diff options
Diffstat (limited to 'media/libcubeb/src/cubeb_mixer.cpp')
-rw-r--r-- | media/libcubeb/src/cubeb_mixer.cpp | 621 |
1 files changed, 621 insertions, 0 deletions
diff --git a/media/libcubeb/src/cubeb_mixer.cpp b/media/libcubeb/src/cubeb_mixer.cpp new file mode 100644 index 0000000000..7f87571f56 --- /dev/null +++ b/media/libcubeb/src/cubeb_mixer.cpp @@ -0,0 +1,621 @@ +/* + * Copyright © 2016 Mozilla Foundation + * + * This program is made available under an ISC-style license. See the + * accompanying file LICENSE for details. + * + * Adapted from code based on libswresample's rematrix.c + */ + +#define NOMINMAX + +#include "cubeb_mixer.h" +#include "cubeb-internal.h" +#include "cubeb_utils.h" +#include <algorithm> +#include <cassert> +#include <climits> +#include <cmath> +#include <cstdlib> +#include <memory> +#include <type_traits> + +#ifndef FF_ARRAY_ELEMS +#define FF_ARRAY_ELEMS(a) (sizeof(a) / sizeof((a)[0])) +#endif + +#define CHANNELS_MAX 32 +#define FRONT_LEFT 0 +#define FRONT_RIGHT 1 +#define FRONT_CENTER 2 +#define LOW_FREQUENCY 3 +#define BACK_LEFT 4 +#define BACK_RIGHT 5 +#define FRONT_LEFT_OF_CENTER 6 +#define FRONT_RIGHT_OF_CENTER 7 +#define BACK_CENTER 8 +#define SIDE_LEFT 9 +#define SIDE_RIGHT 10 +#define TOP_CENTER 11 +#define TOP_FRONT_LEFT 12 +#define TOP_FRONT_CENTER 13 +#define TOP_FRONT_RIGHT 14 +#define TOP_BACK_LEFT 15 +#define TOP_BACK_CENTER 16 +#define TOP_BACK_RIGHT 17 +#define NUM_NAMED_CHANNELS 18 + +#ifndef M_SQRT1_2 +#define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */ +#endif +#ifndef M_SQRT2 +#define M_SQRT2 1.41421356237309504880 /* sqrt(2) */ +#endif +#define SQRT3_2 1.22474487139158904909 /* sqrt(3/2) */ + +#define C30DB M_SQRT2 +#define C15DB 1.189207115 +#define C__0DB 1.0 +#define C_15DB 0.840896415 +#define C_30DB M_SQRT1_2 +#define C_45DB 0.594603558 +#define C_60DB 0.5 + +static cubeb_channel_layout +cubeb_channel_layout_check(cubeb_channel_layout l, uint32_t c) +{ + if (l == CUBEB_LAYOUT_UNDEFINED) { + switch (c) { + case 1: + return CUBEB_LAYOUT_MONO; + case 2: + return CUBEB_LAYOUT_STEREO; + } + } + return l; +} + +unsigned int +cubeb_channel_layout_nb_channels(cubeb_channel_layout x) +{ +#if __GNUC__ || __clang__ + return __builtin_popcount(x); +#else + x -= (x >> 1) & 0x55555555; + x = (x & 0x33333333) + ((x >> 2) & 0x33333333); + x = (x + (x >> 4)) & 0x0F0F0F0F; + x += x >> 8; + return (x + (x >> 16)) & 0x3F; +#endif +} + +struct MixerContext { + MixerContext(cubeb_sample_format f, uint32_t in_channels, + cubeb_channel_layout in, uint32_t out_channels, + cubeb_channel_layout out) + : _format(f), _in_ch_layout(cubeb_channel_layout_check(in, in_channels)), + _out_ch_layout(cubeb_channel_layout_check(out, out_channels)), + _in_ch_count(in_channels), _out_ch_count(out_channels) + { + if (in_channels != cubeb_channel_layout_nb_channels(in) || + out_channels != cubeb_channel_layout_nb_channels(out)) { + // Mismatch between channels and layout, aborting. + return; + } + _valid = init() >= 0; + } + + static bool even(cubeb_channel_layout layout) + { + if (!layout) { + return true; + } + if (layout & (layout - 1)) { + return true; + } + return false; + } + + // Ensure that the layout is sane (that is have symmetrical left/right + // channels), if not, layout will be treated as mono. + static cubeb_channel_layout clean_layout(cubeb_channel_layout layout) + { + if (layout && layout != CHANNEL_FRONT_LEFT && !