summaryrefslogtreecommitdiffstats
path: root/js/src/jsmath.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jsmath.cpp')
-rw-r--r--js/src/jsmath.cpp1085
1 files changed, 1085 insertions, 0 deletions
diff --git a/js/src/jsmath.cpp b/js/src/jsmath.cpp
new file mode 100644
index 0000000000..2bbfb04d92
--- /dev/null
+++ b/js/src/jsmath.cpp
@@ -0,0 +1,1085 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/*
+ * JS math package.
+ */
+
+#include "jsmath.h"
+
+#include "mozilla/CheckedInt.h"
+#include "mozilla/FloatingPoint.h"
+#include "mozilla/MathAlgorithms.h"
+#include "mozilla/RandomNum.h"
+#include "mozilla/WrappingOperations.h"
+
+#include <cmath>
+
+#include "fdlibm.h"
+#include "jsapi.h"
+#include "jstypes.h"
+
+#include "jit/InlinableNatives.h"
+#include "js/Class.h"
+#include "js/Prefs.h"
+#include "js/PropertySpec.h"
+#include "util/DifferentialTesting.h"
+#include "vm/JSContext.h"
+#include "vm/Realm.h"
+#include "vm/Time.h"
+
+#include "vm/JSObject-inl.h"
+
+using namespace js;
+
+using JS::GenericNaN;
+using JS::ToNumber;
+using mozilla::ExponentComponent;
+using mozilla::FloatingPoint;
+using mozilla::IsNegative;
+using mozilla::IsNegativeZero;
+using mozilla::Maybe;
+using mozilla::NegativeInfinity;
+using mozilla::NumberEqualsInt32;
+using mozilla::NumberEqualsInt64;
+using mozilla::PositiveInfinity;
+using mozilla::WrappingMultiply;
+
+bool js::math_use_fdlibm_for_sin_cos_tan() {
+ return JS::Prefs::use_fdlibm_for_sin_cos_tan();
+}
+
+static inline bool UseFdlibmForSinCosTan(const CallArgs& args) {
+ return math_use_fdlibm_for_sin_cos_tan() ||
+ args.callee().nonCCWRealm()->creationOptions().alwaysUseFdlibm();
+}
+
+template <UnaryMathFunctionType F>
+static bool math_function(JSContext* cx, CallArgs& args) {
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ double x;
+ if (!ToNumber(cx, args[0], &x)) {
+ return false;
+ }
+
+ // TODO(post-Warp): Re-evaluate if it's still necessary resp. useful to always
+ // type the value as a double.
+
+ // NB: Always stored as a double so the math function can be inlined
+ // through MMathFunction.
+ double z = F(x);
+ args.rval().setDouble(z);
+ return true;
+}
+
+double js::math_abs_impl(double x) { return mozilla::Abs(x); }
+
+bool js::math_abs(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ double x;
+ if (!ToNumber(cx, args[0], &x)) {
+ return false;
+ }
+
+ args.rval().setNumber(math_abs_impl(x));
+ return true;
+}
+
+double js::math_acos_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_acos(x);
+}
+
+static bool math_acos(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_acos_impl>(cx, args);
+}
+
+double js::math_asin_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_asin(x);
+}
+
+static bool math_asin(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_asin_impl>(cx, args);
+}
+
+double js::math_atan_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_atan(x);
+}
+
+static bool math_atan(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_atan_impl>(cx, args);
+}
+
+double js::ecmaAtan2(double y, double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_atan2(y, x);
+}
+
+static bool math_atan2(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ double y;
+ if (!ToNumber(cx, args.get(0), &y)) {
+ return false;
+ }
+
+ double x;
+ if (!ToNumber(cx, args.get(1), &x)) {
+ return false;
+ }
+
+ double z = ecmaAtan2(y, x);
+ args.rval().setDouble(z);
+ return true;
+}
+
+double js::math_ceil_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_ceil(x);
+}
+
+static bool math_ceil(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ double x;
+ if (!ToNumber(cx, args[0], &x)) {
+ return false;
+ }
+
+ args.rval().setNumber(math_ceil_impl(x));
+ return true;
+}
+
+static bool math_clz32(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setInt32(32);
+ return true;
+ }
+
