summaryrefslogtreecommitdiffstats
path: root/js/src/wasm/WasmSummarizeInsn.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/wasm/WasmSummarizeInsn.cpp')
-rw-r--r--js/src/wasm/WasmSummarizeInsn.cpp1466
1 files changed, 1466 insertions, 0 deletions
diff --git a/js/src/wasm/WasmSummarizeInsn.cpp b/js/src/wasm/WasmSummarizeInsn.cpp
new file mode 100644
index 0000000000..99834d6740
--- /dev/null
+++ b/js/src/wasm/WasmSummarizeInsn.cpp
@@ -0,0 +1,1466 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "wasm/WasmSummarizeInsn.h"
+
+using mozilla::Maybe;
+using mozilla::Nothing;
+using mozilla::Some;
+
+namespace js {
+namespace wasm {
+
+// Sources of documentation of instruction-set encoding:
+//
+// Documentation for the ARM instruction sets can be found at
+// https://developer.arm.com/documentation/ddi0487/latest. The documentation
+// is vast -- more than 10000 pages. When looking up an instruction, be sure
+// to look in the correct section for the target word size -- AArch64 (arm64)
+// and AArch32 (arm32) instructions are listed in different sections. And for
+// AArch32, be sure to look only at the "A<digit> variant/encoding" and not at
+// the "T<digit>" ones. The latter are for Thumb encodings, which we don't
+// generate.
+//
+// The Intel documentation is similarly comprehensive: search for "Intel® 64
+// and IA-32 Architectures Software Developer’s Manual Combined Volumes: 1,
+// 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4". It's easy to find.
+
+#if defined(DEBUG)
+
+// ===================================================== x86_32 and x86_64 ====
+
+# if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86)
+
+// Returns true iff a "Mod R/M" byte indicates a memory transaction.
+static bool ModRMisM(uint8_t modrm) {
+ return (modrm & 0b11'000'000) != 0b11'000'000;
+}
+
+// Returns bits 6:4 of a Mod R/M byte, which (for our very limited purposes)
+// is sometimes interpreted as an opcode extension.
+static uint8_t ModRMmid3(uint8_t modrm) { return (modrm >> 3) & 0b00000111; }
+
+// Some simple helpers for dealing with (bitsets of) instruction prefixes.
+enum Prefix : uint32_t {
+ PfxLock = 1 << 0,
+ Pfx66 = 1 << 1,
+ PfxF2 = 1 << 2,
+ PfxF3 = 1 << 3,
+ PfxRexW = 1 << 4,
+ PfxVexL = 1 << 5
+};
+static bool isEmpty(uint32_t set) { return set == 0; }
+static bool hasAllOf(uint32_t set, uint32_t mustBePresent) {
+ return (set & mustBePresent) == mustBePresent;
+}
+static bool hasNoneOf(uint32_t set, uint32_t mustNotBePresent) {
+ return (set & mustNotBePresent) == 0;
+}
+static bool hasOnly(uint32_t set, uint32_t onlyTheseMayBePresent) {
+ return (set & ~onlyTheseMayBePresent) == 0;
+}
+
+// Implied opcode-escape prefixes; these are used for decoding VEX-prefixed
+// (AVX) instructions only. This is a real enumeration, not a bitset.
+enum Escape { EscNone, Esc0F, Esc0F38, Esc0F3A };
+
+Maybe<TrapMachineInsn> SummarizeTrapInstruction(const uint8_t* insn) {
+ const bool is64bit = sizeof(void*) == 8;
+
+ // First off, use up the prefix bytes, so we wind up pointing `insn` at the
+ // primary opcode byte, and at the same time accumulate the prefixes in
+ // `prefixes`.
+ uint32_t prefixes = 0;
+
+ bool hasREX = false;
+ bool hasVEX = false;
+
+ // Parse the "legacy" prefixes (only those we care about). Skip REX on
+ // 32-bit x86.
+ while (true) {
+ if (insn[0] >= 0x40 && insn[0] <= 0x4F && is64bit) {
+ hasREX = true;
+ // It has a REX prefix, but is REX.W set?
+ if (insn[0] >= 0x48) {
+ prefixes |= PfxRexW;
+ }
+ insn++;
+ continue;
+ }
+ if (insn[0] == 0x66) {
+ prefixes |= Pfx66;
+ insn++;
+ continue;
+ }
+ if (insn[0] == 0xF0) {
+ prefixes |= PfxLock;
+ insn++;
+ continue;
+ }
+ if (insn[0] == 0xF2) {
+ prefixes |= PfxF2;
+ insn++;
+ continue;
+ }
+ if (insn[0] == 0xF3) {
+ prefixes |= PfxF3;
+ insn++;
+ continue;
+ }
+ if (insn[0] == 0xC4 || insn[0] == 0xC5) {
+ hasVEX = true;
+ // And fall through to the `break`, leaving `insn` pointing at the start
+ // of the VEX prefix.
+ }
+ break;
+ }
+
+ // Throw out some invalid prefix combinations.
+ if (hasAllOf(prefixes, PfxF2 | PfxF3) || (hasREX && hasVEX)) {
+ return Nothing();
+ }
+
+ if (!hasVEX) {
+ // The instruction has legacy prefixes only. Deal with all these cases
+ // first.
+
+ // Determine the data size (in bytes) for "standard form" non-SIMD, non-FP
+ // instructions whose opcode byte(s) don't directly imply an 8-bit
+ // operation. If both REX.W and 0x66 are present then REX.W "wins".
+ int opSize = 4;
+ if (prefixes & Pfx66) {
+ opSize = 2;
+ }
+ if (prefixes & PfxRexW) {
+ MOZ_ASSERT(is64bit);
+ opSize = 8;
+ }
+
+ // `insn` should now point at the primary opcode, at least for the cases
+ // we care about. Start identifying instructions. The OP_/OP2_/OP3_
+ // comments are references to names as declared in Encoding-x86-shared.h.
+
+ // This is the most common trap insn, so deal with it early. Created by
+ // MacroAssembler::wasmTrapInstruction.
+ // OP_2BYTE_ESCAPE OP2_UD2
+ // 0F 0B = ud2
+ if (insn[0] == 0x0F && insn[1] == 0x0B && isEmpty(prefixes)) {
+ return Some(TrapMachineInsn::OfficialUD);
+ }
+
+ // ==== Atomics
+
+ // This is something of a kludge, but .. if the insn has a LOCK prefix,
+ // declare it to be TrapMachineInsn::Atomic, regardless of what it
+ // actually does. It's good enough for checking purposes.
+ if (prefixes & PfxLock) {
+ return Some(TrapMachineInsn::Atomic);
+ }
+ // After this point, we can assume that no instruction has a lock prefix.
+
+ // OP_XCHG_GbEb
+ // OP_XCHG_GvEv
+ // 86 = XCHG reg8, reg8/mem8.
+ // 87 = XCHG reg64/32/16, reg64/32/16 / mem64/32/16.
+ // The memory variants are atomic even though there is no LOCK prefix.
