgain, Assembler::Zero, + ShortJump); + + masm.memoryBarrierAfter(sync); +} + +template <typename T> +static void WasmAtomicExchange64(MacroAssembler& masm, + const wasm::MemoryAccessDesc& access, + const T& mem, Register64 value, + Register64 output) { + AtomicExchange64(masm, &access, access.sync(), mem, value, output); +} + +void MacroAssembler::wasmAtomicExchange64(const wasm::MemoryAccessDesc& access, + const Address& mem, Register64 src, + Register64 output) { + WasmAtomicExchange64(*this, access, mem, src, output); +} + +void MacroAssembler::wasmAtomicExchange64(const wasm::MemoryAccessDesc& access, + const BaseIndex& mem, Register64 src, + Register64 output) { + WasmAtomicExchange64(*this, access, mem, src, output); +} + +void MacroAssembler::atomicExchange64(const Synchronization& sync, + const Address& mem, Register64 value, + Register64 output) { + AtomicExchange64(*this, nullptr, sync, mem, value, output); +} + +void MacroAssembler::atomicExchange64(const Synchronization& sync, + const BaseIndex& mem, Register64 value, + Register64 output) { + AtomicExchange64(*this, nullptr, sync, mem, value, output); +} + +template <typename T> +static void AtomicFetchOp64(MacroAssembler& masm, + const wasm::MemoryAccessDesc* access, + const Synchronization& sync, AtomicOp op, + Register64 value, const T& mem, Register64 temp, + Register64 output) { + MOZ_ASSERT(value != output); + MOZ_ASSERT(value != temp); + masm.computeEffectiveAddress(mem, SecondScratchReg); + + Label tryAgain; + + masm.memoryBarrierBefore(sync); + + masm.bind(&tryAgain); + if (access) { + masm.append(*access, masm.size()); + } + + masm.as_lld(output.reg, SecondScratchReg, 0); + + switch (op) { + case AtomicFetchAddOp: + masm.as_daddu(temp.reg, output.reg, value.reg); + break; + case AtomicFetchSubOp: + masm.as_dsubu(temp.reg, output.reg, value.reg); + break; + case AtomicFetchAndOp: + masm.as_and(temp.reg, output.reg, value.reg); + break; + case AtomicFetchOrOp: + masm.as_or(temp.reg, output.reg, value.reg); + break; + case AtomicFetchXorOp: + masm.as_xor(temp.reg, output.reg, value.reg); + break; + default: + MOZ_CRASH(); + } + + masm.as_scd(temp.reg, SecondScratchReg, 0); + masm.ma_b(temp.reg, temp.reg, &tryAgain, Assembler::Zero, ShortJump); + + masm.memoryBarrierAfter(sync); +} + +void MacroAssembler::wasmAtomicFetchOp64(const wasm::MemoryAccessDesc& access, + AtomicOp op, Register64 value, + const Address& mem, Register64 temp, + Register64 output) { + AtomicFetchOp64(*this, &access, access.sync(), op, value, mem, temp, output); +} + +void MacroAssembler::wasmAtomicFetchOp64(const wasm::MemoryAccessDesc& access, + AtomicOp op, Register64 value, + const BaseIndex& mem, Register64 temp, + Register64 output) { + AtomicFetchOp64(*this, &access, access.sync(), op, value, mem, temp, output); +} + +void MacroAssembler::atomicFetchOp64(const Synchronization& sync, AtomicOp op, + Register64 value, const Address& mem, + Register64 temp, Register64 output) { + AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, output); +} + +void MacroAssembler::atomicFetchOp64(const Synchronization& sync, AtomicOp op, + Register64 value, const BaseIndex& mem, + Register64 temp, Register64 output) { + AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, output); +} + +void MacroAssembler::atomicEffectOp64(const Synchronization& sync, AtomicOp op, + Register64 value, const Address& mem, + Register64 temp) { + AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, temp); +} + +void MacroAssembler::atomicEffectOp64(const Synchronization& sync, AtomicOp op, + Register64 value, const BaseIndex& mem, + Register64 temp) { + AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, temp); +} + +// ======================================================================== +// Convert floating point. + +void MacroAssembler::convertInt64ToDouble(Register64 src, FloatRegister dest) { + as_dmtc1(src.reg, dest); + as_cvtdl(dest, dest); +} + +void MacroAssembler::convertInt64ToFloat32(Register64 src, FloatRegister dest) { + as_dmtc1(src.reg, dest); + as_cvtsl(dest, dest); +} + +bool MacroAssembler::convertUInt64ToDoubleNeedsTemp() { return false; } + +void MacroAssembler::convertUInt64ToDouble(Register64 src, FloatRegister dest, + Register temp) { + MOZ_ASSERT(temp == Register::Invalid()); + MacroAssemblerSpecific::convertUInt64ToDouble(src.reg, dest); +} + +void MacroAssembler::convertUInt64ToFloat32(Register64 src_, FloatRegister dest, + Register temp) { + MOZ_ASSERT(temp == Register::Invalid()); + + Register src = src_.reg; + Label positive, done; + ma_b(src, src, &positive, NotSigned, ShortJump); + + MOZ_ASSERT(src != ScratchRegister); + MOZ_ASSERT(src != SecondScratchReg); + + ma_and(ScratchRegister, src, Imm32(1)); + ma_dsrl(SecondScratchReg, src, Imm32(1)); + ma_or(ScratchRegister, SecondScratchReg); + as_dmtc1(ScratchRegister, dest); + as_cvtsl(dest, dest); + addFloat32(dest, dest); + ma_b(&done, ShortJump); + + bind(&positive); + as_dmtc1(src, dest); + as_cvtsl(dest, dest); + + bind(&done); +} + +#ifdef ENABLE_WASM_TAIL_CALLS +void MacroAssembler::wasmMarkSlowCall() { mov(ra, ra); } + +const int32_t SlowCallMarker = 0x37ff0000; // ori ra, ra, 0 + +void MacroAssembler::wasmCheckSlowCallsite(Register ra_, Label* notSlow, + Register temp1, Register temp2) { + MOZ_ASSERT(ra_ != temp2); + load32(Address(ra_, 0), temp2); + branch32(Assembler::NotEqual, temp2, Imm32(SlowCallMarker), notSlow); +} +#endif // ENABLE_WASM_TAIL_CALLS + +//}}} check_macroassembler_style diff --git a/js/src/jit/mips64/MacroAssembler-mips64.h b/js/src/jit/mips64/MacroAssembler-mips64.h new file mode 100644 index 0000000000..24c76a65a7 --- /dev/null +++ b/js/src/jit/mips64/MacroAssembler-mips64.h @@ -0,0 +1,855 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_mips64_MacroAssembler_mips64_h +#define jit_mips64_MacroAssembler_mips64_h + +#include "jit/mips-shared/MacroAssembler-mips-shared.h" +#include "jit/MoveResolver.h" +#include "vm/BytecodeUtil.h" +#include "wasm/WasmBuiltins.h" + +namespace js { +namespace jit { + +enum LiFlags { + Li64 = 0, + Li48 = 1, +}; + +struct ImmShiftedTag : public ImmWord { + explicit ImmShiftedTag(JSValueShiftedTag shtag) : ImmWord((uintptr_t)shtag) {} + + explicit ImmShiftedTag(JSValueType type) + : ImmWord(uintptr_t(JSValueShiftedTag(JSVAL_TYPE_TO_SHIFTED_TAG(type)))) { + } +}; + +struct ImmTag : public Imm32 { + ImmTag(JSValueTag mask) : Imm32(int32_t(mask)) {} +}; + +static constexpr ValueOperand JSReturnOperand{JSReturnReg}; + +static const int defaultShift = 3; +static_assert(1 << defaultShift == sizeof(JS::Value), + "The defaultShift is wrong"); + +// See documentation for ScratchTagScope and ScratchTagScopeRelease in +// MacroAssembler-x64.h. + +class ScratchTagScope : public SecondScratchRegisterScope { + public: + ScratchTagScope(MacroAssembler& masm, const ValueOperand&) + : SecondScratchRegisterScope(masm) {} +}; + +class ScratchTagScopeRelease { + ScratchTagScope* ts_; + + public: + explicit ScratchTagScopeRelease(ScratchTagScope* ts) : ts_(ts) { + ts_->release(); + } + ~ScratchTagScopeRelease() { ts_->reacquire(); } +}; + +class MacroAssemblerMIPS64 : public MacroAssemblerMIPSShared { + public: + using MacroAssemblerMIPSShared::ma_b; + using MacroAssemblerMIPSShared::ma_cmp_set; + using MacroAssemblerMIPSShared::ma_ld; + using MacroAssemblerMIPSShared::ma_li; + using MacroAssemblerMIPSShared::ma_load; + using MacroAssemblerMIPSShared::ma_ls; + using MacroAssemblerMIPSShared::ma_sd; + using MacroAssemblerMIPSShared::ma_ss; + using MacroAssemblerMIPSShared::ma_store; + using MacroAssemblerMIPSShared::ma_sub32TestOverflow; + + void ma_li(Register dest, CodeLabel* label); + void ma_li(Register dest, ImmWord imm); + void ma_liPatchable(Register dest, ImmPtr imm); + void ma_liPatchable(Register dest, ImmWord imm, LiFlags flags = Li48); + + // Negate + void ma_dnegu(Register rd, Register rs); + + // Shift operations + void ma_dsll(Register rd, Register rt, Imm32 shift); + void ma_dsrl(Register rd, Register rt, Imm32 shift); + void ma_dsra(Register rd, Register rt, Imm32 shift); + void ma_dror(Register rd, Register rt, Imm32 shift); + void ma_drol(Register rd, Register rt, Imm32 shift); + + void ma_dsll(Register rd, Register rt, Register shift); + void ma_dsrl(Register rd, Register rt, Register shift); + void ma_dsra(Register rd, Register rt, Register shift); + void ma_dror(Register rd, Register rt, Register shift); + void ma_drol(Register rd, Register rt, Register shift); + + void ma_dins(Register rt, Register rs, Imm32 pos, Imm32 size); + void ma_dext(Register rt, Register rs, Imm32 pos, Imm32 size); + + // doubleword swap bytes + void ma_dsbh(Register rd, Register rt); + void ma_dshd(Register rd, Register rt); + + void ma_dctz(Register rd, Register rs); + + // load + void ma_load(Register dest, Address address, LoadStoreSize size = SizeWord, + LoadStoreExtension extension = SignExtend); + + // store + void ma_store(Register data, Address address, LoadStoreSize size = SizeWord, + LoadStoreExtension extension = SignExtend); + + // arithmetic based ops + // add + void ma_daddu(Register rd, Register rs, Imm32 imm); + void ma_daddu(Register rd, Register rs); + void ma_daddu(Register rd, Imm32 imm); + void ma_add32TestOverflow(Register rd, Register rs, Register rt, + Label* overflow); + void ma_add32TestOverflow(Register rd, Register rs, Imm32 imm, + Label* overflow); + void ma_addPtrTestOverflow(Register rd, Register rs, Register rt, + Label* overflow); + void ma_addPtrTestOverflow(Register rd, Register rs, Imm32 imm, + Label* overflow); + void ma_addPtrTestOverflow(Register rd, Register rs, ImmWord imm, + Label* overflow); + void ma_addPtrTestCarry(Condition cond, Register rd, Register rs, Register rt, + Label* overflow); + void ma_addPtrTestCarry(Condition cond, Register rd, Register rs, Imm32 imm, + Label* overflow); + void ma_addPtrTestCarry(Condition cond, Register rd, Register rs, ImmWord imm, + Label* overflow); + // subtract + void ma_dsubu(Register rd, Register rs, Imm32 imm); + void ma_dsubu(Register rd, Register rs); + void ma_dsubu(Register rd, Imm32 imm); + void ma_sub32TestOverflow(Register rd, Register rs, Register rt, + Label* overflow); + void ma_subPtrTestOverflow(Register rd, Register rs, Register rt, + Label* overflow); + void ma_subPtrTestOverflow(Register rd, Register rs, Imm32 imm, + Label* overflow); + + // multiplies. For now, there are only few that we care about. + void ma_dmult(Register rs, Imm32 imm); + void ma_mulPtrTestOverflow(Register rd, Register rs, Register rt, + Label* overflow); + + // stack + void ma_pop(Register r); + void ma_push(Register r); + + void branchWithCode(InstImm code, Label* label, JumpKind jumpKind); + // branches when done from within mips-specific code + void ma_b(Register lhs, ImmWord imm, Label* l, Condition c, + JumpKind jumpKind = LongJump); + void ma_b(Register lhs, Address addr, Label* l, Condition c, + JumpKind jumpKind = LongJump); + void ma_b(Address addr, Imm32 imm, Label* l, Condition c, + JumpKind jumpKind = LongJump); + void ma_b(Address addr, ImmGCPtr imm, Label* l, Condition c, + JumpKind jumpKind = LongJump); + void ma_b(Address addr, Register rhs, Label* l, Condition c, + JumpKind jumpKind = LongJump) { + MOZ_ASSERT(rhs != ScratchRegister); + ma_load(ScratchRegister, addr, SizeDouble); + ma_b(ScratchRegister, rhs, l, c, jumpKind); + } + + void ma_bal(Label* l, DelaySlotFill delaySlotFill = FillDelaySlot); + + // fp instructions + void ma_lid(FloatRegister dest, double value); + + void ma_mv(FloatRegister src, ValueOperand dest); + void ma_mv(ValueOperand src, FloatRegister dest); + + void ma_ls(FloatRegister ft, Address address); + void ma_ld(FloatRegister ft, Address address); + void ma_sd(FloatRegister ft, Address address); + void ma_ss(FloatRegister ft, Address address); + + void ma_pop(FloatRegister f); + void ma_push(FloatRegister f); + + void ma_cmp_set(Register dst, Register lhs, ImmWord imm, Condition c); + void ma_cmp_set(Register dst, Address address, ImmWord imm, Condition c); + void ma_cmp_set(Register dst, Register lhs, ImmPtr imm, Condition c); + void ma_cmp_set(Register dst, Address address, Imm32 imm, Condition c); + + // These functions abstract the access to high part of the double precision + // float register. They are intended to work on both 32 bit and 64 bit + // floating point coprocessor. + void moveToDoubleHi(Register src, FloatRegister dest) { as_mthc1(src, dest); } + void moveFromDoubleHi(FloatRegister src, Register dest) { + as_mfhc1(dest, src); + } + + void moveToDouble(Register src, FloatRegister dest) { as_dmtc1(src, dest); } + void moveFromDouble(FloatRegister src, Register dest) { as_dmfc1(dest, src); } +}; + +class MacroAssembler; + +class MacroAssemblerMIPS64Compat : public MacroAssemblerMIPS64 { + public: + using MacroAssemblerMIPS64::call; + + MacroAssemblerMIPS64Compat() {} + + void convertBoolToInt32(Register source, Register dest); + void convertInt32ToDouble(Register src, FloatRegister dest); + void convertInt32ToDouble(const Address& src, FloatRegister dest); + void convertInt32ToDouble(const BaseIndex& src, FloatRegister dest); + void convertUInt32ToDouble(Register src, FloatRegister dest); + void convertUInt32ToFloat32(Register src, FloatRegister dest); + void convertDoubleToFloat32(FloatRegister src, FloatRegister dest); + void convertDoubleToInt32(FloatRegister src, Register dest, Label* fail, + bool negativeZeroCheck = true); + void convertDoubleToPtr(FloatRegister src, Register dest, Label* fail, + bool negativeZeroCheck = true); + void convertFloat32ToInt32(FloatRegister src, Register dest, Label* fail, + bool negativeZeroCheck = true); + + void convertFloat32ToDouble(FloatRegister src, FloatRegister dest); + void convertInt32ToFloat32(Register src, FloatRegister dest); + void convertInt32ToFloat32(const Address& src, FloatRegister dest); + + void movq(Register rs, Register rd); + + void computeScaledAddress(const BaseIndex& address, Register dest); + + void computeEffectiveAddress(const Address& address, Register dest) { + ma_daddu(dest, address.base, Imm32(address.offset)); + } + + void computeEffectiveAddress(const BaseIndex& address, Register dest); + + void j(Label* dest) { ma_b(dest); } + + void mov(Register src, Register dest) { as_ori(dest, src, 0); } + void mov(ImmWord imm, Register dest) { ma_li(dest, imm); } + void mov(ImmPtr imm, Register dest) { + mov(ImmWord(uintptr_t(imm.value)), dest); + } + void mov(CodeLabel* label, Register dest) { ma_li(dest, label); } + void mov(Register src, Address dest) { MOZ_CRASH("NYI-IC"); } + void mov(Address src, Register dest) { MOZ_CRASH("NYI-IC"); } + + void writeDataRelocation(const Value& val) { + // Raw GC pointer relocations and Value relocations both end up in + // TraceOneDataRelocation. + if (val.isGCThing()) { + gc::Cell* cell = val.toGCThing(); + if (cell && gc::IsInsideNursery(cell)) { + embedsNurseryPointers_ = true; + } + dataRelocations_.writeUnsigned(currentOffset()); + } + } + + void branch(JitCode* c) { + BufferOffset bo = m_buffer.nextOffset(); + addPendingJump(bo, ImmPtr(c->raw()), RelocationKind::JITCODE); + ma_liPatchable(ScratchRegister, ImmPtr(c->raw())); + as_jr(ScratchRegister); + as_nop(); + } + void branch(const Register reg) { + as_jr(reg); + as_nop(); + } + void nop() { as_nop(); } + void ret() { + ma_pop(ra); + as_jr(ra); + as_nop(); + } + inline void retn(Imm32 n); + void push(Imm32 imm) { + ma_li(ScratchRegister, imm); + ma_push(ScratchRegister); + } + void push(ImmWord imm) { + ma_li(ScratchRegister, imm); + ma_push(ScratchRegister); + } + void push(ImmGCPtr imm) { + ma_li(ScratchRegister, imm); + ma_push(ScratchRegister); + } + void push(const Address& address) { + loadPtr(address, ScratchRegister); + ma_push(ScratchRegister); + } + void push(Register reg) { ma_push(reg); } + void push(FloatRegister reg) { ma_push(reg); } + void pop(Register reg) { ma_pop(reg); } + void pop(FloatRegister reg) { ma_pop(reg); } + + // Emit a branch that can be toggled to a non-operation. On MIPS64 we use + // "andi" instruction to toggle the branch. + // See ToggleToJmp(), ToggleToCmp(). + CodeOffset toggledJump(Label* label); + + // Emit a "jalr" or "nop" instruction. ToggleCall can be used to patch + // this instruction. + CodeOffset toggledCall(JitCode* target, bool enabled); + + static size_t ToggledCallSize(uint8_t* code) { + // Six instructions used in: MacroAssemblerMIPS64Compat::toggledCall + return 6 * sizeof(uint32_t); + } + + CodeOffset pushWithPatch(ImmWord imm) { + CodeOffset offset = movWithPatch(imm, ScratchRegister); + ma_push(ScratchRegister); + return offset; + } + + CodeOffset movWithPatch(ImmWord imm, Register dest) { + CodeOffset offset = CodeOffset(currentOffset()); + ma_liPatchable(dest, imm, Li64); + return offset; + } + CodeOffset movWithPatch(ImmPtr imm, Register dest) { + CodeOffset offset = CodeOffset(currentOffset()); + ma_liPatchable(dest, imm); + return offset; + } + + void writeCodePointer(CodeLabel* label) { + label->patchAt()->bind(currentOffset()); + label->setLinkMode(CodeLabel::RawPointer); + m_buffer.ensureSpace(sizeof(void*)); + writeInst(-1); + writeInst(-1); + } + + void jump(Label* label) { ma_b(label); } + void jump(Register reg) { + as_jr(reg); + as_nop(); + } + void jump(const Address& address) { + loadPtr(address, ScratchRegister); + as_jr(ScratchRegister); + as_nop(); + } + + void jump(JitCode* code) { branch(code); } + + void jump(ImmPtr ptr) { + BufferOffset bo = m_buffer.nextOffset(); + addPendingJump(bo, ptr, RelocationKind::HARDCODED); + ma_jump(ptr); + } + + void jump(TrampolinePtr code) { jump(ImmPtr(code.value)); } + + void splitTag(Register src, Register dest) { + ma_dsrl(dest, src, Imm32(JSVAL_TAG_SHIFT)); + } + + void splitTag(const ValueOperand& operand, Register dest) { + splitTag(operand.valueReg(), dest); + } + + void splitTagForTest(const ValueOperand& value, ScratchTagScope& tag) { + splitTag(value, tag); + } + + // unboxing code + void unboxNonDouble(const ValueOperand& operand, Register dest, + JSValueType type) { + unboxNonDouble(operand.valueReg(), dest, type); + } + + template <typename T> + void unboxNonDouble(T src, Register dest, JSValueType type) { + MOZ_ASSERT(type != JSVAL_TYPE_DOUBLE); + if (type == JSVAL_TYPE_INT32 || type == JSVAL_TYPE_BOOLEAN) { + load32(src, dest); + return; + } + loadPtr(src, dest); + unboxNonDouble(dest, dest, type); + } + + void unboxNonDouble(Register src, Register dest, JSValueType type) { + MOZ_ASSERT(type != JSVAL_TYPE_DOUBLE); + if (type == JSVAL_TYPE_INT32 || type == JSVAL_TYPE_BOOLEAN) { + ma_sll(dest, src, Imm32(0)); + return; + } + MOZ_ASSERT(ScratchRegister != src); + mov(ImmWord(JSVAL_TYPE_TO_SHIFTED_TAG(type)), ScratchRegister); + as_xor(dest, src, ScratchRegister); + } + + template <typename T> + void unboxObjectOrNull(const T& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT); + static_assert(JS::detail::ValueObjectOrNullBit == + (uint64_t(0x8) << JSVAL_TAG_SHIFT)); + ma_dins(dest, zero, Imm32(JSVAL_TAG_SHIFT + 3), Imm32(1)); + } + + void unboxGCThingForGCBarrier(const Address& src, Register dest) { + loadPtr(src, dest); + ma_dext(dest, dest, Imm32(0), Imm32(JSVAL_TAG_SHIFT)); + } + void unboxGCThingForGCBarrier(const ValueOperand& src, Register dest) { + ma_dext(dest, src.valueReg(), Imm32(0), Imm32(JSVAL_TAG_SHIFT)); + } + + void unboxWasmAnyRefGCThingForGCBarrier(const Address& src, Register dest) { + ScratchRegisterScope scratch(asMasm()); + MOZ_ASSERT(scratch != dest); + movePtr(ImmWord(wasm::AnyRef::GCThingMask), scratch); + loadPtr(src, dest); + as_and(dest, dest, scratch); + } + + // Like unboxGCThingForGCBarrier, but loads the GC thing's chunk base. + void getGCThingValueChunk(const Address& src, Register dest) { + ScratchRegisterScope scratch(asMasm()); + MOZ_ASSERT(scratch != dest); + loadPtr(src, dest); + movePtr(ImmWord(JS::detail::ValueGCThingPayloadChunkMask), scratch); + as_and(dest, dest, scratch); + } + void getGCThingValueChunk(const ValueOperand& src, Register dest) { + MOZ_ASSERT(src.valueReg() != dest); + movePtr(ImmWord(JS::detail::ValueGCThingPayloadChunkMask), dest); + as_and(dest, dest, src.valueReg()); + } + + void getWasmAnyRefGCThingChunk(Register src, Register dest) { + MOZ_ASSERT(src != dest); + movePtr(ImmWord(wasm::AnyRef::GCThingChunkMask), dest); + as_and(dest, dest, src); + } + + void unboxInt32(const ValueOperand& operand, Register dest); + void unboxInt32(Register src, Register dest); + void unboxInt32(const Address& src, Register dest); + void unboxInt32(const BaseIndex& src, Register dest); + void unboxBoolean(const ValueOperand& operand, Register dest); + void unboxBoolean(Register src, Register dest); + void unboxBoolean(const Address& src, Register dest); + void unboxBoolean(const BaseIndex& src, Register dest); + void unboxDouble(const ValueOperand& operand, FloatRegister dest); + void unboxDouble(Register src, Register dest); + void unboxDouble(const Address& src, FloatRegister dest); + void unboxDouble(const BaseIndex& src, FloatRegister dest); + void unboxString(const ValueOperand& operand, Register dest); + void unboxString(Register src, Register dest); + void unboxString(const Address& src, Register dest); + void unboxSymbol(const ValueOperand& src, Register dest); + void unboxSymbol(Register src, Register dest); + void unboxSymbol(const Address& src, Register dest); + void unboxBigInt(const ValueOperand& operand, Register dest); + void unboxBigInt(Register src, Register dest); + void unboxBigInt(const Address& src, Register dest); + void unboxObject(const ValueOperand& src, Register dest); + void unboxObject(Register src, Register dest); + void unboxObject(const Address& src, Register dest); + void unboxObject(const BaseIndex& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT); + } + void unboxValue(const ValueOperand& src, AnyRegister dest, JSValueType type); + + void notBoolean(const ValueOperand& val) { + as_xori(val.valueReg(), val.valueReg(), 1); + } + + // boxing code + void boxDouble(FloatRegister src, const ValueOperand& dest, FloatRegister); + void boxNonDouble(JSValueType type, Register src, const ValueOperand& dest); + + // Extended unboxing API. If the payload is already in a register, returns + // that register. Otherwise, provides a move to the given scratch register, + // and returns that. + [[nodiscard]] Register extractObject(const Address& address, + Register scratch); + [[nodiscard]] Register extractObject(const ValueOperand& value, + Register scratch) { + unboxObject(value, scratch); + return scratch; + } + [[nodiscard]] Register extractString(const ValueOperand& value, + Register scratch) { + unboxString(value, scratch); + return scratch; + } + [[nodiscard]] Register extractSymbol(const ValueOperand& value, + Register scratch) { + unboxSymbol(value, scratch); + return scratch; + } + [[nodiscard]] Register extractInt32(const ValueOperand& value, + Register scratch) { + unboxInt32(value, scratch); + return scratch; + } + [[nodiscard]] Register extractBoolean(const ValueOperand& value, + Register scratch) { + unboxBoolean(value, scratch); + return scratch; + } + [[nodiscard]] Register extractTag(const Address& address, Register scratch); + [[nodiscard]] Register extractTag(const BaseIndex& address, Register scratch); + [[nodiscard]] Register extractTag(const ValueOperand& value, + Register scratch) { + MOZ_ASSERT(scratch != ScratchRegister); + splitTag(value, scratch); + return scratch; + } + + void boolValueToDouble(const ValueOperand& operand, FloatRegister dest); + void int32ValueToDouble(const ValueOperand& operand, FloatRegister dest); + void loadInt32OrDouble(const Address& src, FloatRegister dest); + void loadInt32OrDouble(const BaseIndex& addr, FloatRegister dest); + void loadConstantDouble(double dp, FloatRegister dest); + + void boolValueToFloat32(const ValueOperand& operand, FloatRegister dest); + void int32ValueToFloat32(const ValueOperand& operand, FloatRegister dest); + void loadConstantFloat32(float f, FloatRegister dest); + + void testNullSet(Condition cond, const ValueOperand& value, Register dest); + + void testObjectSet(Condition cond, const ValueOperand& value, Register dest); + + void testUndefinedSet(Condition cond, const ValueOperand& value, + Register dest); + + template <typename T> + void loadUnboxedValue(const T& address, MIRType type, AnyRegister dest) { + if (dest.isFloat()) { + loadInt32OrDouble(address, dest.fpu()); + } else { + unboxNonDouble(address, dest.gpr(), ValueTypeFromMIRType(type)); + } + } + + void storeUnboxedPayload(ValueOperand value, BaseIndex address, size_t nbytes, + JSValueType type) { + switch (nbytes) { + case 8: + if (type == JSVAL_TYPE_OBJECT) { + unboxObjectOrNull(value, SecondScratchReg); + } else { + unboxNonDouble(value, SecondScratchReg, type); + } + computeEffectiveAddress(address, ScratchRegister); + as_sd(SecondScratchReg, ScratchRegister, 0); + return; + case 4: + store32(value.valueReg(), address); + return; + case 1: + store8(value.valueReg(), address); + return; + default: + MOZ_CRASH("Bad payload width"); + } + } + + void storeUnboxedPayload(ValueOperand value, Address address, size_t nbytes, + JSValueType type) { + switch (nbytes) { + case 8: + if (type == JSVAL_TYPE_OBJECT) { + unboxObjectOrNull(value, SecondScratchReg); + } else { + unboxNonDouble(value, SecondScratchReg, type); + } + storePtr(SecondScratchReg, address); + return; + case 4: + store32(value.valueReg(), address); + return; + case 1: + store8(value.valueReg(), address); + return; + default: + MOZ_CRASH("Bad payload width"); + } + } + + void boxValue(JSValueType type, Register src, Register dest) { + MOZ_ASSERT(src != dest); + + JSValueTag tag = (JSValueTag)JSVAL_TYPE_TO_TAG(type); + ma_li(dest, Imm32(tag)); + ma_dsll(dest, dest, Imm32(JSVAL_TAG_SHIFT)); + if (type == JSVAL_TYPE_INT32 || type == JSVAL_TYPE_BOOLEAN) { + ma_dins(dest, src, Imm32(0), Imm32(32)); + } else { + ma_dins(dest, src, Imm32(0), Imm32(JSVAL_TAG_SHIFT)); + } + } + + void storeValue(ValueOperand val, Operand dst); + void storeValue(ValueOperand val, const BaseIndex& dest); + void storeValue(JSValueType type, Register reg, BaseIndex dest); + void storeValue(ValueOperand val, const Address& dest); + void storeValue(JSValueType type, Register reg, Address dest); + void storeValue(const Value& val, Address dest); + void storeValue(const Value& val, BaseIndex dest); + void storeValue(const Address& src, const Address& dest, Register temp) { + loadPtr(src, temp); + storePtr(temp, dest); + } + + void storePrivateValue(Register src, const Address& dest) { + storePtr(src, dest); + } + void storePrivateValue(ImmGCPtr imm, const Address& dest) { + storePtr(imm, dest); + } + + void loadValue(Address src, ValueOperand val); + void loadValue(Operand dest, ValueOperand val) { + loadValue(dest.toAddress(), val); + } + void loadValue(const BaseIndex& addr, ValueOperand val); + + void loadUnalignedValue(const Address& src, ValueOperand dest) { + loadValue(src, dest); + } + + void tagValue(JSValueType type, Register payload, ValueOperand dest); + + void pushValue(ValueOperand val); + void popValue(ValueOperand val); + void pushValue(const Value& val) { + if (val.isGCThing()) { + writeDataRelocation(val); + movWithPatch(ImmWord(val.asRawBits()), ScratchRegister); + push(ScratchRegister); + } else { + push(ImmWord(val.asRawBits())); + } + } + void pushValue(JSValueType type, Register reg) { + boxValue(type, reg, ScratchRegister); + push(ScratchRegister); + } + void pushValue(const Address& addr); + void pushValue(const BaseIndex& addr, Register scratch) { + loadValue(addr, ValueOperand(scratch)); + pushValue(ValueOperand(scratch)); + } + + void handleFailureWithHandlerTail(Label* profilerExitTail, + Label* bailoutTail); + + ///////////////////////////////////////////////////////////////// + // Common interface. + ///////////////////////////////////////////////////////////////// + public: + // The following functions are exposed for use in platform-shared code. + + inline void incrementInt32Value(const Address& addr); + + void move32(Imm32 imm, Register dest); + void move32(Register src, Register dest); + + void movePtr(Register src, Register dest); + void movePtr(ImmWord imm, Register dest); + void movePtr(ImmPtr imm, Register dest); + void movePtr(wasm::SymbolicAddress imm, Register dest); + void movePtr(ImmGCPtr imm, Register dest); + + void load8SignExtend(const Address& address, Register dest); + void load8SignExtend(const BaseIndex& src, Register dest); + + void load8ZeroExtend(const Address& address, Register dest); + void load8ZeroExtend(const BaseIndex& src, Register dest); + + void load16SignExtend(const Address& address, Register dest); + void load16SignExtend(const BaseIndex& src, Register dest); + + template <typename S> + void load16UnalignedSignExtend(const S& src, Register dest) { + ma_load_unaligned(dest, src, SizeHalfWord, SignExtend); + } + + void load16ZeroExtend(const Address& address, Register dest); + void load16ZeroExtend(const BaseIndex& src, Register dest); + + template <typename S> + void load16UnalignedZeroExtend(const S& src, Register dest) { + ma_load_unaligned(dest, src, SizeHalfWord, ZeroExtend); + } + + void load32(const Address& address, Register dest); + void load32(const BaseIndex& address, Register dest); + void load32(AbsoluteAddress address, Register dest); + void load32(wasm::SymbolicAddress address, Register dest); + + template <typename S> + void load32Unaligned(const S& src, Register dest) { + ma_load_unaligned(dest, src, SizeWord, SignExtend); + } + + void load64(const Address& address, Register64 dest) { + loadPtr(address, dest.reg); + } + void load64(const BaseIndex& address, Register64 dest) { + loadPtr(address, dest.reg); + } + + template <typename S> + void load64Unaligned(const S& src, Register64 dest) { + ma_load_unaligned(dest.reg, src, SizeDouble, ZeroExtend); + } + + void loadPtr(const Address& address, Register dest); + void loadPtr(const BaseIndex& src, Register dest); + void loadPtr(AbsoluteAddress address, Register dest); + void loadPtr(wasm::SymbolicAddress address, Register dest); + + void loadPrivate(const Address& address, Register dest); + + void loadUnalignedDouble(const wasm::MemoryAccessDesc& access, + const BaseIndex& src, Register temp, + FloatRegister dest); + void loadUnalignedFloat32(const wasm::MemoryAccessDesc& access, + const BaseIndex& src, Register temp, + FloatRegister dest); + + void store8(Register src, const Address& address); + void store8(Imm32 imm, const Address& address); + void store8(Register src, const BaseIndex& address); + void store8(Imm32 imm, const BaseIndex& address); + + void store16(Register src, const Address& address); + void store16(Imm32 imm, const Address& address); + void store16(Register src, const BaseIndex& address); + void store16(Imm32 imm, const BaseIndex& address); + + template <typename T> + void store16Unaligned(Register src, const T& dest) { + ma_store_unaligned(src, dest, SizeHalfWord); + } + + void store32(Register src, AbsoluteAddress address); + void store32(Register src, const Address& address); + void store32(Register src, const BaseIndex& address); + void store32(Imm32 src, const Address& address); + void store32(Imm32 src, const BaseIndex& address); + + template <typename T> + void store32Unaligned(Register src, const T& dest) { + ma_store_unaligned(src, dest, SizeWord); + } + + void store64(Imm64 imm, Address address) { + storePtr(ImmWord(imm.value), address); + } + void store64(Imm64 imm, const BaseIndex& address) { + storePtr(ImmWord(imm.value), address); + } + + void store64(Register64 src, Address address) { storePtr(src.reg, address); } + void store64(Register64 src, const BaseIndex& address) { + storePtr(src.reg, address); + } + + template <typename T> + void store64Unaligned(Register64 src, const T& dest) { + ma_store_unaligned(src.reg, dest, SizeDouble); + } + + template <typename T> + void storePtr(ImmWord imm, T address); + template <typename T> + void storePtr(ImmPtr imm, T address); + template <typename T> + void storePtr(ImmGCPtr imm, T address); + void storePtr(Register src, const Address& address); + void storePtr(Register src, const BaseIndex& address); + void storePtr(Register src, AbsoluteAddress dest); + + void storeUnalignedFloat32(const wasm::MemoryAccessDesc& access, + FloatRegister src, Register temp, + const BaseIndex& dest); + void storeUnalignedDouble(const wasm::MemoryAccessDesc& access, + FloatRegister src, Register temp, + const BaseIndex& dest); + + void moveDouble(FloatRegister src, FloatRegister dest) { as_movd(dest, src); } + + void zeroDouble(FloatRegister reg) { moveToDouble(zero, reg); } + + void convertUInt64ToDouble(Register src, FloatRegister dest); + + void breakpoint(); + + void checkStackAlignment(); + + static void calculateAlignedStackPointer(void** stackPointer); + + // If source is a double, load it into dest. If source is int32, + // convert it to double. Else, branch to failure. + void ensureDouble(const ValueOperand& source, FloatRegister dest, + Label* failure); + + void cmpPtrSet(Assembler::Condition cond, Address lhs, ImmPtr rhs, + Register dest); + void cmpPtrSet(Assembler::Condition cond, Register lhs, Address rhs, + Register dest); + void cmpPtrSet(Assembler::Condition cond, Address lhs, Register rhs, + Register dest); + + void cmp32Set(Assembler::Condition cond, Register lhs, Address rhs, + Register dest); + + protected: + bool buildOOLFakeExitFrame(void* fakeReturnAddr); + + void wasmLoadI64Impl(const wasm::MemoryAccessDesc& access, + Register memoryBase, Register ptr, Register ptrScratch, + Register64 output, Register tmp); + void wasmStoreI64Impl(const wasm::MemoryAccessDesc& access, Register64 value, + Register memoryBase, Register ptr, Register ptrScratch, + Register tmp); + + public: + void lea(Operand addr, Register dest) { + ma_daddu(dest, addr.baseReg(), Imm32(addr.disp())); + } + + void abiret() { + as_jr(ra); + as_nop(); + } + + void moveFloat32(FloatRegister src, FloatRegister dest) { + as_movs(dest, src); + } + + // Instrumentation for entering and leaving the profiler. + void profilerEnterFrame(Register framePtr, Register scratch); + void profilerExitFrame(); +}; + +typedef MacroAssemblerMIPS64Compat MacroAssemblerSpecific; + +} // namespace jit +} // namespace js + +#endif /* jit_mips64_MacroAssembler_mips64_h */ diff --git a/js/src/jit/mips64/MoveEmitter-mips64.cpp b/js/src/jit/mips64/MoveEmitter-mips64.cpp new file mode 100644 index 0000000000..53ee23820a --- /dev/null +++ b/js/src/jit/mips64/MoveEmitter-mips64.cpp @@ -0,0 +1,149 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/mips64/MoveEmitter-mips64.h" + +#include "jit/MacroAssembler-inl.h" + +using namespace js; +using namespace js::jit; + +void MoveEmitterMIPS64::breakCycle(const MoveOperand& from, + const MoveOperand& to, MoveOp::Type type, + uint32_t slotId) { + // There is some pattern: + // (A -> B) + // (B -> A) + // + // This case handles (A -> B), which we reach first. We save B, then allow + // the original move to continue. + switch (type) { + case MoveOp::FLOAT32: + if (to.isMemory()) { + FloatRegister temp = ScratchFloat32Reg; + masm.loadFloat32(getAdjustedAddress(to), temp); + masm.storeFloat32(temp, cycleSlot(slotId)); + } else { + masm.storeFloat32(to.floatReg(), cycleSlot(slotId)); + } + break; + case ABIType::Float64: + if (to.isMemory()) { + FloatRegister temp = ScratchDoubleReg; + masm.loadDouble(getAdjustedAddress(to), temp); + masm.storeDouble(temp, cycleSlot(slotId)); + } else { + masm.storeDouble(to.floatReg(), cycleSlot(slotId)); + } + break; + case MoveOp::INT32: + if (to.isMemory()) { + Register temp = tempReg(); + masm.load32(getAdjustedAddress(to), temp); + masm.store32(temp, cycleSlot(0)); + } else { + // Second scratch register should not be moved by MoveEmitter. + MOZ_ASSERT(to.reg() != spilledReg_); + masm.store32(to.reg(), cycleSlot(0)); + } + break; + case MoveOp::GENERAL: + if (to.isMemory()) { + Register temp = tempReg(); + masm.loadPtr(getAdjustedAddress(to), temp); + masm.storePtr(temp, cycleSlot(0)); + } else { + // Second scratch register should not be moved by MoveEmitter. + MOZ_ASSERT(to.reg() != spilledReg_); + masm.storePtr(to.reg(), cycleSlot(0)); + } + break; + default: + MOZ_CRASH("Unexpected move type"); + } +} + +void MoveEmitterMIPS64::completeCycle(const MoveOperand& from, + const MoveOperand& to, MoveOp::Type type, + uint32_t slotId) { + // There is some pattern: + // (A -> B) + // (B -> A) + // + // This case handles (B -> A), which we reach last. We emit a move from the + // saved value of B, to A. + switch (type) { + case MoveOp::FLOAT32: + if (to.isMemory()) { + FloatRegister temp = ScratchFloat32Reg; + masm.loadFloat32(cycleSlot(slotId), temp); + masm.storeFloat32(temp, getAdjustedAddress(to)); + } else { + masm.loadFloat32(cycleSlot(slotId), to.floatReg()); + } + break; + case ABIType::Float64: + if (to.isMemory()) { + FloatRegister temp = ScratchDoubleReg; + masm.loadDouble(cycleSlot(slotId), temp); + masm.storeDouble(temp, getAdjustedAddress(to)); + } else { + masm.loadDouble(cycleSlot(slotId), to.floatReg()); + } + break; + case MoveOp::INT32: + MOZ_ASSERT(slotId == 0); + if (to.isMemory()) { + Register temp = tempReg(); + masm.load32(cycleSlot(0), temp); + masm.store32(temp, getAdjustedAddress(to)); + } else { + // Second scratch register should not be moved by MoveEmitter. + MOZ_ASSERT(to.reg() != spilledReg_); + masm.load32(cycleSlot(0), to.reg()); + } + break; + case MoveOp::GENERAL: + MOZ_ASSERT(slotId == 0); + if (to.isMemory()) { + Register temp = tempReg(); + masm.loadPtr(cycleSlot(0), temp); + masm.storePtr(temp, getAdjustedAddress(to)); + } else { + // Second scratch register should not be moved by MoveEmitter. + MOZ_ASSERT(to.reg() != spilledReg_); + masm.loadPtr(cycleSlot(0), to.reg()); + } + break; + default: + MOZ_CRASH("Unexpected move type"); + } +} + +void MoveEmitterMIPS64::emitDoubleMove(const MoveOperand& from, + const MoveOperand& to) { + if (from.isFloatReg()) { + if (to.isFloatReg()) { + masm.moveDouble(from.floatReg(), to.floatReg()); + } else if (to.isGeneralReg()) { + masm.moveFromDouble(from.floatReg(), to.reg()); + } else { + MOZ_ASSERT(to.isMemory()); + masm.storeDouble(from.floatReg(), getAdjustedAddress(to)); + } + } else if (to.isFloatReg()) { + if (from.isMemory()) { + masm.loadDouble(getAdjustedAddress(from), to.floatReg()); + } else { + masm.moveToDouble(from.reg(), to.floatReg()); + } + } else { + MOZ_ASSERT(from.isMemory()); + MOZ_ASSERT(to.isMemory()); + masm.loadDouble(getAdjustedAddress(from), ScratchDoubleReg); + masm.storeDouble(ScratchDoubleReg, getAdjustedAddress(to)); + } +} diff --git a/js/src/jit/mips64/MoveEmitter-mips64.h b/js/src/jit/mips64/MoveEmitter-mips64.h new file mode 100644 index 0000000000..e6dbcd0693 --- /dev/null +++ b/js/src/jit/mips64/MoveEmitter-mips64.h @@ -0,0 +1,31 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_mips64_MoveEmitter_mips64_h +#define jit_mips64_MoveEmitter_mips64_h + +#include "jit/mips-shared/MoveEmitter-mips-shared.h" + +namespace js { +namespace jit { + +class MoveEmitterMIPS64 : public MoveEmitterMIPSShared { + void emitDoubleMove(const MoveOperand& from, const MoveOperand& to); + void breakCycle(const MoveOperand& from, const MoveOperand& to, + MoveOp::Type type, uint32_t slot); + void completeCycle(const MoveOperand& from, const MoveOperand& to, + MoveOp::Type type, uint32_t slot); + + public: + MoveEmitterMIPS64(MacroAssembler& masm) : MoveEmitterMIPSShared(masm) {} +}; + +typedef MoveEmitterMIPS64 MoveEmitter; + +} // namespace jit +} // namespace js + +#endif /* jit_mips64_MoveEmitter_mips64_h */ diff --git a/js/src/jit/mips64/SharedICRegisters-mips64.h b/js/src/jit/mips64/SharedICRegisters-mips64.h new file mode 100644 index 0000000000..99b263ca1e --- /dev/null +++ b/js/src/jit/mips64/SharedICRegisters-mips64.h @@ -0,0 +1,45 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_mips64_SharedICRegisters_mips64_h +#define jit_mips64_SharedICRegisters_mips64_h + +#include "jit/mips64/Assembler-mips64.h" +#include "jit/Registers.h" +#include "jit/RegisterSets.h" + +namespace js { +namespace jit { + +// ValueOperands R0, R1, and R2. +// R0 == JSReturnReg, and R2 uses registers not preserved across calls. R1 value +// should be preserved across calls. +static constexpr ValueOperand R0(v1); +static constexpr ValueOperand R1(s4); +static constexpr ValueOperand R2(a6); + +// ICTailCallReg and ICStubReg +// These use registers that are not preserved across calls. +static constexpr Register ICTailCallReg = ra; +static constexpr Register ICStubReg = a5; + +// Register used internally by MacroAssemblerMIPS. +static constexpr Register BaselineSecondScratchReg = SecondScratchReg; + +// Note that ICTailCallReg is actually just the link register. +// In MIPS code emission, we do not clobber ICTailCallReg since we keep +// the return address for calls there. + +// FloatReg0 must be equal to ReturnFloatReg. +static constexpr FloatRegister FloatReg0 = f0; +static constexpr FloatRegister FloatReg1 = f2; +static constexpr FloatRegister FloatReg2 = f4; +static constexpr FloatRegister FloatReg3 = f6; + +} // namespace jit +} // namespace js + +#endif /* jit_mips64_SharedICRegisters_mips64_h */ diff --git a/js/src/jit/mips64/Simulator-mips64.cpp b/js/src/jit/mips64/Simulator-mips64.cpp new file mode 100644 index 0000000000..57dce45b5d --- /dev/null +++ b/js/src/jit/mips64/Simulator-mips64.cpp @@ -0,0 +1,3889 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: */ +// Copyright 2011 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "jit/mips64/Simulator-mips64.h" + +#include "mozilla/Casting.h" +#include "mozilla/FloatingPoint.h" +#include "mozilla/IntegerPrintfMacros.h" +#include "mozilla/Likely.h" +#include "mozilla/MathAlgorithms.h" + +#include <float.h> +#include <limits> + +#include "jit/AtomicOperations.h" +#include "jit/mips64/Assembler-mips64.h" +#include "js/Conversions.h" +#include "js/UniquePtr.h" +#include "js/Utility.h" +#include "threading/LockGuard.h" +#include "vm/JSContext.h" +#include "vm/Runtime.h" +#include "wasm/WasmInstance.h" +#include "wasm/WasmSignalHandlers.h" + +#define I8(v) static_cast<int8_t>(v) +#define I16(v) static_cast<int16_t>(v) +#define U16(v) static_cast<uint16_t>(v) +#define I32(v) static_cast<int32_t>(v) +#define U32(v) static_cast<uint32_t>(v) +#define I64(v) static_cast<int64_t>(v) +#define U64(v) static_cast<uint64_t>(v) +#define I128(v) static_cast<__int128_t>(v) +#define U128(v) static_cast<__uint128_t>(v) + +#define I32_CHECK(v) \ + ({ \ + MOZ_ASSERT(I64(I32(v)) == I64(v)); \ + I32((v)); \ + }) + +namespace js { +namespace jit { + +static const Instr kCallRedirInstr = + op_special | MAX_BREAK_CODE << FunctionBits | ff_break; + +// Utils functions. +static uint32_t GetFCSRConditionBit(uint32_t cc) { + if (cc == 0) { + return 23; + } + return 24 + cc; +} + +// ----------------------------------------------------------------------------- +// MIPS assembly various constants. + +class SimInstruction { + public: + enum { + kInstrSize = 4, + // On MIPS PC cannot actually be directly accessed. We behave as if PC was + // always the value of the current instruction being executed. + kPCReadOffset = 0 + }; + + // Get the raw instruction bits. + inline Instr instructionBits() const { + return *reinterpret_cast<const Instr*>(this); + } + + // Set the raw instruction bits to value. + inline void setInstructionBits(Instr value) { + *reinterpret_cast<Instr*>(this) = value; + } + + // Read one particular bit out of the instruction bits. + inline int bit(int nr) const { return (instructionBits() >> nr) & 1; } + + // Read a bit field out of the instruction bits. + inline int bits(int hi, int lo) const { + return (instructionBits() >> lo) & ((2 << (hi - lo)) - 1); + } + + // Instruction type. + enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 }; + + // Get the encoding type of the instruction. + Type instructionType() const; + + // Accessors for the different named fields used in the MIPS encoding. + inline OpcodeField opcodeValue() const { + return static_cast<OpcodeField>( + bits(OpcodeShift + OpcodeBits - 1, OpcodeShift)); + } + + inline int rsValue() const { + MOZ_ASSERT(instructionType() == kRegisterType || + instructionType() == kImmediateType); + return bits(RSShift + RSBits - 1, RSShift); + } + + inline int rtValue() const { + MOZ_ASSERT(instructionType() == kRegisterType || + instructionType() == kImmediateType); + return bits(RTShift + RTBits - 1, RTShift); + } + + inline int rdValue() const { + MOZ_ASSERT(instructionType() == kRegisterType); + return bits(RDShift + RDBits - 1, RDShift); + } + + inline int saValue() const { + MOZ_ASSERT(instructionType() == kRegisterType); + return bits(SAShift + SABits - 1, SAShift); + } + + inline int functionValue() const { + MOZ_ASSERT(instructionType() == kRegisterType || + instructionType() == kImmediateType); + return bits(FunctionShift + FunctionBits - 1, FunctionShift); + } + + inline int fdValue() const { return bits(FDShift + FDBits - 1, FDShift); } + + inline int fsValue() const { return bits(FSShift + FSBits - 1, FSShift); } + + inline int ftValue() const { return bits(FTShift + FTBits - 1, FTShift); } + + inline int frValue() const { return bits(FRShift + FRBits - 1, FRShift); } + + // Float Compare condition code instruction bits. + inline int fcccValue() const { + return bits(FCccShift + FCccBits - 1, FCccShift); + } + + // Float Branch condition code instruction bits. + inline int fbccValue() const { + return bits(FBccShift + FBccBits - 1, FBccShift); + } + + // Float Branch true/false instruction bit. + inline int fbtrueValue() const { + return bits(FBtrueShift + FBtrueBits - 1, FBtrueShift); + } + + // Return the fields at their original place in the instruction encoding. + inline OpcodeField opcodeFieldRaw() const { + return static_cast<OpcodeField>(instructionBits() & OpcodeMask); + } + + inline int rsFieldRaw() const { + MOZ_ASSERT(instructionType() == kRegisterType || + instructionType() == kImmediateType); + return instructionBits() & RSMask; + } + + // Same as above function, but safe to call within instructionType(). + inline int rsFieldRawNoAssert() const { return instructionBits() & RSMask; } + + inline int rtFieldRaw() const { + MOZ_ASSERT(instructionType() == kRegisterType || + instructionType() == kImmediateType); + return instructionBits() & RTMask; + } + + inline int rdFieldRaw() const { + MOZ_ASSERT(instructionType() == kRegisterType); + return instructionBits() & RDMask; + } + + inline int saFieldRaw() const { + MOZ_ASSERT(instructionType() == kRegisterType); + return instructionBits() & SAMask; + } + + inline int functionFieldRaw() const { + return instructionBits() & FunctionMask; + } + + // Get the secondary field