+ uint32_t n;
+ if (!ToUint32(cx, args[0], &n)) {
+ return false;
+ }
+
+ if (n == 0) {
+ args.rval().setInt32(32);
+ return true;
+ }
+
+ args.rval().setInt32(mozilla::CountLeadingZeroes32(n));
+ return true;
+}
+
+double js::math_cos_fdlibm_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_cos(x);
+}
+
+double js::math_cos_native_impl(double x) {
+ MOZ_ASSERT(!math_use_fdlibm_for_sin_cos_tan());
+ AutoUnsafeCallWithABI unsafe;
+ return std::cos(x);
+}
+
+static bool math_cos(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ if (UseFdlibmForSinCosTan(args)) {
+ return math_function<math_cos_fdlibm_impl>(cx, args);
+ }
+ return math_function<math_cos_native_impl>(cx, args);
+}
+
+double js::math_exp_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_exp(x);
+}
+
+static bool math_exp(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_exp_impl>(cx, args);
+}
+
+double js::math_floor_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_floor(x);
+}
+
+bool js::math_floor(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ double x;
+ if (!ToNumber(cx, args[0], &x)) {
+ return false;
+ }
+
+ args.rval().setNumber(math_floor_impl(x));
+ return true;
+}
+
+bool js::math_imul_handle(JSContext* cx, HandleValue lhs, HandleValue rhs,
+ MutableHandleValue res) {
+ int32_t a = 0, b = 0;
+ if (!lhs.isUndefined() && !ToInt32(cx, lhs, &a)) {
+ return false;
+ }
+ if (!rhs.isUndefined() && !ToInt32(cx, rhs, &b)) {
+ return false;
+ }
+
+ res.setInt32(WrappingMultiply(a, b));
+ return true;
+}
+
+static bool math_imul(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ return math_imul_handle(cx, args.get(0), args.get(1), args.rval());
+}
+
+// Implements Math.fround (20.2.2.16) up to step 3
+bool js::RoundFloat32(JSContext* cx, HandleValue v, float* out) {
+ double d;
+ bool success = ToNumber(cx, v, &d);
+ *out = static_cast<float>(d);
+ return success;
+}
+
+bool js::RoundFloat32(JSContext* cx, HandleValue arg, MutableHandleValue res) {
+ float f;
+ if (!RoundFloat32(cx, arg, &f)) {
+ return false;
+ }
+
+ res.setDouble(static_cast<double>(f));
+ return true;
+}
+
+double js::RoundFloat32(double d) {
+ return static_cast<double>(static_cast<float>(d));
+}
+
+static bool math_fround(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ return RoundFloat32(cx, args[0], args.rval());
+}
+
+double js::math_log_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_log(x);
+}
+
+static bool math_log(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_log_impl>(cx, args);
+}
+
+double js::math_max_impl(double x, double y) {
+ AutoUnsafeCallWithABI unsafe;
+
+ // Math.max(num, NaN) => NaN, Math.max(-0, +0) => +0
+ if (x > y || std::isnan(x) || (x == y && IsNegative(y))) {
+ return x;
+ }
+ return y;
+}
+
+bool js::math_max(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ double maxval = NegativeInfinity<double>();
+ for (unsigned i = 0; i < args.length(); i++) {
+ double x;
+ if (!ToNumber(cx, args[i], &x)) {
+ return false;
+ }
+ maxval = math_max_impl(x, maxval);
+ }
+ args.rval().setNumber(maxval);
+ return true;
+}
+
+double js::math_min_impl(double x, double y) {
+ AutoUnsafeCallWithABI unsafe;
+
+ // Math.min(num, NaN) => NaN, Math.min(-0, +0) => -0
+ if (x < y || std::isnan(x) || (x == y && IsNegativeZero(x))) {
+ return x;
+ }
+ return y;
+}
+
+bool js::math_min(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ double minval = PositiveInfinity<double>();
+ for (unsigned i = 0; i < args.length(); i++) {
+ double x;
+ if (!ToNumber(cx, args[i], &x)) {
+ return false;
+ }
+ minval = math_min_impl(x, minval);
+ }
+ args.rval().setNumber(minval);
+ return true;
+}
+
+double js::powi(double x, int32_t y) {
+ AutoUnsafeCallWithABI unsafe;
+
+ // It's only safe to optimize this when we can compute with integer values or
+ // the exponent is a small, positive constant.