(layout & (layout - 1))) { + LOG("Treating layout as mono"); + return CHANNEL_FRONT_CENTER; + } + + return layout; + } + + static bool sane_layout(cubeb_channel_layout layout) + { + if (!(layout & CUBEB_LAYOUT_3F)) { // at least 1 front speaker + return false; + } + if (!even(layout & (CHANNEL_FRONT_LEFT | + CHANNEL_FRONT_RIGHT))) { // no asymetric front + return false; + } + if (!even(layout & + (CHANNEL_SIDE_LEFT | CHANNEL_SIDE_RIGHT))) { // no asymetric side + return false; + } + if (!even(layout & (CHANNEL_BACK_LEFT | CHANNEL_BACK_RIGHT))) { + return false; + } + if (!even(layout & + (CHANNEL_FRONT_LEFT_OF_CENTER | CHANNEL_FRONT_RIGHT_OF_CENTER))) { + return false; + } + if (cubeb_channel_layout_nb_channels(layout) >= CHANNELS_MAX) { + return false; + } + return true; + } + + int auto_matrix(); + int init(); + + const cubeb_sample_format _format; + const cubeb_channel_layout _in_ch_layout; ///< input channel layout + const cubeb_channel_layout _out_ch_layout; ///< output channel layout + const uint32_t _in_ch_count; ///< input channel count + const uint32_t _out_ch_count; ///< output channel count + const float _surround_mix_level = C_30DB; ///< surround mixing level + const float _center_mix_level = C_30DB; ///< center mixing level + const float _lfe_mix_level = 1; ///< LFE mixing level + double _matrix[CHANNELS_MAX][CHANNELS_MAX] = { + {0}}; ///< floating point rematrixing coefficients + float _matrix_flt[CHANNELS_MAX][CHANNELS_MAX] = { + {0}}; ///< single precision floating point rematrixing coefficients + int32_t _matrix32[CHANNELS_MAX][CHANNELS_MAX] = { + {0}}; ///< 17.15 fixed point rematrixing coefficients + uint8_t _matrix_ch[CHANNELS_MAX][CHANNELS_MAX + 1] = { + {0}}; ///< Lists of input channels per output channel that have non zero + ///< rematrixing coefficients + bool _clipping = false; ///< Set to true if clipping detection is required + bool _valid = false; ///< Set to true if context is valid. +}; + +int +MixerContext::auto_matrix() +{ + double matrix[NUM_NAMED_CHANNELS][NUM_NAMED_CHANNELS] = {{0}}; + double maxcoef = 0; + double maxval; + + cubeb_channel_layout in_ch_layout = clean_layout(_in_ch_layout); + cubeb_channel_layout out_ch_layout = clean_layout(_out_ch_layout); + + if (!sane_layout(in_ch_layout)) { + // Channel Not Supported + LOG("Input Layout %x is not supported", _in_ch_layout); + return -1; + } + + if (!sane_layout(out_ch_layout)) { + LOG("Output Layout %x is not supported", _out_ch_layout); + return -1; + } + + for (uint32_t i = 0; i < FF_ARRAY_ELEMS(matrix); i++) { + if (in_ch_layout & out_ch_layout & (1U << i)) { + matrix[i][i] = 1.0; + } + } + + cubeb_channel_layout unaccounted = in_ch_layout & ~out_ch_layout; + + // Rematrixing is done via a matrix of coefficient that should be applied to + // all channels. Channels are treated as pair and must be symmetrical (if a + // left channel exists, the corresponding right should exist too) unless the + // output layout has similar layout. Channels are then mixed toward the