summaryrefslogtreecommitdiffstats
path: root/mfbt/HashTable.h
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--mfbt/HashTable.h2278
1 files changed, 2278 insertions, 0 deletions
diff --git a/mfbt/HashTable.h b/mfbt/HashTable.h
new file mode 100644
index 0000000000..9f3f42b40e
--- /dev/null
+++ b/mfbt/HashTable.h
@@ -0,0 +1,2278 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set ts=8 sts=2 et sw=2 tw=80: */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+//---------------------------------------------------------------------------
+// Overview
+//---------------------------------------------------------------------------
+//
+// This file defines HashMap<Key, Value> and HashSet<T>, hash tables that are
+// fast and have a nice API.
+//
+// Both hash tables have two optional template parameters.
+//
+// - HashPolicy. This defines the operations for hashing and matching keys. The
+// default HashPolicy is appropriate when both of the following two
+// conditions are true.
+//
+// - The key type stored in the table (|Key| for |HashMap<Key, Value>|, |T|
+// for |HashSet<T>|) is an integer, pointer, UniquePtr, float, or double.
+//
+// - The type used for lookups (|Lookup|) is the same as the key type. This
+// is usually the case, but not always.
+//
+// There is also a |CStringHasher| policy for |char*| keys. If your keys
+// don't match any of the above cases, you must provide your own hash policy;
+// see the "Hash Policy" section below.
+//
+// - AllocPolicy. This defines how allocations are done by the table.
+//
+// - |MallocAllocPolicy| is the default and is usually appropriate; note that
+// operations (such as insertions) that might cause allocations are
+// fallible and must be checked for OOM. These checks are enforced by the
+// use of [[nodiscard]].
+//
+// - |InfallibleAllocPolicy| is another possibility; it allows the
+// abovementioned OOM checks to be done with MOZ_ALWAYS_TRUE().
+//
+// Note that entry storage allocation is lazy, and not done until the first
+// lookupForAdd(), put(), or putNew() is performed.
+//
+// See AllocPolicy.h for more details.
+//
+// Documentation on how to use HashMap and HashSet, including examples, is
+// present within those classes. Search for "class HashMap" and "class
+// HashSet".
+//
+// Both HashMap and HashSet are implemented on top of a third class, HashTable.
+// You only need to look at HashTable if you want to understand the
+// implementation.
+//
+// How does mozilla::HashTable (this file) compare with PLDHashTable (and its
+// subclasses, such as nsTHashtable)?
+//
+// - mozilla::HashTable is a lot faster, largely because it uses templates
+// throughout *and* inlines everything. PLDHashTable inlines operations much
+// less aggressively, and also uses "virtual ops" for operations like hashing
+// and matching entries that require function calls.
+//
+// - Correspondingly, mozilla::HashTable use is likely to increase executable
+// size much more than PLDHashTable.
+//
+// - mozilla::HashTable has a nicer API, with a proper HashSet vs. HashMap
+// distinction.
+//
+// - mozilla::HashTable requires more explicit OOM checking. As mentioned
+// above, the use of |InfallibleAllocPolicy| can simplify things.
+//
+// - mozilla::HashTable has a default capacity on creation of 32 and a minimum
+// capacity of 4. PLDHashTable has a default capacity on creation of 8 and a
+// minimum capacity of 8.
+
+#ifndef mozilla_HashTable_h
+#define mozilla_HashTable_h
+
+#include <utility>
+#include <type_traits>
+
+#include "mozilla/AllocPolicy.h"
+#include "mozilla/Assertions.h"
+#include "mozilla/Attributes.h"
+#include "mozilla/Casting.h"
+#include "mozilla/HashFunctions.h"
+#include "mozilla/MathAlgorithms.h"
+#include "mozilla/Maybe.h"
+#include "mozilla/MemoryChecking.h"
+#include "mozilla/MemoryReporting.h"
+#include "mozilla/Opaque.h"
+#include "mozilla/OperatorNewExtensions.h"
+#include "mozilla/ReentrancyGuard.h"
+#include "mozilla/UniquePtr.h"
+#include "mozilla/WrappingOperations.h"
+
+namespace mozilla {
+
+template <class, class = void>
+struct DefaultHasher;
+
+template <class, class>
+class HashMapEntry;
+
+namespace detail {
+
+template <typename T>
+class HashTableEntry;
+
+template <class T, class HashPolicy, class AllocPolicy>
+class HashTable;
+
+} // namespace detail
+
+// The "generation" of a hash table is an opaque value indicating the state of
+// modification of the hash table through its lifetime. If the generation of
+// a hash table compares equal at times T1 and T2, then lookups in the hash
+// table, pointers to (or into) hash table entries, etc. at time T1 are valid
+// at time T2. If the generation compares unequal, these computations are all
+// invalid and must be performed again to be used.