according to the opcode. + inline int secondaryValue() const { + OpcodeField op = opcodeFieldRaw(); + switch (op) { + case op_special: + case op_special2: + return functionValue(); + case op_cop1: + return rsValue(); + case op_regimm: + return rtValue(); + default: + return ff_null; + } + } + + inline int32_t imm16Value() const { + MOZ_ASSERT(instructionType() == kImmediateType); + return bits(Imm16Shift + Imm16Bits - 1, Imm16Shift); + } + + inline int32_t imm26Value() const { + MOZ_ASSERT(instructionType() == kJumpType); + return bits(Imm26Shift + Imm26Bits - 1, Imm26Shift); + } + + // Say if the instruction should not be used in a branch delay slot. + bool isForbiddenInBranchDelay() const; + // Say if the instruction 'links'. e.g. jal, bal. + bool isLinkingInstruction() const; + // Say if the instruction is a debugger break/trap. + bool isTrap() const; + + private: + SimInstruction() = delete; + SimInstruction(const SimInstruction& other) = delete; + void operator=(const SimInstruction& other) = delete; +}; + +bool SimInstruction::isForbiddenInBranchDelay() const { + const int op = opcodeFieldRaw(); + switch (op) { + case op_j: + case op_jal: + case op_beq: + case op_bne: + case op_blez: + case op_bgtz: + case op_beql: + case op_bnel: + case op_blezl: + case op_bgtzl: + return true; + case op_regimm: + switch (rtFieldRaw()) { + case rt_bltz: + case rt_bgez: + case rt_bltzal: + case rt_bgezal: + return true; + default: + return false; + }; + break; + case op_special: + switch (functionFieldRaw()) { + case ff_jr: + case ff_jalr: + return true; + default: + return false; + }; + break; + default: + return false; + }; +} + +bool SimInstruction::isLinkingInstruction() const { + const int op = opcodeFieldRaw(); + switch (op) { + case op_jal: + return true; + case op_regimm: + switch (rtFieldRaw()) { + case rt_bgezal: + case rt_bltzal: + return true; + default: + return false; + }; + case op_special: + switch (functionFieldRaw()) { + case ff_jalr: + return true; + default: + return false; + }; + default: + return false; + }; +} + +bool SimInstruction::isTrap() const { + if (opcodeFieldRaw() != op_special) { + return false; + } else { + switch (functionFieldRaw()) { + case ff_break: + return instructionBits() != kCallRedirInstr; + case ff_tge: + case ff_tgeu: + case ff_tlt: + case ff_tltu: + case ff_teq: + case ff_tne: + return bits(15, 6) != kWasmTrapCode; + default: + return false; + }; + } +} + +SimInstruction::Type SimInstruction::instructionType() const { + switch (opcodeFieldRaw()) { + case op_special: + switch (functionFieldRaw()) { + case ff_jr: + case ff_jalr: + case ff_sync: + case ff_break: + case ff_sll: + case ff_dsll: + case ff_dsll32: + case ff_srl: + case ff_dsrl: + case ff_dsrl32: + case ff_sra: + case ff_dsra: + case ff_dsra32: + case ff_sllv: + case ff_dsllv: + case ff_srlv: + case ff_dsrlv: + case ff_srav: + case ff_dsrav: + case ff_mfhi: + case ff_mflo: + case ff_mult: + case ff_dmult: + case ff_multu: + case ff_dmultu: + case ff_div: + case ff_ddiv: + case ff_divu: + case ff_ddivu: + case ff_add: + case ff_dadd: + case ff_addu: + case ff_daddu: + case ff_sub: + case ff_dsub: + case ff_subu: + case ff_dsubu: + case ff_and: + case ff_or: + case ff_xor: + case ff_nor: + case ff_slt: + case ff_sltu: + case ff_tge: + case ff_tgeu: + case ff_tlt: + case ff_tltu: + case ff_teq: + case ff_tne: + case ff_movz: + case ff_movn: + case ff_movci: + return kRegisterType; + default: + return kUnsupported; + }; + break; + case op_special2: + switch (functionFieldRaw()) { + case ff_mul: + case ff_clz: + case ff_dclz: + return kRegisterType; + default: + return kUnsupported; + }; + break; + case op_special3: + switch (functionFieldRaw()) { + case ff_ins: + case ff_dins: + case ff_dinsm: + case ff_dinsu: + case ff_ext: + case ff_dext: + case ff_dextm: + case ff_dextu: + case ff_bshfl: + case ff_dbshfl: + return kRegisterType; + default: + return kUnsupported; + }; + break; + case op_cop1: // Coprocessor instructions. + switch (rsFieldRawNoAssert()) { + case rs_bc1: // Branch on coprocessor condition. + return kImmediateType; + default: + return kRegisterType; + }; + break; + case op_cop1x: + return kRegisterType; + // 16 bits Immediate type instructions. e.g.: addi dest, src, imm16. + case op_regimm: + case op_beq: + case op_bne: + case op_blez: + case op_bgtz: + case op_addi: + case op_daddi: + case op_addiu: + case op_daddiu: + case op_slti: + case op_sltiu: + case op_andi: + case op_ori: + case op_xori: + case op_lui: + case op_beql: + case op_bnel: + case op_blezl: + case op_bgtzl: + case op_lb: + case op_lbu: + case op_lh: + case op_lhu: + case op_lw: + case op_lwu: + case op_lwl: + case op_lwr: + case op_ll: + case op_lld: + case op_ld: + case op_ldl: + case op_ldr: + case op_sb: + case op_sh: + case op_sw: + case op_swl: + case op_swr: + case op_sc: + case op_scd: + case op_sd: + case op_sdl: + case op_sdr: + case op_lwc1: + case op_ldc1: + case op_swc1: + case op_sdc1: + return kImmediateType; + // 26 bits immediate type instructions. e.g.: j imm26. + case op_j: + case op_jal: + return kJumpType; + default: + return kUnsupported; + }; + return kUnsupported; +} + +// C/C++ argument slots size. +const int kCArgSlotCount = 0; +const int kCArgsSlotsSize = kCArgSlotCount * sizeof(uintptr_t); +const int kBranchReturnOffset = 2 * SimInstruction::kInstrSize; + +class CachePage { + public: + static const int LINE_VALID = 0; + static const int LINE_INVALID = 1; + + static const int kPageShift = 12; + static const int kPageSize = 1 << kPageShift; + static const int kPageMask = kPageSize - 1; + static const int kLineShift = 2; // The cache line is only 4 bytes right now. + static const int kLineLength = 1 << kLineShift; + static const int kLineMask = kLineLength - 1; + + CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } + + char* validityByte(int offset) { + return &validity_map_[offset >> kLineShift]; + } + + char* cachedData(int offset) { return &data_[offset]; } + + private: + char data_[kPageSize]; // The cached data. + static const int kValidityMapSize = kPageSize >> kLineShift; + char validity_map_[kValidityMapSize]; // One byte per line. +}; + +// Protects the icache() and redirection() properties of the +// Simulator. +class AutoLockSimulatorCache : public LockGuard<Mutex> { + using Base = LockGuard<Mutex>; + + public: + explicit AutoLockSimulatorCache() + : Base(SimulatorProcess::singleton_->cacheLock_) {} +}; + +mozilla::Atomic<size_t, mozilla::ReleaseAcquire> + SimulatorProcess::ICacheCheckingDisableCount( + 1); // Checking is disabled by default. +SimulatorProcess* SimulatorProcess::singleton_ = nullptr; + +int64_t Simulator::StopSimAt = -1; + +Simulator* Simulator::Create() { + auto sim = MakeUnique<Simulator>(); + if (!sim) { + return nullptr; + } + + if (!sim->init()) { + return nullptr; + } + + int64_t stopAt; + char* stopAtStr = getenv("MIPS_SIM_STOP_AT"); + if (stopAtStr && sscanf(stopAtStr, "%" PRIi64, &stopAt) == 1) { + fprintf(stderr, "\nStopping simulation at icount %" PRIi64 "\n", stopAt); + Simulator::StopSimAt = stopAt; + } + + return sim.release(); +} + +void Simulator::Destroy(Simulator* sim) { js_delete(sim); } + +// The MipsDebugger class is used by the simulator while debugging simulated +// code. +class MipsDebugger { + public: + explicit MipsDebugger(Simulator* sim) : sim_(sim) {} + + void stop(SimInstruction* instr); + void debug(); + // Print all registers with a nice formatting. + void printAllRegs(); + void printAllRegsIncludingFPU(); + + private: + // We set the breakpoint code to 0xfffff to easily recognize it. + static const Instr kBreakpointInstr = op_special | ff_break | 0xfffff << 6; + static const Instr kNopInstr = op_special | ff_sll; + + Simulator* sim_; + + int64_t getRegisterValue(int regnum); + int64_t getFPURegisterValueLong(int regnum); + float getFPURegisterValueFloat(int regnum); + double getFPURegisterValueDouble(int regnum); + bool getValue(const char* desc, int64_t* value); + + // Set or delete a breakpoint. Returns true if successful. + bool setBreakpoint(SimInstruction* breakpc); + bool deleteBreakpoint(SimInstruction* breakpc); + + // Undo and redo all breakpoints. This is needed to bracket disassembly and + // execution to skip past breakpoints when run from the debugger. + void undoBreakpoints(); + void redoBreakpoints(); +}; + +static void UNSUPPORTED() { + printf("Unsupported instruction.\n"); + MOZ_CRASH(); +} + +void MipsDebugger::stop(SimInstruction* instr) { + // Get the stop code. + uint32_t code = instr->bits(25, 6); + // Retrieve the encoded address, which comes just after this stop. + char* msg = + *reinterpret_cast<char**>(sim_->get_pc() + SimInstruction::kInstrSize); + // Update this stop description. + if (!sim_->watchedStops_[code].desc_) { + sim_->watchedStops_[code].desc_ = msg; + } + // Print the stop message and code if it is not the default code. + if (code != kMaxStopCode) { + printf("Simulator hit stop %u: %s\n", code, msg); + } else { + printf("Simulator hit %s\n", msg); + } + sim_->set_pc(sim_->get_pc() + 2 * SimInstruction::kInstrSize); + debug(); +} + +int64_t MipsDebugger::getRegisterValue(int regnum) { + if (regnum == kPCRegister) { + return sim_->get_pc(); + } + return sim_->getRegister(regnum); +} + +int64_t MipsDebugger::getFPURegisterValueLong(int regnum) { + return sim_->getFpuRegister(regnum); +} + +float MipsDebugger::getFPURegisterValueFloat(int regnum) { + return sim_->getFpuRegisterFloat(regnum); +} + +double MipsDebugger::getFPURegisterValueDouble(int regnum) { + return sim_->getFpuRegisterDouble(regnum); +} + +bool MipsDebugger::getValue(const char* desc, int64_t* value) { + Register reg = Register::FromName(desc); + if (reg != InvalidReg) { + *value = getRegisterValue(reg.code()); + return true; + } + + if (strncmp(desc, "0x", 2) == 0) { + return sscanf(desc, "%" PRIu64, reinterpret_cast<uint64_t*>(value)) == 1; + } + return sscanf(desc, "%" PRIi64, value) == 1; +} + +bool MipsDebugger::setBreakpoint(SimInstruction* breakpc) { + // Check if a breakpoint can be set. If not return without any side-effects. + if (sim_->break_pc_ != nullptr) { + return false; + } + + // Set the breakpoint. + sim_->break_pc_ = breakpc; + sim_->break_instr_ = breakpc->instructionBits(); + // Not setting the breakpoint instruction in the code itself. It will be set + // when the debugger shell continues. + return true; +} + +bool MipsDebugger::deleteBreakpoint(SimInstruction* breakpc) { + if (sim_->break_pc_ != nullptr) { + sim_->break_pc_->setInstructionBits(sim_->break_instr_); + } + + sim_->break_pc_ = nullptr; + sim_->break_instr_ = 0; + return true; +} + +void MipsDebugger::undoBreakpoints() { + if (sim_->break_pc_) { + sim_->break_pc_->setInstructionBits(sim_->break_instr_); + } +} + +void MipsDebugger::redoBreakpoints() { + if (sim_->break_pc_) { + sim_->break_pc_->setInstructionBits(kBreakpointInstr); + } +} + +void MipsDebugger::printAllRegs() { + int64_t value; + for (uint32_t i = 0; i < Registers::Total; i++) { + value = getRegisterValue(i); + printf("%3s: 0x%016" PRIx64 " %20" PRIi64 " ", Registers::GetName(i), + value, value); + + if (i % 2) { + printf("\n"); + } + } + printf("\n"); + + value = getRegisterValue(Simulator::LO); + printf(" LO: 0x%016" PRIx64 " %20" PRIi64 " ", value, value); + value = getRegisterValue(Simulator::HI); + printf(" HI: 0x%016" PRIx64 " %20" PRIi64 "\n", value, value); + value = getRegisterValue(Simulator::pc); + printf(" pc: 0x%016" PRIx64 "\n", value); +} + +void MipsDebugger::printAllRegsIncludingFPU() { + printAllRegs(); + + printf("\n\n"); + // f0, f1, f2, ... f31. + for (uint32_t i = 0; i < FloatRegisters::TotalPhys; i++) { + printf("%3s: 0x%016" PRIi64 "\tflt: %-8.4g\tdbl: %-16.4g\n", + FloatRegisters::GetName(i), getFPURegisterValueLong(i), + getFPURegisterValueFloat(i), getFPURegisterValueDouble(i)); + } +} + +static char* ReadLine(const char* prompt) { + UniqueChars result; + char lineBuf[256]; + int offset = 0; + bool keepGoing = true; + fprintf(stdout, "%s", prompt); + fflush(stdout); + while (keepGoing) { + if (fgets(lineBuf, sizeof(lineBuf), stdin) == nullptr) { + // fgets got an error. Just give up. + return nullptr; + } + int len = strlen(lineBuf); + if (len > 0 && lineBuf[len - 1] == '\n') { + // Since we read a new line we are done reading the line. This + // will exit the loop after copying this buffer into the result. + keepGoing = false; + } + if (!result) { + // Allocate the initial result and make room for the terminating '\0' + result.reset(js_pod_malloc<char>(len + 1)); + if (!result) { + return nullptr; + } + } else { + // Allocate a new result with enough room for the new addition. + int new_len = offset + len + 1; + char* new_result = js_pod_malloc<char>(new_len); + if (!new_result) { + return nullptr; + } + // Copy the existing input into the new array and set the new + // array as the result. + memcpy(new_result, result.get(), offset * sizeof(char)); + result.reset(new_result); + } + // Copy the newly read line into the result. + memcpy(result.get() + offset, lineBuf, len * sizeof(char)); + offset += len; + } + + MOZ_ASSERT(result); + result[offset] = '\0'; + return result.release(); +} + +static void DisassembleInstruction(uint64_t pc) { + uint8_t* bytes = reinterpret_cast<uint8_t*>(pc); + char hexbytes[256]; + sprintf(hexbytes, "0x%x 0x%x 0x%x 0x%x", bytes[0], bytes[1], bytes[2], + bytes[3]); + char llvmcmd[1024]; + sprintf(llvmcmd, + "bash -c \"echo -n '%p'; echo '%s' | " + "llvm-mc -disassemble -arch=mips64el -mcpu=mips64r2 | " + "grep -v pure_instructions | grep -v .text\"", + static_cast<void*>(bytes), hexbytes); + if (system(llvmcmd)) { + printf("Cannot disassemble instruction.\n"); + } +} + +void MipsDebugger::debug() { + intptr_t lastPC = -1; + bool done = false; + +#define COMMAND_SIZE 63 +#define ARG_SIZE 255 + +#define STR(a) #a +#define XSTR(a) STR(a) + + char cmd[COMMAND_SIZE + 1]; + char arg1[ARG_SIZE + 1]; + char arg2[ARG_SIZE + 1]; + char* argv[3] = {cmd, arg1, arg2}; + + // Make sure to have a proper terminating character if reaching the limit. + cmd[COMMAND_SIZE] = 0; + arg1[ARG_SIZE] = 0; + arg2[ARG_SIZE] = 0; + + // Undo all set breakpoints while running in the debugger shell. This will + // make them invisible to all commands. + undoBreakpoints(); + + while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { + if (lastPC != sim_->get_pc()) { + DisassembleInstruction(sim_->get_pc()); + lastPC = sim_->get_pc(); + } + char* line = ReadLine("sim> "); + if (line == nullptr) { + break; + } else { + char* last_input = sim_->lastDebuggerInput(); + if (strcmp(line, "\n") == 0 && last_input != nullptr) { + line = last_input; + } else { + // Ownership is transferred to sim_; + sim_->setLastDebuggerInput(line); + } + // Use sscanf to parse the individual parts of the command line. At the + // moment no command expects more than two parameters. + int argc = sscanf(line, + "%" XSTR(COMMAND_SIZE) "s " + "%" XSTR(ARG_SIZE) "s " + "%" XSTR(ARG_SIZE) "s", + cmd, arg1, arg2); + if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { + SimInstruction* instr = + reinterpret_cast<SimInstruction*>(sim_->get_pc()); + if (!instr->isTrap()) { + sim_->instructionDecode( + reinterpret_cast<SimInstruction*>(sim_->get_pc())); + } else { + // Allow si to jump over generated breakpoints. + printf("/!\\ Jumping over generated breakpoint.\n"); + sim_->set_pc(sim_->get_pc() + SimInstruction::kInstrSize); + } + } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { + // Execute the one instruction we broke at with breakpoints disabled. + sim_->instructionDecode( + reinterpret_cast<SimInstruction*>(sim_->get_pc())); + // Leave the debugger shell. + done = true; + } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { + if (argc == 2) { + int64_t value; + if (strcmp(arg1, "all") == 0) { + printAllRegs(); + } else if (strcmp(arg1, "allf") == 0) { + printAllRegsIncludingFPU(); + } else { + Register reg = Register::FromName(arg1); + FloatRegisters::Encoding fReg = FloatRegisters::FromName(arg1); + if (reg != InvalidReg) { + value = getRegisterValue(reg.code()); + printf("%s: 0x%016" PRIi64 " %20" PRIi64 " \n", arg1, value, + value); + } else if (fReg != FloatRegisters::Invalid) { + printf("%3s: 0x%016" PRIi64 "\tflt: %-8.4g\tdbl: %-16.4g\n", + FloatRegisters::GetName(fReg), + getFPURegisterValueLong(fReg), + getFPURegisterValueFloat(fReg), + getFPURegisterValueDouble(fReg)); + } else { + printf("%s unrecognized\n", arg1); + } + } + } else { + printf("print <register> or print <fpu register> single\n"); + } + } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { + int64_t* cur = nullptr; + int64_t* end = nullptr; + int next_arg = 1; + + if (strcmp(cmd, "stack") == 0) { + cur = reinterpret_cast<int64_t*>(sim_->getRegister(Simulator::sp)); + } else { // Command "mem". + int64_t value; + if (!getValue(arg1, &value)) { + printf("%s unrecognized\n", arg1); + continue; + } + cur = reinterpret_cast<int64_t*>(value); + next_arg++; + } + + int64_t words; + if (argc == next_arg) { + words = 10; + } else { + if (!getValue(argv[next_arg], &words)) { + words = 10; + } + } + end = cur + words; + + while (cur < end) { + printf(" %p: 0x%016" PRIx64 " %20" PRIi64, cur, *cur, *cur); + printf("\n"); + cur++; + } + + } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0) || + (strcmp(cmd, "di") == 0)) { + uint8_t* cur = nullptr; + uint8_t* end = nullptr; + + if (argc == 1) { + cur = reinterpret_cast<uint8_t*>(sim_->get_pc()); + end = cur + (10 * SimInstruction::kInstrSize); + } else if (argc == 2) { + Register reg = Register::FromName(arg1); + if (reg != InvalidReg || strncmp(arg1, "0x", 2) == 0) { + // The argument is an address or a register name. + int64_t value; + if (getValue(arg1, &value)) { + cur = reinterpret_cast<uint8_t*>(value); + // Disassemble 10 instructions at <arg1>. + end = cur + (10 * SimInstruction::kInstrSize); + } + } else { + // The argument is the number of instructions. + int64_t value; + if (getValue(arg1, &value)) { + cur = reinterpret_cast<uint8_t*>(sim_->get_pc()); + // Disassemble <arg1> instructions. + end = cur + (value * SimInstruction::kInstrSize); + } + } + } else { + int64_t value1; + int64_t value2; + if (getValue(arg1, &value1) && getValue(arg2, &value2)) { + cur = reinterpret_cast<uint8_t*>(value1); + end = cur + (value2 * SimInstruction::kInstrSize); + } + } + + while (cur < end) { + DisassembleInstruction(uint64_t(cur)); + cur += SimInstruction::kInstrSize; + } + } else if (strcmp(cmd, "gdb") == 0) { + printf("relinquishing control to gdb\n"); + asm("int $3"); + printf("regaining control from gdb\n"); + } else if (strcmp(cmd, "break") == 0) { + if (argc == 2) { + int64_t value; + if (getValue(arg1, &value)) { + if (!setBreakpoint(reinterpret_cast<SimInstruction*>(value))) { + printf("setting breakpoint failed\n"); + } + } else { + printf("%s unrecognized\n", arg1); + } + } else { + printf("break <address>\n"); + } + } else if (strcmp(cmd, "del") == 0) { + if (!deleteBreakpoint(nullptr)) { + printf("deleting breakpoint failed\n"); + } + } else if (strcmp(cmd, "flags") == 0) { + printf("No flags on MIPS !\n"); + } else if (strcmp(cmd, "stop") == 0) { + int64_t value; + intptr_t stop_pc = sim_->get_pc() - 2 * SimInstruction::kInstrSize; + SimInstruction* stop_instr = reinterpret_cast<SimInstruction*>(stop_pc); + SimInstruction* msg_address = reinterpret_cast<SimInstruction*>( + stop_pc + SimInstruction::kInstrSize); + if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { + // Remove the current stop. + if (sim_->isStopInstruction(stop_instr)) { + stop_instr->setInstructionBits(kNopInstr); + msg_address->setInstructionBits(kNopInstr); + } else { + printf("Not at debugger stop.\n"); + } + } else if (argc == 3) { + // Print information about all/the specified breakpoint(s). + if (strcmp(arg1, "info") == 0) { + if (strcmp(arg2, "all") == 0) { + printf("Stop information:\n"); + for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; + i++) { + sim_->printStopInfo(i); + } + } else if (getValue(arg2, &value)) { + sim_->printStopInfo(value); + } else { + printf("Unrecognized argument.\n"); + } + } else if (strcmp(arg1, "enable") == 0) { + // Enable all/the specified breakpoint(s). + if (strcmp(arg2, "all") == 0) { + for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; + i++) { + sim_->enableStop(i); + } + } else if (getValue(arg2, &value)) { + sim_->enableStop(value); + } else { + printf("Unrecognized argument.\n"); + } + } else if (strcmp(arg1, "disable") == 0) { + // Disable all/the specified breakpoint(s). + if (strcmp(arg2, "all") == 0) { + for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; + i++) { + sim_->disableStop(i); + } + } else if (getValue(arg2, &value)) { + sim_->disableStop(value); + } else { + printf("Unrecognized argument.\n"); + } + } + } else { + printf("Wrong usage. Use help command for more information.\n"); + } + } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { + printf("cont\n"); + printf(" continue execution (alias 'c')\n"); + printf("stepi\n"); + printf(" step one instruction (alias 'si')\n"); + printf("print <register>\n"); + printf(" print register content (alias 'p')\n"); + printf(" use register name 'all' to print all registers\n"); + printf("printobject <register>\n"); + printf(" print an object from a register (alias 'po')\n"); + printf("stack [<words>]\n"); + printf(" dump stack content, default dump 10 words)\n"); + printf("mem <address> [<words>]\n"); + printf(" dump memory content, default dump 10 words)\n"); + printf("flags\n"); + printf(" print flags\n"); + printf("disasm [<instructions>]\n"); + printf("disasm [<address/register>]\n"); + printf("disasm [[<address/register>] <instructions>]\n"); + printf(" disassemble code, default is 10 instructions\n"); + printf(" from pc (alias 'di')\n"); + printf("gdb\n"); + printf(" enter gdb\n"); + printf("break <address>\n"); + printf(" set a break point on the address\n"); + printf("del\n"); + printf(" delete the breakpoint\n"); + printf("stop feature:\n"); + printf(" Description:\n"); + printf(" Stops are debug instructions inserted by\n"); + printf(" the Assembler::stop() function.\n"); + printf(" When hitting a stop, the Simulator will\n"); + printf(" stop and and give control to the Debugger.\n"); + printf(" All stop codes are watched:\n"); + printf(" - They can be enabled / disabled: the Simulator\n"); + printf(" will / won't stop when hitting them.\n"); + printf(" - The Simulator keeps track of how many times they \n"); + printf(" are met. (See the info command.) Going over a\n"); + printf(" disabled stop still increases its counter. \n"); + printf(" Commands:\n"); + printf(" stop info all/<code> : print infos about number <code>\n"); + printf(" or all stop(s).