+ if (y >= 0) {
+ uint32_t n = uint32_t(y);
+
+ // NB: Have to take fast-path for n <= 4 to match |MPow::foldsTo|. Otherwise
+ // we risk causing differential testing issues.
+ if (n == 0) {
+ return 1;
+ }
+ if (n == 1) {
+ return x;
+ }
+ if (n == 2) {
+ return x * x;
+ }
+ if (n == 3) {
+ return x * x * x;
+ }
+ if (n == 4) {
+ double z = x * x;
+ return z * z;
+ }
+
+ int64_t i;
+ if (NumberEqualsInt64(x, &i)) {
+ // Special-case: |-0 ** odd| is -0.
+ if (i == 0) {
+ return (n & 1) ? x : 0;
+ }
+
+ // Use int64 to cover cases like |Math.pow(2, 53)|.
+ mozilla::CheckedInt64 runningSquare = i;
+ mozilla::CheckedInt64 result = 1;
+ while (true) {
+ if ((n & 1) != 0) {
+ result *= runningSquare;
+ if (!result.isValid()) {
+ break;
+ }
+ }
+
+ n >>= 1;
+ if (n == 0) {
+ return static_cast<double>(result.value());
+ }
+
+ runningSquare *= runningSquare;
+ if (!runningSquare.isValid()) {
+ break;
+ }
+ }
+ }
+
+ // Fall-back to use std::pow to reduce floating point precision errors.
+ }
+
+ return std::pow(x, static_cast<double>(y)); // Avoid pow(double, int).
+}
+
+double js::ecmaPow(double x, double y) {
+ AutoUnsafeCallWithABI unsafe;
+
+ /*
+ * Use powi if the exponent is an integer-valued double. We don't have to
+ * check for NaN since a comparison with NaN is always false.
+ */
+ int32_t yi;
+ if (NumberEqualsInt32(y, &yi)) {
+ return powi(x, yi);
+ }
+
+ /*
+ * Because C99 and ECMA specify different behavior for pow(),
+ * we need to wrap the libm call to make it ECMA compliant.
+ */
+ if (!std::isfinite(y) && (x == 1.0 || x == -1.0)) {
+ return GenericNaN();
+ }
+
+ /* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */
+ if (y == 0) {
+ return 1;
+ }
+
+ /*
+ * Special case for square roots. Note that pow(x, 0.5) != sqrt(x)
+ * when x = -0.0, so we have to guard for this.
+ */
+ if (std::isfinite(x) && x != 0.0) {
+ if (y == 0.5) {
+ return std::sqrt(x);
+ }
+ if (y == -0.5) {
+ return 1.0 / std::sqrt(x);
+ }
+ }
+ return std::pow(x, y);
+}
+
+static bool math_pow(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ double x;
+ if (!ToNumber(cx, args.get(0), &x)) {
+ return false;
+ }
+
+ double y;
+ if (!ToNumber(cx, args.get(1), &y)) {
+ return false;
+ }
+
+ double z = ecmaPow(x, y);
+ args.rval().setNumber(z);
+ return true;
+}
+
+uint64_t js::GenerateRandomSeed() {
+ Maybe<uint64_t> maybeSeed = mozilla::RandomUint64();
+
+ return maybeSeed.valueOrFrom([] {
+ // Use PRMJ_Now() in case we couldn't read random bits from the OS.