+ if (insn[0] == 0x86 && ModRMisM(insn[1]) && isEmpty(prefixes)) {
+ return Some(TrapMachineInsn::Atomic);
+ }
+ if (insn[0] == 0x87 && ModRMisM(insn[1]) &&
+ hasOnly(prefixes, Pfx66 | PfxRexW)) {
+ return Some(TrapMachineInsn::Atomic);
+ }
+
+ // ==== Scalar loads and stores
+
+ // OP_MOV_EbGv
+ // OP_MOV_GvEb
+ // 88 = MOV src=reg, dst=mem/reg (8 bit int only)
+ // 8A = MOV src=mem/reg, dst=reg (8 bit int only)
+ if ((insn[0] == 0x88 || insn[0] == 0x8A) && ModRMisM(insn[1]) &&
+ isEmpty(prefixes)) {
+ return Some(insn[0] == 0x88 ? TrapMachineInsn::Store8
+ : TrapMachineInsn::Load8);
+ }
+
+ // OP_MOV_EvGv
+ // OP_MOV_GvEv
+ // 89 = MOV src=reg, dst=mem/reg (64/32/16 bit int only)
+ // 8B = MOV src=mem/reg, dst=reg (64/32/16 bit int only)
+ if ((insn[0] == 0x89 || insn[0] == 0x8B) && ModRMisM(insn[1]) &&
+ hasOnly(prefixes, Pfx66 | PfxRexW)) {
+ return Some(insn[0] == 0x89 ? TrapMachineInsnForStore(opSize)
+ : TrapMachineInsnForLoad(opSize));
+ }
+
+ // OP_GROUP11_EvIb GROUP11_MOV
+ // C6 /0 = MOV src=immediate, dst=mem (8 bit int only)
+ if (insn[0] == 0xC6 && ModRMisM(insn[1]) && ModRMmid3(insn[1]) == 0 &&
+ isEmpty(prefixes)) {
+ return Some(TrapMachineInsn::Store8);
+ }
+ // OP_GROUP11_EvIz GROUP11_MOV
+ // C7 /0 = MOV src=immediate, dst=mem (64/32/16 bit int only)
+ if (insn[0] == 0xC7 && ModRMisM(insn[1]) && ModRMmid3(insn[1]) == 0 &&
+ hasOnly(prefixes, Pfx66 | PfxRexW)) {
+ return Some(TrapMachineInsnForStore(opSize));
+ }
+
+ // OP_2BYTE_ESCAPE OP2_MOVZX_GvEb
+ // OP_2BYTE_ESCAPE OP2_MOVSX_GvEb
+ // 0F B6 = MOVZB{W,L,Q} src=reg/mem, dst=reg (8 -> 16, 32 or 64, int only)
+ // 0F BE = MOVSB{W,L,Q} src=reg/mem, dst=reg (8 -> 16, 32 or 64, int only)
+ if (insn[0] == 0x0F && (insn[1] == 0xB6 || insn[1] == 0xBE) &&
+ ModRMisM(insn[2]) && (opSize == 2 || opSize == 4 || opSize == 8) &&
+ hasOnly(prefixes, Pfx66 | PfxRexW)) {
+ return Some(TrapMachineInsn::Load8);
+ }
+ // OP_2BYTE_ESCAPE OP2_MOVZX_GvEw
+ // OP_2BYTE_ESCAPE OP2_MOVSX_GvEw
+ // 0F B7 = MOVZW{L,Q} src=reg/mem, dst=reg (16 -> 32 or 64, int only)
+ // 0F BF = MOVSW{L,Q} src=reg/mem, dst=reg (16 -> 32 or 64, int only)
+ if (insn[0] == 0x0F && (insn[1] == 0xB7 || insn[1] == 0xBF) &&
+ ModRMisM(insn[2]) && (opSize == 4 || opSize == 8) &&
+ hasOnly(prefixes, PfxRexW)) {
+ return Some(TrapMachineInsn::Load16);
+ }
+
+ // OP_MOVSXD_GvEv
+ // REX.W 63 = MOVSLQ src=reg32/mem32, dst=reg64
+ if (hasAllOf(prefixes, PfxRexW) && insn[0] == 0x63 && ModRMisM(insn[1]) &&
+ hasOnly(prefixes, Pfx66 | PfxRexW)) {
+ return Some(TrapMachineInsn::Load32);
+ }
+
+ // ==== SSE{2,3,E3,4} insns
+
+ // OP_2BYTE_ESCAPE OP2_MOVPS_VpsWps
+ // OP_2BYTE_ESCAPE OP2_MOVPS_WpsVps
+ // 0F 10 = MOVUPS src=xmm/mem128, dst=xmm
+ // 0F 11 = MOVUPS src=xmm, dst=xmm/mem128
+ if (insn[0] == 0x0F && (insn[1] == 0x10 || insn[1] == 0x11) &&
+ ModRMisM(insn[2]) && hasOnly(prefixes, PfxRexW)) {
+ return Some(insn[1] == 0x10 ? TrapMachineInsn::Load128
+ : TrapMachineInsn::Store128);
+ }
+
+ // OP_2BYTE_ESCAPE OP2_MOVLPS_VqEq
+ // OP_2BYTE_ESCAPE OP2_MOVHPS_VqEq
+ // 0F 12 = MOVLPS src=xmm64/mem64, dst=xmm
+ // 0F 16 = MOVHPS src=xmm64/mem64, dst=xmm
+ if (insn[0] == 0x0F && (insn[1] == 0x12 || insn[1] == 0x16) &&
+ ModRMisM(insn[2]) && hasOnly(prefixes, PfxRexW)) {
+ return Some(TrapMachineInsn::Load64);
+ }
+
+ // OP_2BYTE_ESCAPE OP2_MOVLPS_EqVq
+ // OP_2BYTE_ESCAPE OP2_MOVHPS_EqVq
+ // 0F 13 = MOVLPS src=xmm64, dst=xmm64/mem64
+ // 0F 17 = MOVHPS src=xmm64, dst=xmm64/mem64
+ if (insn[0] == 0x0F && (insn[1] == 0x13 || insn[1] == 0x17) &&
+ ModRMisM(insn[2]) && hasOnly(prefixes, PfxRexW)) {
+ return Some(TrapMachineInsn::Store64);
+ }
+
+ // PRE_SSE_F2 OP_2BYTE_ESCAPE OP2_MOVSD_VsdWsd
+ // PRE_SSE_F2 OP_2BYTE_ESCAPE OP2_MOVSD_WsdVsd
+ // F2 0F 10 = MOVSD src=mem64/xmm64, dst=xmm64
+ // F2 0F 11 = MOVSD src=xmm64, dst=mem64/xmm64
+ if (hasAllOf(prefixes, PfxF2) && insn[0] == 0x0F &&
+ (insn[1] == 0x10 || insn[1] == 0x11) && ModRMisM(insn[2]) &&
+ hasOnly(prefixes, PfxRexW | PfxF2)) {
+ return Some(insn[1] == 0x10 ? TrapMachineInsn::Load64
+ : TrapMachineInsn::Store64);
+ }
+
+ // PRE_SSE_F2 OP_2BYTE_ESCAPE OP2_MOVDDUP_VqWq
+ // F2 0F 12 = MOVDDUP src=mem64/xmm64, dst=xmm
+ if (hasAllOf(prefixes, PfxF2) && insn[0] == 0x0F && insn[1] == 0x12 &&
+ ModRMisM(insn[2]) && hasOnly(prefixes, PfxF2)) {
+ return Some(TrapMachineInsn::Load64);
+ }
+
+ // PRE_SSE_F3 OP_2BYTE_ESCAPE OP2_MOVSS_VssWss (name does not exist)
+ // PRE_SSE_F3 OP_2BYTE_ESCAPE OP2_MOVSS_WssVss (name does not exist)
+ // F3 0F 10 = MOVSS src=mem32/xmm32, dst=xmm32
+ // F3 0F 11 = MOVSS src=xmm32, dst=mem32/xmm32
+ if (hasAllOf(prefixes, PfxF3) && insn[0] == 0x0F &&
+ (insn[1] == 0x10 || insn[1] == 0x11) && ModRMisM(insn[2]) &&
+ hasOnly(prefixes, PfxRexW | PfxF3)) {
+ return Some(insn[1] == 0x10 ? TrapMachineInsn::Load32
+ : TrapMachineInsn::Store32);
+ }
+
+ // PRE_SSE_F3 OP_2BYTE_ESCAPE OP2_MOVDQ_VdqWdq
+ // PRE_SSE_F3 OP_2BYTE_ESCAPE OP2_MOVDQ_WdqVdq
+ // F3 0F 6F = MOVDQU src=mem128/xmm, dst=xmm
+ // F3 0F 7F = MOVDQU src=xmm, dst=mem128/xmm
+ if (hasAllOf(prefixes, PfxF3) && insn[0] == 0x0F &&
+ (insn[1] == 0x6F || insn[1] == 0x7F) && ModRMisM(insn[2]) &&
+ hasOnly(prefixes, PfxF3)) {
+ return Some(insn[1] == 0x6F ? TrapMachineInsn::Load128
+ : TrapMachineInsn::Store128);
+ }
+
+ // PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_3A OP3_PINSRB_VdqEvIb
+ // 66 0F 3A 20 /r ib = PINSRB $imm8, src=mem8/ireg8, dst=xmm128. I'd guess
+ // that REX.W is meaningless here and therefore we should exclude it.
+ if (hasAllOf(prefixes, Pfx66) && insn[0] == 0x0F && insn[1] == 0x3A &&
+ insn[2] == 0x20 && ModRMisM(insn[3]) && hasOnly(prefixes, Pfx66)) {
+ return Some(TrapMachineInsn::Load8);
+ }
+ // PRE_SSE_66 OP_2BYTE_ESCAPE OP2_PINSRW
+ // 66 0F C4 /r ib = PINSRW $imm8, src=mem16/ireg16, dst=xmm128. REX.W is
+ // probably meaningless here.
+ if (hasAllOf(prefixes, Pfx66) && insn[0] == 0x0F && insn[1] == 0xC4 &&
+ ModRMisM(insn[2]) && hasOnly(prefixes, Pfx66)) {
+ return Some(TrapMachineInsn::Load16);
+ }
+ // PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_3A OP3_INSERTPS_VpsUps
+ // 66 0F 3A 21 /r ib = INSERTPS $imm8, src=mem32/xmm32, dst=xmm128.
+ // REX.W is probably meaningless here.
+ if (hasAllOf(prefixes, Pfx66) && insn[0] == 0x0F && insn[1] == 0x3A &&
+ insn[2] == 0x21 && ModRMisM(insn[3]) && hasOnly(prefixes, Pfx66)) {
+ return Some(TrapMachineInsn::Load32);
+ }
+
+ // PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_3A OP3_PEXTRB_EvVdqIb
+ // PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_3A OP3_PEXTRW_EwVdqIb
+ // PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_3A OP3_EXTRACTPS_EdVdqIb
+ // 66 0F 3A 14 /r ib = PEXTRB src=xmm8, dst=reg8/mem8
+ // 66 0F 3A 15 /r ib = PEXTRW src=xmm16, dst=reg16/mem16
+ // 66 0F 3A 17 /r ib = EXTRACTPS src=xmm32, dst=reg32/mem32
+ // REX.W is probably meaningless here.
