diff options
Diffstat (limited to 'media/libvpx/libvpx/vp9/encoder/vp9_bitstream.c')
-rw-r--r-- | media/libvpx/libvpx/vp9/encoder/vp9_bitstream.c | 1387 |
1 files changed, 1387 insertions, 0 deletions
diff --git a/media/libvpx/libvpx/vp9/encoder/vp9_bitstream.c b/media/libvpx/libvpx/vp9/encoder/vp9_bitstream.c new file mode 100644 index 0000000000..ca56d14aa1 --- /dev/null +++ b/media/libvpx/libvpx/vp9/encoder/vp9_bitstream.c @@ -0,0 +1,1387 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include <assert.h> +#include <stdio.h> +#include <limits.h> + +#include "vpx/vpx_encoder.h" +#include "vpx_dsp/bitwriter_buffer.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem_ops.h" +#include "vpx_ports/system_state.h" +#if CONFIG_BITSTREAM_DEBUG +#include "vpx_util/vpx_debug_util.h" +#endif // CONFIG_BITSTREAM_DEBUG + +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_entropymode.h" +#include "vp9/common/vp9_entropymv.h" +#include "vp9/common/vp9_mvref_common.h" +#include "vp9/common/vp9_pred_common.h" +#include "vp9/common/vp9_seg_common.h" +#include "vp9/common/vp9_tile_common.h" + +#include "vp9/encoder/vp9_cost.h" +#include "vp9/encoder/vp9_bitstream.h" +#include "vp9/encoder/vp9_encodemv.h" +#include "vp9/encoder/vp9_mcomp.h" +#include "vp9/encoder/vp9_segmentation.h" +#include "vp9/encoder/vp9_subexp.h" +#include "vp9/encoder/vp9_tokenize.h" + +static const struct vp9_token intra_mode_encodings[INTRA_MODES] = { + { 0, 1 }, { 6, 3 }, { 28, 5 }, { 30, 5 }, { 58, 6 }, + { 59, 6 }, { 126, 7 }, { 127, 7 }, { 62, 6 }, { 2, 2 } +}; +static const struct vp9_token + switchable_interp_encodings[SWITCHABLE_FILTERS] = { { 0, 1 }, + { 2, 2 }, + { 3, 2 } }; +static const struct vp9_token partition_encodings[PARTITION_TYPES] = { + { 0, 1 }, { 2, 2 }, { 6, 3 }, { 7, 3 } +}; +static const struct vp9_token inter_mode_encodings[INTER_MODES] = { + { 2, 2 }, { 6, 3 }, { 0, 1 }, { 7, 3 } +}; + +static void write_intra_mode(vpx_writer *w, PREDICTION_MODE mode, + const vpx_prob *probs) { + vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]); +} + +static void write_inter_mode(vpx_writer *w, PREDICTION_MODE mode, + const vpx_prob *probs) { + assert(is_inter_mode(mode)); + vp9_write_token(w, vp9_inter_mode_tree, probs, + &inter_mode_encodings[INTER_OFFSET(mode)]); +} + +static void encode_unsigned_max(struct vpx_write_bit_buffer *wb, int data, + int max) { + vpx_wb_write_literal(wb, data, get_unsigned_bits(max)); +} + +static void prob_diff_update(const vpx_tree_index *tree, + vpx_prob probs[/*n - 1*/], + const unsigned int counts[/*n - 1*/], int n, + vpx_writer *w) { + int i; + unsigned int branch_ct[32][2]; + + // Assuming max number of probabilities <= 32 + assert(n <= 32); + + vp9_tree_probs_from_distribution(tree, branch_ct, counts); + for (i = 0; i < n - 1; ++i) + vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]); +} + +static void write_selected_tx_size(const VP9_COMMON *cm, + const MACROBLOCKD *const xd, vpx_writer *w) { + TX_SIZE tx_size = xd->mi[0]->tx_size; + BLOCK_SIZE bsize = xd->mi[0]->sb_type; + const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; + const vpx_prob *const tx_probs = + get_tx_probs(max_tx_size, get_tx_size_context(xd), &cm->fc->tx_probs); + vpx_write(w, tx_size != TX_4X4, tx_probs[0]); + if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) { + vpx_write(w, tx_size != TX_8X8, tx_probs[1]); + if (tx_size != TX_8X8 && max_tx_size >= TX_32X32) + vpx_write(w, tx_size != TX_16X16, tx_probs[2]); + } +} + +static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *const xd, + int segment_id, const MODE_INFO *mi, vpx_writer *w) { + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { + return 1; + } else { + const int skip = mi->skip; + vpx_write(w, skip, vp9_get_skip_prob(cm, xd)); + return skip; + } +} + +static void update_skip_probs(VP9_COMMON *cm, vpx_writer *w, + FRAME_COUNTS *counts) { + int k; + + for (k = 0; k < SKIP_CONTEXTS; ++k) + vp9_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]); +} + +static void update_switchable_interp_probs(VP9_COMMON *cm, vpx_writer *w, + FRAME_COUNTS *counts) { + int j; + for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) + prob_diff_update(vp9_switchable_interp_tree, + cm->fc->switchable_interp_prob[j], + counts->switchable_interp[j], SWITCHABLE_FILTERS, w); +} + +static void pack_mb_tokens(vpx_writer *w, TOKENEXTRA **tp, + const TOKENEXTRA *const stop, + vpx_bit_depth_t bit_depth) { + const TOKENEXTRA *p; + const vp9_extra_bit *const extra_bits = +#if CONFIG_VP9_HIGHBITDEPTH + (bit_depth == VPX_BITS_12) ? vp9_extra_bits_high12 + : (bit_depth == VPX_BITS_10) ? vp9_extra_bits_high10 + : vp9_extra_bits; +#else + vp9_extra_bits; + (void)bit_depth; +#endif // CONFIG_VP9_HIGHBITDEPTH + + for (p = *tp; p < stop && p->token != EOSB_TOKEN; ++p) { + if (p->token == EOB_TOKEN) { + vpx_write(w, 0, p->context_tree[0]); + continue; + } + vpx_write(w, 1, p->context_tree[0]); + while (p->token == ZERO_TOKEN) { + vpx_write(w, 0, p->context_tree[1]); + ++p; + if (p == stop || p->token == EOSB_TOKEN) { + *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN); + return; + } + } + + { + const int t = p->token; + const vpx_prob *const context_tree = p->context_tree; + assert(t != ZERO_TOKEN); + assert(t != EOB_TOKEN); + assert(t != EOSB_TOKEN); + vpx_write(w, 1, context_tree[1]); + if (t == ONE_TOKEN) { + vpx_write(w, 0, context_tree[2]); + vpx_write_bit(w, p->extra & 