front + // center or back center if they exist with a slight bias toward the front. + + if (unaccounted & CHANNEL_FRONT_CENTER) { + if ((out_ch_layout & CUBEB_LAYOUT_STEREO) == CUBEB_LAYOUT_STEREO) { + if (in_ch_layout & CUBEB_LAYOUT_STEREO) { + matrix[FRONT_LEFT][FRONT_CENTER] += _center_mix_level; + matrix[FRONT_RIGHT][FRONT_CENTER] += _center_mix_level; + } else { + matrix[FRONT_LEFT][FRONT_CENTER] += M_SQRT1_2; + matrix[FRONT_RIGHT][FRONT_CENTER] += M_SQRT1_2; + } + } + } + if (unaccounted & CUBEB_LAYOUT_STEREO) { + if (out_ch_layout & CHANNEL_FRONT_CENTER) { + matrix[FRONT_CENTER][FRONT_LEFT] += M_SQRT1_2; + matrix[FRONT_CENTER][FRONT_RIGHT] += M_SQRT1_2; + if (in_ch_layout & CHANNEL_FRONT_CENTER) + matrix[FRONT_CENTER][FRONT_CENTER] = _center_mix_level * M_SQRT2; + } + } + + if (unaccounted & CHANNEL_BACK_CENTER) { + if (out_ch_layout & CHANNEL_BACK_LEFT) { + matrix[BACK_LEFT][BACK_CENTER] += M_SQRT1_2; + matrix[BACK_RIGHT][BACK_CENTER] += M_SQRT1_2; + } else if (out_ch_layout & CHANNEL_SIDE_LEFT) { + matrix[SIDE_LEFT][BACK_CENTER] += M_SQRT1_2; + matrix[SIDE_RIGHT][BACK_CENTER] += M_SQRT1_2; + } else if (out_ch_layout & CHANNEL_FRONT_LEFT) { + matrix[FRONT_LEFT][BACK_CENTER] += _surround_mix_level * M_SQRT1_2; + matrix[FRONT_RIGHT][BACK_CENTER] += _surround_mix_level * M_SQRT1_2; + } else if (out_ch_layout & CHANNEL_FRONT_CENTER) { + matrix[FRONT_CENTER][BACK_CENTER] += _surround_mix_level * M_SQRT1_2; + } + } + if (unaccounted & CHANNEL_BACK_LEFT) { + if (out_ch_layout & CHANNEL_BACK_CENTER) { + matrix[BACK_CENTER][BACK_LEFT] += M_SQRT1_2; + matrix[BACK_CENTER][BACK_RIGHT] += M_SQRT1_2; + } else if (out_ch_layout & CHANNEL_SIDE_LEFT) { + if (in_ch_layout & CHANNEL_SIDE_LEFT) { + matrix[SIDE_LEFT][BACK_LEFT] += M_SQRT1_2; + matrix[SIDE_RIGHT][BACK_RIGHT] += M_SQRT1_2; + } else { + matrix[SIDE_LEFT][BACK_LEFT] += 1.0; + matrix[SIDE_RIGHT][BACK_RIGHT] += 1.0; + } + } else if (out_ch_layout & CHANNEL_FRONT_LEFT) { + matrix[FRONT_LEFT][BACK_LEFT] += _surround_mix_level; + matrix[FRONT_RIGHT][BACK_RIGHT] += _surround_mix_level; + } else if (out_ch_layout & CHANNEL_FRONT_CENTER) { + matrix[FRONT_CENTER][BACK_LEFT] += _surround_mix_level * M_SQRT1_2; + matrix[FRONT_CENTER][BACK_RIGHT] += _surround_mix_level * M_SQRT1_2; + } + } + + if (unaccounted & CHANNEL_SIDE_LEFT) { + if (out_ch_layout & CHANNEL_BACK_LEFT) { + /* if back channels do not exist in the input, just copy side + channels to back channels, otherwise mix side into back */ + if (in_ch_layout & CHANNEL_BACK_LEFT) { + matrix[BACK_LEFT][SIDE_LEFT] += M_SQRT1_2; + matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2; + } else { + matrix[BACK_LEFT][SIDE_LEFT] += 1.0; + matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0; + } + } else if (out_ch_layout & CHANNEL_BACK_CENTER) { + matrix[BACK_CENTER][SIDE_LEFT] += M_SQRT1_2; + matrix[BACK_CENTER][SIDE_RIGHT] += M_SQRT1_2; + } else if (out_ch_layout & CHANNEL_FRONT_LEFT) { + matrix[FRONT_LEFT][SIDE_LEFT] += _surround_mix_level; + matrix[FRONT_RIGHT][SIDE_RIGHT] += _surround_mix_level; + } else if (out_ch_layout & CHANNEL_FRONT_CENTER) { + matrix[FRONT_CENTER][SIDE_LEFT] += _surround_mix_level * M_SQRT1_2; + matrix[FRONT_CENTER][SIDE_RIGHT] += _surround_mix_level * M_SQRT1_2; + } + } + + if (unaccounted & CHANNEL_FRONT_LEFT_OF_CENTER) { + if (out_ch_layout & CHANNEL_FRONT_LEFT) { + matrix[FRONT_LEFT][FRONT_LEFT_OF_CENTER] += 1.0; + matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER] += 1.0; + } else if (out_ch_layout & CHANNEL_FRONT_CENTER) { + matrix[FRONT_CENTER][FRONT_LEFT_OF_CENTER] += M_SQRT1_2; + matrix[FRONT_CENTER][FRONT_RIGHT_OF_CENTER] += M_SQRT1_2; + } + } + /* mix LFE into front left/right or center */ + if (unaccounted & CHANNEL_LOW_FREQUENCY) { + if (out_ch_layout & CHANNEL_FRONT_CENTER) { + matrix[FRONT_CENTER][LOW_FREQUENCY] += _lfe_mix_level; + } else if (out_ch_layout & CHANNEL_FRONT_LEFT) { + matrix[FRONT_LEFT][LOW_FREQUENCY] += _lfe_mix_level * M_SQRT1_2; + matrix[FRONT_RIGHT][LOW_FREQUENCY] += _lfe_mix_level * M_SQRT1_2; + } + } + + // Normalize the conversion matrix. + for (uint32_t out_i = 0, i = 0; i < CHANNELS_MAX; i++) { + double sum = 0; + int in_i = 0; + if ((out_ch_layout & (1U << i)) == 0) { + continue; + } + for (uint32_t j = 0; j < CHANNELS_MAX; j++) { + if ((in_ch_layout & (1U << j)) == 0) { + continue; + } + if (i < FF_ARRAY_ELEMS(matrix) && j < FF_ARRAY_ELEMS(matrix[0])) { + _matrix[out_i][in_i] = matrix[i][j]; + } else { + _matrix[out_i][in_i] = + i == j && (in_ch_layout & out_ch_layout & (1U << i)); + } + sum += fabs(_matrix[out_i][in_i]); + in_i++; + } + maxcoef = std::max(maxcoef, sum); + out_i++; + } + + if (_format == CUBEB_SAMPLE_S16NE) { + maxval = 1.0; + } else { + maxval = INT_MAX; + } + + // Normalize matrix if needed. + if (maxcoef > maxval) { + maxcoef /= maxval; + for (uint32_t i = 0; i < CHANNELS_MAX; i++) + for (uint32_t j = 0; j < CHANNELS_MAX; j++) { + _matrix[i][j] /= maxcoef; + } + } + + if (_format == CUBEB_SAMPLE_FLOAT32NE) { + for (uint32_t i = 0; i < FF_ARRAY_ELEMS(_matrix); i++) { + for (uint32_t j = 0; j < FF_ARRAY_ELEMS(_matrix[0]); j++) { + _matrix_flt[i][j] = _matrix[i][j]; + } + } + } + + return 0; +} + +int +MixerContext::init() +{ + int r = auto_matrix(); + if (r) { + return r; + } + + // Determine if matrix operation would overflow + if (_format == CUBEB_SAMPLE_S16NE) { + int maxsum = 0; + for (uint32_t i = 0; i < _out_ch_count; i++) { + double rem = 0; + int sum = 0; + + for (uint32_t j = 0; j < _in_ch_count; j++) { + double target = _matrix[i][j] * 32768 + rem; + int value = lrintf(target); + rem += target - value; + sum += std::abs(value); + } + maxsum = std::max(maxsum, sum); + } + if (maxsum > 32768) { + _clipping = true; + } + } + + // FIXME quantize for integers + for (uint32_t i = 0; i < CHANNELS_MAX; i++) { + int ch_in = 0; + for (uint32_t j = 0; j < CHANNELS_MAX; j++) { + _matrix32[i][j] = lrintf(_matrix[i][j] * 32768); + if (_matrix[i][j]) { + _matrix_ch[i][++ch_in] = j; + } + } + _matrix_ch[i][0] = ch_in; + } + + return 0; +} + +template <typename TYPE_SAMPLE, typename TYPE_COEFF, typename F> +void +sum2(TYPE_SAMPLE * out, uint32_t stride_out, const TYPE_SAMPLE * in1, + const TYPE_SAMPLE * in2, uint32_t stride_in, TYPE_COEFF coeff1, + TYPE_COEFF coeff2, F && operand, uint32_t frames) +{ + static_assert( + std::is_same<TYPE_COEFF, decltype(operand(coeff1))>::value, + "function must return the same type as used by coeff1 