+ if (hasAllOf(prefixes, Pfx66) && insn[0] == 0x0F && insn[1] == 0x3A &&
+ (insn[2] == 0x14 || insn[2] == 0x15 || insn[2] == 0x17) &&
+ ModRMisM(insn[3]) && hasOnly(prefixes, Pfx66)) {
+ return Some(insn[2] == 0x14 ? TrapMachineInsn::Store8
+ : insn[2] == 0x15 ? TrapMachineInsn::Store16
+ : TrapMachineInsn::Store32);
+ }
+
+ // PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_38 OP3_PMOVSXBW_VdqWdq
+ // PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_38 OP3_PMOVSXWD_VdqWdq
+ // PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_38 OP3_PMOVSXDQ_VdqWdq
+ // PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_38 OP3_PMOVZXBW_VdqWdq
+ // PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_38 OP3_PMOVZXWD_VdqWdq
+ // PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_38 OP3_PMOVZXDQ_VdqWdq
+ // 66 0F 38 20 /r = PMOVSXBW src=mem64/xmm64, dst=xmm
+ // 66 0F 38 23 /r = PMOVSXWD src=mem64/xmm64, dst=xmm
+ // 66 0F 38 25 /r = PMOVSXDQ src=mem64/xmm64, dst=xmm
+ // 66 0F 38 30 /r = PMOVZXBW src=mem64/xmm64, dst=xmm
+ // 66 0F 38 33 /r = PMOVZXWD src=mem64/xmm64, dst=xmm
+ // 66 0F 38 35 /r = PMOVZXDQ src=mem64/xmm64, dst=xmm
+ if (hasAllOf(prefixes, Pfx66) && insn[0] == 0x0F && insn[1] == 0x38 &&
+ (insn[2] == 0x20 || insn[2] == 0x23 || insn[2] == 0x25 ||
+ insn[2] == 0x30 || insn[2] == 0x33 || insn[2] == 0x35) &&
+ ModRMisM(insn[3]) && hasOnly(prefixes, Pfx66)) {
+ return Some(TrapMachineInsn::Load64);
+ }
+
+ // The insn only has legacy prefixes, and was not identified.
+ return Nothing();
+ }
+
+ // We're dealing with a VEX-prefixed insn. Fish out relevant bits of the
+ // VEX prefix. VEX prefixes come in two kinds: a 3-byte prefix, first byte
+ // 0xC4, which gives us 16 bits of extra data, and a 2-byte prefix, first
+ // byte 0xC5, which gives us 8 bits of extra data. The 2-byte variant
+ // contains a subset of the data that the 3-byte variant does and
+ // (presumably) is to be used when the default values of the omitted fields
+ // are correct for the instruction that is encoded.
+ //
+ // An instruction can't have both VEX and REX prefixes, because a 3-byte VEX
+ // prefix specifies everything a REX prefix does, that is, the four bits
+ // REX.{WRXB} and allowing both to be present would allow conflicting values
+ // for them. Of these four bits, we only care about REX.W (as obtained here
+ // from the VEX prefix).
+ //
+ // A VEX prefix can also specify (imply?) the presence of the legacy
+ // prefixes 66, F2 and F3. Although the byte sequence we will have parsed
+ // for this insn doesn't actually contain any of those, we must decode as if
+ // we had seen them as legacy prefixes.
+ //
+ // A VEX prefix can also specify (imply?) the presence of the opcode escape
+ // byte sequences 0F, 0F38 and 0F3A. These are collected up into `esc`.
+ // Again, we must decode as if we had actually seen these, although we
+ // haven't really.
+ //
+ // The VEX prefix also holds various other bits which we ignore, because
+ // these specify details of registers etc which we don't care about.
+ MOZ_ASSERT(hasVEX && !hasREX);
+ MOZ_ASSERT(hasNoneOf(prefixes, PfxRexW));
+ MOZ_ASSERT(insn[0] == 0xC4 || insn[0] == 0xC5);
+
+ Escape esc = EscNone;
+
+ if (insn[0] == 0xC4) {
+ // This is a 3-byte VEX prefix (3 bytes including the 0xC4).
+ switch (insn[1] & 0x1F) {
+ case 1:
+ esc = Esc0F;
+ break;
+ case 2:
+ esc = Esc0F38;
+ break;
+ case 3:
+ esc = Esc0F3A;
+ break;
+ default:
+ return Nothing();
+ }
+ switch (insn[2] & 3) {
+ case 0:
+ break;
+ case 1:
+ prefixes |= Pfx66;
+ break;
+ case 2:
+ prefixes |= PfxF3;
+ break;
+ case 3:
+ prefixes |= PfxF2;
+ break;
+ }
+ if (insn[2] & 4) {
+ // VEX.L distinguishes 128-bit (VEX.L==0) from 256-bit (VEX.L==1)
+ // operations.
+ prefixes |= PfxVexL;
+ }
+ if ((insn[2] & 0x80) && is64bit) {
+ // Pull out REX.W, but only on 64-bit targets. We'll need it for insn
+ // decoding. Recall that REX.W == 1 basically means "the
+ // integer-register (GPR) aspect of this instruction requires a 64-bit
+ // transaction", so we expect these to be relatively rare, since VEX is
+ // primary used for SIMD instructions.
+ prefixes |= PfxRexW;
+ }
+ // Step forwards to the primary opcode byte
+ insn += 3;
+ } else if (insn[0] == 0xC5) {
+ // This is a 2-byte VEX prefix (2 bytes including the 0xC5). Since it has
+ // only 8 bits of useful payload, it adds less information than an 0xC4
+ // prefix.
+ esc = Esc0F;
+ switch (insn[1] & 3) {
+ case 0:
+ break;
+ case 1:
+ prefixes |= Pfx66;
+ break;
+ case 2:
+ prefixes |= PfxF3;
+ break;
+ case 3:
+ prefixes |= PfxF2;
+ break;
+ }
+ if (insn[1] & 4) {
+ prefixes |= PfxVexL;
+ }
+ insn += 2;
+ }
+
+ // This isn't allowed.
+ if (hasAllOf(prefixes, PfxF2 | PfxF3)) {
+ return Nothing();
+ }
+
+ // This is useful for diagnosing decoding failures.
+ // if (0) {
+ // fprintf(stderr, "FAIL VEX 66=%d,F2=%d,F3=%d,REXW=%d,VEXL=%d esc=%s\n",
+ // (prefixes & Pfx66) ? 1 : 0, (prefixes & PfxF2) ? 1 : 0,
+ // (prefixes & PfxF3) ? 1 : 0, (prefixes & PfxRexW) ? 1 : 0,
+ // (prefixes & PfxVexL) ? 1 : 0,
+ // esc == Esc0F3A ? "0F3A"
+ // : esc == Esc0F38 ? "0F38"
+ // : esc == Esc0F ? "0F"
+ // : "none");
+ // }
+
+ // (vex prefix) OP2_MOVPS_VpsWps
+ // (vex prefix) OP2_MOVPS_WpsVps
+ // 66=0,F2=0,F3=0,REXW=0,VEXL=0 esc=0F 10 = VMOVUPS src=xmm/mem128, dst=xmm
+ // 66=0,F2=0,F3=0,REXW=0,VEXL=0 esc=0F 11 = VMOVUPS src=xmm, dst=xmm/mem128
+ // REX.W is ignored.
+ if (hasNoneOf(prefixes, Pfx66 | PfxF2 | PfxF3 | PfxRexW | PfxVexL) &&
+ esc == Esc0F && (insn[0] == 0x10 || insn[0] == 0x11) &&
+ ModRMisM(insn[1])) {
+ return Some(insn[0] == 0x10 ? TrapMachineInsn::Load128
+ : TrapMachineInsn::Store128);
+ }
+
+ // (vex prefix) OP2_MOVSD_VsdWsd
+ // (vex prefix) OP2_MOVSD_WsdVsd
+ // 66=0,F2=1,F3=0,REXW=0,VEXL=0 esc=0F 10 = VMOVSD src=mem64, dst=xmm
+ // 66=0,F2=1,F3=0,REXW=0,VEXL=0 esc=0F 11 = VMOVSD src=xmm, dst=mem64
+ // REX.W and VEX.L are ignored.
+ if (hasAllOf(prefixes, PfxF2) &&
+ hasNoneOf(prefixes, Pfx66 | PfxF3 | PfxRexW | PfxVexL) && esc == Esc0F &&
+ (insn[0] == 0x10 || insn[0] == 0x11) && ModRMisM(insn[1])) {
+ return Some(insn[0] == 0x10 ? TrapMachineInsn::Load64
+ : TrapMachineInsn::Store64);
+ }
+
+ // (vex prefix) OP2_MOVSS_VssWss (name does not exist)
+ // (vex prefix) OP2_MOVSS_WssVss (name does not exist)
+ // 66=0,F2=0,F3=1,REXW=0,VEXL=0 esc=0F 10 = VMOVSS src=mem32, dst=xmm
+ // 66=0,F2=0,F3=1,REXW=0,VEXL=0 esc=0F 11 = VMOVSS src=xmm, dst=mem32
+ // REX.W and VEX.L are ignored.
+ if (hasAllOf(prefixes, PfxF3) &&
+ hasNoneOf(prefixes, Pfx66 | PfxF2 | PfxRexW | PfxVexL) && esc == Esc0F &&
+ (insn[0] == 0x10 || insn[0] == 0x11) && ModRMisM(insn[1])) {
+ return Some(insn[0] == 0x10 ? TrapMachineInsn::Load32
+ : TrapMachineInsn::Store32);
+ }
+
+ // (vex prefix) OP2_MOVDDUP_VqWq
+ // 66=0,F2=1,F3=0,REXW=0,VEXL=0 esc=0F 12 = VMOVDDUP src=xmm/m64, dst=xmm
+ // REX.W is ignored.