+ uint64_t timestamp = PRMJ_Now();
+ return timestamp ^ (timestamp << 32);
+ });
+}
+
+void js::GenerateXorShift128PlusSeed(mozilla::Array<uint64_t, 2>& seed) {
+ // XorShift128PlusRNG must be initialized with a non-zero seed.
+ do {
+ seed[0] = GenerateRandomSeed();
+ seed[1] = GenerateRandomSeed();
+ } while (seed[0] == 0 && seed[1] == 0);
+}
+
+mozilla::non_crypto::XorShift128PlusRNG&
+Realm::getOrCreateRandomNumberGenerator() {
+ if (randomNumberGenerator_.isNothing()) {
+ mozilla::Array<uint64_t, 2> seed;
+ GenerateXorShift128PlusSeed(seed);
+ randomNumberGenerator_.emplace(seed[0], seed[1]);
+ }
+
+ return randomNumberGenerator_.ref();
+}
+
+double js::math_random_impl(JSContext* cx) {
+ return cx->realm()->getOrCreateRandomNumberGenerator().nextDouble();
+}
+
+static bool math_random(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ if (js::SupportDifferentialTesting()) {
+ args.rval().setDouble(0);
+ } else {
+ args.rval().setDouble(math_random_impl(cx));
+ }
+ return true;
+}
+
+template <typename T>
+T js::GetBiggestNumberLessThan(T x) {
+ MOZ_ASSERT(!IsNegative(x));
+ MOZ_ASSERT(std::isfinite(x));
+ using Bits = typename mozilla::FloatingPoint<T>::Bits;
+ Bits bits = mozilla::BitwiseCast<Bits>(x);
+ MOZ_ASSERT(bits > 0, "will underflow");
+ return mozilla::BitwiseCast<T>(bits - 1);
+}
+
+template double js::GetBiggestNumberLessThan<>(double x);
+template float js::GetBiggestNumberLessThan<>(float x);
+
+double js::math_round_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+
+ int32_t ignored;
+ if (NumberEqualsInt32(x, &ignored)) {
+ return x;
+ }
+
+ /* Some numbers are so big that adding 0.5 would give the wrong number. */
+ if (ExponentComponent(x) >=
+ int_fast16_t(FloatingPoint<double>::kExponentShift)) {
+ return x;
+ }
+
+ double add = (x >= 0) ? GetBiggestNumberLessThan(0.5) : 0.5;
+ return std::copysign(fdlibm_floor(x + add), x);
+}
+
+float js::math_roundf_impl(float x) {
+ AutoUnsafeCallWithABI unsafe;
+
+ int32_t ignored;
+ if (NumberEqualsInt32(x, &ignored)) {
+ return x;
+ }
+
+ /* Some numbers are so big that adding 0.5 would give the wrong number. */
+ if (ExponentComponent(x) >=
+ int_fast16_t(FloatingPoint<float>::kExponentShift)) {
+ return x;
+ }
+
+ float add = (x >= 0) ? GetBiggestNumberLessThan(0.5f) : 0.5f;
+ return std::copysign(fdlibm_floorf(x + add), x);
+}
+
+/* ES5 15.8.2.15. */
+static bool math_round(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ double x;
+ if (!ToNumber(cx, args[0], &x)) {
+ return false;
+ }
+
+ args.rval().setNumber(math_round_impl(x));
+ return true;
+}
+
+double js::math_sin_fdlibm_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_sin(x);
+}
+
+double js::math_sin_native_impl(double x) {
+ MOZ_ASSERT(!math_use_fdlibm_for_sin_cos_tan());
+ AutoUnsafeCallWithABI unsafe;
+ return std::sin(x);
+}
+
+static bool math_sin(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ if (UseFdlibmForSinCosTan(args)) {
+ return math_function<math_sin_fdlibm_impl>(cx, args);
+ }
+ return math_function<math_sin_native_impl>(cx, args);
+}
+
+double js::math_sqrt_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return std::sqrt(x);
+}
+
+static bool math_sqrt(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_sqrt_impl>(cx, args);
+}
+
+double js::math_tan_fdlibm_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_tan(x);
+}
+
+double js::math_tan_native_impl(double x) {
+ MOZ_ASSERT(!math_use_fdlibm_for_sin_cos_tan());
+ AutoUnsafeCallWithABI unsafe;
+ return std::tan(x);
+}
+
+static bool math_tan(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ if (UseFdlibmForSinCosTan(args)) {