and coeff2"); + for (uint32_t i = 0; i < frames; i++) { + *out = operand(coeff1 * *in1 + coeff2 * *in2); + out += stride_out; + in1 += stride_in; + in2 += stride_in; + } +} + +template <typename TYPE_SAMPLE, typename TYPE_COEFF, typename F> +void +copy(TYPE_SAMPLE * out, uint32_t stride_out, const TYPE_SAMPLE * in, + uint32_t stride_in, TYPE_COEFF coeff, F && operand, uint32_t frames) +{ + static_assert(std::is_same<TYPE_COEFF, decltype(operand(coeff))>::value, + "function must return the same type as used by coeff"); + for (uint32_t i = 0; i < frames; i++) { + *out = operand(coeff * *in); + out += stride_out; + in += stride_in; + } +} + +template <typename TYPE, typename TYPE_COEFF, size_t COLS, typename F> +static int +rematrix(const MixerContext * s, TYPE * aOut, const TYPE * aIn, + const TYPE_COEFF (&matrix_coeff)[COLS][COLS], F && aF, uint32_t frames) +{ + static_assert( + std::is_same<TYPE_COEFF, decltype(aF(matrix_coeff[0][0]))>::value, + "function must return the same type as used by matrix_coeff"); + + for (uint32_t out_i = 0; out_i < s->_out_ch_count; out_i++) { + TYPE * out = aOut + out_i; + switch (s->_matrix_ch[out_i][0]) { + case 0: + for (uint32_t i = 0; i < frames; i++) { + out[i * s->_out_ch_count] = 0; + } + break; + case 1: { + int in_i = s->_matrix_ch[out_i][1]; + copy(out, s->_out_ch_count, aIn + in_i, s->_in_ch_count, + matrix_coeff[out_i][in_i], aF, frames); + } break; + case 2: + sum2(out, s->_out_ch_count, aIn + s->_matrix_ch[out_i][1], + aIn + s->_matrix_ch[out_i][2], s->_in_ch_count, + matrix_coeff[out_i][s->_matrix_ch[out_i][1]], + matrix_coeff[out_i][s->_matrix_ch[out_i][2]], aF, frames); + break; + default: + for (uint32_t i = 0; i < frames; i++) { + TYPE_COEFF v = 0; + for (uint32_t j = 0; j < s->_matrix_ch[out_i][0]; j++) { + uint32_t in_i = s->_matrix_ch[out_i][1 + j]; + v += *(aIn + in_i + i * s->_in_ch_count) * matrix_coeff[out_i][in_i]; + } + out[i * s->_out_ch_count] = aF(v); + } + break; + } + } + return 0; +} + +struct cubeb_mixer { + cubeb_mixer(cubeb_sample_format format, uint32_t in_channels, + cubeb_channel_layout in_layout, uint32_t out_channels, + cubeb_channel_layout out_layout) + : _context(format, in_channels, in_layout, out_channels, out_layout) + { + } + + template <typename T> + void copy_and_trunc(size_t frames, const T * input_buffer, + T * output_buffer) const + { + if (_context._in_ch_count <= _context._out_ch_count) { + // Not enough channels to copy, fill the gaps with silence. + if (_context._in_ch_count == 1 && _context._out_ch_count >= 2) { + // Special case for upmixing mono input to stereo and more. We will + // duplicate the mono channel to the first two channels. On most system, + // the first two channels are for left and right. It is commonly + // expected that mono will on both left+right channels + for (uint32_t i = 0; i < frames; i++) { + output_buffer[0] = output_buffer[1] = *input_buffer; + PodZero(output_buffer + 2, _context._out_ch_count - 2); + output_buffer += _context._out_ch_count; + input_buffer++; + } + return; + } + for (uint32_t i = 0; i < frames; i++) { + PodCopy(output_buffer, input_buffer, _context._in_ch_count); + output_buffer += _context._in_ch_count; + input_buffer += _context._in_ch_count; + PodZero(output_buffer, _context._out_ch_count - _context._in_ch_count); + output_buffer += _context._out_ch_count - _context._in_ch_count; + } + } else { + for (uint32_t i = 0; i < frames; i++) { + PodCopy(output_buffer, input_buffer, _context._out_ch_count); + output_buffer += _context._out_ch_count; + input_buffer += _context._in_ch_count; + } + } + } + + int mix(size_t frames, const void * input_buffer, size_t input_buffer_size, + void * output_buffer, size_t output_buffer_size) const + { + if (frames <= 0 || _context._out_ch_count == 0) { + return 0; + } + + // Check if output buffer is of sufficient size. + size_t size_read_needed = + frames * _context._in_ch_count * cubeb_sample_size(_context._format); + if (input_buffer_size < size_read_needed) { + // We don't have enough data to read! + return -1; + } + if (output_buffer_size * _context._in_ch_count < + size_read_needed * _context._out_ch_count) { + return -1; + } + + if (!valid()) { + // The channel layouts were invalid or unsupported, instead we will simply + // either drop the extra channels, or fill with silence the missing ones + if (_context._format == CUBEB_SAMPLE_FLOAT32NE) { + copy_and_trunc(frames, static_cast<const float *>(input_buffer), + static_cast<float *>(output_buffer)); + } else { + assert(_context._format == CUBEB_SAMPLE_S16NE); + copy_and_trunc(frames, static_cast<const int16_t *>(input_buffer), + reinterpret_cast<int16_t *>(output_buffer)); + } + return 0; + } + + switch (_context._format) { + case CUBEB_SAMPLE_FLOAT32NE: { + auto f = [](float x) { return x; }; + return rematrix(&_context, static_cast<float *>(output_buffer), + static_cast<const float *>(input_buffer), + _context._matrix_flt, f, frames); + } + case CUBEB_SAMPLE_S16NE: + if (_context._clipping) { + auto f = [](int x) { + int y = (x + 16384) >> 15; + // clip the signed integer value into the -32768,32767 range. + if ((y + 0x8000U) & ~0xFFFF) { + return (y >> 31) ^ 0x7FFF; + } + return y; + }; + return rematrix(&_context, static_cast<int16_t *>(output_buffer), + static_cast<const int16_t *>(input_buffer), + _context._matrix32, f, frames); + } else { + auto f = [](int x) { return (x + 16384) >> 15; }; + return rematrix(&_context, static_cast<int16_t *>(output_buffer), + static_cast<const int16_t *>(input_buffer), + _context._matrix32, f, frames); + } + break; + default: + assert(false); + break; + } + + return -1; + } + + // Return false if any of the input or ouput layout were invalid. + bool valid() const { return _context._valid; } + + virtual ~cubeb_mixer(){}; + + MixerContext _context; +}; + +cubeb_mixer * +cubeb_mixer_create(cubeb_sample_format format, uint32_t in_channels, + cubeb_channel_layout in_layout, uint32_t out_channels, + cubeb_channel_layout out_layout) +{ + return new cubeb_mixer(format, in_channels, in_layout, out_channels, + out_layout); +} + +void +cubeb_mixer_destroy(cubeb_mixer * mixer) +{ + delete mixer; +} + +int +cubeb_mixer_mix(cubeb_mixer * mixer, size_t frames, const void * input_buffer, + size_t input_buffer_size, void * output_buffer, + size_t output_buffer_size) +{ + return mixer->mix(frames, input_buffer, input_buffer_size, output_buffer, + output_buffer_size); +} |