+ if (hasAllOf(prefixes, PfxF2) &&
+ hasNoneOf(prefixes, Pfx66 | PfxF3 | PfxRexW | PfxVexL) && esc == Esc0F &&
+ insn[0] == 0x12 && ModRMisM(insn[1])) {
+ return Some(TrapMachineInsn::Load64);
+ }
+
+ // (vex prefix) OP2_MOVLPS_EqVq
+ // (vex prefix) OP2_MOVHPS_EqVq
+ // 66=0,F2=0,F3=0,REXW=0,VEXL=0 esc=0F 13 = VMOVLPS src=xmm, dst=mem64
+ // 66=0,F2=0,F3=0,REXW=0,VEXL=0 esc=0F 17 = VMOVHPS src=xmm, dst=mem64
+ // REX.W is ignored. These do a 64-bit mem transaction despite the 'S' in
+ // the name, because a pair of float32s are transferred.
+ if (hasNoneOf(prefixes, Pfx66 | PfxF2 | PfxF3 | PfxRexW | PfxVexL) &&
+ esc == Esc0F && (insn[0] == 0x13 || insn[0] == 0x17) &&
+ ModRMisM(insn[1])) {
+ return Some(TrapMachineInsn::Store64);
+ }
+
+ // (vex prefix) OP2_MOVDQ_VdqWdq
+ // (vex prefix) OP2_MOVDQ_WdqVdq
+ // 66=0,F2=0,F3=1,REXW=0,VEXL=0 esc=0F 6F = VMOVDQU src=xmm/mem128, dst=xmm
+ // 66=0,F2=0,F3=1,REXW=0,VEXL=0 esc=0F 7F = VMOVDQU src=xmm, dst=xmm/mem128
+ // REX.W is ignored.
+ if (hasAllOf(prefixes, PfxF3) &&
+ hasNoneOf(prefixes, Pfx66 | PfxF2 | PfxRexW | PfxVexL) && esc == Esc0F &&
+ (insn[0] == 0x6F || insn[0] == 0x7F) && ModRMisM(insn[1])) {
+ return Some(insn[0] == 0x6F ? TrapMachineInsn::Load128
+ : TrapMachineInsn::Store128);
+ }
+
+ // (vex prefix) OP2_PINSRW
+ // 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=OF C4
+ // = PINSRW src=ireg/mem16,src=xmm,dst=xmm
+ // REX.W is ignored.
+ if (hasAllOf(prefixes, Pfx66) &&
+ hasNoneOf(prefixes, PfxF2 | PfxF3 | PfxRexW | PfxVexL) && esc == Esc0F &&
+ insn[0] == 0xC4 && ModRMisM(insn[1])) {
+ return Some(TrapMachineInsn::Load16);
+ }
+
+ // (vex prefix) OP3_PMOVSXBW_VdqWdq
+ // (vex prefix) OP3_PMOVSXWD_VdqWdq
+ // (vex prefix) OP3_PMOVSXDQ_VdqWdq
+ // (vex prefix) OP3_PMOVZXBW_VdqWdq
+ // (vex prefix) OP3_PMOVZXWD_VdqWdq
+ // (vex prefix) OP3_PMOVZXDQ_VdqWdq
+ // 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 20 = VPMOVSXBW src=xmm/m64, dst=xmm
+ // 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 23 = VPMOVSXWD src=xmm/m64, dst=xmm
+ // 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 25 = VPMOVSXDQ src=xmm/m64, dst=xmm
+ // 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 30 = VPMOVZXBW src=xmm/m64, dst=xmm
+ // 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 33 = VPMOVZXWD src=xmm/m64, dst=xmm
+ // 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 35 = VPMOVZXDQ src=xmm/m64, dst=xmm
+ // REX.W is ignored.
+ if (hasAllOf(prefixes, Pfx66) &&
+ hasNoneOf(prefixes, PfxF2 | PfxF3 | PfxRexW | PfxVexL) &&
+ esc == Esc0F38 &&
+ (insn[0] == 0x20 || insn[0] == 0x23 || insn[0] == 0x25 ||
+ insn[0] == 0x30 || insn[0] == 0x33 || insn[0] == 0x35) &&
+ ModRMisM(insn[1])) {
+ return Some(TrapMachineInsn::Load64);
+ }
+
+ // (vex prefix) OP3_VBROADCASTB_VxWx
+ // (vex prefix) OP3_VBROADCASTW_VxWx
+ // (vex prefix) OP3_VBROADCASTSS_VxWd
+ // 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 78
+ // = VPBROADCASTB src=xmm8/mem8, dst=xmm
+ // 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 79
+ // = VPBROADCASTW src=xmm16/mem16, dst=xmm
+ // 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 18
+ // = VBROADCASTSS src=m32, dst=xmm
+ // VPBROADCASTB/W require REX.W == 0; VBROADCASTSS ignores REX.W.
+ if (hasAllOf(prefixes, Pfx66) &&
+ hasNoneOf(prefixes, PfxF2 | PfxF3 | PfxRexW | PfxVexL) &&
+ esc == Esc0F38 &&
+ (insn[0] == 0x78 || insn[0] == 0x79 || insn[0] == 0x18) &&
+ ModRMisM(insn[1])) {
+ return Some(insn[0] == 0x78 ? TrapMachineInsn::Load8
+ : insn[0] == 0x79 ? TrapMachineInsn::Load16
+ : TrapMachineInsn::Load32);
+ }
+
+ // (vex prefix) OP3_PEXTRB_EvVdqIb
+ // (vex prefix) OP3_PEXTRW_EwVdqIb
+ // 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F3A 14 = VPEXTRB src=xmm, dst=ireg/mem8
+ // 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F3A 15 = VPEXTRW src=xmm, dst=ireg/mem16
+ // These require REX.W == 0.
+ if (hasAllOf(prefixes, Pfx66) &&
+ hasNoneOf(prefixes, PfxF2 | PfxF3 | PfxRexW | PfxVexL) &&
+ esc == Esc0F3A && (insn[0] == 0x14 || insn[0] == 0x15) &&
+ ModRMisM(insn[1])) {
+ return Some(insn[0] == 0x14 ? TrapMachineInsn::Store8
+ : TrapMachineInsn::Store16);
+ }
+
+ // (vex prefix) OP3_EXTRACTPS_EdVdqIb
+ // 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F3A 17
+ // = VEXTRACTPS src=xmm, dst=ireg/mem32
+ // REX.W is ignored.
+ if (hasAllOf(prefixes, Pfx66) &&
+ hasNoneOf(prefixes, PfxF2 | PfxF3 | PfxRexW | PfxVexL) &&
+ esc == Esc0F3A && insn[0] == 0x17 && ModRMisM(insn[1])) {
+ return Some(TrapMachineInsn::Store32);
+ }
+
+ // The instruction was not identified.
+ return Nothing();
+}
+
+// ================================================================= arm64 ====
+
+# elif defined(JS_CODEGEN_ARM64)
+
+Maybe<TrapMachineInsn> SummarizeTrapInstruction(const uint8_t* insnAddr) {
+ // Check instruction alignment.
+ MOZ_ASSERT(0 == (uintptr_t(insnAddr) & 3));
+
+ const uint32_t insn = *(uint32_t*)insnAddr;
+
+# define INSN(_maxIx, _minIx) \
+ ((insn >> (_minIx)) & ((uint32_t(1) << ((_maxIx) - (_minIx) + 1)) - 1))
+
+ // MacroAssembler::wasmTrapInstruction uses this to create SIGILL.
+ if (insn == 0xD4A00000) {
+ return Some(TrapMachineInsn::OfficialUD);
+ }
+
+ // A note about loads and stores. Many (perhaps all) integer loads and
+ // stores use bits 31:30 of the instruction as a size encoding, thusly:
+ //
+ // 11 -> 64 bit, 10 -> 32 bit, 01 -> 16 bit, 00 -> 8 bit
+ //
+ // It is also very common for corresponding load and store instructions to
+ // differ by exactly one bit (logically enough).