1); + } else { // t >= TWO_TOKEN && t < EOB_TOKEN + const struct vp9_token *const a = &vp9_coef_encodings[t]; + int v = a->value; + int n = a->len; + const int e = p->extra; + vpx_write(w, 1, context_tree[2]); + vp9_write_tree(w, vp9_coef_con_tree, + vp9_pareto8_full[context_tree[PIVOT_NODE] - 1], v, + n - UNCONSTRAINED_NODES, 0); + if (t >= CATEGORY1_TOKEN) { + const vp9_extra_bit *const b = &extra_bits[t]; + const unsigned char *pb = b->prob; + v = e >> 1; + n = b->len; // number of bits in v, assumed nonzero + do { + const int bb = (v >> --n) & 1; + vpx_write(w, bb, *pb++); + } while (n); + } + vpx_write_bit(w, e & 1); + } + } + } + *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN); +} + +static void write_segment_id(vpx_writer *w, const struct segmentation *seg, + int segment_id) { + if (seg->enabled && seg->update_map) + vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0); +} + +// This function encodes the reference frame +static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *const xd, + vpx_writer *w) { + const MODE_INFO *const mi = xd->mi[0]; + const int is_compound = has_second_ref(mi); + const int segment_id = mi->segment_id; + + // If segment level coding of this signal is disabled... + // or the segment allows multiple reference frame options + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { + assert(!is_compound); + assert(mi->ref_frame[0] == + get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); + } else { + // does the feature use compound prediction or not + // (if not specified at the frame/segment level) + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + vpx_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd)); + } else { + assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE)); + } + + if (is_compound) { + const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; + vpx_write(w, mi->ref_frame[!idx] == cm->comp_var_ref[1], + vp9_get_pred_prob_comp_ref_p(cm, xd)); + } else { + const int bit0 = mi->ref_frame[0] != LAST_FRAME; + vpx_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd)); + if (bit0) { + const int bit1 = mi->ref_frame[0] != GOLDEN_FRAME; + vpx_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd)); + } + } + } +} + +static void pack_inter_mode_mvs(VP9_COMP *cpi, const MACROBLOCKD *const xd, + const MB_MODE_INFO_EXT *const mbmi_ext, + vpx_writer *w, + unsigned int *const max_mv_magnitude, + int interp_filter_selected[][SWITCHABLE]) { + VP9_COMMON *const cm = &cpi->common; + const nmv_context *nmvc = &cm->fc->nmvc; + const struct segmentation *const seg = &cm->seg; + const MODE_INFO *const mi = xd->mi[0]; + const PREDICTION_MODE mode = mi->mode; + const int segment_id = mi->segment_id; + const BLOCK_SIZE bsize = mi->sb_type; + const int allow_hp = cm->allow_high_precision_mv; + const int is_inter = is_inter_block(mi); + const int is_compound = has_second_ref(mi); + int skip, ref; + + if (seg->update_map) { + if (seg->temporal_update) { + const int pred_flag = mi->seg_id_predicted; + vpx_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd); + vpx_write(w, pred_flag, pred_prob); + if (!pred_flag) write_segment_id(w, seg, segment_id); + } else { + write_segment_id(w, seg, segment_id); + } + } + + skip = write_skip(cm, xd, segment_id, mi, w); + + if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) + vpx_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd)); + + if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && + !(is_inter && skip)) { + write_selected_tx_size(cm, xd, w); + } + + if (!is_inter) { + if (bsize >= BLOCK_8X8) { + write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]); + } else { + int idx, idy; + const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; + for (idy = 0; idy < 2; idy += num_4x4_h) { + for (idx = 0; idx < 2; idx += num_4x4_w) { + const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode; + write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]); + } + } + } + write_intra_mode(w, mi->uv_mode, cm->fc->uv_mode_prob[mode]); + } else { + const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]]; + const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx]; + write_ref_frames(cm, xd, w); + + // If segment skip is not enabled code the mode. + if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { + if (bsize >= BLOCK_8X8) { + write_inter_mode(w, mode, inter_probs); + } + } + + if (cm->interp_filter == SWITCHABLE) { + const int ctx = get_pred_context_switchable_interp(xd); + vp9_write_token(w, vp9_switchable_interp_tree, + cm->fc->switchable_interp_prob[ctx], + &switchable_interp_encodings[mi->interp_filter]); + ++interp_filter_selected[0][mi->interp_filter]; + } else { + assert(mi->interp_filter == cm->interp_filter); + } + + if (bsize < BLOCK_8X8) { + const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; + int idx, idy; + for (idy = 0; idy < 2; idy += num_4x4_h) { + for (idx = 0; idx < 2; idx += num_4x4_w) { + const int j = idy * 2 + idx; + const PREDICTION_MODE b_mode = mi->bmi[j].as_mode; + write_inter_mode(w, b_mode, inter_probs); + if (b_mode == NEWMV) { + for (ref = 0; ref < 1 + is_compound; ++ref) + vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv, + &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv, + nmvc, allow_hp, max_mv_magnitude); + } + } + } + } else { + if (mode == NEWMV) { + for (ref = 0; ref < 1 + is_compound; ++ref) + vp9_encode_mv(cpi, w, &mi->mv[ref].as_mv, + &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv, nmvc, + allow_hp, max_mv_magnitude); + } + } + } +} + +static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd, + vpx_writer *w) { + const struct segmentation *const seg = &cm->seg; + const MODE_INFO *const mi = xd->mi[0]; + const MODE_INFO *const above_mi = xd->above_mi; + const MODE_INFO *const left_mi = xd->left_mi; + const BLOCK_SIZE bsize = mi->sb_type; + + if (seg->update_map) write_segment_id(w, seg, mi->segment_id); + + write_skip(cm, xd, mi->segment_id, mi, w); + + if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT) + write_selected_tx_size(cm, xd, w); + + if (bsize >= BLOCK_8X8) { + write_intra_mode(w, mi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0)); + } else { + const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; + int idx, idy; + + for (idy = 0; idy < 2; idy += num_4x4_h) { + for (idx = 0; idx < 2; idx += num_4x4_w) { + const int block = idy * 2 + idx; + write_intra_mode(w, mi->bmi[block].as_mode, + get_y_mode_probs(mi, above_mi, left_mi, block)); + } + } + } + + write_intra_mode(w, mi->uv_mode, vp9_kf_uv_mode_prob[mi->mode]); +} + +static void write_modes_b(VP9_COMP *cpi, MACROBLOCKD *const xd, + const TileInfo *const tile, vpx_writer *w, + TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, + int mi_row, int mi_col, + unsigned int *const max_mv_magnitude, + int interp_filter_selected[][SWITCHABLE]) { + const VP9_COMMON *const cm = &cpi->common; + const MB_MODE_INFO_EXT *const mbmi_ext = + cpi->td.mb.mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); + MODE_INFO *m; + + xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); + m = xd->mi[0]; + + set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[m->sb_type], + mi_col, num_8x8_blocks_wide_lookup[m->sb_type], cm->mi_rows, + cm->mi_cols); + if (frame_is_intra_only(cm)) { + write_mb_modes_kf(cm, xd, w); + } else { + pack_inter_mode_mvs(cpi, xd, mbmi_ext, w, max_mv_magnitude, + interp_filter_selected); + } + + assert(*tok < tok_end); + pack_mb_tokens(w, tok, tok_end, cm->bit_depth); +} + +static void write_partition(const VP9_COMMON *const cm, + const MACROBLOCKD *const xd, int hbs, int mi_row, + int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize, + vpx_writer *w) { + const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); + const vpx_prob *const probs = xd->partition_probs[ctx]; + const int has_rows = (mi_row + hbs) < cm->mi_rows; + const int has_cols = (mi_col + hbs) < cm->mi_cols; + + if (has_rows && has_cols) { + vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]); + } else if (!has_rows && has_cols) { + assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); + vpx_write(w, p == PARTITION_SPLIT, probs[1]); + } else if (has_rows && !has_cols) { + assert(p == PARTITION_SPLIT || p == PARTITION_VERT); + vpx_write(w, p == PARTITION_SPLIT, probs[2]); + } else { + assert(p == PARTITION_SPLIT); + } +} + +static void write_modes_sb(VP9_COMP *cpi, MACROBLOCKD *const xd, + const TileInfo *const tile, vpx_writer *w, + TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, + int mi_row, int mi_col, BLOCK_SIZE bsize, + unsigned int *const max_mv_magnitude, + int interp_filter_selected[][SWITCHABLE]) { + const VP9_COMMON *const cm = &cpi->common; + const int bsl = b_width_log2_lookup[bsize]; + const int bs = (1 << bsl) / 4; + PARTITION_TYPE partition; + BLOCK_SIZE subsize; + const MODE_INFO *m = NULL; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]; + + partition = partition_lookup[bsl][m->sb_type]; + write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w); + subsize = get_subsize(bsize, partition); + if (subsize < BLOCK_8X8) { + write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, + max_mv_magnitude, interp_filter_selected); + } else { + switch (partition) { + case PARTITION_NONE: + write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, + max_mv_magnitude, interp_filter_selected); + break; + case PARTITION_HORZ: + write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, + max_mv_magnitude, interp_filter_selected); + if (mi_row + bs < cm->mi_rows) + write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col, + max_mv_magnitude, interp_filter_selected); + break; + case PARTITION_VERT: + write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, + max_mv_magnitude, interp_filter_selected); + if (mi_col + bs < cm->mi_cols) + write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs, + max_mv_magnitude, interp_filter_selected); + break; + default: + assert(partition == PARTITION_SPLIT); + write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, subsize, + max_mv_magnitude, interp_filter_selected); + write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs, + subsize, max_mv_magnitude, interp_filter_selected); + write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col, + subsize, max_mv_magnitude, interp_filter_selected); + write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col + bs, + subsize, max_mv_magnitude, interp_filter_selected); + break; + } + } + + // update partition context + if (bsize >= BLOCK_8X8 && + (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) + update_partition_context(xd, mi_row, mi_col, subsize, bsize); +} + +static void write_modes(VP9_COMP *cpi, MACROBLOCKD *const xd, + const TileInfo *const tile, vpx_writer *w, int tile_row, + int tile_col, unsigned int *const max_mv_magnitude, + int