\n"); + printf(" stop enable/disable all/<code> : enables / disables\n"); + printf(" all or number <code> stop(s)\n"); + printf(" stop unstop\n"); + printf(" ignore the stop instruction at the current location\n"); + printf(" from now on\n"); + } else { + printf("Unknown command: %s\n", cmd); + } + } + } + + // Add all the breakpoints back to stop execution and enter the debugger + // shell when hit. + redoBreakpoints(); + +#undef COMMAND_SIZE +#undef ARG_SIZE + +#undef STR +#undef XSTR +} + +static bool AllOnOnePage(uintptr_t start, int size) { + intptr_t start_page = (start & ~CachePage::kPageMask); + intptr_t end_page = ((start + size) & ~CachePage::kPageMask); + return start_page == end_page; +} + +void Simulator::setLastDebuggerInput(char* input) { + js_free(lastDebuggerInput_); + lastDebuggerInput_ = input; +} + +static CachePage* GetCachePageLocked(SimulatorProcess::ICacheMap& i_cache, + void* page) { + SimulatorProcess::ICacheMap::AddPtr p = i_cache.lookupForAdd(page); + if (p) { + return p->value(); + } + AutoEnterOOMUnsafeRegion oomUnsafe; + CachePage* new_page = js_new<CachePage>(); + if (!new_page || !i_cache.add(p, page, new_page)) { + oomUnsafe.crash("Simulator CachePage"); + } + return new_page; +} + +// Flush from start up to and not including start + size. +static void FlushOnePageLocked(SimulatorProcess::ICacheMap& i_cache, + intptr_t start, int size) { + MOZ_ASSERT(size <= CachePage::kPageSize); + MOZ_ASSERT(AllOnOnePage(start, size - 1)); + MOZ_ASSERT((start & CachePage::kLineMask) == 0); + MOZ_ASSERT((size & CachePage::kLineMask) == 0); + void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); + int offset = (start & CachePage::kPageMask); + CachePage* cache_page = GetCachePageLocked(i_cache, page); + char* valid_bytemap = cache_page->validityByte(offset); + memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); +} + +static void FlushICacheLocked(SimulatorProcess::ICacheMap& i_cache, + void* start_addr, size_t size) { + intptr_t start = reinterpret_cast<intptr_t>(start_addr); + int intra_line = (start & CachePage::kLineMask); + start -= intra_line; + size += intra_line; + size = ((size - 1) | CachePage::kLineMask) + 1; + int offset = (start & CachePage::kPageMask); + while (!AllOnOnePage(start, size - 1)) { + int bytes_to_flush = CachePage::kPageSize - offset; + FlushOnePageLocked(i_cache, start, bytes_to_flush); + start += bytes_to_flush; + size -= bytes_to_flush; + MOZ_ASSERT((start & CachePage::kPageMask) == 0); + offset = 0; + } + if (size != 0) { + FlushOnePageLocked(i_cache, start, size); + } +} + +/* static */ +void SimulatorProcess::checkICacheLocked(SimInstruction* instr) { + intptr_t address = reinterpret_cast<intptr_t>(instr); + void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); + void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); + int offset = (address & CachePage::kPageMask); + CachePage* cache_page = GetCachePageLocked(icache(), page); + char* cache_valid_byte = cache_page->validityByte(offset); + bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); + char* cached_line = cache_page->cachedData(offset & ~CachePage::kLineMask); + + if (cache_hit) { + // Check that the data in memory matches the contents of the I-cache. + int cmpret = + memcmp(reinterpret_cast<void*>(instr), cache_page->cachedData(offset), + SimInstruction::kInstrSize); + MOZ_ASSERT(cmpret == 0); + } else { + // Cache miss. Load memory into the cache. + memcpy(cached_line, line, CachePage::kLineLength); + *cache_valid_byte = CachePage::LINE_VALID; + } +} + +HashNumber SimulatorProcess::ICacheHasher::hash(const Lookup& l) { + return U32(reinterpret_cast<uintptr_t>(l)) >> 2; +} + +bool SimulatorProcess::ICacheHasher::match(const Key& k, const Lookup& l) { + MOZ_ASSERT((reinterpret_cast<intptr_t>(k) & CachePage::kPageMask) == 0); + MOZ_ASSERT((reinterpret_cast<intptr_t>(l) & CachePage::kPageMask) == 0); + return k == l; +} + +/* static */ +void SimulatorProcess::FlushICache(void* start_addr, size_t size) { + if (!ICacheCheckingDisableCount) { + AutoLockSimulatorCache als; + js::jit::FlushICacheLocked(icache(), start_addr, size); + } +} + +Simulator::Simulator() { + // Set up simulator support first. Some of this information is needed to + // setup the architecture state. + + // Note, allocation and anything that depends on allocated memory is + // deferred until init(), in order to handle OOM properly. + + stack_ = nullptr; + stackLimit_ = 0; + pc_modified_ = false; + icount_ = 0; + break_count_ = 0; + break_pc_ = nullptr; + break_instr_ = 0; + single_stepping_ = false; + single_step_callback_ = nullptr; + single_step_callback_arg_ = nullptr; + + // Set up architecture state. + // All registers are initialized to zero to start with. + for (int i = 0; i < Register::kNumSimuRegisters; i++) { + registers_[i] = 0; + } + for (int i = 0; i < Simulator::FPURegister::kNumFPURegisters; i++) { + FPUregisters_[i] = 0; + } + FCSR_ = 0; + LLBit_ = false; + LLAddr_ = 0; + lastLLValue_ = 0; + + // The ra and pc are initialized to a known bad value that will cause an + // access violation if the simulator ever tries to execute it. + registers_[pc] = bad_ra; + registers_[ra] = bad_ra; + + for (int i = 0; i < kNumExceptions; i++) { + exceptions[i] = 0; + } + + lastDebuggerInput_ = nullptr; +} + +bool Simulator::init() { + // Allocate 2MB for the stack. Note that we will only use 1MB, see below. + static const size_t stackSize = 2 * 1024 * 1024; + stack_ = js_pod_malloc<char>(stackSize); + if (!stack_) { + return false; + } + + // Leave a safety margin of 1MB to prevent overrunning the stack when + // pushing values (total stack size is 2MB). + stackLimit_ = reinterpret_cast<uintptr_t>(stack_) + 1024 * 1024; + + // The sp is initialized to point to the bottom (high address) of the + // allocated stack area. To be safe in potential stack underflows we leave + // some buffer below. + registers_[sp] = reinterpret_cast<int64_t>(stack_) + stackSize - 64; + + return true; +} + +// When the generated code calls an external reference we need to catch that in +// the simulator. The external reference will be a function compiled for the +// host architecture. We need to call that function instead of trying to +// execute it with the simulator. We do that by redirecting the external +// reference to a swi (software-interrupt) instruction that is handled by +// the simulator. We write the original destination of the jump just at a known +// offset from the swi instruction so the simulator knows what to call. +class Redirection { + friend class SimulatorProcess; + + // sim's lock must already be held. + Redirection(void* nativeFunction, ABIFunctionType type) + : nativeFunction_(nativeFunction), + swiInstruction_(kCallRedirInstr), + type_(type), + next_(nullptr) { + next_ = SimulatorProcess::redirection(); + if (!SimulatorProcess::ICacheCheckingDisableCount) { + FlushICacheLocked(SimulatorProcess::icache(), addressOfSwiInstruction(), + SimInstruction::kInstrSize); + } + SimulatorProcess::setRedirection(this); + } + + public: + void* addressOfSwiInstruction() { return &swiInstruction_; } + void* nativeFunction() const { return nativeFunction_; } + ABIFunctionType type() const { return type_; } + + static Redirection* Get(void* nativeFunction, ABIFunctionType type) { + AutoLockSimulatorCache als; + + Redirection* current = SimulatorProcess::redirection(); + for (; current != nullptr; current = current->next_) { + if (current->nativeFunction_ == nativeFunction) { + MOZ_ASSERT(current->type() == type); + return current; + } + } + + // Note: we can't use js_new here because the constructor is private. + AutoEnterOOMUnsafeRegion oomUnsafe; + Redirection* redir = js_pod_malloc<Redirection>(1); + if (!redir) { + oomUnsafe.crash("Simulator redirection"); + } + new (redir) Redirection(nativeFunction, type); + return redir; + } + + static Redirection* FromSwiInstruction(SimInstruction* swiInstruction) { + uint8_t* addrOfSwi = reinterpret_cast<uint8_t*>(swiInstruction); + uint8_t* addrOfRedirection = + addrOfSwi - offsetof(Redirection, swiInstruction_); + return reinterpret_cast<Redirection*>(addrOfRedirection); + } + + private: + void* nativeFunction_; + uint32_t swiInstruction_; + ABIFunctionType type_; + Redirection* next_; +}; + +Simulator::~Simulator() { js_free(stack_); } + +SimulatorProcess::SimulatorProcess() + : cacheLock_(mutexid::SimulatorCacheLock), redirection_(nullptr) { + if (getenv("MIPS_SIM_ICACHE_CHECKS")) { + ICacheCheckingDisableCount = 0; + } +} + +SimulatorProcess::~SimulatorProcess() { + Redirection* r = redirection_; + while (r) { + Redirection* next = r->next_; + js_delete(r); + r = next; + } +} + +/* static */ +void* Simulator::RedirectNativeFunction(void* nativeFunction, + ABIFunctionType type) { + Redirection* redirection = Redirection::Get(nativeFunction, type); + return redirection->addressOfSwiInstruction(); +} + +// Get the active Simulator for the current thread. +Simulator* Simulator::Current() { + JSContext* cx = TlsContext.get(); + MOZ_ASSERT(CurrentThreadCanAccessRuntime(cx->runtime())); + return cx->simulator(); +} + +// Sets the register in the architecture state. It will also deal with updating +// Simulator internal state for special registers such as PC. +void Simulator::setRegister(int reg, int64_t value) { + MOZ_ASSERT((reg >= 0) && (reg < Register::kNumSimuRegisters)); + if (reg == pc) { + pc_modified_ = true; + } + + // Zero register always holds 0. + registers_[reg] = (reg == 0) ? 0 : value; +} + +void Simulator::setFpuRegister(int fpureg, int64_t value) { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + FPUregisters_[fpureg] = value; +} + +void Simulator::setFpuRegisterLo(int fpureg, int32_t value) { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + *mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg]) = value; +} + +void Simulator::setFpuRegisterHi(int fpureg, int32_t value) { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + *((mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg])) + 1) = value; +} + +void Simulator::setFpuRegisterFloat(int fpureg, float value) { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + *mozilla::BitwiseCast<float*>(&FPUregisters_[fpureg]) = value; +} + +void Simulator::setFpuRegisterDouble(int fpureg, double value) { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + *mozilla::BitwiseCast<double*>(&FPUregisters_[fpureg]) = value; +} + +// Get the register from the architecture state. This function does handle +// the special case of accessing the PC register. +int64_t Simulator::getRegister(int reg) const { + MOZ_ASSERT((reg >= 0) && (reg < Register::kNumSimuRegisters)); + if (reg == 0) { + return 0; + } + return registers_[reg] + ((reg == pc) ? SimInstruction::kPCReadOffset : 0); +} + +int64_t Simulator::getFpuRegister(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return FPUregisters_[fpureg]; +} + +int32_t Simulator::getFpuRegisterLo(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return *mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg]); +} + +int32_t Simulator::getFpuRegisterHi(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return *((mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg])) + 1); +} + +float Simulator::getFpuRegisterFloat(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return *mozilla::BitwiseCast<float*>(&FPUregisters_[fpureg]); +} + +double Simulator::getFpuRegisterDouble(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return *mozilla::BitwiseCast<double*>(&FPUregisters_[fpureg]); +} + +void Simulator::setCallResultDouble(double result) { + setFpuRegisterDouble(f0, result); +} + +void Simulator::setCallResultFloat(float result) { + setFpuRegisterFloat(f0, result); +} + +void Simulator::setCallResult(int64_t res) { setRegister(v0, res); } + +void Simulator::setCallResult(__int128_t res) { + setRegister(v0, I64(res)); + setRegister(v1, I64(res >> 64)); +} + +// Helper functions for setting and testing the FCSR register's bits. +void Simulator::setFCSRBit(uint32_t cc, bool value) { + if (value) { + FCSR_ |= (1 << cc); + } else { + FCSR_ &= ~(1 << cc); + } +} + +bool Simulator::testFCSRBit(uint32_t cc) { return FCSR_ & (1 << cc); } + +// Sets the rounding error codes in FCSR based on the result of the rounding. +// Returns true if the operation was invalid. +template <typename T> +bool Simulator::setFCSRRoundError(double original, double rounded) { + bool ret = false; + + setFCSRBit(kFCSRInexactCauseBit, false); + setFCSRBit(kFCSRUnderflowCauseBit, false); + setFCSRBit(kFCSROverflowCauseBit, false); + setFCSRBit(kFCSRInvalidOpCauseBit, false); + + if (!std::isfinite(original) || !std::isfinite(rounded)) { + setFCSRBit(kFCSRInvalidOpFlagBit, true); + setFCSRBit(kFCSRInvalidOpCauseBit, true); + ret = true; + } + + if (original != rounded) { + setFCSRBit(kFCSRInexactFlagBit, true); + setFCSRBit(kFCSRInexactCauseBit, true); + } + + if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { + setFCSRBit(kFCSRUnderflowFlagBit, true); + setFCSRBit(kFCSRUnderflowCauseBit, true); + ret = true; + } + + if ((long double)rounded > (long double)std::numeric_limits<T>::max() || + (long double)rounded < (long double)std::numeric_limits<T>::min()) { + setFCSRBit(kFCSROverflowFlagBit, true); + setFCSRBit(kFCSROverflowCauseBit, true); + // The reference is not really clear but it seems this is required: + setFCSRBit(kFCSRInvalidOpFlagBit, true); + setFCSRBit(kFCSRInvalidOpCauseBit, true); + ret = true; + } + + return ret; +} + +// Raw access to the PC register. +void Simulator::set_pc(int64_t value) { + pc_modified_ = true; + registers_[pc] = value; +} + +bool Simulator::has_bad_pc() const { + return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc)); +} + +// Raw access to the PC register without the special adjustment when reading. +int64_t Simulator::get_pc() const { return registers_[pc]; } + +JS::ProfilingFrameIterator::RegisterState Simulator::registerState() { + wasm::RegisterState state; + state.pc = (void*)get_pc(); + state.fp = (void*)getRegister(fp); + state.sp = (void*)getRegister(sp); + state.lr = (void*)getRegister(ra); + return state; +} + +static bool AllowUnaligned() { + static bool hasReadFlag = false; + static bool unalignedAllowedFlag = false; + if (!hasReadFlag) { + unalignedAllowedFlag = !!getenv("MIPS_UNALIGNED"); + hasReadFlag = true; + } + return unalignedAllowedFlag; +} + +// MIPS memory instructions (except lw(d)l/r , sw(d)l/r) trap on unaligned +// memory access enabling the OS to handle them via trap-and-emulate. Note that +// simulator runs have the runtime system running directly on the host system +// and only generated code is executed in the simulator. Since the host is +// typically IA32 it will not trap on unaligned memory access. We assume that +// that executing correct generated code will not produce unaligned memory +// access, so we explicitly check for address alignment and trap. Note that +// trapping does not occur when executing wasm code, which requires that +// unaligned memory access provides correct result. + +uint8_t Simulator::readBU(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 1)) { + return 0xff; + } + + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); + return *ptr; +} + +int8_t Simulator::readB(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 1)) { + return -1; + } + + int8_t* ptr = reinterpret_cast<int8_t*>(addr); + return *ptr; +} + +void Simulator::writeB(uint64_t addr, uint8_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 1)) { + return; + } + + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); + *ptr = value; +} + +void Simulator::writeB(uint64_t addr, int8_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 1)) { + return; + } + + int8_t* ptr = reinterpret_cast<int8_t*>(addr); + *ptr = value; +} + +uint16_t Simulator::readHU(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return 0xffff; + } + + if (AllowUnaligned() || (addr & 1) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); + return *ptr; + } + printf("Unaligned unsigned halfword read at 0x%016" PRIx64 + ", pc=0x%016" PRIxPTR "\n", + addr, reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +int16_t Simulator::readH(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return -1; + } + + if (AllowUnaligned() || (addr & 1) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + int16_t* ptr = reinterpret_cast<int16_t*>(addr); + return *ptr; + } + printf("Unaligned signed halfword read at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR + "\n", + addr, reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +void Simulator::writeH(uint64_t addr, uint16_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return; + } + + if (AllowUnaligned() || (addr & 1) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); + LLBit_ = false; + *ptr = value; + return; + } + printf("Unaligned unsigned halfword write at 0x%016" PRIx64 + ", pc=0x%016" PRIxPTR "\n", + addr, reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); +} + +void Simulator::writeH(uint64_t addr, int16_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return; + } + + if (AllowUnaligned() || (addr & 1) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + int16_t* ptr = reinterpret_cast<int16_t*>(addr); + LLBit_ = false; + *ptr = value; + return; + } + printf("Unaligned halfword write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", + addr, reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); +} + +uint32_t Simulator::readWU(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + if (AllowUnaligned() || (addr & 3) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); + return *ptr; + } + printf("Unaligned read at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +int32_t Simulator::readW(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + if (AllowUnaligned() || (addr & 3) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + int32_t* ptr = reinterpret_cast<int32_t*>(addr); + return *ptr; + } + printf("Unaligned read at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +void Simulator::writeW(uint64_t addr, uint32_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 4)) { + return; + } + + if (AllowUnaligned() || (addr & 3) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); + LLBit_ = false; + *ptr = value; + return; + } + printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); +} + +void Simulator::writeW(uint64_t addr, int32_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 4)) { + return; + } + + if (AllowUnaligned() || (addr & 3) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + int32_t* ptr = reinterpret_cast<int32_t*>(addr); + LLBit_ = false; + *ptr = value; + return; + } + printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); +} + +int64_t Simulator::readDW(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 8)) { + return -1; + } + + if (AllowUnaligned() || (addr & kPointerAlignmentMask) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); + return *ptr; + } + printf("Unaligned read at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +void Simulator::writeDW(uint64_t addr, int64_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 8)) { + return; + } + + if (AllowUnaligned() || (addr & kPointerAlignmentMask) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + int64_t* ptr = reinterpret_cast<int64_t*>(addr); + LLBit_ = false; + *ptr = value; + return; + } + printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); +} + +double Simulator::readD(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 8)) { + return NAN; + } + + if (AllowUnaligned() || (addr & kDoubleAlignmentMask) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + double* ptr = reinterpret_cast<double*>(addr); + return *ptr; + } + printf("Unaligned (double) read at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", + addr, reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +void Simulator::writeD(uint64_t addr, double value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 8)) { + return; + } + + if (AllowUnaligned() || (addr & kDoubleAlignmentMask) == 0 || + wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + double* ptr = reinterpret_cast<double*>(addr); + LLBit_ = false; + *ptr = value; + return; + } + printf("Unaligned (double) write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", + addr, reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); +} + +int Simulator::loadLinkedW(uint64_t addr, SimInstruction* instr) { + if ((addr & 3) == 0) { + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + volatile int32_t* ptr = reinterpret_cast<volatile int32_t*>(addr); + int32_t value = *ptr; + lastLLValue_ = value; + LLAddr_ = addr; + // Note that any memory write or "external" interrupt should reset this + // value to false. + LLBit_ = true; + return value; + } + printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +int Simulator::storeConditionalW(uint64_t addr, int value, + SimInstruction* instr) { + // Correct behavior in this case, as defined by architecture, is to just + // return 0, but there is no point at allowing that. It is certainly an + // indicator of a bug. + if (addr != LLAddr_) { + printf("SC to bad address: 0x%016" PRIx64 ", pc=0x%016" PRIx64 + ", expected: 0x%016" PRIx64 "\n", + addr, reinterpret_cast<intptr_t>(instr), LLAddr_); + MOZ_CRASH(); + } + + if ((addr & 3) == 0) { + SharedMem<int32_t*> ptr = + SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr)); + + if (!LLBit_) { + return 0; + } + + LLBit_ = false; + LLAddr_ = 0; + int32_t expected = int32_t(lastLLValue_); + int32_t old = + AtomicOperations::compareExchangeSeqCst(ptr, expected, int32_t(value)); + return (old == expected) ? 1 : 0; + } + printf("Unaligned SC at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +int64_t Simulator::loadLinkedD(uint64_t addr, SimInstruction* instr) { + if ((addr & kPointerAlignmentMask) == 0) { + if (handleWasmSegFault(addr, 8)) { + return -1; + } + + volatile int64_t* ptr = reinterpret_cast<volatile int64_t*>(addr); + int64_t value = *ptr; + lastLLValue_ = value; + LLAddr_ = addr; + // Note that any memory write or "external" interrupt should reset this + // value to false. + LLBit_ = true; + return value; + } + printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +int Simulator::storeConditionalD(uint64_t addr, int64_t value, + SimInstruction* instr) { + // Correct behavior in this case, as defined by architecture, is to just + // return 0, but there is no point at allowing that. It is certainly an + // indicator of a bug. + if (addr != LLAddr_) { + printf("SC to bad address: 0x%016" PRIx64 ", pc=0x%016" PRIx64 + ", expected: 0x%016" PRIx64 "\n", + addr, reinterpret_cast<intptr_t>(instr), LLAddr_); + MOZ_CRASH(); + } + + if ((addr & kPointerAlignmentMask) == 0) { + SharedMem<int64_t*> ptr = + SharedMem<int64_t*>::shared(reinterpret_cast<int64_t*>(addr)); + + if (!LLBit_) { + return 0; + } + + LLBit_ = false; + LLAddr_ = 0; + int64_t expected = lastLLValue_; + int64_t old = + AtomicOperations::compareExchangeSeqCst(ptr, expected, int64_t(value)); + return (old == expected) ? 