+ //
+ // Meaning of register names:
+ //
+ // Xn The n-th GPR (all 64 bits), for 0 <= n <= 31
+ // Xn|SP The n-th GPR (all 64 bits), for 0 <= n <= 30, or SP when n == 31
+ // Wn The lower 32 bits of the n-th GPR
+ // Qn All 128 bits of the n-th SIMD register
+ // Dn Lower 64 bits of the n-th SIMD register
+ // Sn Lower 32 bits of the n-th SIMD register
+
+ // Plain and zero-extending loads/stores, reg + offset, scaled
+ switch (INSN(31, 22)) {
+ // 11 111 00100 imm12 n t = STR Xt, [Xn|SP, #imm12 * 8]
+ case 0b11'111'00100:
+ return Some(TrapMachineInsn::Store64);
+ // 10 111 00100 imm12 n t = STR Wt, [Xn|SP, #imm12 * 4]
+ case 0b10'111'00100:
+ return Some(TrapMachineInsn::Store32);
+ // 01 111 00100 imm12 n t = STRH Wt, [Xn|SP, #imm12 * 2]
+ case 0b01'111'00100:
+ return Some(TrapMachineInsn::Store16);
+ // 00 111 00100 imm12 n t = STRB Wt, [Xn|SP, #imm12 * 1]
+ case 0b00'111'00100:
+ return Some(TrapMachineInsn::Store8);
+ // 11 111 00101 imm12 n t = LDR Xt, [Xn|SP, #imm12 * 8]
+ case 0b11'111'00101:
+ return Some(TrapMachineInsn::Load64);
+ // 10 111 00101 imm12 n t = LDR Wt, [Xn|SP, #imm12 * 4]
+ case 0b10'111'00101:
+ return Some(TrapMachineInsn::Load32);
+ // 01 111 00101 imm12 n t = LDRH Wt, [Xn|SP, #imm12 * 2]
+ case 0b01'111'00101:
+ return Some(TrapMachineInsn::Load16);
+ // 00 111 00101 imm12 n t = LDRB Wt, [Xn|SP, #imm12 * 1]
+ case 0b00'111'00101:
+ return Some(TrapMachineInsn::Load8);
+ }
+
+ // Plain, sign- and zero-extending loads/stores, reg + offset, unscaled
+
+ if (INSN(11, 10) == 0b00) {
+ switch (INSN(31, 21)) {
+ // 11 111 00001 0 imm9 00 n t = LDUR Xt, [Xn|SP, #imm9]
+ case 0b11'111'00001'0:
+ return Some(TrapMachineInsn::Load64);
+ // 10 111 00001 0 imm9 00 n t = LDUR Wt, [Xn|SP, #imm9]
+ case 0b10'111'00001'0:
+ return Some(TrapMachineInsn::Load32);
+ // 01 111 00001 0 imm9 00 n t = LDURH Wt, [Xn|SP, #imm9]
+ case 0b01'111'00001'0:
+ return Some(TrapMachineInsn::Load16);
+ // We do have code to generate LDURB insns, but it appears to not be used.
+ // 11 111 00000 0 imm9 00 n t = STUR Xt, [Xn|SP, #imm9]
+ case 0b11'111'00000'0:
+ return Some(TrapMachineInsn::Store64);
+ // 10 111 00000 0 imm9 00 n t = STUR Wt, [Xn|SP, #imm9]
+ case 0b10'111'00000'0:
+ return Some(TrapMachineInsn::Store32);
+ // 01 111 00000 0 imm9 00 n t = STURH Wt, [Xn|SP, #imm9]
+ case 0b01'111'00000'0:
+ return Some(TrapMachineInsn::Store16);
+ // STURB missing?
+ // Sign extending loads:
+ // 10 111 000 10 0 imm9 00 n t = LDURSW Xt, [Xn|SP, #imm9]
+ case 0b10'111'000'10'0:
+ return Some(TrapMachineInsn::Load32);
+ // 01 111 000 11 0 imm9 00 n t = LDURSH Wt, [Xn|SP, #imm9]
+ // 01 111 000 10 0 imm9 00 n t = LDURSH Xt, [Xn|SP, #imm9]
+ case 0b01'111'000'11'0:
+ case 0b01'111'000'10'0:
+ return Some(TrapMachineInsn::Load16);
+ }
+ }
+
+ // Sign extending loads, reg + offset, scaled
+
+ switch (INSN(31, 22)) {
+ // 10 111 001 10 imm12 n t = LDRSW Xt, [Xn|SP, #imm12 * 4]
+ case 0b10'111'001'10:
+ return Some(TrapMachineInsn::Load32);
+ // 01 111 001 10 imm12 n t = LDRSH Xt, [Xn|SP, #imm12 * 2]
+ // 01 111 001 11 imm12 n t = LDRSH Wt, [Xn|SP, #imm12 * 2]
+ case 0b01'111'001'10:
+ case 0b01'111'001'11:
+ return Some(TrapMachineInsn::Load16);
+ // 00 111 001 10 imm12 n t = LDRSB Xt, [Xn|SP, #imm12 * 1]
+ // 00 111 001 11 imm12 n t = LDRSB Wt, [Xn|SP, #imm12 * 1]
+ case 0b00'111'001'10:
+ case 0b00'111'001'11:
+ return Some(TrapMachineInsn::Load8);
+ }
+
+ // Sign extending loads, reg + reg(extended/shifted)
+
+ if (INSN(11, 10) == 0b10) {
+ switch (INSN(31, 21)) {
+ // 10 1110001 01 m opt s 10 n t = LDRSW Xt, [Xn|SP, R<m>{ext/sh}]
+ case 0b10'1110001'01:
+ return Some(TrapMachineInsn::Load32);
+ // 01 1110001 01 m opt s 10 n t = LDRSH Xt, [Xn|SP, R<m>{ext/sh}]
+ case 0b01'1110001'01:
+ return Some(TrapMachineInsn::Load16);
+ // 01 1110001 11 m opt s 10 n t = LDRSH Wt, [Xn|SP, R<m>{ext/sh}]
+ case 0b01'1110001'11:
+ return Some(TrapMachineInsn::Load16);
+ // 00 1110001 01 m opt s 10 n t = LDRSB Xt, [Xn|SP, R<m>{ext/sh}]
+ case 0b00'1110001'01:
+ return Some(TrapMachineInsn::Load8);
+ // 00 1110001 11 m opt s 10 n t = LDRSB Wt, [Xn|SP, R<m>{ext/sh}]
+ case 0b00'1110001'11:
+ return Some(TrapMachineInsn::Load8);
+ }
+ }
+
+ // Plain and zero-extending loads/stores, reg + reg(extended/shifted)
+
+ if (INSN(11, 10) == 0b10) {
+ switch (INSN(31, 21)) {
+ // 11 111000001 m opt s 10 n t = STR Xt, [Xn|SP, Rm{ext/sh}]
+ case 0b11'111000001:
+ return Some(TrapMachineInsn::Store64);
+ // 10 111000001 m opt s 10 n t = STR Wt, [Xn|SP, Rm{ext/sh}]
+ case 0b10'111000001:
+ return Some(TrapMachineInsn::Store32);
+ // 01 111000001 m opt s 10 n t = STRH Wt, [Xn|SP, Rm{ext/sh}]
+ case 0b01'111000001:
+ return Some(TrapMachineInsn::Store16);
+ // 00 111000001 m opt s 10 n t = STRB Wt, [Xn|SP, Rm{ext/sh}]
+ case 0b00'111000001:
+ return Some(TrapMachineInsn::Store8);
+ // 11 111000011 m opt s 10 n t = LDR Xt, [Xn|SP, Rm{ext/sh}]
+ case 0b11'111000011:
+ return Some(TrapMachineInsn::Load64);
+ // 10 111000011 m opt s 10 n t = LDR Wt, [Xn|SP, Rm{ext/sh}]
+ case 0b10'111000011:
+ return Some(TrapMachineInsn::Load32);
+ // 01 111000011 m opt s 10 n t = LDRH Wt, [Xn|SP, Rm{ext/sh}]
+ case 0b01'111000011:
+ return Some(TrapMachineInsn::Load16);
+ // 00 111000011 m opt s 10 n t = LDRB Wt, [Xn|SP, Rm{ext/sh}]
+ case 0b00'111000011:
+ return Some(TrapMachineInsn::Load8);
+ }
+ }
+
+ // SIMD - scalar FP
+
+ switch (INSN(31, 22)) {
+ // 11 111 101 00 imm12 n t = STR Dt, [Xn|SP + imm12 * 8]
+ case 0b11'111'101'00:
+ return Some(TrapMachineInsn::Store64);
+ // 10 111 101 00 imm12 n t = STR St, [Xn|SP + imm12 * 4]
+ case 0b10'111'101'00:
+ return Some(TrapMachineInsn::Store32);
+ // 11 111 101 01 imm12 n t = LDR Dt, [Xn|SP + imm12 * 8]
+ case 0b11'111'101'01:
+ return Some(TrapMachineInsn::Load64);
+ // 10 111 101 01 imm12 n t = LDR St, [Xn|SP + imm12 * 4]
+ case 0b10'111'101'01:
+ return Some(TrapMachineInsn::Load32);
+ }
+
+ if (INSN(11, 10) == 0b00) {
+ switch (INSN(31, 21)) {
+ // 11 111 100 00 0 imm9 00 n t = STUR Dt, [Xn|SP, #imm9]
+ case 0b11'111'100'00'0:
+ return Some(TrapMachineInsn::Store64);
+ // 10 111 100 00 0 imm9 00 n t = STUR St, [Xn|SP, #imm9]
+ case 0b10'111'100'00'0:
+ return Some(TrapMachineInsn::Store32);