+ return math_function<math_tan_fdlibm_impl>(cx, args);
+ }
+ return math_function<math_tan_native_impl>(cx, args);
+}
+
+double js::math_log10_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_log10(x);
+}
+
+static bool math_log10(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_log10_impl>(cx, args);
+}
+
+double js::math_log2_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_log2(x);
+}
+
+static bool math_log2(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_log2_impl>(cx, args);
+}
+
+double js::math_log1p_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_log1p(x);
+}
+
+static bool math_log1p(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_log1p_impl>(cx, args);
+}
+
+double js::math_expm1_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_expm1(x);
+}
+
+static bool math_expm1(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_expm1_impl>(cx, args);
+}
+
+double js::math_cosh_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_cosh(x);
+}
+
+static bool math_cosh(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_cosh_impl>(cx, args);
+}
+
+double js::math_sinh_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_sinh(x);
+}
+
+static bool math_sinh(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_sinh_impl>(cx, args);
+}
+
+double js::math_tanh_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_tanh(x);
+}
+
+static bool math_tanh(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_tanh_impl>(cx, args);
+}
+
+double js::math_acosh_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_acosh(x);
+}
+
+static bool math_acosh(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_acosh_impl>(cx, args);
+}
+
+double js::math_asinh_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_asinh(x);
+}
+
+static bool math_asinh(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_asinh_impl>(cx, args);
+}
+
+double js::math_atanh_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_atanh(x);
+}
+
+static bool math_atanh(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_atanh_impl>(cx, args);
+}
+
+double js::ecmaHypot(double x, double y) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_hypot(x, y);
+}
+
+static inline void hypot_step(double& scale, double& sumsq, double x) {
+ double xabs = mozilla::Abs(x);
+ if (scale < xabs) {
+ sumsq = 1 + sumsq * (scale / xabs) * (scale / xabs);
+ scale = xabs;
+ } else if (scale != 0) {
+ sumsq += (xabs / scale) * (xabs / scale);
+ }
+}
+
+double js::hypot4(double x, double y, double z, double w) {
+ AutoUnsafeCallWithABI unsafe;
+
+ // Check for infinities or NaNs so that we can return immediately.
+ if (std::isinf(x) || std::isinf(y) || std::isinf(z) || std::isinf(w)) {
+ return mozilla::PositiveInfinity<double>();
+ }
+
+ if (std::isnan(x) || std::isnan(y) || std::isnan(z) || std::isnan(w)) {
+ return GenericNaN();
+ }
+
+ double scale = 0;
+ double sumsq = 1;
+
+ hypot_step(scale, sumsq, x);
+ hypot_step(scale, sumsq, y);
+ hypot_step(scale, sumsq, z);
+ hypot_step(scale, sumsq, w);
+
+ return scale * std::sqrt(sumsq);
+}
+
+double js::hypot3(double x, double y, double z) {
+ AutoUnsafeCallWithABI unsafe;
+ return hypot4(x, y, z, 0.0);
+}
+
+static bool math_hypot(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_hypot_handle(cx, args, args.rval());
+}
+
+bool js::math_hypot_handle(JSContext* cx, HandleValueArray args,
+ MutableHandleValue res) {
+ // IonMonkey calls the ecmaHypot function directly if two arguments are
+ // given. Do that here as well to get the same results.