1 : 0; + } + printf("Unaligned SC at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +uintptr_t Simulator::stackLimit() const { return stackLimit_; } + +uintptr_t* Simulator::addressOfStackLimit() { return &stackLimit_; } + +bool Simulator::overRecursed(uintptr_t newsp) const { + if (newsp == 0) { + newsp = getRegister(sp); + } + return newsp <= stackLimit(); +} + +bool Simulator::overRecursedWithExtra(uint32_t extra) const { + uintptr_t newsp = getRegister(sp) - extra; + return newsp <= stackLimit(); +} + +// Unsupported instructions use format to print an error and stop execution. +void Simulator::format(SimInstruction* instr, const char* format) { + printf("Simulator found unsupported instruction:\n 0x%016lx: %s\n", + reinterpret_cast<intptr_t>(instr), format); + MOZ_CRASH(); +} + +// Note: With the code below we assume that all runtime calls return a 64 bits +// result. If they don't, the v1 result register contains a bogus value, which +// is fine because it is caller-saved. +ABI_FUNCTION_TYPE_SIM_PROTOTYPES + +// Software interrupt instructions are used by the simulator to call into C++. +void Simulator::softwareInterrupt(SimInstruction* instr) { + int32_t func = instr->functionFieldRaw(); + uint32_t code = (func == ff_break) ? instr->bits(25, 6) : -1; + + // We first check if we met a call_rt_redirected. + if (instr->instructionBits() == kCallRedirInstr) { +#if !defined(USES_N64_ABI) + MOZ_CRASH("Only N64 ABI supported."); +#else + Redirection* redirection = Redirection::FromSwiInstruction(instr); + uintptr_t nativeFn = + reinterpret_cast<uintptr_t>(redirection->nativeFunction()); + + // Get the SP for reading stack arguments + int64_t* sp_ = reinterpret_cast<int64_t*>(getRegister(sp)); + + // Store argument register values in local variables for ease of use below. + int64_t a0_ = getRegister(a0); + int64_t a1_ = getRegister(a1); + int64_t a2_ = getRegister(a2); + int64_t a3_ = getRegister(a3); + int64_t a4_ = getRegister(a4); + int64_t a5_ = getRegister(a5); + int64_t a6_ = getRegister(a6); + int64_t a7_ = getRegister(a7); + float f12_s = getFpuRegisterFloat(f12); + float f13_s = getFpuRegisterFloat(f13); + float f14_s = getFpuRegisterFloat(f14); + float f15_s = getFpuRegisterFloat(f15); + float f16_s = getFpuRegisterFloat(f16); + float f17_s = getFpuRegisterFloat(f17); + float f18_s = getFpuRegisterFloat(f18); + double f12_d = getFpuRegisterDouble(f12); + double f13_d = getFpuRegisterDouble(f13); + double f14_d = getFpuRegisterDouble(f14); + double f15_d = getFpuRegisterDouble(f15); + + // This is dodgy but it works because the C entry stubs are never moved. + // See comment in codegen-arm.cc and bug 1242173. + int64_t saved_ra = getRegister(ra); + + bool stack_aligned = (getRegister(sp) & (ABIStackAlignment - 1)) == 0; + if (!stack_aligned) { + fprintf(stderr, "Runtime call with unaligned stack!\n"); + MOZ_CRASH(); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + switch (redirection->type()) { + ABI_FUNCTION_TYPE_MIPS64_SIM_DISPATCH + + default: + MOZ_CRASH("Unknown function type."); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + setRegister(ra, saved_ra); + set_pc(getRegister(ra)); +#endif + } else if (func == ff_break && code <= kMaxStopCode) { + if (isWatchpoint(code)) { + printWatchpoint(code); + } else { + increaseStopCounter(code); + handleStop(code, instr); + } + } else { + switch (func) { + case ff_tge: + case ff_tgeu: + case ff_tlt: + case ff_tltu: + case ff_teq: + case ff_tne: + if (instr->bits(15, 6) == kWasmTrapCode) { + uint8_t* newPC; + if (wasm::HandleIllegalInstruction(registerState(), &newPC)) { + set_pc(int64_t(newPC)); + return; + } + } + }; + // All remaining break_ codes, and all traps are handled here. + MipsDebugger dbg(this); + dbg.debug(); + } +} + +// Stop helper functions. +bool Simulator::isWatchpoint(uint32_t code) { + return (code <= kMaxWatchpointCode); +} + +void Simulator::printWatchpoint(uint32_t code) { + MipsDebugger dbg(this); + ++break_count_; + printf("\n---- break %d marker: %20" PRIi64 " (instr count: %20" PRIi64 + ") ----\n", + code, break_count_, icount_); + dbg.printAllRegs(); // Print registers and continue running. +} + +void Simulator::handleStop(uint32_t code, SimInstruction* instr) { + // Stop if it is enabled, otherwise go on jumping over the stop + // and the message address. + if (isEnabledStop(code)) { + MipsDebugger dbg(this); + dbg.stop(instr); + } else { + set_pc(get_pc() + 2 * SimInstruction::kInstrSize); + } +} + +bool Simulator::isStopInstruction(SimInstruction* instr) { + int32_t func = instr->functionFieldRaw(); + uint32_t code = U32(instr->bits(25, 6)); + return (func == ff_break) && code > kMaxWatchpointCode && + code <= kMaxStopCode; +} + +bool Simulator::isEnabledStop(uint32_t code) { + MOZ_ASSERT(code <= kMaxStopCode); + MOZ_ASSERT(code > kMaxWatchpointCode); + return !(watchedStops_[code].count_ & kStopDisabledBit); +} + +void Simulator::enableStop(uint32_t code) { + if (!isEnabledStop(code)) { + watchedStops_[code].count_ &= ~kStopDisabledBit; + } +} + +void Simulator::disableStop(uint32_t code) { + if (isEnabledStop(code)) { + watchedStops_[code].count_ |= kStopDisabledBit; + } +} + +void Simulator::increaseStopCounter(uint32_t code) { + MOZ_ASSERT(code <= kMaxStopCode); + if ((watchedStops_[code].count_ & ~(1 << 31)) == 0x7fffffff) { + printf( + "Stop counter for code %i has overflowed.\n" + "Enabling this code and reseting the counter to 0.\n", + code); + watchedStops_[code].count_ = 0; + enableStop(code); + } else { + watchedStops_[code].count_++; + } +} + +// Print a stop status. +void Simulator::printStopInfo(uint32_t code) { + if (code <= kMaxWatchpointCode) { + printf("That is a watchpoint, not a stop.\n"); + return; + } else if (code > kMaxStopCode) { + printf("Code too large, only %u stops can be used\n", kMaxStopCode + 1); + return; + } + const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; + int32_t count = watchedStops_[code].count_ & ~kStopDisabledBit; + // Don't print the state of unused breakpoints. + if (count != 0) { + if (watchedStops_[code].desc_) { + printf("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, state, + count, watchedStops_[code].desc_); + } else { + printf("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, + count); + } + } +} + +void Simulator::signalExceptions() { + for (int i = 1; i < kNumExceptions; i++) { + if (exceptions[i] != 0) { + MOZ_CRASH("Error: Exception raised."); + } + } +} + +// Helper function for decodeTypeRegister. +void Simulator::configureTypeRegister(SimInstruction* instr, int64_t& alu_out, + __int128& i128hilo, + unsigned __int128& u128hilo, + int64_t& next_pc, + int32_t& return_addr_reg, + bool& do_interrupt) { + // Every local variable declared here needs to be const. + // This is to make sure that changed values are sent back to + // decodeTypeRegister correctly. + + // Instruction fields. + const OpcodeField op = instr->opcodeFieldRaw(); + const int32_t rs_reg = instr->rsValue(); + const int64_t rs = getRegister(rs_reg); + const int32_t rt_reg = instr->rtValue(); + const int64_t rt = getRegister(rt_reg); + const int32_t rd_reg = instr->rdValue(); + const uint32_t sa = instr->saValue(); + + const int32_t fs_reg = instr->fsValue(); + __int128 temp; + + // ---------- Configuration. + switch (op) { + case op_cop1: // Coprocessor instructions. + switch (instr->rsFieldRaw()) { + case rs_bc1: // Handled in DecodeTypeImmed, should never come here. + MOZ_CRASH(); + break; + case rs_cfc1: + // At the moment only FCSR is supported. + MOZ_ASSERT(fs_reg == kFCSRRegister); + alu_out = FCSR_; + break; + case rs_mfc1: + alu_out = getFpuRegisterLo(fs_reg); + break; + case rs_dmfc1: + alu_out = getFpuRegister(fs_reg); + break; + case rs_mfhc1: + alu_out = getFpuRegisterHi(fs_reg); + break; + case rs_ctc1: + case rs_mtc1: + case rs_dmtc1: + case rs_mthc1: + // Do the store in the execution step. + break; + case rs_s: + case rs_d: + case rs_w: + case rs_l: + case rs_ps: + // Do everything in the execution step. + break; + default: + MOZ_CRASH(); + }; + break; + case op_cop1x: + break; + case op_special: + switch (instr->functionFieldRaw()) { + case ff_jr: + case ff_jalr: + next_pc = getRegister(instr->rsValue()); + return_addr_reg = instr->rdValue(); + break; + case ff_sll: + alu_out = I64(I32(rt) << sa); + break; + case ff_dsll: + alu_out = rt << sa; + break; + case ff_dsll32: + alu_out = rt << (sa + 32); + break; + case ff_srl: + if (rs_reg == 0) { + // Regular logical right shift of a word by a fixed number of + // bits instruction. RS field is always equal to 0. + alu_out = I64(I32(U32(I32_CHECK(rt)) >> sa)); + } else { + // Logical right-rotate of a word by a fixed number of bits. This + // is special case of SRL instruction, added in MIPS32 Release 2. + // RS field is equal to 00001. + alu_out = I64(I32((U32(I32_CHECK(rt)) >> sa) | + (U32(I32_CHECK(rt)) << (32 - sa)))); + } + break; + case ff_dsrl: + if (rs_reg == 0) { + // Regular logical right shift of a double word by a fixed number of + // bits instruction. RS field is always equal to 0. + alu_out = U64(rt) >> sa; + } else { + // Logical right-rotate of a word by a fixed number of bits. This + // is special case of DSRL instruction, added in MIPS64 Release 2. + // RS field is equal to 00001. + alu_out = (U64(rt) >> sa) | (U64(rt) << (64 - sa)); + } + break; + case ff_dsrl32: + if (rs_reg == 0) { + // Regular logical right shift of a double word by a fixed number of + // bits instruction. RS field is always equal to 0. + alu_out = U64(rt) >> (sa + 32); + } else { + // Logical right-rotate of a double word by a fixed number of bits. + // This is special case of DSRL instruction, added in MIPS64 + // Release 2. RS field is equal to 00001. + alu_out = (U64(rt) >> (sa + 32)) | (U64(rt) << (64 - (sa + 32))); + } + break; + case ff_sra: + alu_out = I64(I32_CHECK(rt)) >> sa; + break; + case ff_dsra: + alu_out = rt >> sa; + break; + case ff_dsra32: + alu_out = rt >> (sa + 32); + break; + case ff_sllv: + alu_out = I64(I32(rt) << rs); + break; + case ff_dsllv: + alu_out = rt << rs; + break; + case ff_srlv: + if (sa == 0) { + // Regular logical right-shift of a word by a variable number of + // bits instruction. SA field is always equal to 0. + alu_out = I64(I32(U32(I32_CHECK(rt)) >> rs)); + } else { + // Logical right-rotate of a word by a variable number of bits. + // This is special case od SRLV instruction, added in MIPS32 + // Release 2. SA field is equal to 00001. + alu_out = I64(I32((U32(I32_CHECK(rt)) >> rs) | + (U32(I32_CHECK(rt)) << (32 - rs)))); + } + break; + case ff_dsrlv: + if (sa == 0) { + // Regular logical right-shift of a double word by a variable number + // of bits instruction. SA field is always equal to 0. + alu_out = U64(rt) >> rs; + } else { + // Logical right-rotate of a double word by a variable number of + // bits. This is special case od DSRLV instruction, added in MIPS64 + // Release 2. SA field is equal to 00001. + alu_out = (U64(rt) >> rs) | (U64(rt) << (64 - rs)); + } + break; + case ff_srav: + alu_out = I64(I32_CHECK(rt) >> rs); + break; + case ff_dsrav: + alu_out = rt >> rs; + break; + case ff_mfhi: + alu_out = getRegister(HI); + break; + case ff_mflo: + alu_out = getRegister(LO); + break; + case ff_mult: + i128hilo = I64(U32(I32_CHECK(rs))) * I64(U32(I32_CHECK(rt))); + break; + case ff_dmult: + i128hilo = I128(rs) * I128(rt); + break; + case ff_multu: + u128hilo = U64(U32(I32_CHECK(rs))) * U64(U32(I32_CHECK(rt))); + break; + case ff_dmultu: + u128hilo = U128(rs) * U128(rt); + break; + case ff_add: + alu_out = I32_CHECK(rs) + I32_CHECK(rt); + if ((alu_out << 32) != (alu_out << 31)) { + exceptions[kIntegerOverflow] = 1; + } + alu_out = I32(alu_out); + break; + case ff_dadd: + temp = I128(rs) + I128(rt); + if ((temp << 64) != (temp << 63)) { + exceptions[kIntegerOverflow] = 1; + } + alu_out = I64(temp); + break; + case ff_addu: + alu_out = I32(I32_CHECK(rs) + I32_CHECK(rt)); + break; + case ff_daddu: + alu_out = rs + rt; + break; + case ff_sub: + alu_out = I32_CHECK(rs) - I32_CHECK(rt); + if ((alu_out << 32) != (alu_out << 31)) { + exceptions[kIntegerUnderflow] = 1; + } + alu_out = I32(alu_out); + break; + case ff_dsub: + temp = I128(rs) - I128(rt); + if ((temp << 64) != (temp << 63)) { + exceptions[kIntegerUnderflow] = 1; + } + alu_out = I64(temp); + break; + case ff_subu: + alu_out = I32(I32_CHECK(rs) - I32_CHECK(rt)); + break; + case ff_dsubu: + alu_out = rs - rt; + break; + case ff_and: + alu_out = rs & rt; + break; + case ff_or: + alu_out = rs | rt; + break; + case ff_xor: + alu_out = rs ^ rt; + break; + case ff_nor: + alu_out = ~(rs | rt); + break; + case ff_slt: + alu_out = I64(rs) < I64(rt) ? 1 : 0; + break; + case ff_sltu: + alu_out = U64(rs) < U64(rt) ? 1 : 0; + break; + case ff_sync: + break; + // Break and trap instructions. + case ff_break: + do_interrupt = true; + break; + case ff_tge: + do_interrupt = rs >= rt; + break; + case ff_tgeu: + do_interrupt = U64(rs) >= U64(rt); + break; + case ff_tlt: + do_interrupt = rs < rt; + break; + case ff_tltu: + do_interrupt = U64(rs) < U64(rt); + break; + case ff_teq: + do_interrupt = rs == rt; + break; + case ff_tne: + do_interrupt = rs != rt; + break; + case ff_movn: + case ff_movz: + case ff_movci: + // No action taken on decode. + break; + case ff_div: + if (I32_CHECK(rs) == INT_MIN && I32_CHECK(rt) == -1) { + i128hilo = U32(INT_MIN); + } else { + uint32_t div = I32_CHECK(rs) / I32_CHECK(rt); + uint32_t mod = I32_CHECK(rs) % I32_CHECK(rt); + i128hilo = (I64(mod) << 32) | div; + } + break; + case ff_ddiv: + if (I64(rs) == INT64_MIN && I64(rt) == -1) { + i128hilo = U64(INT64_MIN); + } else { + uint64_t div = rs / rt; + uint64_t mod = rs % rt; + i128hilo = (I128(mod) << 64) | div; + } + break; + case ff_divu: { + uint32_t div = U32(I32_CHECK(rs)) / U32(I32_CHECK(rt)); + uint32_t mod = U32(I32_CHECK(rs)) % U32(I32_CHECK(rt)); + i128hilo = (U64(mod) << 32) | div; + } break; + case ff_ddivu: + if (0 == rt) { + i128hilo = (I128(Unpredictable) << 64) | I64(Unpredictable); + } else { + uint64_t div = U64(rs) / U64(rt); + uint64_t mod = U64(rs) % U64(rt); + i128hilo = (I128(mod) << 64) | div; + } + break; + default: + MOZ_CRASH(); + }; + break; + case op_special2: + switch (instr->functionFieldRaw()) { + case ff_mul: + alu_out = I32(I32_CHECK(rs) * + I32_CHECK(rt)); // Only the lower 32 bits are kept. + break; + case ff_clz: + alu_out = U32(I32_CHECK(rs)) ? __builtin_clz(U32(I32_CHECK(rs))) : 32; + break; + case ff_dclz: + alu_out = U64(rs) ? __builtin_clzl(U64(rs)) : 64; + break; + default: + MOZ_CRASH(); + }; + break; + case op_special3: + switch (instr->functionFieldRaw()) { + case ff_ins: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of insert. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of insert. + uint16_t lsb = sa; + uint16_t size = msb - lsb + 1; + uint32_t mask = (1 << size) - 1; + if (lsb > msb) { + alu_out = Unpredictable; + } else { + alu_out = I32((U32(I32_CHECK(rt)) & ~(mask << lsb)) | + ((U32(I32_CHECK(rs)) & mask) << lsb)); + } + break; + } + case ff_dins: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of insert. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of insert. + uint16_t lsb = sa; + uint16_t size = msb - lsb + 1; + uint64_t mask = (1ul << size) - 1; + if (lsb > msb) { + alu_out = Unpredictable; + } else { + alu_out = (U64(rt) & ~(mask << lsb)) | ((U64(rs) & mask) << lsb); + } + break; + } + case ff_dinsm: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of insert. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of insert. + uint16_t lsb = sa; + uint16_t size = msb - lsb + 33; + uint64_t mask = (1ul << size) - 1; + alu_out = (U64(rt) & ~(mask << lsb)) | ((U64(rs) & mask) << lsb); + break; + } + case ff_dinsu: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of insert. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of insert. + uint16_t lsb = sa + 32; + uint16_t size = msb - lsb + 33; + uint64_t mask = (1ul << size) - 1; + if (sa > msb) { + alu_out = Unpredictable; + } else { + alu_out = (U64(rt) & ~(mask << lsb)) | ((U64(rs) & mask) << lsb); + } + break; + } + case ff_ext: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of extract. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of extract. + uint16_t lsb = sa; + uint16_t size = msb + 1; + uint32_t mask = (1 << size) - 1; + if ((lsb + msb) > 31) { + alu_out = Unpredictable; + } else { + alu_out = (U32(I32_CHECK(rs)) & (mask << lsb)) >> lsb; + } + break; + } + case ff_dext: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of extract. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of extract. + uint16_t lsb = sa; + uint16_t size = msb + 1; + uint64_t mask = (1ul << size) - 1; + alu_out = (U64(rs) & (mask << lsb)) >> lsb; + break; + } + case ff_dextm: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of extract. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of extract. + uint16_t lsb = sa; + uint16_t size = msb + 33; + uint64_t mask = (1ul << size) - 1; + if ((lsb + msb + 32 + 1) > 64) { + alu_out = Unpredictable; + } else { + alu_out = (U64(rs) & (mask << lsb)) >> lsb; + } + break; + } + case ff_dextu: { // Mips64r2 instruction. + // Interpret rd field as 5-bit msb of extract. + uint16_t msb = rd_reg; + // Interpret sa field as 5-bit lsb of extract. + uint16_t lsb = sa + 32; + uint16_t size = msb + 1; + uint64_t mask = (1ul << size) - 1; + if ((lsb + msb + 1) > 64) { + alu_out = Unpredictable; + } else { + alu_out = (U64(rs) & (mask << lsb)) >> lsb; + } + break; + } + case ff_bshfl: { // Mips32r2 instruction. + if (16 == sa) { // seb + alu_out = I64(I8(I32_CHECK(rt))); + } else if (24 == sa) { // seh + alu_out = I64(I16(I32_CHECK(rt))); + } else if (2 == sa) { // wsbh + uint32_t input = U32(I32_CHECK(rt)); + uint64_t output = 0; + + uint32_t mask = 0xFF000000; + for (int i = 0; i < 4; i++) { + uint32_t tmp = mask & input; + if (i % 2 == 0) { + tmp = tmp >> 8; + } else { + tmp = tmp << 8; + } + output = output | tmp; + mask = mask >> 8; + } + alu_out = I64(I32(output)); + } else { + MOZ_CRASH(); + } + break; + } + case ff_dbshfl: { // Mips64r2 instruction. + uint64_t input = U64(rt); + uint64_t output = 0; + + if (2 == sa) { // dsbh + uint64_t mask = 0xFF00000000000000; + for (int i = 0; i < 8; i++) { + uint64_t tmp = mask & input; + if (i % 2 == 0) + tmp = tmp >> 8; + else + tmp = tmp << 8; + + output = output | tmp; + mask = mask >> 8; + } + } else if (5 == sa) { // dshd + uint64_t mask = 0xFFFF000000000000; + for (int i = 0; i < 4; i++) { + uint64_t tmp = mask & input; + if (i == 0) + tmp = tmp >> 48; + else if (i == 1) + tmp = tmp >> 16; + else if (i == 2) + tmp = tmp << 16; + else + tmp = tmp << 48; + output = output | tmp; + mask = mask >> 16; + } + } else { + MOZ_CRASH(); + } + + alu_out = I64(output); + break; + } + default: + MOZ_CRASH(); + }; + break; + default: + MOZ_CRASH(); + }; +} + +// Handle execution based on instruction types. +void Simulator::decodeTypeRegister(SimInstruction* instr) { + // Instruction fields. + const OpcodeField op = instr->opcodeFieldRaw(); + const int32_t rs_reg = instr->rsValue(); + const int64_t rs = getRegister(rs_reg); + const int32_t rt_reg = instr->rtValue(); + const int64_t rt = getRegister(rt_reg); + const int32_t rd_reg = instr->rdValue(); + + const int32_t fr_reg = instr->frValue(); + const int32_t fs_reg = instr->fsValue(); + const int32_t ft_reg = instr->ftValue(); + const int32_t fd_reg = instr->fdValue(); + __int128 i128hilo = 0; + unsigned __int128 u128hilo = 0; + + // ALU output. + // It should not be used as is. Instructions using it should always + // initialize it first. + int64_t alu_out = 0x12345678; + + // For break and trap instructions. + bool do_interrupt = false; + + // For jr and jalr. + // Get current pc. + int64_t current_pc = get_pc(); + // Next pc + int64_t next_pc = 0; + int32_t return_addr_reg = 31; + + // Set up the variables if needed before executing the instruction. + configureTypeRegister(instr, alu_out, i128hilo, u128hilo, next_pc, + return_addr_reg, do_interrupt); + + // ---------- Raise exceptions triggered. + signalExceptions(); + + // ---------- Execution. + switch (op) { + case op_cop1: + switch (instr->rsFieldRaw()) { + case rs_bc1: // Branch on coprocessor condition. + MOZ_CRASH(); + break; + case rs_cfc1: + setRegister(rt_reg, alu_out); + [[fallthrough]]; + case rs_mfc1: + setRegister(rt_reg, alu_out); + break; + case rs_dmfc1: + setRegister(rt_reg, alu_out); + break; + case rs_mfhc1: + setRegister(rt_reg, alu_out); + break; + case rs_ctc1: + // At the moment only FCSR is supported. + MOZ_ASSERT(fs_reg == kFCSRRegister); + FCSR_ = registers_[rt_reg]; + break; + case rs_mtc1: + setFpuRegisterLo(fs_reg, registers_[rt_reg]); + break; + case rs_dmtc1: + setFpuRegister(fs_reg, registers_[rt_reg]); + break; + case rs_mthc1: + setFpuRegisterHi(fs_reg, registers_[rt_reg]); + break; + case rs_s: + float f, ft_value, fs_value; + uint32_t cc, fcsr_cc; + int64_t i64; + fs_value = getFpuRegisterFloat(fs_reg); + ft_value = getFpuRegisterFloat(ft_reg); + cc = instr->fcccValue(); + fcsr_cc = GetFCSRConditionBit(cc); + switch (instr->functionFieldRaw()) { + case ff_add_fmt: + setFpuRegisterFloat(fd_reg, fs_value + ft_value); + break; + case ff_sub_fmt: + setFpuRegisterFloat(fd_reg, fs_value - ft_value); + break; + case ff_mul_fmt: + setFpuRegisterFloat(fd_reg, fs_value * ft_value); + break; + case ff_div_fmt: + setFpuRegisterFloat(fd_reg, fs_value / ft_value); + break; + case ff_abs_fmt: + setFpuRegisterFloat(fd_reg, fabsf(fs_value)); + break; + case ff_mov_fmt: + setFpuRegisterFloat(fd_reg, fs_value); + break; + case ff_neg_fmt: + setFpuRegisterFloat(fd_reg, -fs_value); + break; + case ff_sqrt_fmt: + setFpuRegisterFloat(fd_reg, sqrtf(fs_value)); + break; + case ff_c_un_fmt: + setFCSRBit(fcsr_cc, std::isnan(fs_value) || std::isnan(ft_value)); + break; + case ff_c_eq_fmt: + setFCSRBit(fcsr_cc, (fs_value == ft_value)); + break; + case ff_c_ueq_fmt: + setFCSRBit(fcsr_cc, + (fs_value == ft_value) || + (std::isnan(fs_value) || std::isnan(ft_value))); + break; + case ff_c_olt_fmt: + setFCSRBit(fcsr_cc, (fs_value < ft_value)); + break; + case ff_c_ult_fmt: + setFCSRBit(fcsr_cc, + (fs_value < ft_value) || + (std::isnan(fs_value) || std::isnan(ft_value))); + break; + case ff_c_ole_fmt: + setFCSRBit(fcsr_cc, (fs_value <= ft_value)); + break; + case ff_c_ule_fmt: + setFCSRBit(fcsr_cc, + (fs_value <= ft_value) || + (std::isnan(fs_value) || std::isnan(ft_value))); + break; + case ff_cvt_d_fmt: + f = getFpuRegisterFloat(fs_reg); + setFpuRegisterDouble(fd_reg, static_cast<double>(f)); + break; + case ff_cvt_w_fmt: // Convert float to word. + // Rounding modes are not yet supported. + MOZ_ASSERT((FCSR_ & 3) == 0); + // In rounding mode 0 it should behave like ROUND. + [[fallthrough]]; + case ff_round_w_fmt: { // Round double to word (round half to + // even). + float rounded = std::floor(fs_value + 0.5); + int32_t result = I32(rounded); + if ((result & 1) != 0 && result - fs_value == 0.5) { + // If the number is halfway between two integers, + // round to the even one. + result--; + } + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(fs_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_trunc_w_fmt: { // Truncate float to word (round towards 0). + float rounded = truncf(fs_value); + int32_t result = I32(rounded); + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(fs_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_floor_w_fmt: { // Round float to word towards negative + // infinity. + float rounded = std::floor(fs_value); + int32_t result = I32(rounded); + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(fs_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_ceil_w_fmt: { // Round double to word towards positive + // infinity. + float rounded = std::ceil(fs_value); + int32_t result = I32(rounded); + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(fs_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_cvt_l_fmt: // Mips64r2: Truncate float to 64-bit long-word. + // Rounding modes are not yet supported. + MOZ_ASSERT((FCSR_ & 3) == 0); + // In rounding mode 0 it should behave like ROUND. + [[fallthrough]]; + case ff_round_l_fmt: { // Mips64r2 instruction. + float rounded = fs_value > 0 ? std::floor(fs_value + 0.5) + : std::ceil(fs_value - 