+ // 11 111 100 01 0 imm9 00 n t = LDUR Dt, [Xn|SP, #imm9]
+ case 0b11'111'100'01'0:
+ return Some(TrapMachineInsn::Load64);
+ // 10 111 100 01 0 imm9 00 n t = LDUR St, [Xn|SP, #imm9]
+ case 0b10'111'100'01'0:
+ return Some(TrapMachineInsn::Load32);
+ }
+ }
+
+ if (INSN(11, 10) == 0b10) {
+ switch (INSN(31, 21)) {
+ // 11 111100 001 m opt s 10 n t = STR Dt, [Xn|SP, Rm{ext/sh}]
+ case 0b11'111100'001:
+ return Some(TrapMachineInsn::Store64);
+ // 10 111100 001 m opt s 10 n t = STR St, [Xn|SP, Rm{ext/sh}]
+ case 0b10'111100'001:
+ return Some(TrapMachineInsn::Store32);
+ // 11 111100 011 m opt s 10 n t = LDR Dt, [Xn|SP, Rm{ext/sh}]
+ case 0b11'111100'011:
+ return Some(TrapMachineInsn::Load64);
+ // 10 111100 011 m opt s 10 n t = LDR St, [Xn|SP, Rm{ext/sh}]
+ case 0b10'111100'011:
+ return Some(TrapMachineInsn::Load32);
+ }
+ }
+
+ // SIMD - whole register
+
+ if (INSN(11, 10) == 0b00) {
+ // 00 111 100 10 0 imm9 00 n t = STUR Qt, [Xn|SP, #imm9]
+ if (INSN(31, 21) == 0b00'111'100'10'0) {
+ return Some(TrapMachineInsn::Store128);
+ }
+ // 00 111 100 11 0 imm9 00 n t = LDUR Qt, [Xn|SP, #imm9]
+ if (INSN(31, 21) == 0b00'111'100'11'0) {
+ return Some(TrapMachineInsn::Load128);
+ }
+ }
+
+ // 00 111 101 10 imm12 n t = STR Qt, [Xn|SP + imm12 * 16]
+ if (INSN(31, 22) == 0b00'111'101'10) {
+ return Some(TrapMachineInsn::Store128);
+ }
+ // 00 111 101 11 imm12 n t = LDR Qt, [Xn|SP + imm12 * 16]
+ if (INSN(31, 22) == 0b00'111'101'11) {
+ return Some(TrapMachineInsn::Load128);
+ }
+
+ if (INSN(11, 10) == 0b10) {
+ // 00 111100 101 m opt s 10 n t = STR Qt, [Xn|SP, Rm{ext/sh}]
+ if (INSN(31, 21) == 0b00'111100'101) {
+ return Some(TrapMachineInsn::Store128);
+ }
+ // 00 111100 111 m opt s 10 n t = LDR Qt, [Xn|SP, Rm{ext/sh}]
+ if (INSN(31, 21) == 0b00'111100'111) {
+ return Some(TrapMachineInsn::Load128);
+ }
+ }
+
+ // Atomics - loads/stores "exclusive" (with reservation) (LL/SC)
+
+ switch (INSN(31, 10)) {
+ // 11 001000 010 11111 0 11111 n t = LDXR Xt, [Xn|SP]
+ case 0b11'001000'010'11111'0'11111:
+ return Some(TrapMachineInsn::Load64);
+ // 10 001000 010 11111 0 11111 n t = LDXR Wt, [Xn|SP]
+ case 0b10'001000'010'11111'0'11111:
+ return Some(TrapMachineInsn::Load32);
+ // 01 001000 010 11111 0 11111 n t = LDXRH Wt, [Xn|SP]
+ case 0b01'001000'010'11111'0'11111:
+ return Some(TrapMachineInsn::Load16);
+ // 00 001000 010 11111 0 11111 n t = LDXRB Wt, [Xn|SP]
+ case 0b00'001000'010'11111'0'11111:
+ return Some(TrapMachineInsn::Load8);
+ // We are never asked to examine store-exclusive instructions, because any
+ // store-exclusive should be preceded by a load-exclusive instruction of
+ // the same size and for the same address. So the TrapSite is omitted for
+ // the store-exclusive since the load-exclusive will trap first.
+ }
+
+ // Atomics - atomic memory operations which do (LD- variants) or do not
+ // (ST-variants) return the original value at the location.
+
+ // 11 111 0000 11 s 0 000 00 n 11111 = STADDL Xs, [Xn|SP]
+ // 10 111 0000 11 s 0 000 00 n 11111 = STADDL Ws, [Xn|SP]
+ // 01 111 0000 11 s 0 000 00 n 11111 = STADDLH Ws, [Xn|SP]
+ // 00 111 0000 11 s 0 000 00 n 11111 = STADDLB Ws, [Xn|SP]
+ // and the same for
+ // ---------------- 0 001 00 ------- = STCLRL
+ // ---------------- 0 010 00 ------- = STEORL
+ // ---------------- 0 011 00 ------- = STSETL
+ if (INSN(29, 21) == 0b111'0000'11 && INSN(4, 0) == 0b11111) {
+ switch (INSN(15, 10)) {
+ case 0b0'000'00: // STADDL
+ case 0b0'001'00: // STCLRL
+ case 0b0'010'00: // STEORL
+ case 0b0'011'00: // STSETL
+ return Some(TrapMachineInsn::Atomic);
+ }
+ }
+
+ // 11 111 0001 11 s 0 000 00 n t = LDADDAL Xs, Xt, [Xn|SP]
+ // 10 111 0001 11 s 0 000 00 n t = LDADDAL Ws, Wt, [Xn|SP]
+ // 01 111 0001 11 s 0 000 00 n t = LDADDALH Ws, Wt, [Xn|SP]
+ // 00 111 0001 11 s 0 000 00 n t = LDADDALB Ws, Wt, [Xn|SP]
+ // and the same for
+ // ---------------- 0 001 00 --- = LDCLRAL
+ // ---------------- 0 010 00 --- = LDEORAL
+ // ---------------- 0 011 00 --- = LDSETAL
+ if (INSN(29, 21) == 0b111'0001'11) {
+ switch (INSN(15, 10)) {
+ case 0b0'000'00: // LDADDAL
+ case 0b0'001'00: // LDCLRAL
+ case 0b0'010'00: // LDEORAL
+ case 0b0'011'00: // LDSETAL
+ return Some(TrapMachineInsn::Atomic);
+ }
+ }
+
+ // Atomics -- compare-and-swap and plain swap
+
+ // 11 001000111 s 111111 n t = CASAL Xs, Xt, [Xn|SP]
+ // 10 001000111 s 111111 n t = CASAL Ws, Wt, [Xn|SP]
+ // 01 001000111 s 111111 n t = CASALH Ws, Wt, [Xn|SP]
+ // 00 001000111 s 111111 n t = CASALB Ws, Wt, [Xn|SP]
+ if (INSN(29, 21) == 0b001000111 && INSN(15, 10) == 0b111111) {
+ return Some(TrapMachineInsn::Atomic);
+ }
+
+ // 11 11100011 1 s 100000 n t = SWPAL Xs, Xt, [Xn|SP]
+ // 10 11100011 1 s 100000 n t = SWPAL Ws, Wt, [Xn|SP]
+ // 01 11100011 1 s 100000 n t = SWPALH Ws, Wt, [Xn|SP]
+ // 00 11100011 1 s 100000 n t = SWPALB Ws, Wt, [Xn|SP]
+ if (INSN(29, 21) == 0b11100011'1 && INSN(15, 10) == 0b100000) {
+ return Some(TrapMachineInsn::Atomic);
+ }
+
+# undef INSN
+
+ // The instruction was not identified.
+
+ // This is useful for diagnosing decoding failures.
+ // if (0) {
+ // fprintf(stderr, "insn = ");
+ // for (int i = 31; i >= 0; i--) {
+ // fprintf(stderr, "%c", ((insn >> i) & 1) ? '1' : '0');
+ // if (i < 31 && (i % 4) == 0) fprintf(stderr, " ");
+ // }
+ // fprintf(stderr, "\n");
+ // }
+
+ return Nothing();
+}
+
+// =================================================================== arm ====
+
+# elif defined(JS_CODEGEN_ARM)
+
+Maybe<TrapMachineInsn> SummarizeTrapInstruction(const uint8_t* insnAddr) {
+ // Almost all AArch32 instructions that use the ARM encoding (not Thumb) use
+ // bits 31:28 as the guarding condition. Since we do not expect to
+ // encounter conditional loads or stores, most of the following is hardcoded
+ // to check that those bits are 1110 (0xE), which is the "always execute"
+ // condition. An exception is Neon instructions, which are never
+ // conditional and so have those bits set to 1111 (0xF).
+
+ // Check instruction alignment.
+ MOZ_ASSERT(0 == (uintptr_t(insnAddr) & 3));
+
+ const uint32_t insn = *(uint32_t*)insnAddr;
+
+# define INSN(_maxIx, _minIx) \
+ ((insn >> (_minIx)) & ((uint32_t(1) << ((_maxIx) - (_minIx) + 1)) - 1))
+
+ // MacroAssembler::wasmTrapInstruction uses this to create SIGILL.