interp_filter_selected[][SWITCHABLE]) { + const VP9_COMMON *const cm = &cpi->common; + int mi_row, mi_col, tile_sb_row; + TOKENEXTRA *tok = NULL; + TOKENEXTRA *tok_end = NULL; + + set_partition_probs(cm, xd); + + for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; + mi_row += MI_BLOCK_SIZE) { + tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile->mi_row_start) >> + MI_BLOCK_SIZE_LOG2; + tok = cpi->tplist[tile_row][tile_col][tile_sb_row].start; + tok_end = tok + cpi->tplist[tile_row][tile_col][tile_sb_row].count; + + vp9_zero(xd->left_seg_context); + for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; + mi_col += MI_BLOCK_SIZE) + write_modes_sb(cpi, xd, tile, w, &tok, tok_end, mi_row, mi_col, + BLOCK_64X64, max_mv_magnitude, interp_filter_selected); + + assert(tok == cpi->tplist[tile_row][tile_col][tile_sb_row].stop); + } +} + +static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size, + vp9_coeff_stats *coef_branch_ct, + vp9_coeff_probs_model *coef_probs) { + vp9_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size]; + unsigned int(*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] = + cpi->common.counts.eob_branch[tx_size]; + int i, j, k, l, m; + + for (i = 0; i < PLANE_TYPES; ++i) { + for (j = 0; j < REF_TYPES; ++j) { + for (k = 0; k < COEF_BANDS; ++k) { + for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { + vp9_tree_probs_from_distribution(vp9_coef_tree, + coef_branch_ct[i][j][k][l], + coef_counts[i][j][k][l]); + coef_branch_ct[i][j][k][l][0][1] = + eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0]; + for (m = 0; m < UNCONSTRAINED_NODES; ++m) + coef_probs[i][j][k][l][m] = + get_binary_prob(coef_branch_ct[i][j][k][l][m][0], + coef_branch_ct[i][j][k][l][m][1]); + } + } + } + } +} + +static void update_coef_probs_common(vpx_writer *const bc, VP9_COMP *cpi, + TX_SIZE tx_size, + vp9_coeff_stats *frame_branch_ct, + vp9_coeff_probs_model *new_coef_probs) { + vp9_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size]; + const vpx_prob upd = DIFF_UPDATE_PROB; + const int entropy_nodes_update = UNCONSTRAINED_NODES; + int i, j, k, l, t; + int stepsize = cpi->sf.coeff_prob_appx_step; + + switch (cpi->sf.use_fast_coef_updates) { + case TWO_LOOP: { + /* dry run to see if there is any update at all needed */ + int64_t savings = 0; + int update[2] = { 0, 0 }; + for (i = 0; i < PLANE_TYPES; ++i) { + for (j = 0; j < REF_TYPES; ++j) { + for (k = 0; k < COEF_BANDS; ++k) { + for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { + for (t = 0; t < entropy_nodes_update; ++t) { + vpx_prob newp = new_coef_probs[i][j][k][l][t]; + const vpx_prob oldp = old_coef_probs[i][j][k][l][t]; + int64_t s; + int u = 0; + if (t == PIVOT_NODE) + s = vp9_prob_diff_update_savings_search_model( + frame_branch_ct[i][j][k][l][0], oldp, &newp, upd, + stepsize); + else + s = vp9_prob_diff_update_savings_search( + frame_branch_ct[i][j][k][l][t], oldp, &newp, upd); + if (s > 0 && newp != oldp) u = 1; + if (u) + savings += s - (int)(vp9_cost_zero(upd)); + else + savings -= (int)(vp9_cost_zero(upd)); + update[u]++; + } + } + } + } + } + + // printf("Update %d %d, savings %d\n", update[0], update[1], savings); + /* Is coef updated at all */ + if (update[1] == 0 || savings < 0) { + vpx_write_bit(bc, 0); + return; + } + vpx_write_bit(bc, 1); + for (i = 0; i < PLANE_TYPES; ++i) { + for (j = 0; j < REF_TYPES; ++j) { + for (k = 0; k < COEF_BANDS; ++k) { + for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { + // calc probs and branch cts for this frame only + for (t = 0; t < entropy_nodes_update; ++t) { + vpx_prob newp = new_coef_probs[i][j][k][l][t]; + vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; + int64_t s; + int u = 0; + if (t == PIVOT_NODE) + s = vp9_prob_diff_update_savings_search_model( + frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd, + stepsize); + else + s = vp9_prob_diff_update_savings_search( + frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); + if (s > 0 && newp != *oldp) u = 1; + vpx_write(bc, u, upd); + if (u) { + /* send/use new probability */ + vp9_write_prob_diff_update(bc, newp, *oldp); + *oldp = newp; + } + } + } + } + } + } + return; + } + + default: { + int updates = 0; + int noupdates_before_first = 0; + assert(cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED); + for (i = 0; i < PLANE_TYPES; ++i) { + for (j = 0; j < REF_TYPES; ++j) { + for (k = 0; k < COEF_BANDS; ++k) { + for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { + // calc probs and branch cts for this frame only + for (t = 0; t < entropy_nodes_update; ++t) { + vpx_prob newp = new_coef_probs[i][j][k][l][t]; + vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; + int64_t s; + int u = 0; + + if (t == PIVOT_NODE) { + s = vp9_prob_diff_update_savings_search_model( + frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd, + stepsize); + } else { + s = vp9_prob_diff_update_savings_search( + frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); + } + + if (s > 0 && newp != *oldp) u = 1; + updates += u; + if (u == 0 && updates == 0) { + noupdates_before_first++; + continue; + } + if (u == 1 && updates == 1) { + int v; + // first update + vpx_write_bit(bc, 1); + for (v = 0; v < noupdates_before_first; ++v) + vpx_write(bc, 0, upd); + } + vpx_write(bc, u, upd); + if (u) { + /* send/use new probability */ + vp9_write_prob_diff_update(bc, newp, *oldp); + *oldp = newp; + } + } + } + } + } + } + if (updates == 0) { + vpx_write_bit(bc, 