0.5); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(fs_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_trunc_l_fmt: { // Mips64r2 instruction. + float rounded = truncf(fs_value); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(fs_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_floor_l_fmt: { // Mips64r2 instruction. + float rounded = std::floor(fs_value); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(fs_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_ceil_l_fmt: { // Mips64r2 instruction. + float rounded = std::ceil(fs_value); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(fs_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_cvt_ps_s: + case ff_c_f_fmt: + MOZ_CRASH(); + break; + case ff_movf_fmt: + if (testFCSRBit(fcsr_cc)) { + setFpuRegisterFloat(fd_reg, getFpuRegisterFloat(fs_reg)); + } + break; + case ff_movz_fmt: + if (rt == 0) { + setFpuRegisterFloat(fd_reg, getFpuRegisterFloat(fs_reg)); + } + break; + case ff_movn_fmt: + if (rt != 0) { + setFpuRegisterFloat(fd_reg, getFpuRegisterFloat(fs_reg)); + } + break; + default: + MOZ_CRASH(); + } + break; + case rs_d: + double dt_value, ds_value; + ds_value = getFpuRegisterDouble(fs_reg); + dt_value = getFpuRegisterDouble(ft_reg); + cc = instr->fcccValue(); + fcsr_cc = GetFCSRConditionBit(cc); + switch (instr->functionFieldRaw()) { + case ff_add_fmt: + setFpuRegisterDouble(fd_reg, ds_value + dt_value); + break; + case ff_sub_fmt: + setFpuRegisterDouble(fd_reg, ds_value - dt_value); + break; + case ff_mul_fmt: + setFpuRegisterDouble(fd_reg, ds_value * dt_value); + break; + case ff_div_fmt: + setFpuRegisterDouble(fd_reg, ds_value / dt_value); + break; + case ff_abs_fmt: + setFpuRegisterDouble(fd_reg, fabs(ds_value)); + break; + case ff_mov_fmt: + setFpuRegisterDouble(fd_reg, ds_value); + break; + case ff_neg_fmt: + setFpuRegisterDouble(fd_reg, -ds_value); + break; + case ff_sqrt_fmt: + setFpuRegisterDouble(fd_reg, sqrt(ds_value)); + break; + case ff_c_un_fmt: + setFCSRBit(fcsr_cc, std::isnan(ds_value) || std::isnan(dt_value)); + break; + case ff_c_eq_fmt: + setFCSRBit(fcsr_cc, (ds_value == dt_value)); + break; + case ff_c_ueq_fmt: + setFCSRBit(fcsr_cc, + (ds_value == dt_value) || + (std::isnan(ds_value) || std::isnan(dt_value))); + break; + case ff_c_olt_fmt: + setFCSRBit(fcsr_cc, (ds_value < dt_value)); + break; + case ff_c_ult_fmt: + setFCSRBit(fcsr_cc, + (ds_value < dt_value) || + (std::isnan(ds_value) || std::isnan(dt_value))); + break; + case ff_c_ole_fmt: + setFCSRBit(fcsr_cc, (ds_value <= dt_value)); + break; + case ff_c_ule_fmt: + setFCSRBit(fcsr_cc, + (ds_value <= dt_value) || + (std::isnan(ds_value) || std::isnan(dt_value))); + break; + case ff_cvt_w_fmt: // Convert double to word. + // Rounding modes are not yet supported. + MOZ_ASSERT((FCSR_ & 3) == 0); + // In rounding mode 0 it should behave like ROUND. + [[fallthrough]]; + case ff_round_w_fmt: { // Round double to word (round half to + // even). + double rounded = std::floor(ds_value + 0.5); + int32_t result = I32(rounded); + if ((result & 1) != 0 && result - ds_value == 0.5) { + // If the number is halfway between two integers, + // round to the even one. + result--; + } + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(ds_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_trunc_w_fmt: { // Truncate double to word (round towards + // 0). + double rounded = trunc(ds_value); + int32_t result = I32(rounded); + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(ds_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_floor_w_fmt: { // Round double to word towards negative + // infinity. + double rounded = std::floor(ds_value); + int32_t result = I32(rounded); + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(ds_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_ceil_w_fmt: { // Round double to word towards positive + // infinity. + double rounded = std::ceil(ds_value); + int32_t result = I32(rounded); + setFpuRegisterLo(fd_reg, result); + if (setFCSRRoundError<int32_t>(ds_value, rounded)) { + setFpuRegisterLo(fd_reg, kFPUInvalidResult); + } + break; + } + case ff_cvt_s_fmt: // Convert double to float (single). + setFpuRegisterFloat(fd_reg, static_cast<float>(ds_value)); + break; + case ff_cvt_l_fmt: // Mips64r2: Truncate double to 64-bit + // long-word. + // Rounding modes are not yet supported. + MOZ_ASSERT((FCSR_ & 3) == 0); + // In rounding mode 0 it should behave like ROUND. + [[fallthrough]]; + case ff_round_l_fmt: { // Mips64r2 instruction. + double rounded = ds_value > 0 ? std::floor(ds_value + 0.5) + : std::ceil(ds_value - 0.5); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(ds_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_trunc_l_fmt: { // Mips64r2 instruction. + double rounded = trunc(ds_value); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(ds_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_floor_l_fmt: { // Mips64r2 instruction. + double rounded = std::floor(ds_value); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(ds_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_ceil_l_fmt: { // Mips64r2 instruction. + double rounded = std::ceil(ds_value); + i64 = I64(rounded); + setFpuRegister(fd_reg, i64); + if (setFCSRRoundError<int64_t>(ds_value, rounded)) { + setFpuRegister(fd_reg, kFPUInvalidResult64); + } + break; + } + case ff_c_f_fmt: + MOZ_CRASH(); + break; + case ff_movz_fmt: + if (rt == 0) { + setFpuRegisterDouble(fd_reg, getFpuRegisterDouble(fs_reg)); + } + break; + case ff_movn_fmt: + if (rt != 0) { + setFpuRegisterDouble(fd_reg, getFpuRegisterDouble(fs_reg)); + } + break; + case ff_movf_fmt: + // location of cc field in MOVF is equal to float branch + // instructions + cc = instr->fbccValue(); + fcsr_cc = GetFCSRConditionBit(cc); + if (testFCSRBit(fcsr_cc)) { + setFpuRegisterDouble(fd_reg, getFpuRegisterDouble(fs_reg)); + } + break; + default: + MOZ_CRASH(); + } + break; + case rs_w: + switch (instr->functionFieldRaw()) { + case ff_cvt_s_fmt: // Convert word to float (single). + i64 = getFpuRegisterLo(fs_reg); + setFpuRegisterFloat(fd_reg, static_cast<float>(i64)); + break; + case ff_cvt_d_fmt: // Convert word to double. + i64 = getFpuRegisterLo(fs_reg); + setFpuRegisterDouble(fd_reg, static_cast<double>(i64)); + break; + default: + MOZ_CRASH(); + }; + break; + case rs_l: + switch (instr->functionFieldRaw()) { + case ff_cvt_d_fmt: // Mips64r2 instruction. + i64 = getFpuRegister(fs_reg); + setFpuRegisterDouble(fd_reg, static_cast<double>(i64)); + break; + case ff_cvt_s_fmt: + i64 = getFpuRegister(fs_reg); + setFpuRegisterFloat(fd_reg, static_cast<float>(i64)); + break; + default: + MOZ_CRASH(); + } + break; + case rs_ps: + break; + default: + MOZ_CRASH(); + }; + break; + case op_cop1x: + switch (instr->functionFieldRaw()) { + case ff_madd_s: + float fr, ft, fs; + fr = getFpuRegisterFloat(fr_reg); + fs = getFpuRegisterFloat(fs_reg); + ft = getFpuRegisterFloat(ft_reg); + setFpuRegisterFloat(fd_reg, fs * ft + fr); + break; + case ff_madd_d: + double dr, dt, ds; + dr = getFpuRegisterDouble(fr_reg); + ds = getFpuRegisterDouble(fs_reg); + dt = getFpuRegisterDouble(ft_reg); + setFpuRegisterDouble(fd_reg, ds * dt + dr); + break; + default: + MOZ_CRASH(); + }; + break; + case op_special: + switch (instr->functionFieldRaw()) { + case ff_jr: { + SimInstruction* branch_delay_instr = + reinterpret_cast<SimInstruction*>(current_pc + + SimInstruction::kInstrSize); + branchDelayInstructionDecode(branch_delay_instr); + set_pc(next_pc); + pc_modified_ = true; + break; + } + case ff_jalr: { + SimInstruction* branch_delay_instr = + reinterpret_cast<SimInstruction*>(current_pc + + SimInstruction::kInstrSize); + setRegister(return_addr_reg, + current_pc + 2 * SimInstruction::kInstrSize); + branchDelayInstructionDecode(branch_delay_instr); + set_pc(next_pc); + pc_modified_ = true; + break; + } + // Instructions using HI and LO registers. + case ff_mult: + setRegister(LO, I32(i128hilo & 0xffffffff)); + setRegister(HI, I32(i128hilo >> 32)); + break; + case ff_dmult: + setRegister(LO, I64(i128hilo & 0xfffffffffffffffful)); + setRegister(HI, I64(i128hilo >> 64)); + break; + case ff_multu: + setRegister(LO, I32(u128hilo & 0xffffffff)); + setRegister(HI, I32(u128hilo >> 32)); + break; + case ff_dmultu: + setRegister(LO, I64(u128hilo & 0xfffffffffffffffful)); + setRegister(HI, I64(u128hilo >> 64)); + break; + case ff_div: + case ff_divu: + // Divide by zero and overflow was not checked in the configuration + // step - div and divu do not raise exceptions. On division by 0 + // the result will be UNPREDICTABLE. On overflow (INT_MIN/-1), + // return INT_MIN which is what the hardware does. + setRegister(LO, I32(i128hilo & 0xffffffff)); + setRegister(HI, I32(i128hilo >> 32)); + break; + case ff_ddiv: + case ff_ddivu: + // Divide by zero and overflow was not checked in the configuration + // step - div and divu do not raise exceptions. On division by 0 + // the result will be UNPREDICTABLE. On overflow (INT_MIN/-1), + // return INT_MIN which is what the hardware does. + setRegister(LO, I64(i128hilo & 0xfffffffffffffffful)); + setRegister(HI, I64(i128hilo >> 64)); + break; + case ff_sync: + break; + // Break and trap instructions. + case ff_break: + case ff_tge: + case ff_tgeu: + case ff_tlt: + case ff_tltu: + case ff_teq: + case ff_tne: + if (do_interrupt) { + softwareInterrupt(instr); + } + break; + // Conditional moves. + case ff_movn: + if (rt) { + setRegister(rd_reg, rs); + } + break; + case ff_movci: { + uint32_t cc = instr->fbccValue(); + uint32_t fcsr_cc = GetFCSRConditionBit(cc); + if (instr->bit(16)) { // Read Tf bit. + if (testFCSRBit(fcsr_cc)) { + setRegister(rd_reg, rs); + } + } else { + if (!testFCSRBit(fcsr_cc)) { + setRegister(rd_reg, rs); + } + } + break; + } + case ff_movz: + if (!rt) { + setRegister(rd_reg, rs); + } + break; + default: // For other special opcodes we do the default operation. + setRegister(rd_reg, alu_out); + }; + break; + case op_special2: + switch (instr->functionFieldRaw()) { + case ff_mul: + setRegister(rd_reg, alu_out); + // HI and LO are UNPREDICTABLE after the operation. + setRegister(LO, Unpredictable); + setRegister(HI, Unpredictable); + break; + default: // For other special2 opcodes we do the default operation. + setRegister(rd_reg, alu_out); + } + break; + case op_special3: + switch (instr->functionFieldRaw()) { + case ff_ins: + case ff_dins: + case ff_dinsm: + case ff_dinsu: + // Ins instr leaves result in Rt, rather than Rd. + setRegister(rt_reg, alu_out); + break; + case ff_ext: + case ff_dext: + case ff_dextm: + case ff_dextu: + // Ext instr leaves result in Rt, rather than Rd. + setRegister(rt_reg, alu_out); + break; + case ff_bshfl: + setRegister(rd_reg, alu_out); + break; + case ff_dbshfl: + setRegister(rd_reg, alu_out); + break; + default: + MOZ_CRASH(); + }; + break; + // Unimplemented opcodes raised an error in the configuration step before, + // so we can use the default here to set the destination register in + // common cases. + default: + setRegister(rd_reg, alu_out); + }; +} + +// Type 2: instructions using a 16 bits immediate. (e.g. addi, beq). +void Simulator::decodeTypeImmediate(SimInstruction* instr) { + // Instruction fields. + OpcodeField op = instr->opcodeFieldRaw(); + int64_t rs = getRegister(instr->rsValue()); + int32_t rt_reg = instr->rtValue(); // Destination register. + int64_t rt = getRegister(rt_reg); + int16_t imm16 = instr->imm16Value(); + + int32_t ft_reg = instr->ftValue(); // Destination register. + + // Zero extended immediate. + uint32_t oe_imm16 = 0xffff & imm16; + // Sign extended immediate. + int32_t se_imm16 = imm16; + + // Get current pc. + int64_t current_pc = get_pc(); + // Next pc. + int64_t next_pc = bad_ra; + + // Used for conditional branch instructions. + bool do_branch = false; + bool execute_branch_delay_instruction = false; + + // Used for arithmetic instructions. + int64_t alu_out = 0; + // Floating point. + double fp_out = 0.0; + uint32_t cc, cc_value, fcsr_cc; + + // Used for memory instructions. + uint64_t addr = 0x0; + // Value to be written in memory. + uint64_t mem_value = 0x0; + __int128 temp; + + // ---------- Configuration (and execution for op_regimm). + switch (op) { + // ------------- op_cop1. Coprocessor instructions. + case op_cop1: + switch (instr->rsFieldRaw()) { + case rs_bc1: // Branch on coprocessor condition. + cc = instr->fbccValue(); + fcsr_cc = GetFCSRConditionBit(cc); + cc_value = testFCSRBit(fcsr_cc); + do_branch = (instr->fbtrueValue()) ? cc_value : !cc_value; + execute_branch_delay_instruction = true; + // Set next_pc. + if (do_branch) { + next_pc = current_pc + (imm16 << 2) + SimInstruction::kInstrSize; + } else { + next_pc = current_pc + kBranchReturnOffset; + } + break; + default: + MOZ_CRASH(); + }; + break; + // ------------- op_regimm class. + case op_regimm: + switch (instr->rtFieldRaw()) { + case rt_bltz: + do_branch = (rs < 0); + break; + case rt_bltzal: + do_branch = rs < 0; + break; + case rt_bgez: + do_branch = rs >= 0; + break; + case rt_bgezal: + do_branch = rs >= 0; + break; + default: + MOZ_CRASH(); + }; + switch (instr->rtFieldRaw()) { + case rt_bltz: + case rt_bltzal: + case rt_bgez: + case rt_bgezal: + // Branch instructions common part. + execute_branch_delay_instruction = true; + // Set next_pc. + if (do_branch) { + next_pc = current_pc + (imm16 << 2) + SimInstruction::kInstrSize; + if (instr->isLinkingInstruction()) { + setRegister(31, current_pc + kBranchReturnOffset); + } + } else { + next_pc = current_pc + kBranchReturnOffset; + } + break; + default: + break; + }; + break; // case op_regimm. + // ------------- Branch instructions. + // When comparing to zero, the encoding of rt field is always 0, so we + // don't need to replace rt with zero. + case op_beq: + do_branch = (rs == rt); + break; + case op_bne: + do_branch = rs != rt; + break; + case op_blez: + do_branch = rs <= 0; + break; + case op_bgtz: + do_branch = rs > 0; + break; + // ------------- Arithmetic instructions. + case op_addi: + alu_out = I32_CHECK(rs) + se_imm16; + if ((alu_out << 32) != (alu_out << 31)) { + exceptions[kIntegerOverflow] = 1; + } + alu_out = I32_CHECK(alu_out); + break; + case op_daddi: + temp = alu_out = rs + se_imm16; + if ((temp << 64) != (temp << 63)) { + exceptions[kIntegerOverflow] = 1; + } + alu_out = I64(temp); + break; + case op_addiu: + alu_out = I32(I32_CHECK(rs) + se_imm16); + break; + case op_daddiu: + alu_out = rs + se_imm16; + break; + case op_slti: + alu_out = (rs < se_imm16) ? 1 : 0; + break; + case op_sltiu: + alu_out = (U64(rs) < U64(se_imm16)) ? 1 : 0; + break; + case op_andi: + alu_out = rs & oe_imm16; + break; + case op_ori: + alu_out = rs | oe_imm16; + break; + case op_xori: + alu_out = rs ^ oe_imm16; + break; + case op_lui: + alu_out = (se_imm16 << 16); + break; + // ------------- Memory instructions. + case op_lbu: + addr = rs + se_imm16; + alu_out = readBU(addr, instr); + break; + case op_lb: + addr = rs + se_imm16; + alu_out = readB(addr, instr); + break; + case op_lhu: + addr = rs + se_imm16; + alu_out = readHU(addr, instr); + break; + case op_lh: + addr = rs + se_imm16; + alu_out = readH(addr, instr); + break; + case op_lwu: + addr = rs + se_imm16; + alu_out = readWU(addr, instr); + break; + case op_lw: + addr = rs + se_imm16; + alu_out = readW(addr, instr); + break; + case op_lwl: { + // al_offset is offset of the effective address within an aligned word. + uint8_t al_offset = (rs + se_imm16) & 3; + uint8_t byte_shift = 3 - al_offset; + uint32_t mask = (1 << byte_shift * 8) - 1; + addr = rs + se_imm16 - al_offset; + alu_out = readW(addr, instr); + alu_out <<= byte_shift * 8; + alu_out |= rt & mask; + break; + } + case op_lwr: { + // al_offset is offset of the effective address within an aligned word. + uint8_t al_offset = (rs + se_imm16) & 3; + uint8_t byte_shift = 3 - al_offset; + uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0; + addr = rs + se_imm16 - al_offset; + alu_out = readW(addr, instr); + alu_out = U32(alu_out) >> al_offset * 8; + alu_out |= rt & mask; + alu_out = I32(alu_out); + break; + } + case op_ll: + addr = rs + se_imm16; + alu_out = loadLinkedW(addr, instr); + break; + case op_lld: + addr = rs + se_imm16; + alu_out = loadLinkedD(addr, instr); + break; + case op_ld: + addr = rs + se_imm16; + alu_out = readDW(addr, instr); + break; + case op_ldl: { + // al_offset is offset of the effective address within an aligned word. + uint8_t al_offset = (rs + se_imm16) & 7; + uint8_t byte_shift = 7 - al_offset; + uint64_t mask = (1ul << byte_shift * 8) - 1; + addr = rs + se_imm16 - al_offset; + alu_out = readDW(addr, instr); + alu_out <<= byte_shift * 8; + alu_out |= rt & mask; + break; + } + case op_ldr: { + // al_offset is offset of the effective address within an aligned word. + uint8_t al_offset = (rs + se_imm16) & 7; + uint8_t byte_shift = 7 - al_offset; + uint64_t mask = al_offset ? (~0ul << (byte_shift + 1) * 8) : 0; + addr = rs + se_imm16 - al_offset; + alu_out = readDW(addr, instr); + alu_out = U64(alu_out) >> al_offset * 8; + alu_out |= rt & mask; + break; + } + case op_sb: + addr = rs + se_imm16; + break; + case op_sh: + addr = rs + se_imm16; + break; + case op_sw: + addr = rs + se_imm16; + break; + case op_swl: { + uint8_t al_offset = (rs + se_imm16) & 3; + uint8_t byte_shift = 3 - al_offset; + uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0; + addr = rs + se_imm16 - al_offset; + mem_value = readW(addr, instr) & mask; + mem_value |= U32(rt) >> byte_shift * 8; + break; + } + case op_swr: { + uint8_t al_offset = (rs + se_imm16) & 3; + uint32_t mask = (1 << al_offset * 8) - 1; + addr = rs + se_imm16 - al_offset; + mem_value = readW(addr, instr); + mem_value = (rt << al_offset * 8) | (mem_value & mask); + break; + } + case op_sc: + addr = rs + se_imm16; + break; + case op_scd: + addr = rs + se_imm16; + break; + case op_sd: + addr = rs + se_imm16; + break; + case op_sdl: { + uint8_t al_offset = (rs + se_imm16) & 7; + uint8_t byte_shift = 7 - al_offset; + uint64_t mask = byte_shift ? (~0ul << (al_offset + 1) * 8) : 0; + addr = rs + se_imm16 - al_offset; + mem_value = readW(addr, instr) & mask; + mem_value |= U64(rt) >> byte_shift * 8; + break; + } + case op_sdr: { + uint8_t al_offset = (rs + se_imm16) & 7; + uint64_t mask = (1ul << al_offset * 8) - 1; + addr = rs + se_imm16 - al_offset; + mem_value = readW(addr, instr); + mem_value = (rt << al_offset * 8) | (mem_value & mask); + break; + } + case op_lwc1: + addr = rs + se_imm16; + alu_out = readW(addr, instr); + break; + case op_ldc1: + addr = rs + se_imm16; + fp_out = readD(addr, instr); + break; + case op_swc1: + case op_sdc1: + addr = rs + se_imm16; + break; + default: + MOZ_CRASH(); + }; + + // ---------- Raise exceptions triggered. + signalExceptions(); + + // ---------- Execution. + switch (op) { + // ------------- Branch instructions. + case op_beq: + case op_bne: + case op_blez: + case op_bgtz: + // Branch instructions common part. + execute_branch_delay_instruction = true; + // Set next_pc. + if (do_branch) { + next_pc = current_pc + (imm16 << 2) + SimInstruction::kInstrSize; + if (instr->isLinkingInstruction()) { + setRegister(31, current_pc + 2 * SimInstruction::kInstrSize); + } + } else { + next_pc = current_pc + 2 * SimInstruction::kInstrSize; + } + break; + // ------------- Arithmetic instructions. + case op_addi: + case op_daddi: + case op_addiu: + case op_daddiu: + case op_slti: + case op_sltiu: + case op_andi: + case op_ori: + case op_xori: + case op_lui: + setRegister(rt_reg, alu_out); + break; + // ------------- Memory instructions. + case op_lbu: + case op_lb: + case op_lhu: + case op_lh: + case op_lwu: + case op_lw: + case op_lwl: + case op_lwr: + case op_ll: + case op_lld: + case op_ld: + case op_ldl: + case op_ldr: + setRegister(rt_reg, alu_out); + break; + case op_sb: + writeB(addr, I8(rt), instr); + break; + case op_sh: + writeH(addr, U16(rt), instr); + break; + case op_sw: + writeW(addr, I32(rt), instr); + break; + case op_swl: + writeW(addr, I32(mem_value), instr); + break; + case op_swr: + writeW(addr, I32(mem_value), instr); + break; + case op_sc: + setRegister(rt_reg, storeConditionalW(addr, I32(rt), instr)); + break; + case op_scd: + setRegister(rt_reg, storeConditionalD(addr, rt, instr)); + break; + case op_sd: + writeDW(addr, rt, instr); + break; + case op_sdl: + writeDW(addr, mem_value, instr); + break; + case op_sdr: + writeDW(addr, mem_value, instr); + break; + case op_lwc1: + setFpuRegisterLo(ft_reg, alu_out); + break; + case op_ldc1: + setFpuRegisterDouble(ft_reg, fp_out); + break; + case op_swc1: + writeW(addr, getFpuRegisterLo(ft_reg), instr); + break; + case op_sdc1: + writeD(addr, getFpuRegisterDouble(ft_reg), instr); + break; + default: + break; + }; + + if (execute_branch_delay_instruction) { + // Execute branch delay slot + // We don't check for end_sim_pc. First it should not be met as the current + // pc is valid. Secondly a jump should always execute its branch delay slot. + SimInstruction* branch_delay_instr = reinterpret_cast<SimInstruction*>( + current_pc + SimInstruction::kInstrSize); + branchDelayInstructionDecode(branch_delay_instr); + } + + // If needed update pc after the branch delay execution. + if (next_pc != bad_ra) { + set_pc(next_pc); + } +} + +// Type 3: instructions using a 26 bits immediate. (e.g. j, jal). +void Simulator::decodeTypeJump(SimInstruction* instr) { + // Get current pc. + int64_t current_pc = get_pc(); + // Get unchanged bits of pc. + int64_t pc_high_bits = current_pc & 0xfffffffff0000000ul; + // Next pc. + int64_t next_pc = pc_high_bits | (instr->imm26Value() << 2); + + // Execute branch delay slot. + // We don't check for end_sim_pc. First it should not be met as the current pc + // is valid. Secondly a jump should always execute its branch delay slot. + SimInstruction* branch_delay_instr = reinterpret_cast<SimInstruction*>( + current_pc + SimInstruction::kInstrSize); + branchDelayInstructionDecode(branch_delay_instr); + + // Update pc and ra if necessary. + // Do this after the branch delay execution. + if (instr->isLinkingInstruction()) { + setRegister(31, current_pc + 2 * SimInstruction::kInstrSize); + } + set_pc(next_pc); + pc_modified_ = true; +} + +// Executes the current instruction. +void Simulator::instructionDecode(SimInstruction* instr) { + if (!SimulatorProcess::ICacheCheckingDisableCount) { + AutoLockSimulatorCache als; + SimulatorProcess::checkICacheLocked(instr); + } + pc_modified_ = false; + + switch (instr->instructionType()) { + case SimInstruction::kRegisterType: + decodeTypeRegister(instr); + break; + case SimInstruction::kImmediateType: + decodeTypeImmediate(instr); + break; + case SimInstruction::kJumpType: + decodeTypeJump(instr); + break; + default: + UNSUPPORTED(); + } + if (!pc_modified_) { + setRegister(pc, + reinterpret_cast<int64_t>(instr) + SimInstruction::kInstrSize); + } +} + +void Simulator::branchDelayInstructionDecode(SimInstruction* instr) { + if (instr->instructionBits() == NopInst) { + // Short-cut generic nop instructions. They are always valid and they + // never change the simulator state. + return; + } + + if (instr->isForbiddenInBranchDelay()) { + MOZ_CRASH("Eror:Unexpected opcode in a branch delay slot."); + } + instructionDecode(instr); +} + +void Simulator::enable_single_stepping(SingleStepCallback cb, void* arg) { + single_stepping_ = true; + single_step_callback_ = cb; + single_step_callback_arg_ = arg; + single_step_callback_(single_step_callback_arg_, this, (void*)get_pc()); +} + +void