+ if (insn == 0xE7F000F0) {
+ return Some(TrapMachineInsn::OfficialUD);
+ }
+
+ // 31 27 23 19 15 11
+ // cond 0101 U000 Rn Rt imm12 = STR<cond> Rt, [Rn, +/- #imm12]
+ // cond 0101 U001 Rn Rt imm12 = LDR<cond> Rt, [Rn, +/- #imm12]
+ // cond 0101 U100 Rn Rt imm12 = STRB<cond> Rt, [Rn, +/- #imm12]
+ // cond 0101 U101 Rn Rt imm12 = LDRB<cond> Rt, [Rn, +/- #imm12]
+ // if cond != 1111 and Rn != 1111
+ // U = 1 for +, U = 0 for -
+ if (INSN(31, 28) == 0b1110 // unconditional
+ && INSN(27, 24) == 0b0101 && INSN(19, 16) != 0b1111) {
+ switch (INSN(22, 20)) {
+ case 0b000:
+ return Some(TrapMachineInsn::Store32);
+ case 0b001:
+ return Some(TrapMachineInsn::Load32);
+ case 0b100:
+ return Some(TrapMachineInsn::Store8);
+ case 0b101:
+ return Some(TrapMachineInsn::Load8);
+ default:
+ break;
+ }
+ }
+
+ // 31 27 23 19 15 11 7 3
+ // cond 0001 U100 Rn Rt imm4 1011 imm4 = STRH<cond> Rt, [Rn +/- #imm8]
+ // cond 0001 U101 Rn Rt imm4 1101 imm4 = LDRSB<cond> Rt, [Rn +/- #imm8]
+ // cond 0001 U101 Rn Rt imm4 1111 imm4 = LDRSH<cond> Rt, [Rn +/- #imm8]
+ // cond 0001 U101 Rn Rt imm4 1011 imm4 = LDRH<cond> Rt, [Rn +/- #imm8]
+ // U = 1 for +, U = 0 for -
+ if (INSN(31, 28) == 0b1110 // unconditional
+ && INSN(27, 24) == 0b0001 && INSN(22, 21) == 0b10) {
+ switch ((INSN(20, 20) << 4) | INSN(7, 4)) {
+ case 0b0'1011:
+ return Some(TrapMachineInsn::Store16);
+ case 0b1'1101:
+ return Some(TrapMachineInsn::Load8);
+ case 0b1'1111:
+ return Some(TrapMachineInsn::Load16);
+ case 0b1'1011:
+ return Some(TrapMachineInsn::Load16);
+ default:
+ break;
+ }
+ }
+
+ // clang-format off
+ //
+ // 31 27 23 19 15 11 6 4 3
+ // cond 0111 U000 Rn Rt shimm 00 0 Rm = STR<cond> Rt, [Rn, +/- Rm, [lsl #shimm]]
+ // cond 0111 U100 Rn Rt shimm 00 0 Rm = STRB<cond> Rt, [Rn, +/- Rm, [lsl #shimm]]
+ // cond 0111 U001 Rn Rt shimm 00 0 Rm = LDR<cond> Rt, [Rn, +/- Rm, [lsl #shimm]]
+ // cond 0111 U101 Rn Rt shimm 00 0 Rm = LDRB<cond> Rt, [Rn, +/- Rm, [lsl #shimm]]
+ // U = 1 for +, U = 0 for -
+ //
+ // clang-format on
+ if (INSN(31, 28) == 0b1110 // unconditional
+ && INSN(27, 24) == 0b0111 && INSN(6, 4) == 0b00'0 // lsl
+ ) {
+ switch (INSN(22, 20)) {
+ case 0b000:
+ return Some(TrapMachineInsn::Store32);
+ case 0b100:
+ return Some(TrapMachineInsn::Store8);
+ case 0b001:
+ return Some(TrapMachineInsn::Load32);
+ case 0b101:
+ return Some(TrapMachineInsn::Load8);
+ default:
+ break;
+ }
+ }
+
+ // 31 27 23 19 15 11 7 3
+ // cond 0001 U000 Rn Rt 0000 1011 Rm = STRH<cond> Rt, [Rn, +/- Rm]
+ // cond 0001 U001 Rn Rt 0000 1011 Rm = LDRH<cond> Rt, [Rn, +/- Rm]
+ // cond 0001 U001 Rn Rt 0000 1101 Rm = LDRSB<cond> Rt, [Rn, +/- Rm]
+ // cond 0001 U001 Rn Rt 0000 1111 Rm = LDRSH<cond> Rt, [Rn, +/- Rm]
+ if (INSN(31, 28) == 0b1110 // unconditional
+ && INSN(27, 24) == 0b0001 && INSN(22, 21) == 0b00 &&
+ INSN(11, 8) == 0b0000) {
+ switch ((INSN(20, 20) << 4) | INSN(7, 4)) {
+ case 0b0'1011:
+ return Some(TrapMachineInsn::Store16);
+ case 0b1'1011:
+ return Some(TrapMachineInsn::Load16);
+ case 0b1'1101:
+ return Some(TrapMachineInsn::Load8);
+ case 0b1'1111:
+ return Some(TrapMachineInsn::Load16);
+ default:
+ break;
+ }
+ }
+
+ // 31 27 23 19 15 11 7
+ // cond 1101 UD00 Rn Vd 1010 imm8 = VSTR<cond> Sd, [Rn +/- #imm8]
+ // cond 1101 UD00 Rn Vd 1011 imm8 = VSTR<cond> Dd, [Rn +/- #imm8]
+ // cond 1101 UD01 Rn Vd 1010 imm8 = VLDR<cond> Sd, [Rn +/- #imm8]
+ // cond 1101 UD01 Rn Vd 1011 imm8 = VLDR<cond> Dd, [Rn +/- #imm8]
+ // U = 1 for +, U = 0 for -
+ // D is an extension of Vd (so can be anything)
+ if (INSN(31, 28) == 0b1110 // unconditional
+ && INSN(27, 24) == 0b1101 && INSN(21, 21) == 0b0) {
+ switch ((INSN(20, 20) << 4) | (INSN(11, 8))) {
+ case 0b0'1010:
+ return Some(TrapMachineInsn::Store32);
+ case 0b0'1011:
+ return Some(TrapMachineInsn::Store64);
+ case 0b1'1010:
+ return Some(TrapMachineInsn::Load32);
+ case 0b1'1011:
+ return Some(TrapMachineInsn::Load64);
+ default:
+ break;
+ }
+ }
+
+ // 31 27 23 19 15 11 7 3
+ // 1111 0100 1D00 Rn Vd 1000 0000 1111 = VST1.32 {Dd[0], [Rn]
+ // 1111 0100 1D10 Rn Vd 1000 0000 1111 = VLD1.32 {Dd[0], [Rn]
+ if (INSN(31, 23) == 0b1111'0100'1 && INSN(20, 20) == 0 &&
+ INSN(11, 0) == 0b1000'0000'1111) {
+ return INSN(21, 21) == 1 ? Some(TrapMachineInsn::Load32)
+ : Some(TrapMachineInsn::Store32);
+ }
+
+ // 31 27 23 19 15 11 7 3
+ // 1111 0100 0D00 Rn Vd 0111 1100 1111 = VST1.64 {Dd], [Rn]
+ // 1111 0100 0D10 Rn Vd 0111 1100 1111 = VLD1.64 {Dd], [Rn]
+ if (INSN(31, 23) == 0b1111'0100'0 && INSN(20, 20) == 0 &&
+ INSN(11, 0) == 0b0111'1100'1111) {
+ return INSN(21, 21) == 1 ? Some(TrapMachineInsn::Load64)
+ : Some(TrapMachineInsn::Store64);
+ }
+
+ // 31 27 23 19 15 11 7 3
+ // cond 0001 1101 n t 1111 1001 1111 = LDREXB<cond> Rt, [Rn]
+ // cond 0001 1111 n t 1111 1001 1111 = LDREXH<cond> Rt, [Rn]
+ // cond 0001 1001 n t 1111 1001 1111 = LDREX<cond> Rt, [Rn]
+ // cond 0001 1011 n t 1111 1001 1111 = LDREXD<cond> Rt, [Rn]
+ if (INSN(31, 23) == 0b1110'0001'1 && INSN(11, 0) == 0b1111'1001'1111) {
+ switch (INSN(22, 20)) {
+ case 0b101:
+ return Some(TrapMachineInsn::Load8);
+ case 0b111:
+ return Some(TrapMachineInsn::Load16);
+ case 0b001:
+ return Some(TrapMachineInsn::Load32);
+ case 0b011:
+ return Some(TrapMachineInsn::Load64);
+ default:
+ break;
+ }
+ }
+
+# undef INSN
+
+ // The instruction was not identified.
+
+ // This is useful for diagnosing decoding failures.
+ // if (0) {
+ // fprintf(stderr, "insn = ");
+ // for (int i = 31; i >= 0; i--) {
+ // fprintf(stderr, "%c", ((insn >> i) & 1) ? '1' : '0');
+ // if (i < 31 && (i % 4) == 0) fprintf(stderr, " ");
+ // }
+ // fprintf(stderr, "\n");
+ // }
+
+ return Nothing();
+}
+
+// =============================================================== riscv64 ====
+
+# elif defined(JS_CODEGEN_RISCV64)
+
+Maybe<TrapMachineInsn> SummarizeTrapInstruction(const uint8_t* insnAddr) {
+ // Check instruction alignment.
+ MOZ_ASSERT(0 == (uintptr_t(insnAddr) & 3));
+
+ const uint32_t insn = *(uint32_t*)insnAddr;
+
+# define INSN(_maxIx, _minIx) \
+ ((insn >> (_minIx)) & ((uint32_t(1) << ((_maxIx) - (_minIx) + 1)) - 1))
+ // MacroAssembler::wasmTrapInstruction uses this to create SIGILL.