0); // no updates + } + return; + } + } +} + +static void update_coef_probs(VP9_COMP *cpi, vpx_writer *w) { + const TX_MODE tx_mode = cpi->common.tx_mode; + const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; + TX_SIZE tx_size; + for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) { + vp9_coeff_stats frame_branch_ct[PLANE_TYPES]; + vp9_coeff_probs_model frame_coef_probs[PLANE_TYPES]; + if (cpi->td.counts->tx.tx_totals[tx_size] <= 20 || + (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) { + vpx_write_bit(w, 0); + } else { + build_tree_distribution(cpi, tx_size, frame_branch_ct, frame_coef_probs); + update_coef_probs_common(w, cpi, tx_size, frame_branch_ct, + frame_coef_probs); + } + } +} + +static void encode_loopfilter(struct loopfilter *lf, + struct vpx_write_bit_buffer *wb) { + int i; + + // Encode the loop filter level and type + vpx_wb_write_literal(wb, lf->filter_level, 6); + vpx_wb_write_literal(wb, lf->sharpness_level, 3); + + // Write out loop filter deltas applied at the MB level based on mode or + // ref frame (if they are enabled). + vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled); + + if (lf->mode_ref_delta_enabled) { + vpx_wb_write_bit(wb, lf->mode_ref_delta_update); + if (lf->mode_ref_delta_update) { + for (i = 0; i < MAX_REF_LF_DELTAS; i++) { + const int delta = lf->ref_deltas[i]; + const int changed = delta != lf->last_ref_deltas[i]; + vpx_wb_write_bit(wb, changed); + if (changed) { + lf->last_ref_deltas[i] = delta; + vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6); + vpx_wb_write_bit(wb, delta < 0); + } + } + + for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { + const int delta = lf->mode_deltas[i]; + const int changed = delta != lf->last_mode_deltas[i]; + vpx_wb_write_bit(wb, changed); + if (changed) { + lf->last_mode_deltas[i] = delta; + vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6); + vpx_wb_write_bit(wb, delta < 0); + } + } + } + } +} + +static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) { + if (delta_q != 0) { + vpx_wb_write_bit(wb, 1); + vpx_wb_write_literal(wb, abs(delta_q), 4); + vpx_wb_write_bit(wb, delta_q < 0); + } else { + vpx_wb_write_bit(wb, 0); + } +} + +static void encode_quantization(const VP9_COMMON *const cm, + struct vpx_write_bit_buffer *wb) { + vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); + write_delta_q(wb, cm->y_dc_delta_q); + write_delta_q(wb, cm->uv_dc_delta_q); + write_delta_q(wb, cm->uv_ac_delta_q); +} + +static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd, + struct vpx_write_bit_buffer *wb) { + int i, j; + + const struct segmentation *seg = &cm->seg; + + vpx_wb_write_bit(wb, seg->enabled); + if (!seg->enabled) return; + + // Segmentation map + vpx_wb_write_bit(wb, seg->update_map); + if (seg->update_map) { + // Select the coding strategy (temporal or spatial) + vp9_choose_segmap_coding_method(cm, xd); + // Write out probabilities used to decode unpredicted macro-block segments + for (i = 0; i < SEG_TREE_PROBS; i++) { + const int prob = seg->tree_probs[i]; + const int update = prob != MAX_PROB; + vpx_wb_write_bit(wb, update); + if (update) vpx_wb_write_literal(wb, prob, 8); + } + + // Write out the chosen coding method. + vpx_wb_write_bit(wb, seg->temporal_update); + if (seg->temporal_update) { + for (i = 0; i < PREDICTION_PROBS; i++) { + const int prob = seg->pred_probs[i]; + const int update = prob != MAX_PROB; + vpx_wb_write_bit(wb, update); + if (update) vpx_wb_write_literal(wb, prob, 8); + } + } + } + + // Segmentation data + vpx_wb_write_bit(wb, seg->update_data); + if (seg->update_data) { + vpx_wb_write_bit(wb, seg->abs_delta); + + for (i = 0; i < MAX_SEGMENTS; i++) { + for (j = 0; j < SEG_LVL_MAX; j++) { + const int active = segfeature_active(seg, i, j); + vpx_wb_write_bit(wb, active); + if (active) { + const int data = get_segdata(seg, i, j); + const int data_max = vp9_seg_feature_data_max(j); + + if (vp9_is_segfeature_signed(j)) { + encode_unsigned_max(wb, abs(data), data_max); + vpx_wb_write_bit(wb, data < 0); + } else { + encode_unsigned_max(wb, data, data_max); + } + } + } + } + } +} + +static void encode_txfm_probs(VP9_COMMON *cm, vpx_writer *w, + FRAME_COUNTS *counts) { + // Mode + vpx_write_literal(w, VPXMIN(cm->tx_mode, ALLOW_32X32), 2); + if (cm->tx_mode >= ALLOW_32X32) + vpx_write_bit(w, cm->tx_mode == TX_MODE_SELECT); + + // Probabilities + if (cm->tx_mode == TX_MODE_SELECT) { + int i, j; + unsigned int ct_8x8p[TX_SIZES - 3][2]; + unsigned int ct_16x16p[TX_SIZES - 2][2]; + unsigned int ct_32x32p[TX_SIZES - 1][2]; + + for (i = 0; i < TX_SIZE_CONTEXTS; i++) { + tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], ct_8x8p); + for (j = 0; j < TX_SIZES - 3; j++) + vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p8x8[i][j], ct_8x8p[j]); + } + + for (i = 0; i < TX_SIZE_CONTEXTS; i++) { + tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], ct_16x16p); + for (j = 0; j < TX_SIZES - 2; j++) + vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p16x16[i][j], + ct_16x16p[j]); + } + + for (i = 0; i < TX_SIZE_CONTEXTS; i++) { + tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], ct_32x32p); + for (j = 0; j < TX_SIZES - 1; j++) + vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p32x32[i][j], + ct_32x32p[j]); + } + } +} + +static void write_interp_filter(INTERP_FILTER filter, + struct vpx_write_bit_buffer *wb) { + const int filter_to_literal[] = { 1, 0, 2, 3 }; + + vpx_wb_write_bit(wb, filter == SWITCHABLE); + if (filter != SWITCHABLE) + vpx_wb_write_literal(wb, filter_to_literal[filter], 2); +} + +static void fix_interp_filter(VP9_COMMON *cm, FRAME_COUNTS *counts) { + if (cm->interp_filter == SWITCHABLE) { + // Check to see if only one of the filters is actually used + int count[SWITCHABLE_FILTERS]; + int i, j, c = 0; + for (i = 0; i < SWITCHABLE_FILTERS; ++i) { + count[i] = 0; + for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) + count[i] += counts->switchable_interp[j][i]; + c += (count[i] > 0); + } + if (c == 1) { + // Only one filter is used. So set the filter at frame level + for (i = 0; i < SWITCHABLE_FILTERS; ++i) { + if (count[i]) { + cm->interp_filter = i; + break; + } + } + } + } +} + +static void write_tile_info(const VP9_COMMON *const cm, + struct vpx_write_bit_buffer *wb) { + int min_log2_tile_cols, max_log2_tile_cols, ones; + vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); + + // columns + ones = cm->log2_tile_cols - min_log2_tile_cols; + while (ones--) vpx_wb_write_bit(wb, 1); + + if (cm->log2_tile_cols < max_log2_tile_cols) vpx_wb_write_bit(wb, 0); + + // rows + vpx_wb_write_bit(wb, cm->log2_tile_rows != 0); + if (cm->log2_tile_rows != 0) vpx_wb_write_bit(wb, cm->log2_tile_rows != 1); +} + +int vp9_get_refresh_mask(VP9_COMP *cpi) { + if (vp9_preserve_existing_gf(cpi)) { + // We have decided to preserve the previously existing golden frame as our + // new ARF frame. However, in the short term we leave it in the GF slot and, + // if we're updating the GF with the current decoded frame, we save it + // instead to the ARF slot. + // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we + // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it + // there so that it can be done outside of the recode loop. + // Note: This is highly specific to the use of ARF as a forward reference, + // and this needs to be generalized as other uses are implemented + // (like RTC/temporal scalability). + return (cpi->refresh_last_frame << cpi->lst_fb_idx) | + (cpi->refresh_golden_frame << cpi->alt_fb_idx); + } else { + int arf_idx = cpi->alt_fb_idx; + GF_GROUP *const gf_group = &cpi->twopass.gf_group; + + if (cpi->multi_layer_arf) { + for (arf_idx = 0; arf_idx < REF_FRAMES; ++arf_idx) { + if (arf_idx != cpi->alt_fb_idx && arf_idx != cpi->lst_fb_idx && + arf_idx != cpi->gld_fb_idx) { + int idx; + for (idx = 0; idx < gf_group->stack_size; ++idx) + if (arf_idx == gf_group->arf_index_stack[idx]) break; + if (idx == gf_group->stack_size) break; + } + } + } + cpi->twopass.gf_group.top_arf_idx = arf_idx; + + if (cpi->use_svc && cpi->svc.use_set_ref_frame_config && + cpi->svc.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) + return cpi->svc.update_buffer_slot[cpi->svc.spatial_layer_id]; + return (cpi->refresh_last_frame << cpi->lst_fb_idx) | + (cpi->refresh_golden_frame << cpi->gld_fb_idx) | + (cpi->refresh_alt_ref_frame << arf_idx); + } +} + +static int encode_tile_worker(void *arg1, void *arg2) { + VP9_COMP *cpi = (VP9_COMP *)arg1; + VP9BitstreamWorkerData *data = (VP9BitstreamWorkerData *)arg2; + MACROBLOCKD *const xd = &data->xd; + const int tile_row = 0; + vpx_start_encode(&data->bit_writer, data->dest); + write_modes(cpi, xd, &cpi->tile_data[data->tile_idx].tile_info, + &data->bit_writer, tile_row, data->tile_idx, + &data->max_mv_magnitude, data->interp_filter_selected); + vpx_stop_encode(&data->bit_writer); + return 1; +} + +void vp9_bitstream_encode_tiles_buffer_dealloc(VP9_COMP *const cpi) { + if (cpi->vp9_bitstream_worker_data) { + int i; + for (i = 1; i < cpi->num_workers; ++i) { + vpx_free(cpi->vp9_bitstream_worker_data[i].dest); + } + vpx_free(cpi->vp9_bitstream_worker_data); + cpi->vp9_bitstream_worker_data = NULL; + } +} + +static void encode_tiles_buffer_alloc(VP9_COMP *const cpi) { + VP9_COMMON *const cm = &cpi->common; + int i; + const size_t worker_data_size = + cpi->num_workers * sizeof(*cpi->vp9_bitstream_worker_data); + CHECK_MEM_ERROR(&cm->error, cpi->vp9_bitstream_worker_data, + vpx_memalign(16, worker_data_size)); + memset(cpi->vp9_bitstream_worker_data, 0, worker_data_size); + for (i = 1; i < cpi->num_workers; ++i) { + cpi->vp9_bitstream_worker_data[i].dest_size = + cpi->oxcf.width * cpi->oxcf.height; + CHECK_MEM_ERROR(&cm->error, cpi->vp9_bitstream_worker_data[i].dest, + vpx_malloc(cpi->vp9_bitstream_worker_data[i].dest_size)); + } +} + +static size_t encode_tiles_mt(VP9_COMP *cpi, uint8_t *data_ptr) { + const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); + VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + const int num_workers = cpi->num_workers; + size_t total_size = 0; + int tile_col = 0; + + if (!cpi->vp9_bitstream_worker_data || + cpi->vp9_bitstream_worker_data[1].dest_size > + (cpi->oxcf.width * cpi->oxcf.height)) { + vp9_bitstream_encode_tiles_buffer_dealloc(cpi); + encode_tiles_buffer_alloc(cpi); + } + + while (tile_col < tile_cols) { + int i, j; + for (i = 0; i < num_workers && tile_col < tile_cols; ++i) { + VPxWorker *const worker = &cpi->workers[i]; + VP9BitstreamWorkerData *const data = &cpi->vp9_bitstream_worker_data[i]; + + // Populate the worker data. + data->xd = cpi->td.mb.e_mbd; + data->tile_idx = tile_col; + data->max_mv_magnitude = cpi->max_mv_magnitude; + memset(data->interp_filter_selected, 0, + sizeof(data->interp_filter_selected[0][0]) * SWITCHABLE); + + // First thread can directly write into the output buffer. + if (i == 0) { + // If this worker happens to be for the last tile, then do not offset it + // by 4 for the tile size. + data->dest = + data_ptr + total_size + (tile_col == tile_cols - 1 ? 