+ if (args.length() == 2) {
+ double x, y;
+ if (!ToNumber(cx, args[0], &x)) {
+ return false;
+ }
+ if (!ToNumber(cx, args[1], &y)) {
+ return false;
+ }
+
+ double result = ecmaHypot(x, y);
+ res.setDouble(result);
+ return true;
+ }
+
+ bool isInfinite = false;
+ bool isNaN = false;
+
+ double scale = 0;
+ double sumsq = 1;
+
+ for (unsigned i = 0; i < args.length(); i++) {
+ double x;
+ if (!ToNumber(cx, args[i], &x)) {
+ return false;
+ }
+
+ isInfinite |= std::isinf(x);
+ isNaN |= std::isnan(x);
+ if (isInfinite || isNaN) {
+ continue;
+ }
+
+ hypot_step(scale, sumsq, x);
+ }
+
+ double result = isInfinite ? PositiveInfinity<double>()
+ : isNaN ? GenericNaN()
+ : scale * std::sqrt(sumsq);
+ res.setDouble(result);
+ return true;
+}
+
+double js::math_trunc_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_trunc(x);
+}
+
+float js::math_truncf_impl(float x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_truncf(x);
+}
+
+bool js::math_trunc(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ double x;
+ if (!ToNumber(cx, args[0], &x)) {
+ return false;
+ }
+
+ args.rval().setNumber(math_trunc_impl(x));
+ return true;
+}
+
+double js::math_sign_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+
+ if (std::isnan(x)) {
+ return GenericNaN();
+ }
+
+ return x == 0 ? x : x < 0 ? -1 : 1;
+}
+
+static bool math_sign(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ double x;
+ if (!ToNumber(cx, args[0], &x)) {
+ return false;
+ }
+
+ args.rval().setNumber(math_sign_impl(x));
+ return true;
+}
+
+double js::math_cbrt_impl(double x) {
+ AutoUnsafeCallWithABI unsafe;
+ return fdlibm_cbrt(x);
+}
+
+static bool math_cbrt(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_function<math_cbrt_impl>(cx, args);
+}
+
+static bool math_toSource(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ args.rval().setString(cx->names().Math);
+ return true;
+}
+
+UnaryMathFunctionType js::GetUnaryMathFunctionPtr(UnaryMathFunction fun) {
+ switch (fun) {
+ case UnaryMathFunction::SinNative:
+ return math_sin_native_impl;
+ case UnaryMathFunction::SinFdlibm:
+ return math_sin_fdlibm_impl;
+ case UnaryMathFunction::CosNative:
+ return math_cos_native_impl;
+ case UnaryMathFunction::CosFdlibm:
+ return math_cos_fdlibm_impl;
+ case UnaryMathFunction::TanNative:
+ return math_tan_native_impl;
+ case UnaryMathFunction::TanFdlibm:
+ return math_tan_fdlibm_impl;
+ case UnaryMathFunction::Log:
+ return math_log_impl;
+ case UnaryMathFunction::Exp:
+ return math_exp_impl;
+ case UnaryMathFunction::ATan:
+ return math_atan_impl;
+ case UnaryMathFunction::ASin:
+ return math_asin_impl;
+ case UnaryMathFunction::ACos:
+ return math_acos_impl;
+ case UnaryMathFunction::Log10:
+ return math_log10_impl;
+ case UnaryMathFunction::Log2:
+ return math_log2_impl;
+ case UnaryMathFunction::Log1P:
+ return math_log1p_impl;
+ case UnaryMathFunction::ExpM1:
+ return math_expm1_impl;
+ case UnaryMathFunction::CosH:
+ return math_cosh_impl;
+ case UnaryMathFunction::SinH:
+ return math_sinh_impl;
+ case UnaryMathFunction::TanH:
+ return math_tanh_impl;
+ case UnaryMathFunction::ACosH:
+ return math_acosh_impl;
+ case UnaryMathFunction::ASinH:
+ return math_asinh_impl;
+ case UnaryMathFunction::ATanH:
+ return math_atanh_impl;
+ case UnaryMathFunction::Trunc:
+ return math_trunc_impl;
+ case UnaryMathFunction::Cbrt:
+ return math_cbrt_impl;
+ case UnaryMathFunction::Floor:
+ return math_floor_impl;
+ case UnaryMathFunction::Ceil:
+ return math_ceil_impl;
+ case UnaryMathFunction::Round:
+ return math_round_impl;
+ }
+ MOZ_CRASH("Unknown function");
+}
+
+const char* js::GetUnaryMathFunctionName(UnaryMathFunction fun) {
+ switch (fun) {
+ case UnaryMathFunction::SinNative:
+ return "Sin (native)";
+ case UnaryMathFunction::SinFdlibm:
+ return "Sin (fdlibm)";
+ case UnaryMathFunction::CosNative:
+ return "Cos (native)";
+ case UnaryMathFunction::CosFdlibm:
+ return "Cos (fdlibm)";
+ case UnaryMathFunction::TanNative:
+ return "Tan (native)";
+ case UnaryMathFunction::TanFdlibm:
+ return "Tan (fdlibm)";
+ case UnaryMathFunction::Log:
+ return "Log";
+ case UnaryMathFunction::Exp:
+ return "Exp";
+ case UnaryMathFunction::ACos:
+ return "ACos";
+ case UnaryMathFunction::ASin:
+ return "ASin";
+ case UnaryMathFunction::ATan:
+ return "ATan";
+ case UnaryMathFunction::Log10:
+ return "Log10";
+ case UnaryMathFunction::Log2:
+ return "Log2";
+ case UnaryMathFunction::Log1P:
+ return "Log1P";
+ case UnaryMathFunction::ExpM1:
+ return "ExpM1";
+ case UnaryMathFunction::CosH:
+ return "CosH";
+ case UnaryMathFunction::SinH:
+ return "SinH";
+ case UnaryMathFunction::TanH:
+ return "TanH";
+ case UnaryMathFunction::ACosH:
+ return "ACosH";
+ case UnaryMathFunction::ASinH:
+ return "ASinH";
+ case UnaryMathFunction::ATanH:
+ return "ATanH";
+ case UnaryMathFunction::Trunc:
+ return "Trunc";
+ case UnaryMathFunction::Cbrt:
+ return "Cbrt";
+ case UnaryMathFunction::Floor:
+ return "Floor";
+ case UnaryMathFunction::Ceil:
+ return "Ceil";
+ case UnaryMathFunction::Round:
+ return "Round";
+ }
+ MOZ_CRASH("Unknown function");
+}
+
+static const JSFunctionSpec math_static_methods[] = {
+ JS_FN("toSource", math_toSource, 0, 0),
+ JS_INLINABLE_FN("abs", math_abs, 1, 0, MathAbs),
+ JS_INLINABLE_FN("acos", math_acos, 1, 0, MathACos),
+ JS_INLINABLE_FN("asin", math_asin, 1, 0, MathASin),
+ JS_INLINABLE_FN("atan", math_atan, 1, 0, MathATan),
+ JS_INLINABLE_FN("atan2", math_atan2, 2, 0, MathATan2),
+ JS_INLINABLE_FN("ceil", math_ceil, 1, 0, MathCeil),