+ if (insn ==
+ (RO_CSRRWI | csr_cycle << kCsrShift | kWasmTrapCode << kRs1Shift)) {
+ return Some(TrapMachineInsn::OfficialUD);
+ }
+
+ if (INSN(6, 0) == STORE) {
+ switch (INSN(14, 12)) {
+ case 0b011:
+ return Some(TrapMachineInsn::Load64);
+ case 0b010:
+ return Some(TrapMachineInsn::Load32);
+ case 0b001:
+ return Some(TrapMachineInsn::Load16);
+ case 0b000:
+ return Some(TrapMachineInsn::Load8);
+ default:
+ break;
+ }
+ }
+
+ if (INSN(6, 0) == LOAD) {
+ switch (INSN(14, 12)) {
+ case 0b011:
+ return Some(TrapMachineInsn::Store64);
+ case 0b010:
+ return Some(TrapMachineInsn::Store32);
+ case 0b001:
+ return Some(TrapMachineInsn::Store16);
+ case 0b000:
+ return Some(TrapMachineInsn::Store8);
+ default:
+ break;
+ }
+ }
+
+ if (INSN(6, 0) == LOAD_FP) {
+ switch (INSN(14, 12)) {
+ case 0b011:
+ return Some(TrapMachineInsn::Load64);
+ case 0b010:
+ return Some(TrapMachineInsn::Load32);
+ default:
+ break;
+ }
+ }
+
+ if (INSN(6, 0) == STORE_FP) {
+ switch (INSN(14, 12)) {
+ case 0b011:
+ return Some(TrapMachineInsn::Store64);
+ case 0b010:
+ return Some(TrapMachineInsn::Store32);
+ default:
+ break;
+ }
+ }
+
+ if (INSN(6, 0) == AMO && INSN(31, 27) == 00010) {
+ switch (INSN(14, 12)) {
+ case 0b011:
+ return Some(TrapMachineInsn::Load64);
+ case 0b010:
+ return Some(TrapMachineInsn::Load32);
+ default:
+ break;
+ }
+ }
+
+ if (INSN(6, 0) == AMO && INSN(31, 27) == 00011) {
+ switch (INSN(14, 12)) {
+ case 0b011:
+ return Some(TrapMachineInsn::Store64);
+ case 0b010:
+ return Some(TrapMachineInsn::Store32);
+ default:
+ break;
+ }
+ }
+
+# undef INSN
+
+ return Nothing();
+}
+
+// =========================================================== loongarch64 ====
+
+# elif defined(JS_CODEGEN_LOONG64)
+
+Maybe<TrapMachineInsn> SummarizeTrapInstruction(const uint8_t* insnAddr) {
+ // Check instruction alignment.
+ MOZ_ASSERT(0 == (uintptr_t(insnAddr) & 3));
+
+ const uint32_t insn = *(uint32_t*)insnAddr;
+
+# define INSN(_maxIx, _minIx) \
+ ((insn >> (_minIx)) & ((uint32_t(1) << ((_maxIx) - (_minIx) + 1)) - 1))
+
+ // LoongArch instructions encoding document:
+ // https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN#table-of-instruction-encoding
+
+ // MacroAssembler::wasmTrapInstruction uses this to create SIGILL.
+ // break 0x6
+ if (insn == 0x002A0006) {
+ return Some(TrapMachineInsn::OfficialUD);
+ }
+
+ // Loads/stores with reg + offset (si12).
+ if (INSN(31, 26) == 0b001010) {
+ switch (INSN(25, 22)) {
+ // ld.b rd, rj, si12
+ case 0b0000:
+ return Some(TrapMachineInsn::Load8);
+ // ld.h rd, rj, si12
+ case 0b0001:
+ return Some(TrapMachineInsn::Load16);
+ // ld.w rd, rj, si12
+ case 0b0010:
+ return Some(TrapMachineInsn::Load32);
+ // ld.d rd, rj, si12
+ case 0b0011:
+ return Some(TrapMachineInsn::Load64);
+ // st.b rd, rj, si12
+ case 0b0100:
+ return Some(TrapMachineInsn::Store8);
+ // st.h rd, rj, si12
+ case 0b0101:
+ return Some(TrapMachineInsn::Store16);
+ // st.w rd, rj, si12
+ case 0b0110:
+ return Some(TrapMachineInsn::Store32);
+ // st.d rd, rj, si12
+ case 0b0111:
+ return Some(TrapMachineInsn::Store64);
+ // ld.bu rd, rj, si12
+ case 0b1000:
+ return Some(TrapMachineInsn::Load8);
+ // ld.hu rd, rj, si12
+ case 0b1001:
+ return Some(TrapMachineInsn::Load16);
+ // ld.wu rd, rj, si12
+ case 0b1010:
+ return Some(TrapMachineInsn::Load32);
+ // preld hint, rj, si12
+ case 0b1011:
+ break;
+ // fld.s fd, rj, si12
+ case 0b1100:
+ return Some(TrapMachineInsn::Load32);
+ // fst.s fd, rj, si12
+ case 0b1101:
+ return Some(TrapMachineInsn::Store32);
+ // fld.d fd, rj, si12
+ case 0b1110:
+ return Some(TrapMachineInsn::Load64);
+ // fst.s fd, rj, si12
+ case 0b1111:
+ return Some(TrapMachineInsn::Store64);
+ default:
+ break;
+ }
+ }
+
+ // Loads/stores with reg + reg.
+ if (INSN(31, 22) == 0b0011100000 && INSN(17, 15) == 0b000) {
+ switch (INSN(21, 18)) {
+ // ldx.b rd, rj, rk
+ case 0b0000:
+ return Some(TrapMachineInsn::Load8);
+ // ldx.h rd, rj, rk
+ case 0b0001:
+ return Some(TrapMachineInsn::Load16);
+ // ldx.w rd, rj, rk
+ case 0b0010:
+ return Some(TrapMachineInsn::Load32);
+ // ldx.d rd, rj, rk
+ case 0b0011:
+ return Some(TrapMachineInsn::Load64);
+ // stx.b rd, rj, rk
+ case 0b0100:
+ return Some(TrapMachineInsn::Store8);
+ // stx.h rd, rj, rk
+ case 0b0101:
+ return Some(TrapMachineInsn::Store16);
+ // stx.w rd, rj, rk
+ case 0b0110:
+ return Some(TrapMachineInsn::Store32);
+ // stx.d rd, rj, rk
+ case 0b0111:
+ return Some(TrapMachineInsn::Store64);
+ // ldx.bu rd, rj, rk
+ case 0b1000:
+ return Some(TrapMachineInsn::Load8);
+ // ldx.hu rd, rj, rk
+ case 0b1001:
+ return Some(TrapMachineInsn::Load16);
+ // ldx.wu rd, rj, rk
+ case 0b1010:
+ return Some(TrapMachineInsn::Load32);
+ // preldx hint, rj, rk
+ case 0b1011:
+ break;
+ // fldx.s fd, rj, rk
+ case 0b1100:
+ return Some(TrapMachineInsn::Load32);
+ // fldx.d fd, rj, rk
+ case 0b1101:
+ return Some(TrapMachineInsn::Load64);
+ // fstx.s fd, rj, rk
+ case 0b1110:
+ return Some(TrapMachineInsn::Store32);
+ // fstx.d fd, rj, rk
+ case 0b1111:
+ return Some(TrapMachineInsn::Store64);
+ default:
+ break;
+ }
+ }
+
+ // Loads/stores with reg + offset (si14).
+ // 1. Atomics - loads/stores "exclusive" (with reservation) (LL/SC)
+ // 2. {ld/st}ptr.{w/d}
+ if (INSN(31, 27) == 0b00100) {
+ switch (INSN(26, 24)) {
+ // ll.w rd, rj, si14
+ case 0b000:
+ return Some(TrapMachineInsn::Load32);
+ // ll.d rd, rj, si14
+ case 0b010:
+ return Some(TrapMachineInsn::Load64);
+ // ldptr.w rd, rj, si14
+ case 0b100:
+ return Some(TrapMachineInsn::Load32);
+ // stptr.w rd, rj, si14
+ case 0b101:
+ return Some(TrapMachineInsn::Store32);
+ // ldptr.d rd, rj, si14
+ case 0b110:
+ return Some(TrapMachineInsn::Load64);
+ // stptr.d rd, rj, si14
+ case 0b111:
+ return Some(TrapMachineInsn::Store64);
+ default:
+ break;
+ // We are never asked to examine store-exclusive instructions, because
+ // any store-exclusive should be preceded by a load-exclusive
+ // instruction of the same size and for the same address. So the
+ // TrapSite is omitted for the store-exclusive since the load-exclusive
+ // will trap first.
+ }
+ }
+
+# undef INSN
+
+ return Nothing();
+}
+
+// ================================================================== none ====
+
+# elif defined(JS_CODEGEN_NONE)
+
+Maybe<TrapMachineInsn> SummarizeTrapInstruction(const uint8_t* insnAddr) {
+ MOZ_CRASH();
+}
+
+// ================================================================= other ====
+
+# else
+
+# error "SummarizeTrapInstruction: not implemented on this architecture"
+
+# endif // defined(JS_CODEGEN_*)
+
+#endif // defined(DEBUG)
+
+} // namespace wasm
+} // namespace js