0 : 4); + } + worker->data1 = cpi; + worker->data2 = data; + worker->hook = encode_tile_worker; + worker->had_error = 0; + + if (i < num_workers - 1) { + winterface->launch(worker); + } else { + winterface->execute(worker); + } + ++tile_col; + } + for (j = 0; j < i; ++j) { + VPxWorker *const worker = &cpi->workers[j]; + VP9BitstreamWorkerData *const data = + (VP9BitstreamWorkerData *)worker->data2; + uint32_t tile_size; + int k; + + if (!winterface->sync(worker)) return 0; + tile_size = data->bit_writer.pos; + + // Aggregate per-thread bitstream stats. + cpi->max_mv_magnitude = + VPXMAX(cpi->max_mv_magnitude, data->max_mv_magnitude); + for (k = 0; k < SWITCHABLE; ++k) { + cpi->interp_filter_selected[0][k] += data->interp_filter_selected[0][k]; + } + + // Prefix the size of the tile on all but the last. + if (tile_col != tile_cols || j < i - 1) { + mem_put_be32(data_ptr + total_size, tile_size); + total_size += 4; + } + if (j > 0) { + memcpy(data_ptr + total_size, data->dest, tile_size); + } + total_size += tile_size; + } + } + return total_size; +} + +static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + vpx_writer residual_bc; + int tile_row, tile_col; + size_t total_size = 0; + const int tile_cols = 1 << cm->log2_tile_cols; + const int tile_rows = 1 << cm->log2_tile_rows; + + memset(cm->above_seg_context, 0, + sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols)); + + // Encoding tiles in parallel is done only for realtime mode now. In other + // modes the speed up is insignificant and requires further testing to ensure + // that it does not make the overall process worse in any case. + if (cpi->oxcf.mode == REALTIME && cpi->num_workers > 1 && tile_rows == 1 && + tile_cols > 1) { + return encode_tiles_mt(cpi, data_ptr); + } + + for (tile_row = 0; tile_row < tile_rows; tile_row++) { + for (tile_col = 0; tile_col < tile_cols; tile_col++) { + int tile_idx = tile_row * tile_cols + tile_col; + + if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) + vpx_start_encode(&residual_bc, data_ptr + total_size + 4); + else + vpx_start_encode(&residual_bc, data_ptr + total_size); + + write_modes(cpi, xd, &cpi->tile_data[tile_idx].tile_info, &residual_bc, + tile_row, tile_col, &cpi->max_mv_magnitude, + cpi->interp_filter_selected); + + vpx_stop_encode(&residual_bc); + if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) { + // size of this tile + mem_put_be32(data_ptr + total_size, residual_bc.pos); + total_size += 4; + } + + total_size += residual_bc.pos; + } + } + return total_size; +} + +static void write_render_size(const VP9_COMMON *cm, + struct vpx_write_bit_buffer *wb) { + const int scaling_active = + cm->width != cm->render_width || cm->height != cm->render_height; + vpx_wb_write_bit(wb, scaling_active); + if (scaling_active) { + vpx_wb_write_literal(wb, cm->render_width - 1, 16); + vpx_wb_write_literal(wb, cm->render_height - 1, 16); + } +} + +static void write_frame_size(const VP9_COMMON *cm, + struct vpx_write_bit_buffer *wb) { + vpx_wb_write_literal(wb, cm->width - 1, 16); + vpx_wb_write_literal(wb, cm->height - 1, 16); + + write_render_size(cm, wb); +} + +static void write_frame_size_with_refs(VP9_COMP *cpi, + struct vpx_write_bit_buffer *wb) { + VP9_COMMON *const cm = &cpi->common; + int found = 0; + + MV_REFERENCE_FRAME ref_frame; + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame); + + // Set "found" to 0 for temporal svc and for spatial svc key frame + if (cpi->use_svc && + ((cpi->svc.number_temporal_layers > 1 && + cpi->oxcf.rc_mode == VPX_CBR) || + (cpi->svc.number_spatial_layers > 1 && + cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame))) { + found = 0; + } else if (cfg != NULL) { + found = + cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height; + } + vpx_wb_write_bit(wb, found); + if (found) { + break; + } + } + + if (!found) { + vpx_wb_write_literal(wb, cm->width - 1, 16); + vpx_wb_write_literal(wb, cm->height - 1, 16); + } + + write_render_size(cm, wb); +} + +static void write_sync_code(struct vpx_write_bit_buffer *wb) { + vpx_wb_write_literal(wb, VP9_SYNC_CODE_0, 8); + vpx_wb_write_literal(wb, VP9_SYNC_CODE_1, 8); + vpx_wb_write_literal(wb, VP9_SYNC_CODE_2, 8); +} + +static void write_profile(BITSTREAM_PROFILE profile, + struct vpx_write_bit_buffer *wb) { + switch (profile) { + case PROFILE_0: vpx_wb_write_literal(wb, 0, 2); break; + case PROFILE_1: vpx_wb_write_literal(wb, 2, 2); break; + case PROFILE_2: vpx_wb_write_literal(wb, 1, 2); break; + default: + assert(profile == PROFILE_3); + vpx_wb_write_literal(wb, 6, 3); + break; + } +} + +static void write_bitdepth_colorspace_sampling( + VP9_COMMON *const cm, struct vpx_write_bit_buffer *wb) { + if (cm->profile >= PROFILE_2) { + assert(cm->bit_depth > VPX_BITS_8); + vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1); + } + vpx_wb_write_literal(wb, cm->color_space, 3); + if (cm->color_space != VPX_CS_SRGB) { + // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] + vpx_wb_write_bit(wb, cm->color_range); + if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { + assert(cm->subsampling_x != 1 || cm->subsampling_y != 1); + vpx_wb_write_bit(wb, cm->subsampling_x); + vpx_wb_write_bit(wb, cm->subsampling_y); + vpx_wb_write_bit(wb, 0); // unused + } else { + assert(cm->subsampling_x == 1 && cm->subsampling_y == 1); + } + } else { + assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3); + vpx_wb_write_bit(wb, 0); // unused + } +} + +static void write_uncompressed_header(VP9_COMP *cpi, + struct vpx_write_bit_buffer *wb) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + + vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2); + + write_profile(cm->profile, wb); + + // If to use show existing frame. + vpx_wb_write_bit(wb, cm->show_existing_frame); + if (cm->show_existing_frame) { + vpx_wb_write_literal(wb, cpi->alt_fb_idx, 3); + return; + } + + vpx_wb_write_bit(wb, cm->frame_type); + vpx_wb_write_bit(wb, cm->show_frame); + vpx_wb_write_bit(wb, cm->error_resilient_mode); + + if (cm->frame_type == KEY_FRAME) { + write_sync_code(wb); + write_bitdepth_colorspace_sampling(cm, wb); + write_frame_size(cm, wb); + } else { + if (!cm->show_frame) vpx_wb_write_bit(wb, cm->intra_only); + + if (!cm->error_resilient_mode) + vpx_wb_write_literal(wb, cm->reset_frame_context, 2); + + if (cm->intra_only) { + write_sync_code(wb); + + // Note for profile 0, 420 8bpp is assumed. + if (cm->profile > PROFILE_0) { + write_bitdepth_colorspace_sampling(cm, wb); + } + + vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES); + write_frame_size(cm, wb); + } else { + MV_REFERENCE_FRAME ref_frame; + vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES); + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX); + vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame), + REF_FRAMES_LOG2); + vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]); + } + + write_frame_size_with_refs(cpi, wb); + + vpx_wb_write_bit(wb, cm->allow_high_precision_mv); + + fix_interp_filter(cm, cpi->td.counts); + write_interp_filter(cm->interp_filter, wb); + } + } + + if (!cm->error_resilient_mode) { + vpx_wb_write_bit(wb, cm->refresh_frame_context); + vpx_wb_write_bit(wb, cm->frame_parallel_decoding_mode); + } + + vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2); + + encode_loopfilter(&cm->lf, wb); + encode_quantization(cm, wb); + encode_segmentation(cm, xd, wb); + + write_tile_info(cm, wb); +} + +static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + FRAME_CONTEXT *const fc = cm->fc; + FRAME_COUNTS *counts = cpi->td.counts; + vpx_writer header_bc; + + vpx_start_encode(&header_bc, data); + + if (xd->lossless) + cm->tx_mode = ONLY_4X4; + else + encode_txfm_probs(cm, &header_bc, counts); + + update_coef_probs(cpi, &header_bc); + update_skip_probs(cm, &header_bc, counts); + + if (!frame_is_intra_only(cm)) { + int i; + + for (i = 0; i < INTER_MODE_CONTEXTS; ++i) + prob_diff_update(vp9_inter_mode_tree, cm->fc->inter_mode_probs[i], + counts->inter_mode[i], INTER_MODES, &header_bc); + + if (cm->interp_filter == SWITCHABLE) + update_switchable_interp_probs(cm, &header_bc, counts); + + for (i = 0; i < INTRA_INTER_CONTEXTS; i++) + vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i], + counts->intra_inter[i]); + + if (cpi->allow_comp_inter_inter) { + const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE; + const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; + + vpx_write_bit(&header_bc, use_compound_pred); + if (use_compound_pred) { + vpx_write_bit(&header_bc, use_hybrid_pred); + if (use_hybrid_pred) + for (i = 0; i < COMP_INTER_CONTEXTS; i++) + vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i], + counts->comp_inter[i]); + } + } + + if (cm->reference_mode != COMPOUND_REFERENCE) { + for (i = 0; i < REF_CONTEXTS; i++) { + vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0], + counts->single_ref[i][0]); + vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1], + counts->single_ref[i][1]); + } + } + + if (cm->reference_mode != SINGLE_REFERENCE) + for (i = 0; i < REF_CONTEXTS; i++) + vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i], + counts->comp_ref[i]); + + for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) + prob_diff_update(vp9_intra_mode_tree, cm->fc->y_mode_prob[i], + counts->y_mode[i], INTRA_MODES, &header_bc); + + for (i = 0; i < PARTITION_CONTEXTS; ++i) + prob_diff_update(vp9_partition_tree, fc->partition_prob[i], + counts->partition[i], PARTITION_TYPES, &header_bc); + + vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc, + &counts->mv); + } + + vpx_stop_encode(&header_bc); + assert(header_bc.pos <= 0xffff); + + return header_bc.pos; +} + +void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) { + uint8_t *data = dest; + size_t first_part_size, uncompressed_hdr_size; + struct vpx_write_bit_buffer wb = { data, 0 }; + struct vpx_write_bit_buffer saved_wb; + +#if CONFIG_BITSTREAM_DEBUG + bitstream_queue_reset_write(); +#endif + + write_uncompressed_header(cpi, &wb); + + // Skip the rest coding process if use show existing frame. + if (cpi->common.show_existing_frame) { + uncompressed_hdr_size = vpx_wb_bytes_written(&wb); + data += uncompressed_hdr_size; + *size = data - dest; + return; + } + + saved_wb = wb; + vpx_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size + + uncompressed_hdr_size = vpx_wb_bytes_written(&wb); + data += uncompressed_hdr_size; + + vpx_clear_system_state(); + + first_part_size = write_compressed_header(cpi, data); + data += first_part_size; + // TODO(jbb): Figure out what to do if first_part_size > 16 bits. + vpx_wb_write_literal(&saved_wb, (int)first_part_size, 16); + + data += encode_tiles(cpi, data); + + *size = data - dest; +} |