+ JS_INLINABLE_FN("clz32", math_clz32, 1, 0, MathClz32),
+ JS_INLINABLE_FN("cos", math_cos, 1, 0, MathCos),
+ JS_INLINABLE_FN("exp", math_exp, 1, 0, MathExp),
+ JS_INLINABLE_FN("floor", math_floor, 1, 0, MathFloor),
+ JS_INLINABLE_FN("imul", math_imul, 2, 0, MathImul),
+ JS_INLINABLE_FN("fround", math_fround, 1, 0, MathFRound),
+ JS_INLINABLE_FN("log", math_log, 1, 0, MathLog),
+ JS_INLINABLE_FN("max", math_max, 2, 0, MathMax),
+ JS_INLINABLE_FN("min", math_min, 2, 0, MathMin),
+ JS_INLINABLE_FN("pow", math_pow, 2, 0, MathPow),
+ JS_INLINABLE_FN("random", math_random, 0, 0, MathRandom),
+ JS_INLINABLE_FN("round", math_round, 1, 0, MathRound),
+ JS_INLINABLE_FN("sin", math_sin, 1, 0, MathSin),
+ JS_INLINABLE_FN("sqrt", math_sqrt, 1, 0, MathSqrt),
+ JS_INLINABLE_FN("tan", math_tan, 1, 0, MathTan),
+ JS_INLINABLE_FN("log10", math_log10, 1, 0, MathLog10),
+ JS_INLINABLE_FN("log2", math_log2, 1, 0, MathLog2),
+ JS_INLINABLE_FN("log1p", math_log1p, 1, 0, MathLog1P),
+ JS_INLINABLE_FN("expm1", math_expm1, 1, 0, MathExpM1),
+ JS_INLINABLE_FN("cosh", math_cosh, 1, 0, MathCosH),
+ JS_INLINABLE_FN("sinh", math_sinh, 1, 0, MathSinH),
+ JS_INLINABLE_FN("tanh", math_tanh, 1, 0, MathTanH),
+ JS_INLINABLE_FN("acosh", math_acosh, 1, 0, MathACosH),
+ JS_INLINABLE_FN("asinh", math_asinh, 1, 0, MathASinH),
+ JS_INLINABLE_FN("atanh", math_atanh, 1, 0, MathATanH),
+ JS_INLINABLE_FN("hypot", math_hypot, 2, 0, MathHypot),
+ JS_INLINABLE_FN("trunc", math_trunc, 1, 0, MathTrunc),
+ JS_INLINABLE_FN("sign", math_sign, 1, 0, MathSign),
+ JS_INLINABLE_FN("cbrt", math_cbrt, 1, 0, MathCbrt),
+ JS_FS_END};
+
+static const JSPropertySpec math_static_properties[] = {
+ JS_DOUBLE_PS("E", M_E, JSPROP_READONLY | JSPROP_PERMANENT),
+ JS_DOUBLE_PS("LOG2E", M_LOG2E, JSPROP_READONLY | JSPROP_PERMANENT),
+ JS_DOUBLE_PS("LOG10E", M_LOG10E, JSPROP_READONLY | JSPROP_PERMANENT),
+ JS_DOUBLE_PS("LN2", M_LN2, JSPROP_READONLY | JSPROP_PERMANENT),
+ JS_DOUBLE_PS("LN10", M_LN10, JSPROP_READONLY | JSPROP_PERMANENT),
+ JS_DOUBLE_PS("PI", M_PI, JSPROP_READONLY | JSPROP_PERMANENT),
+ JS_DOUBLE_PS("SQRT2", M_SQRT2, JSPROP_READONLY | JSPROP_PERMANENT),
+ JS_DOUBLE_PS("SQRT1_2", M_SQRT1_2, JSPROP_READONLY | JSPROP_PERMANENT),
+
+ JS_STRING_SYM_PS(toStringTag, "Math", JSPROP_READONLY),
+ JS_PS_END};
+
+static JSObject* CreateMathObject(JSContext* cx, JSProtoKey key) {
+ RootedObject proto(cx, &cx->global()->getObjectPrototype());
+ return NewTenuredObjectWithGivenProto(cx, &MathClass, proto);
+}
+
+static const ClassSpec MathClassSpec = {CreateMathObject,
+ nullptr,
+ math_static_methods,
+ math_static_properties,
+ nullptr,
+ nullptr,
+ nullptr};
+
+const JSClass js::MathClass = {"Math", JSCLASS_HAS_CACHED_PROTO(JSProto_Math),
+ JS_NULL_CLASS_OPS, &MathClassSpec};