Simulator::disable_single_stepping() { + if (!single_stepping_) { + return; + } + single_step_callback_(single_step_callback_arg_, this, (void*)get_pc()); + single_stepping_ = false; + single_step_callback_ = nullptr; + single_step_callback_arg_ = nullptr; +} + +template <bool enableStopSimAt> +void Simulator::execute() { + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + // Get the PC to simulate. Cannot use the accessor here as we need the + // raw PC value and not the one used as input to arithmetic instructions. + int64_t program_counter = get_pc(); + + while (program_counter != end_sim_pc) { + if (enableStopSimAt && (icount_ == Simulator::StopSimAt)) { + MipsDebugger dbg(this); + dbg.debug(); + } else { + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, + (void*)program_counter); + } + SimInstruction* instr = + reinterpret_cast<SimInstruction*>(program_counter); + instructionDecode(instr); + icount_++; + } + program_counter = get_pc(); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } +} + +void Simulator::callInternal(uint8_t* entry) { + // Prepare to execute the code at entry. + setRegister(pc, reinterpret_cast<int64_t>(entry)); + // Put down marker for end of simulation. The simulator will stop simulation + // when the PC reaches this value. By saving the "end simulation" value into + // the LR the simulation stops when returning to this call point. + setRegister(ra, end_sim_pc); + + // Remember the values of callee-saved registers. + // The code below assumes that r9 is not used as sb (static base) in + // simulator code and therefore is regarded as a callee-saved register. + int64_t s0_val = getRegister(s0); + int64_t s1_val = getRegister(s1); + int64_t s2_val = getRegister(s2); + int64_t s3_val = getRegister(s3); + int64_t s4_val = getRegister(s4); + int64_t s5_val = getRegister(s5); + int64_t s6_val = getRegister(s6); + int64_t s7_val = getRegister(s7); + int64_t gp_val = getRegister(gp); + int64_t sp_val = getRegister(sp); + int64_t fp_val = getRegister(fp); + + // Set up the callee-saved registers with a known value. To be able to check + // that they are preserved properly across JS execution. + int64_t callee_saved_value = icount_; + setRegister(s0, callee_saved_value); + setRegister(s1, callee_saved_value); + setRegister(s2, callee_saved_value); + setRegister(s3, callee_saved_value); + setRegister(s4, callee_saved_value); + setRegister(s5, callee_saved_value); + setRegister(s6, callee_saved_value); + setRegister(s7, callee_saved_value); + setRegister(gp, callee_saved_value); + setRegister(fp, callee_saved_value); + + // Start the simulation. + if (Simulator::StopSimAt != -1) { + execute<true>(); + } else { + execute<false>(); + } + + // Check that the callee-saved registers have been preserved. + MOZ_ASSERT(callee_saved_value == getRegister(s0)); + MOZ_ASSERT(callee_saved_value == getRegister(s1)); + MOZ_ASSERT(callee_saved_value == getRegister(s2)); + MOZ_ASSERT(callee_saved_value == getRegister(s3)); + MOZ_ASSERT(callee_saved_value == getRegister(s4)); + MOZ_ASSERT(callee_saved_value == getRegister(s5)); + MOZ_ASSERT(callee_saved_value == getRegister(s6)); + MOZ_ASSERT(callee_saved_value == getRegister(s7)); + MOZ_ASSERT(callee_saved_value == getRegister(gp)); + MOZ_ASSERT(callee_saved_value == getRegister(fp)); + + // Restore callee-saved registers with the original value. + setRegister(s0, s0_val); + setRegister(s1, s1_val); + setRegister(s2, s2_val); + setRegister(s3, s3_val); + setRegister(s4, s4_val); + setRegister(s5, s5_val); + setRegister(s6, s6_val); + setRegister(s7, s7_val); + setRegister(gp, gp_val); + setRegister(sp, sp_val); + setRegister(fp, fp_val); +} + +int64_t Simulator::call(uint8_t* entry, int argument_count, ...) { + va_list parameters; + va_start(parameters, argument_count); + + int64_t original_stack = getRegister(sp); + // Compute position of stack on entry to generated code. + int64_t entry_stack = original_stack; + if (argument_count > kCArgSlotCount) { + entry_stack = entry_stack - argument_count * sizeof(int64_t); + } else { + entry_stack = entry_stack - kCArgsSlotsSize; + } + + entry_stack &= ~U64(ABIStackAlignment - 1); + + intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); + + // Setup the arguments. + for (int i = 0; i < argument_count; i++) { + js::jit::Register argReg; + if (GetIntArgReg(i, &argReg)) { + setRegister(argReg.code(), va_arg(parameters, int64_t)); + } else { + stack_argument[i] = va_arg(parameters, int64_t); + } + } + + va_end(parameters); + setRegister(sp, entry_stack); + + callInternal(entry); + + // Pop stack passed arguments. + MOZ_ASSERT(entry_stack == getRegister(sp)); + setRegister(sp, original_stack); + + int64_t result = getRegister(v0); + return result; +} + +uintptr_t Simulator::pushAddress(uintptr_t address) { + int new_sp = getRegister(sp) - sizeof(uintptr_t); + uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); + *stack_slot = address; + setRegister(sp, new_sp); + return new_sp; +} + +uintptr_t Simulator::popAddress() { + int current_sp = getRegister(sp); + uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); + uintptr_t address = *stack_slot; + setRegister(sp, current_sp + sizeof(uintptr_t)); + return address; +} + +} // namespace jit +} // namespace js + +js::jit::Simulator* JSContext::simulator() const { return simulator_; } diff --git a/js/src/jit/mips64/Simulator-mips64.h b/js/src/jit/mips64/Simulator-mips64.h new file mode 100644 index 0000000000..02b2774f24 --- /dev/null +++ b/js/src/jit/mips64/Simulator-mips64.h @@ -0,0 +1,536 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: */ +// Copyright 2011 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef jit_mips64_Simulator_mips64_h +#define jit_mips64_Simulator_mips64_h + +#ifdef JS_SIMULATOR_MIPS64 + +# include "mozilla/Atomics.h" + +# include "jit/IonTypes.h" +# include "js/ProfilingFrameIterator.h" +# include "threading/Thread.h" +# include "vm/MutexIDs.h" +# include "wasm/WasmSignalHandlers.h" + +namespace js { + +namespace jit { + +class JitActivation; + +class Simulator; +class Redirection; +class CachePage; +class AutoLockSimulator; + +// When the SingleStepCallback is called, the simulator is about to execute +// sim->get_pc() and the current machine state represents the completed +// execution of the previous pc. +typedef void (*SingleStepCallback)(void* arg, Simulator* sim, void* pc); + +const intptr_t kPointerAlignment = 8; +const intptr_t kPointerAlignmentMask = kPointerAlignment - 1; + +const intptr_t kDoubleAlignment = 8; +const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1; + +// Number of general purpose registers. +const int kNumRegisters = 32; + +// In the simulator, the PC register is simulated as the 34th register. +const int kPCRegister = 34; + +// Number coprocessor registers. +const int kNumFPURegisters = 32; + +// FPU (coprocessor 1) control registers. Currently only FCSR is implemented. +const int kFCSRRegister = 31; +const int kInvalidFPUControlRegister = -1; +const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1 << 31) - 1; +const uint64_t kFPUInvalidResult64 = static_cast<uint64_t>(1ULL << 63) - 1; + +// FCSR constants. +const uint32_t kFCSRInexactFlagBit = 2; +const uint32_t kFCSRUnderflowFlagBit = 3; +const uint32_t kFCSROverflowFlagBit = 4; +const uint32_t kFCSRDivideByZeroFlagBit = 5; +const uint32_t kFCSRInvalidOpFlagBit = 6; + +const uint32_t kFCSRInexactCauseBit = 12; +const uint32_t kFCSRUnderflowCauseBit = 13; +const uint32_t kFCSROverflowCauseBit = 14; +const uint32_t kFCSRDivideByZeroCauseBit = 15; +const uint32_t kFCSRInvalidOpCauseBit = 16; + +const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit; +const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit; +const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit; +const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit; +const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit; + +const uint32_t kFCSRFlagMask = + kFCSRInexactFlagMask | kFCSRUnderflowFlagMask | kFCSROverflowFlagMask | + kFCSRDivideByZeroFlagMask | kFCSRInvalidOpFlagMask; + +const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask; + +// On MIPS64 Simulator breakpoints can have different codes: +// - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints, +// the simulator will run through them and print the registers. +// - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop() +// instructions (see Assembler::stop()). +// - Breaks larger than kMaxStopCode are simple breaks, dropping you into the +// debugger. +const uint32_t kMaxWatchpointCode = 31; +const uint32_t kMaxStopCode = 127; +const uint32_t kWasmTrapCode = 6; + +// ----------------------------------------------------------------------------- +// Utility functions + +typedef uint32_t Instr; +class SimInstruction; + +// Per thread simulator state. +class Simulator { + friend class MipsDebugger; + + public: + // Registers are declared in order. See "See MIPS Run Linux" chapter 2. + enum Register { + no_reg = -1, + zero_reg = 0, + at, + v0, + v1, + a0, + a1, + a2, + a3, + a4, + a5, + a6, + a7, + t0, + t1, + t2, + t3, + s0, + s1, + s2, + s3, + s4, + s5, + s6, + s7, + t8, + t9, + k0, + k1, + gp, + sp, + s8, + ra, + // LO, HI, and pc. + LO, + HI, + pc, // pc must be the last register. + kNumSimuRegisters, + // aliases + fp = s8 + }; + + // Coprocessor registers. + enum FPURegister { + f0, + f1, + f2, + f3, + f4, + f5, + f6, + f7, + f8, + f9, + f10, + f11, + f12, + f13, + f14, + f15, + f16, + f17, + f18, + f19, + f20, + f21, + f22, + f23, + f24, + f25, + f26, + f27, + f28, + f29, + f30, + f31, + kNumFPURegisters + }; + + // Returns nullptr on OOM. + static Simulator* Create(); + + static void Destroy(Simulator* simulator); + + // Constructor/destructor are for internal use only; use the static methods + // above. + Simulator(); + ~Simulator(); + + // The currently executing Simulator instance. Potentially there can be one + // for each native thread. + static Simulator* Current(); + + static inline uintptr_t StackLimit() { + return Simulator::Current()->stackLimit(); + } + + uintptr_t* addressOfStackLimit(); + + // Accessors for register state. Reading the pc value adheres to the MIPS + // architecture specification and is off by a 8 from the currently executing + // instruction. + void setRegister(int reg, int64_t value); + int64_t getRegister(int reg) const; + // Same for FPURegisters. + void setFpuRegister(int fpureg, int64_t value); + void setFpuRegisterLo(int fpureg, int32_t value); + void setFpuRegisterHi(int fpureg, int32_t value); + void setFpuRegisterFloat(int fpureg, float value); + void setFpuRegisterDouble(int fpureg, double value); + int64_t getFpuRegister(int fpureg) const; + int32_t getFpuRegisterLo(int fpureg) const; + int32_t getFpuRegisterHi(int fpureg) const; + float getFpuRegisterFloat(int fpureg) const; + double getFpuRegisterDouble(int fpureg) const; + void setFCSRBit(uint32_t cc, bool value); + bool testFCSRBit(uint32_t cc); + template <typename T> + bool setFCSRRoundError(double original, double rounded); + + // Special case of set_register and get_register to access the raw PC value. + void set_pc(int64_t value); + int64_t get_pc() const; + + template <typename T> + T get_pc_as() const { + return reinterpret_cast<T>(get_pc()); + } + + void enable_single_stepping(SingleStepCallback cb, void* arg); + void disable_single_stepping(); + + // Accessor to the internal simulator stack area. + uintptr_t stackLimit() const; + bool overRecursed(uintptr_t newsp = 0) const; + bool overRecursedWithExtra(uint32_t extra) const; + + // Executes MIPS instructions until the PC reaches end_sim_pc. + template <bool enableStopSimAt> + void execute(); + + // Sets up the simulator state and grabs the result on return. + int64_t call(uint8_t* entry, int argument_count, ...); + + // Push an address onto the JS stack. + uintptr_t pushAddress(uintptr_t address); + + // Pop an address from the JS stack. + uintptr_t popAddress(); + + // Debugger input. + void setLastDebuggerInput(char* input); + char* lastDebuggerInput() { return lastDebuggerInput_; } + + // Returns true if pc register contains one of the 'SpecialValues' defined + // below (bad_ra, end_sim_pc). + bool has_bad_pc() const; + + private: + enum SpecialValues { + // Known bad pc value to ensure that the simulator does not execute + // without being properly setup. + bad_ra = -1, + // A pc value used to signal the simulator to stop execution. Generally + // the ra is set to this value on transition from native C code to + // simulated execution, so that the simulator can "return" to the native + // C code. + end_sim_pc = -2, + // Unpredictable value. + Unpredictable = 0xbadbeaf + }; + + bool init(); + + // Unsupported instructions use Format to print an error and stop execution. + void format(SimInstruction* instr, const char* format); + + // Read and write memory. + inline uint8_t readBU(uint64_t addr, SimInstruction* instr); + inline int8_t readB(uint64_t addr, SimInstruction* instr); + inline void writeB(uint64_t addr, uint8_t value, SimInstruction* instr); + inline void writeB(uint64_t addr, int8_t value, SimInstruction* instr); + + inline uint16_t readHU(uint64_t addr, SimInstruction* instr); + inline int16_t readH(uint64_t addr, SimInstruction* instr); + inline void writeH(uint64_t addr, uint16_t value, SimInstruction* instr); + inline void writeH(uint64_t addr, int16_t value, SimInstruction* instr); + + inline uint32_t readWU(uint64_t addr, SimInstruction* instr); + inline int32_t readW(uint64_t addr, SimInstruction* instr); + inline void writeW(uint64_t addr, uint32_t value, SimInstruction* instr); + inline void writeW(uint64_t addr, int32_t value, SimInstruction* instr); + + inline int64_t readDW(uint64_t addr, SimInstruction* instr); + inline int64_t readDWL(uint64_t addr, SimInstruction* instr); + inline int64_t readDWR(uint64_t addr, SimInstruction* instr); + inline void writeDW(uint64_t addr, int64_t value, SimInstruction* instr); + + inline double readD(uint64_t addr, SimInstruction* instr); + inline void writeD(uint64_t addr, double value, SimInstruction* instr); + + inline int32_t loadLinkedW(uint64_t addr, SimInstruction* instr); + inline int storeConditionalW(uint64_t addr, int32_t value, + SimInstruction* instr); + + inline int64_t loadLinkedD(uint64_t addr, SimInstruction* instr); + inline int storeConditionalD(uint64_t addr, int64_t value, + SimInstruction* instr); + + // Helper function for decodeTypeRegister. + void configureTypeRegister(SimInstruction* instr, int64_t& alu_out, + __int128& i128hilo, unsigned __int128& u128hilo, + int64_t& next_pc, int32_t& return_addr_reg, + bool& do_interrupt); + + // Executing is handled based on the instruction type. + void decodeTypeRegister(SimInstruction* instr); + void decodeTypeImmediate(SimInstruction* instr); + void decodeTypeJump(SimInstruction* instr); + + // Used for breakpoints and traps. + void softwareInterrupt(SimInstruction* instr); + + // Stop helper functions. + bool isWatchpoint(uint32_t code); + void printWatchpoint(uint32_t code); + void handleStop(uint32_t code, SimInstruction* instr); + bool isStopInstruction(SimInstruction* instr); + bool isEnabledStop(uint32_t code); + void enableStop(uint32_t code); + void disableStop(uint32_t code); + void increaseStopCounter(uint32_t code); + void printStopInfo(uint32_t code); + + JS::ProfilingFrameIterator::RegisterState registerState(); + + // Handle any wasm faults, returning true if the fault was handled. + // This method is rather hot so inline the normal (no-wasm) case. + bool MOZ_ALWAYS_INLINE handleWasmSegFault(uint64_t addr, unsigned numBytes) { + if (MOZ_LIKELY(!js::wasm::CodeExists)) { + return false; + } + + uint8_t* newPC; + if (!js::wasm::MemoryAccessTraps(registerState(), (uint8_t*)addr, numBytes, + &newPC)) { + return false; + } + + LLBit_ = false; + set_pc(int64_t(newPC)); + return true; + } + + // Executes one instruction. + void instructionDecode(SimInstruction* instr); + // Execute one instruction placed in a branch delay slot. + void branchDelayInstructionDecode(SimInstruction* instr); + + public: + static int64_t StopSimAt; + + // Runtime call support. + static void* RedirectNativeFunction(void* nativeFunction, + ABIFunctionType type); + + private: + enum Exception { + kNone, + kIntegerOverflow, + kIntegerUnderflow, + kDivideByZero, + kNumExceptions + }; + int16_t exceptions[kNumExceptions]; + + // Exceptions. + void signalExceptions(); + + // Handle return value for runtime FP functions. + void setCallResultDouble(double result); + void setCallResultFloat(float result); + void setCallResult(int64_t res); + void setCallResult(__int128 res); + + void callInternal(uint8_t* entry); + + // Architecture state. + // Registers. + int64_t registers_[kNumSimuRegisters]; + // Coprocessor Registers. + int64_t FPUregisters_[kNumFPURegisters]; + // FPU control register. + uint32_t FCSR_; + + bool LLBit_; + uintptr_t LLAddr_; + int64_t lastLLValue_; + + // Simulator support. + char* stack_; + uintptr_t stackLimit_; + bool pc_modified_; + int64_t icount_; + int64_t break_count_; + + // Debugger input. + char* lastDebuggerInput_; + + // Registered breakpoints. + SimInstruction* break_pc_; + Instr break_instr_; + + // Single-stepping support + bool single_stepping_; + SingleStepCallback single_step_callback_; + void* single_step_callback_arg_; + + // A stop is watched if its code is less than kNumOfWatchedStops. + // Only watched stops support enabling/disabling and the counter feature. + static const uint32_t kNumOfWatchedStops = 256; + + // Stop is disabled if bit 31 is set. + static const uint32_t kStopDisabledBit = 1U << 31; + + // A stop is enabled, meaning the simulator will stop when meeting the + // instruction, if bit 31 of watchedStops_[code].count is unset. + // The value watchedStops_[code].count & ~(1 << 31) indicates how many times + // the breakpoint was hit or gone through. + struct StopCountAndDesc { + uint32_t count_; + char* desc_; + }; + StopCountAndDesc watchedStops_[kNumOfWatchedStops]; +}; + +// Process wide simulator state. +class SimulatorProcess { + friend class Redirection; + friend class AutoLockSimulatorCache; + + private: + // ICache checking. + struct ICacheHasher { + typedef void* Key; + typedef void* Lookup; + static HashNumber hash(const Lookup& l); + static bool match(const Key& k, const Lookup& l); + }; + + public: + typedef HashMap<void*, CachePage*, ICacheHasher, SystemAllocPolicy> ICacheMap; + + static mozilla::Atomic<size_t, mozilla::ReleaseAcquire> + ICacheCheckingDisableCount; + static void FlushICache(void* start, size_t size); + + static void checkICacheLocked(SimInstruction* instr); + + static bool initialize() { + singleton_ = js_new<SimulatorProcess>(); + return singleton_; + } + static void destroy() { + js_delete(singleton_); + singleton_ = nullptr; + } + + SimulatorProcess(); + ~SimulatorProcess(); + + private: + static SimulatorProcess* singleton_; + + // This lock creates a critical section around 'redirection_' and + // 'icache_', which are referenced both by the execution engine + // and by the off-thread compiler (see Redirection::Get in the cpp file). + Mutex cacheLock_ MOZ_UNANNOTATED; + + Redirection* redirection_; + ICacheMap icache_; + + public: + static ICacheMap& icache() { + // Technically we need the lock to access the innards of the + // icache, not to take its address, but the latter condition + // serves as a useful complement to the former. + singleton_->cacheLock_.assertOwnedByCurrentThread(); + return singleton_->icache_; + } + + static Redirection* redirection() { + singleton_->cacheLock_.assertOwnedByCurrentThread(); + return singleton_->redirection_; + } + + static void setRedirection(js::jit::Redirection* redirection) { + singleton_->cacheLock_.assertOwnedByCurrentThread(); + singleton_->redirection_ = redirection; + } +}; + +} // namespace jit +} // namespace js + +#endif /* JS_SIMULATOR_MIPS64 */ + +#endif /* jit_mips64_Simulator_mips64_h */ diff --git a/js/src/jit/mips64/Trampoline-mips64.cpp b/js/src/jit/mips64/Trampoline-mips64.cpp new file mode 100644 index 0000000000..6683e21ab2 --- /dev/null +++ b/js/src/jit/mips64/Trampoline-mips64.cpp @@ -0,0 +1,796 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "mozilla/DebugOnly.h" + +#include "jit/Bailouts.h" +#include "jit/BaselineFrame.h" +#include "jit/CalleeToken.h" +#include "jit/JitFrames.h" +#include "jit/JitRuntime.h" +#include "jit/JitSpewer.h" +#include "jit/mips-shared/SharedICHelpers-mips-shared.h" +#include "jit/PerfSpewer.h" +#include "jit/VMFunctions.h" +#include "vm/JitActivation.h" // js::jit::JitActivation +#include "vm/JSContext.h" +#include "vm/Realm.h" + +#include "jit/MacroAssembler-inl.h" + +using namespace js; +using namespace js::jit; + +// All registers to save and restore. This includes the stack pointer, since we +// use the ability to reference register values on the stack by index. +static const LiveRegisterSet AllRegs = + LiveRegisterSet(GeneralRegisterSet(Registers::AllMask), + FloatRegisterSet(FloatRegisters::AllMask)); + +static_assert(sizeof(uintptr_t) == sizeof(uint64_t), "Not 32-bit clean."); + +struct EnterJITRegs { + double f31; + double f30; + double f29; + double f28; + double f27; + double f26; + double f25; + double f24; + + uintptr_t align; + + // non-volatile registers. + uint64_t ra; + uint64_t fp; + uint64_t s7; + uint64_t s6; + uint64_t s5; + uint64_t s4; + uint64_t s3; + uint64_t s2; + uint64_t s1; + uint64_t s0; + // Save reg_vp(a7) on stack, use it after call jit code. + uint64_t a7; +}; + +static void GenerateReturn(MacroAssembler& masm, int returnCode) { + MOZ_ASSERT(masm.framePushed() == sizeof(EnterJITRegs)); + + if (isLoongson()) { + // Restore non-volatile registers + masm.as_ld(s0, StackPointer, offsetof(EnterJITRegs, s0)); + masm.as_gslq(s1, s2, StackPointer, offsetof(EnterJITRegs, s2)); + masm.as_gslq(s3, s4, StackPointer, offsetof(EnterJITRegs, s4)); + masm.as_gslq(s5, s6, StackPointer, offsetof(EnterJITRegs, s6)); + masm.as_gslq(s7, fp, StackPointer, offsetof(EnterJITRegs, fp)); + masm.as_ld(ra, StackPointer, offsetof(EnterJITRegs, ra)); + + // Restore non-volatile floating point registers + masm.as_gslq(f24, f25, StackPointer, offsetof(EnterJITRegs, f25)); + masm.as_gslq(f26, f27, StackPointer, offsetof(EnterJITRegs, f27)); + masm.as_gslq(f28, f29, StackPointer, offsetof(EnterJITRegs, f29)); + masm.as_gslq(f30, f31, StackPointer, offsetof(EnterJITRegs, f31)); + } else { + // Restore non-volatile registers + masm.as_ld(s0, StackPointer, offsetof(EnterJITRegs, s0)); + masm.as_ld(s1, StackPointer, offsetof(EnterJITRegs, s1)); + masm.as_ld(s2, StackPointer, offsetof(EnterJITRegs, s2)); + masm.as_ld(s3, StackPointer, offsetof(EnterJITRegs, s3)); + masm.as_ld(s4, StackPointer, offsetof(EnterJITRegs, s4)); + masm.as_ld(s5, StackPointer, offsetof(EnterJITRegs, s5)); + masm.as_ld(s6, StackPointer, offsetof(EnterJITRegs, s6)); + masm.as_ld(s7, StackPointer, offsetof(EnterJITRegs, s7)); + masm.as_ld(fp, StackPointer, offsetof(EnterJITRegs, fp)); + masm.as_ld(ra, StackPointer, offsetof(EnterJITRegs, ra)); + + // Restore non-volatile floating point registers + masm.as_ldc1(f24, StackPointer, offsetof(EnterJITRegs, f24)); + masm.as_ldc1(f25, StackPointer, offsetof(EnterJITRegs, f25)); + masm.as_ldc1(f26, StackPointer, offsetof(EnterJITRegs, f26)); + masm.as_ldc1(f27, StackPointer, offsetof(EnterJITRegs, f27)); + masm.as_ldc1(f28, StackPointer, offsetof(EnterJITRegs, f28)); + masm.as_ldc1(f29, StackPointer, offsetof(EnterJITRegs, f29)); + masm.as_ldc1(f30, StackPointer, offsetof(EnterJITRegs, f30)); + masm.as_ldc1(f31, StackPointer, offsetof(EnterJITRegs, f31)); + } + + masm.freeStack(sizeof(EnterJITRegs)); + + masm.branch(ra); +} + +static void GeneratePrologue(MacroAssembler& masm) { + masm.reserveStack(sizeof(EnterJITRegs)); + + if (isLoongson()) { + masm.as_gssq(a7, s0, StackPointer, offsetof(EnterJITRegs, s0)); + masm.as_gssq(s1, s2, StackPointer, offsetof(EnterJITRegs, s2)); + masm.as_gssq(s3, s4, StackPointer, offsetof(EnterJITRegs, s4)); + masm.as_gssq(s5, s6, StackPointer, offsetof(EnterJITRegs, s6)); + masm.as_gssq(s7, fp, StackPointer, offsetof(EnterJITRegs, fp)); + masm.as_sd(ra, StackPointer, offsetof(EnterJITRegs, ra)); + + masm.as_gssq(f24, f25, StackPointer, offsetof(EnterJITRegs, f25)); + masm.as_gssq(f26, f27, StackPointer, offsetof(EnterJITRegs, f27)); + masm.as_gssq(f28, f29, StackPointer, offsetof(EnterJITRegs, f29)); + masm.as_gssq(f30, f31, StackPointer, offsetof(EnterJITRegs, f31)); + return; + } + + masm.as_sd(s0, StackPointer, offsetof(EnterJITRegs, s0)); + masm.as_sd(s1, StackPointer, offsetof(EnterJITRegs, s1)); + masm.as_sd(s2, StackPointer, offsetof(EnterJITRegs, s2)); + masm.as_sd(s3, StackPointer, offsetof(EnterJITRegs, s3)); + masm.as_sd(s4, StackPointer, offsetof(EnterJITRegs, s4)); + masm.as_sd(s5, StackPointer, offsetof(EnterJITRegs, s5)); + masm.as_sd(s6, StackPointer, offsetof(EnterJITRegs, s6)); + masm.as_sd(s7, StackPointer, offsetof(EnterJITRegs, s7)); + masm.as_sd(fp, StackPointer, offsetof(EnterJITRegs, fp)); + masm.as_sd(ra, StackPointer, offsetof(EnterJITRegs, ra)); + masm.as_sd(a7, StackPointer, offsetof(EnterJITRegs, a7)); + + masm.as_sdc1(f24, StackPointer, offsetof(EnterJITRegs, f24)); + masm.as_sdc1(f25, StackPointer, offsetof(EnterJITRegs, f25)); + masm.as_sdc1(f26, StackPointer, offsetof(EnterJITRegs, f26)); + masm.as_sdc1(f27, StackPointer, offsetof(EnterJITRegs, f27)); + masm.as_sdc1(f28, StackPointer, offsetof(EnterJITRegs, f28)); + masm.as_sdc1(f29, StackPointer, offsetof(EnterJITRegs, f29)); + masm.as_sdc1(f30, StackPointer, offsetof(EnterJITRegs, f30)); + masm.as_sdc1(f31, StackPointer, offsetof(EnterJITRegs, f31)); +} + +// Generates a trampoline for calling Jit compiled code from a C++ function. +// The trampoline use the EnterJitCode signature, with the standard x64 fastcall +// calling convention. +void JitRuntime::generateEnterJIT(JSContext* cx, MacroAssembler& masm) { + AutoCreatedBy acb(masm, "JitRuntime::generateEnterJIT"); + + enterJITOffset_ = startTrampolineCode(masm); + + const Register reg_code = IntArgReg0; + const Register reg_argc = IntArgReg1; + const Register reg_argv = IntArgReg2; + const mozilla::DebugOnly<Register> reg_frame = IntArgReg3; + const Register reg_token = IntArgReg4; + const Register reg_chain = IntArgReg5; + const Register reg_values = IntArgReg6; + const Register reg_vp = IntArgReg7; + + MOZ_ASSERT(OsrFrameReg == reg_frame); + + GeneratePrologue(masm); + + // Save stack pointer as baseline frame. + masm.movePtr(StackPointer, FramePointer); + + // Load the number of actual arguments into s3. + masm.unboxInt32(Address(reg_vp, 0), s3); + + /*************************************************************** + Loop over argv vector, push arguments onto stack in reverse order + ***************************************************************/ + + // if we are constructing, that also needs to include newTarget + { + Label noNewTarget; + masm.branchTest32(Assembler::Zero, reg_token, + Imm32(CalleeToken_FunctionConstructing), &noNewTarget); + + masm.add32(Imm32(1), reg_argc); + + masm.bind(&noNewTarget); + } + + // Make stack algined + masm.ma_and(s0, reg_argc, Imm32(1)); + masm.ma_dsubu(s1, StackPointer, Imm32(sizeof(Value))); +#ifdef MIPSR6 + masm.as_selnez(s1, s1, s0); + masm.as_seleqz(StackPointer, StackPointer, s0); + masm.as_or(StackPointer, StackPointer, s1); +#else + masm.as_movn(StackPointer, s1, s0); +#endif + + masm.as_dsll(s0, reg_argc, 3); // Value* argv + masm.addPtr(reg_argv, s0); // s0 = &argv[argc] + + // Loop over arguments, copying them from an unknown buffer onto the Ion + // stack so they can be accessed from JIT'ed code. + Label header, footer; + // If there aren't any arguments, don't do anything + masm.ma_b(s0, reg_argv, &footer, Assembler::BelowOrEqual, ShortJump); + { + masm.bind(&header); + + masm.subPtr(Imm32(sizeof(Value)), s0); + masm.subPtr(Imm32(sizeof(Value)), StackPointer); + + ValueOperand value = ValueOperand(s6); + masm.loadValue(Address(s0, 0), value); + masm.storeValue(value, Address(StackPointer, 0)); + + masm.ma_b(s0, reg_argv, &header, Assembler::Above, ShortJump); + } + masm.bind(&footer); + + masm.push(reg_token); + masm.pushFrameDescriptorForJitCall(FrameType::CppToJSJit, s3, s3); + + CodeLabel returnLabel; + Label oomReturnLabel; + { + // Handle Interpreter -> Baseline OSR. + AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All()); + MOZ_ASSERT(!regs.has(FramePointer)); + regs.take(OsrFrameReg); + regs.take(reg_code); + + Label notOsr; + masm.ma_b(OsrFrameReg, OsrFrameReg, ¬Osr, Assembler::Zero, ShortJump); + + Register numStackValues = reg_values; + regs.take(numStackValues); + Register scratch = regs.takeAny(); + + // Push return address. + masm.subPtr(Imm32(sizeof(uintptr_t)), StackPointer); + masm.ma_li(scratch, &returnLabel); + masm.storePtr(scratch, Address(StackPointer, 0)); + + // Push previous frame pointer. + masm.subPtr(Imm32(sizeof(uintptr_t)), StackPointer); + masm.storePtr(FramePointer, Address(StackPointer, 0)); + + // Reserve frame. + Register framePtr = FramePointer; + masm.movePtr(StackPointer, framePtr); + masm.subPtr(Imm32(BaselineFrame::Size()), StackPointer); + + Register framePtrScratch = regs.takeAny(); + masm.movePtr(sp, framePtrScratch); + + // Reserve space for locals and stack values. + masm.ma_dsll(scratch, numStackValues, Imm32(3)); + masm.subPtr(scratch, StackPointer); + + // Enter exit frame. + masm.reserveStack(3 * sizeof(uintptr_t)); + masm.storePtr( + ImmWord(MakeFrameDescriptor(FrameType::BaselineJS)), + Address(StackPointer, 2 * sizeof(uintptr_t))); // Frame descriptor + masm.storePtr( + zero, Address(StackPointer, sizeof(uintptr_t))); // fake return address + masm.storePtr(FramePointer, Address(StackPointer, 0)); + + // No GC things to mark, push a bare token. + masm.loadJSContext(scratch); + masm.enterFakeExitFrame(scratch, scratch, ExitFrameType::Bare); + + masm.reserveStack(2 * sizeof(uintptr_t)); + masm.storePtr(framePtr, + Address(StackPointer, sizeof(uintptr_t))); // BaselineFrame + masm.storePtr(reg_code, Address(StackPointer, 0)); // jitcode + + using Fn = bool (*)(BaselineFrame* frame, InterpreterFrame* interpFrame, + uint32_t numStackValues); + masm.setupUnalignedABICall(scratch); + masm.passABIArg(framePtrScratch); // BaselineFrame + masm.passABIArg(OsrFrameReg); // InterpreterFrame + masm.passABIArg(numStackValues); + masm.callWithABI<Fn, jit::InitBaselineFrameForOsr>( + ABIType::General, CheckUnsafeCallWithABI::DontCheckHasExitFrame); + + regs.add(OsrFrameReg); + Register jitcode = regs.takeAny(); + masm.loadPtr(Address(StackPointer, 0), jitcode); + masm.loadPtr(Address(StackPointer, sizeof(uintptr_t)), framePtr); + masm.freeStack(2 * sizeof(uintptr_t)); + + Label error; + masm.freeStack(ExitFrameLayout::SizeWithFooter()); + masm.branchIfFalseBool(ReturnReg, &error); + + // If OSR-ing, then emit instrumentation for setting lastProfilerFrame + // if profiler instrumentation is enabled. + { + Label skipProfilingInstrumentation; + AbsoluteAddress addressOfEnabled( + cx->runtime()->geckoProfiler().addressOfEnabled()); + masm.branch32(Assembler::Equal, addressOfEnabled, Imm32(0), + &skipProfilingInstrumentation); + masm.profilerEnterFrame(framePtr, scratch); + masm.bind(&skipProfilingInstrumentation); + } + + masm.jump(jitcode); + + // OOM: load error value, discard return address and previous frame + // pointer and return. + masm.bind(&error); + masm.movePtr(framePtr, StackPointer); + masm.addPtr(Imm32(2 * sizeof(uintptr_t)), StackPointer); + masm.moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand); + masm.jump(&oomReturnLabel); + + masm.bind(¬Osr); + // Load the scope chain in R1. + MOZ_ASSERT(R1.scratchReg() != reg_code); + masm.ma_move(R1.scratchReg(), reg_chain); + } + + // The call will push the return address on the stack, thus we check that + // the stack would be aligned once the call is complete. + masm.assertStackAlignment(JitStackAlignment, 2 * sizeof(uintptr_t)); + + // Call the function with pushing return address to stack. + masm.callJitNoProfiler(reg_code); + + { + // Interpreter -> Baseline OSR will return here. + masm.bind(&returnLabel); + masm.addCodeLabel(returnLabel); + masm.bind(&oomReturnLabel); + } + + // Discard arguments and padding. Set sp to the address of the EnterJITRegs + // on the stack. + masm.mov(FramePointer, StackPointer); + + // Store the returned value into the vp + masm.as_ld(reg_vp, StackPointer, offsetof(EnterJITRegs, a7)); + masm.storeValue(JSReturnOperand, Address(reg_vp, 0)); + + // Restore non-volatile registers and return. + GenerateReturn(masm, ShortJump); +} + +// static +mozilla::Maybe<::JS::ProfilingFrameIterator::RegisterState> +JitRuntime::getCppEntryRegisters(JitFrameLayout* frameStackAddress) { + // Not supported, or not implemented yet. + // TODO: Implement along with the corresponding stack-walker changes, in + // coordination with the Gecko Profiler, see bug 1635987 and follow-ups. + return mozilla::Nothing{}; +} + +void JitRuntime::generateInvalidator(MacroAssembler& masm, Label* bailoutTail) { + AutoCreatedBy acb(masm, "JitRuntime::generateInvalidator"); + + invalidatorOffset_ = startTrampolineCode(masm); + + // Stack has to be alligned here. If not, we will have to fix it. + masm.checkStackAlignment(); + + // Push registers such that we can access them from [base + code]. + masm.PushRegsInMask(AllRegs); + + // Pass pointer to InvalidationBailoutStack structure. + masm.movePtr(StackPointer, a0); + + // Reserve place for BailoutInfo pointer. Two words to ensure alignment for + // setupAlignedABICall. + masm.subPtr(Imm32(2 * sizeof(uintptr_t)), StackPointer); + // Pass pointer to BailoutInfo + masm.movePtr(StackPointer, a1); + + using Fn = bool (*)(InvalidationBailoutStack* sp, BaselineBailoutInfo** info); + masm.setupAlignedABICall(); + masm.passABIArg(a0); + masm.passABIArg(a1); + masm.callWithABI<Fn, InvalidationBailout>( + ABIType::General, CheckUnsafeCallWithABI::DontCheckOther); + + masm.pop(a2); + + // Pop the machine state and the dead frame. + masm.moveToStackPtr(FramePointer); + + // Jump to shared bailout tail. The BailoutInfo pointer has to be in r2. + masm.jump(bailoutTail); +} + +void JitRuntime::generateArgumentsRectifier(MacroAssembler& masm, + ArgumentsRectifierKind kind) { + // Do not erase the frame pointer in this function. + + AutoCreatedBy acb(masm, "JitRuntime::generateArgumentsRectifier"); + + switch (kind) { + case ArgumentsRectifierKind::Normal: + argumentsRectifierOffset_ = startTrampolineCode(masm); + break; + case ArgumentsRectifierKind::TrialInlining: + trialInliningArgumentsRectifierOffset_ = startTrampolineCode(masm); + break; + } + masm.pushReturnAddress(); + + // Caller: + // [arg2] [arg1] [this] [[argc] [callee] [descr] [raddr]] <- sp + + // Frame prologue. + // + // NOTE: if this changes, fix the Baseline bailout code too! + // See BaselineStackBuilder::calculatePrevFramePtr and + // BaselineStackBuilder::buildRectifierFrame (in BaselineBailouts.cpp). + masm.push(FramePointer); + masm.mov(StackPointer, FramePointer); + + // Load argc. + masm.loadNumActualArgs(FramePointer, s3); + + Register numActArgsReg = a6; + Register calleeTokenReg = a7; + Register numArgsReg = a5; + + // Load |nformals| into numArgsReg. + masm.loadPtr( + Address(FramePointer, RectifierFrameLayout::offsetOfCalleeToken()), + calleeTokenReg); + masm.mov(calleeTokenReg, numArgsReg); + masm.andPtr(Imm32(uint32_t(CalleeTokenMask)), numArgsReg); + masm.loadFunctionArgCount(numArgsReg, numArgsReg); + + // Stash another copy in t3, since we are going to do destructive operations + // on numArgsReg + masm.mov(numArgsReg, t3); + + static_assert( + CalleeToken_FunctionConstructing == 1, + "Ensure that we can use the constructing bit to count the value"); + masm.mov(calleeTokenReg, t2); + masm.ma_and(t2, Imm32(uint32_t(CalleeToken_FunctionConstructing))); + + // Including |this|, and |new.target|, there are (|nformals| + 1 + + // isConstructing) arguments to push to the stack. Then we push a + // JitFrameLayout. We compute the padding expressed in the number of extra + // |undefined| values to push on the stack. + static_assert( + sizeof(JitFrameLayout) % JitStackAlignment == 0, + "No need to consider the JitFrameLayout for aligning the stack"); + static_assert( + JitStackAlignment % sizeof(Value) == 0, + "Ensure that we can pad the stack by pushing extra UndefinedValue"); + + MOZ_ASSERT(mozilla::IsPowerOfTwo(JitStackValueAlignment)); + masm.add32( + Imm32(JitStackValueAlignment - 1 /* for padding */ + 1 /* for |this| */), + numArgsReg); + masm.add32(t2, numArgsReg); + masm.and32(Imm32(~(JitStackValueAlignment - 1)), numArgsReg); + + // Load the number of |undefined|s to push into t1. Subtract 1 for |this|. + masm.as_dsubu(t1, numArgsReg, s3); + masm.sub32(Imm32(1), t1); + + // Caller: + // [arg2] [arg1] [this] [ [argc] [callee] [descr] [raddr] ] <- sp + // '--- s3 ----' + // + // Rectifier frame: + // [fp'][undef] [undef] [undef] [arg2] [arg1] [this] [ [argc] [callee] + // [descr] [raddr] ] + // '-------- t1 ---------' '--- s3 ----' + + // Copy number of actual arguments into numActArgsReg + masm.mov(s3, numActArgsReg); // Save %sp. + + masm.moveValue(UndefinedValue(), ValueOperand(t0)); + + // Push undefined. (including the padding) + { + Label undefLoopTop; + + masm.bind(&undefLoopTop); + masm.sub32(Imm32(1), t1); + masm.subPtr(Imm32(sizeof(Value)), StackPointer); + masm.storeValue(ValueOperand(t0), Address(StackPointer, 0)); + + masm.ma_b(t1, t1, &undefLoopTop, Assembler::NonZero, ShortJump); + } + + // Get the topmost argument. + static_assert(sizeof(Value) == 8, "TimesEight is used to skip arguments"); + + // Get the topmost argument. + masm.ma_dsll(t0, s3, Imm32(3)); // t0 <- nargs * 8 + masm.as_daddu(t1, FramePointer, t0); // t1 <- fp(saved sp) + nargs * 8 + masm.addPtr(Imm32(sizeof(RectifierFrameLayout)), t1); + + // Push arguments, |nargs| + 1 times (to include |this|). + + masm.addPtr(Imm32(1), s3); + { + Label copyLoopTop; + + masm.bind(©LoopTop); + masm.sub32(Imm32(1), s3); + masm.subPtr(Imm32(sizeof(Value)), StackPointer); + masm.loadValue(Address(t1, 0), ValueOperand(t0)); + masm.storeValue(ValueOperand(t0), Address(StackPointer, 0)); + masm.subPtr(Imm32(sizeof(Value)), t1); + + masm.ma_b(s3, s3, ©LoopTop, Assembler::NonZero, ShortJump); + } + + // if constructing, copy newTarget + { + Label notConstructing; + + masm.branchTest32(Assembler::Zero, calleeTokenReg, + Imm32(CalleeToken_FunctionConstructing), + ¬Constructing); + + // thisFrame[numFormals] = prevFrame[argc] + ValueOperand newTarget(t0); + + // Load vp[argc]. Add sizeof(Value) for |this|. + BaseIndex newTargetSrc(FramePointer, numActArgsReg, TimesEight, + sizeof(RectifierFrameLayout) + sizeof(Value)); + masm.loadValue(newTargetSrc, newTarget); + + // Again, 1 for |this| + BaseIndex newTargetDest(StackPointer, t3, TimesEight, sizeof(Value)); + masm.storeValue(newTarget, newTargetDest); + + masm.bind(¬Constructing); + } + + // Caller: + // [arg2] [arg1] [this] [ [argc] [callee] [descr] [raddr] ] + // + // + // Rectifier frame: + // [fp'] <- fp [undef] [undef] [undef] [arg2] [arg1] [this] <- sp [ [argc] + // [callee] [descr] [raddr] ] + + // Construct JitFrameLayout. + masm.push(calleeTokenReg); + masm.pushFrameDescriptorForJitCall(FrameType::Rectifier, numActArgsReg, + numActArgsReg); + + // Call the target function. + masm.andPtr(Imm32(uint32_t(CalleeTokenMask)), calleeTokenReg); + switch (kind) { + case ArgumentsRectifierKind::Normal: + masm.loadJitCodeRaw(calleeTokenReg, t1); + argumentsRectifierReturnOffset_ = masm.callJitNoProfiler(t1); + break; + case ArgumentsRectifierKind::TrialInlining: + Label noBaselineScript, done; + masm.loadBaselineJitCodeRaw(calleeTokenReg, t1, &noBaselineScript); + masm.callJitNoProfiler(t1); + masm.jump(&done); + + // See BaselineCacheIRCompiler::emitCallInlinedFunction. + masm.bind(&noBaselineScript); + masm.loadJitCodeRaw(calleeTokenReg, t1); + masm.callJitNoProfiler(t1); + masm.bind(&done); + break; + } + + masm.mov(FramePointer, StackPointer); + masm.pop(FramePointer); + masm.ret(); +} + +/* - When bailout is done via out of line code (lazy bailout). + * Frame size is stored in $ra (look at + * CodeGeneratorMIPS64::generateOutOfLineCode()) and thunk code should save it + * on stack. Other difference is that members snapshotOffset_ and padding_ are + * pushed to the stack by CodeGeneratorMIPS64::visitOutOfLineBailout(). + */ +static void PushBailoutFrame(MacroAssembler& masm, Register spArg) { + // Push the frameSize_ stored in ra + // See: CodeGeneratorMIPS64::generateOutOfLineCode() + masm.push(ra); + + // Push registers such that we can access them from [base + code]. + masm.PushRegsInMask(AllRegs); + + // Put pointer to BailoutStack as first argument to the Bailout() + masm.movePtr(StackPointer, spArg); +} + +static void GenerateBailoutThunk(MacroAssembler& masm, Label* bailoutTail) { + PushBailoutFrame(masm, a0); + + // Put pointer to BailoutInfo + static const uint32_t sizeOfBailoutInfo = sizeof(uintptr_t) * 2; + masm.subPtr(Imm32(sizeOfBailoutInfo), StackPointer); + masm.movePtr(StackPointer, a1); + + using Fn = bool (*)(BailoutStack* sp, BaselineBailoutInfo** info); + masm.setupAlignedABICall(); + masm.passABIArg(a0); + masm.passABIArg(a1); + masm.callWithABI<Fn, Bailout>(ABIType::General, + CheckUnsafeCallWithABI::DontCheckOther); + + // Get BailoutInfo pointer + masm.loadPtr(Address(StackPointer, 0), a2); + + // Remove both the bailout frame and the topmost Ion frame's stack. + masm.moveToStackPtr(FramePointer); + + // Jump to shared bailout tail. The BailoutInfo pointer has to be in a2. + masm.jump(bailoutTail); +} + +void JitRuntime::generateBailoutHandler(MacroAssembler& masm, + Label* bailoutTail) { + AutoCreatedBy acb(masm, "JitRuntime::generateBailoutHandler"); + + bailoutHandlerOffset_ = startTrampolineCode(masm); + + GenerateBailoutThunk(masm, bailoutTail); +} + +bool JitRuntime::generateVMWrapper(JSContext* cx, MacroAssembler& masm, + VMFunctionId id, const VMFunctionData& f, + DynFn nativeFun, uint32_t* wrapperOffset) { + AutoCreatedBy acb(masm, "JitRuntime::generateVMWrapper"); + + *wrapperOffset = startTrampolineCode(masm); + + // Avoid conflicts with argument registers while discarding the result after + // the function call. + AllocatableGeneralRegisterSet regs(Register::Codes::WrapperMask); + + static_assert( + (Register::Codes::VolatileMask & ~Register::Codes::WrapperMask) == 0, + "Wrapper register set should be a superset of Volatile register set."); + + // The context is the first argument; a0 is the first argument register. + Register cxreg = a0; + regs.take(cxreg); + + // On link-register platforms, it is the responsibility of the VM *callee* to + // push the return address, while the caller must ensure that the address + // is stored in ra on entry. This allows the VM wrapper to work with both + // direct calls and tail calls. + masm.pushReturnAddress(); + + // Push the frame pointer to finish the exit frame, then link it up. + masm.Push(FramePointer); + masm.moveStackPtrTo(FramePointer); + masm.loadJSContext(cxreg); + masm.enterExitFrame(cxreg, regs.getAny(), id); + + // Reserve space for the outparameter. + masm.reserveVMFunctionOutParamSpace(f); + masm.setupUnalignedABICallDontSaveRestoreSP(); + masm.passABIArg(cxreg); + + size_t argDisp = ExitFrameLayout::Size(); + + // Copy any arguments. + for (uint32_t explicitArg = 0; explicitArg < f.explicitArgs; explicitArg++) { + switch (f.argProperties(explicitArg)) { + case VMFunctionData::WordByValue: + if (f.argPassedInFloatReg(explicitArg)) { + masm.passABIArg(MoveOperand(FramePointer, argDisp), ABIType::Float64); + } else { + masm.passABIArg(MoveOperand(FramePointer, argDisp), ABIType::General); + } + argDisp += sizeof(void*); + break; + case VMFunctionData::WordByRef: + masm.passABIArg(MoveOperand(FramePointer, argDisp, + MoveOperand::Kind::EffectiveAddress), + ABIType::General); + argDisp += sizeof(void*); + break; + case VMFunctionData::DoubleByValue: + case VMFunctionData::DoubleByRef: + MOZ_CRASH("NYI: MIPS64 callVM should not be used with 128bits values."); + break; + } + } + + // Copy the implicit outparam, if any. + const int32_t outParamOffset = + -int32_t(ExitFooterFrame::Size()) - f.sizeOfOutParamStackSlot(); + if (f.outParam != Type_Void) { + masm.passABIArg(MoveOperand(FramePointer, outParamOffset, + MoveOperand::Kind::EffectiveAddress), + ABIType::General); + } + + masm.callWithABI(nativeFun, ABIType::General, + CheckUnsafeCallWithABI::DontCheckHasExitFrame); + + // Test for failure. + switch (f.failType()) { + case Type_Cell: + masm.branchTestPtr(Assembler::Zero, v0, v0, masm.failureLabel()); + break; + case Type_Bool: + // Called functions return bools, which are 0/false and non-zero/true + masm.branchIfFalseBool(v0, masm.failureLabel()); + break; + case Type_Void: + break; + default: + MOZ_CRASH("unknown failure kind"); + } + + // Load the outparam. + masm.loadVMFunctionOutParam(f, Address(FramePointer, outParamOffset)); + + // Pop frame and restore frame pointer. + masm.moveToStackPtr(FramePointer); + masm.pop(FramePointer); + + // Return. Subtract sizeof(void*) for the frame pointer. + masm.retn(Imm32(sizeof(ExitFrameLayout) - sizeof(void*) + + f.explicitStackSlots() * sizeof(void*) + + f.extraValuesToPop * sizeof(Value))); + + return true; +} + +uint32_t JitRuntime::generatePreBarrier(JSContext* cx, MacroAssembler& masm, + MIRType type) { + AutoCreatedBy acb(masm, "JitRuntime::generatePreBarrier"); + + uint32_t offset = startTrampolineCode(masm); + + MOZ_ASSERT(PreBarrierReg == a1); + Register temp1 = a0; + Register temp2 = a2; + Register temp3 = a3; + masm.push(temp1); + masm.push(temp2); + masm.push(temp3); + + Label noBarrier; + masm.emitPreBarrierFastPath(cx->runtime(), type, temp1, temp2, temp3, + &noBarrier); + + // Call into C++ to mark this GC thing. + masm.pop(temp3); + masm.pop(temp2); + masm.pop(temp1); + + LiveRegisterSet save; + save.set() = RegisterSet(GeneralRegisterSet(Registers::VolatileMask), + FloatRegisterSet(FloatRegisters::VolatileMask)); + save.add(ra); + masm.PushRegsInMask(save); + + masm.movePtr(ImmPtr(cx->runtime()), a0); + + masm.setupUnalignedABICall(a2); + masm.passABIArg(a0); + masm.passABIArg(a1); + masm.callWithABI(JitPreWriteBarrier(type)); + + save.take(AnyRegister(ra)); + masm.PopRegsInMask(save); + masm.ret(); + + masm.bind(&noBarrier); + masm.pop(temp3); + masm.pop(temp2); + masm.pop(temp1); + masm.abiret(); + + return offset; +} + +void JitRuntime::generateBailoutTailStub(MacroAssembler& masm, + Label* bailoutTail) { + AutoCreatedBy acb(masm, "JitRuntime::generateBailoutTailStub"); + + masm.bind(bailoutTail); + masm.generateBailoutTail(a1, a2); +} |