+//
+// Generations are meaningfully comparable only with respect to a single hash
+// table. It's always nonsensical to compare the generation of distinct hash
+// tables H1 and H2.
+using Generation = Opaque<uint64_t>;
+
+//---------------------------------------------------------------------------
+// HashMap
+//---------------------------------------------------------------------------
+
+// HashMap is a fast hash-based map from keys to values.
+//
+// Template parameter requirements:
+// - Key/Value: movable, destructible, assignable.
+// - HashPolicy: see the "Hash Policy" section below.
+// - AllocPolicy: see AllocPolicy.h.
+//
+// Note:
+// - HashMap is not reentrant: Key/Value/HashPolicy/AllocPolicy members
+// called by HashMap must not call back into the same HashMap object.
+//
+template <class Key, class Value, class HashPolicy = DefaultHasher<Key>,
+ class AllocPolicy = MallocAllocPolicy>
+class HashMap {
+ // -- Implementation details -----------------------------------------------
+
+ // HashMap is not copyable or assignable.
+ HashMap(const HashMap& hm) = delete;
+ HashMap& operator=(const HashMap& hm) = delete;
+
+ using TableEntry = HashMapEntry<Key, Value>;
+
+ struct MapHashPolicy : HashPolicy {
+ using Base = HashPolicy;
+ using KeyType = Key;
+
+ static const Key& getKey(TableEntry& aEntry) { return aEntry.key(); }
+
+ static void setKey(TableEntry& aEntry, Key& aKey) {
+ HashPolicy::rekey(aEntry.mutableKey(), aKey);
+ }
+ };
+
+ using Impl = detail::HashTable<TableEntry, MapHashPolicy, AllocPolicy>;
+ Impl mImpl;
+
+ friend class Impl::Enum;
+
+ public:
+ using Lookup = typename HashPolicy::Lookup;
+ using Entry = TableEntry;
+
+ // -- Initialization -------------------------------------------------------
+
+ explicit HashMap(AllocPolicy aAllocPolicy = AllocPolicy(),
+ uint32_t aLen = Impl::sDefaultLen)
+ : mImpl(std::move(aAllocPolicy), aLen) {}
+
+ explicit HashMap(uint32_t aLen) : mImpl(AllocPolicy(), aLen) {}
+
+ // HashMap is movable.
+ HashMap(HashMap&& aRhs) = default;
+ HashMap& operator=(HashMap&& aRhs) = default;
+
+ // -- Status and sizing ----------------------------------------------------
+
+ // The map's current generation.
+ Generation generation() const { return mImpl.generation(); }
+
+ // Is the map empty?
+ bool empty() const { return mImpl.empty(); }
+
+ // Number of keys/values in the map.
+ uint32_t count() const { return mImpl.count(); }
+
+ // Number of key/value slots in the map. Note: resize will happen well before
+ // count() == capacity().
+ uint32_t capacity() const { return mImpl.capacity(); }
+
+ // The size of the map's entry storage, in bytes. If the keys/values contain
+ // pointers to other heap blocks, you must iterate over the map and measure
+ // them separately; hence the "shallow" prefix.
+ size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
+ return mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
+ }
+ size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
+ return aMallocSizeOf(this) +
+ mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
+ }
+
+ // Attempt to minimize the capacity(). If the table is empty, this will free
+ // the empty storage and upon regrowth it will be given the minimum capacity.
+ void compact() { mImpl.compact(); }
+
+ // Attempt to reserve enough space to fit at least |aLen| elements. This is
+ // total capacity, including elements already present. Does nothing if the
+ // map already has sufficient capacity.
+ [[nodiscard]] bool reserve(uint32_t aLen) { return mImpl.reserve(aLen); }
+
+ // -- Lookups --------------------------------------------------------------
+
+ // Does the map contain a key/value matching |aLookup|?
+ bool has(const Lookup& aLookup) const {
+ return mImpl.lookup(aLookup).found();
+ }
+
+ // Return a Ptr indicating whether a key/value matching |aLookup| is
+ // present in the map. E.g.:
+ //
+ // using HM = HashMap<int,char>;
+ // HM h;
+ // if (HM::Ptr p = h.lookup(3)) {
+ // assert(p->key() == 3);
+ // char val = p->value();
+ // }
+ //
+ using Ptr = typename Impl::Ptr;
+ MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const {
+ return mImpl.lookup(aLookup);
+ }
+
+ // Like lookup(), but does not assert if two threads call it at the same
+ // time. Only use this method when none of the threads will modify the map.
+ MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const {
+ return mImpl.readonlyThreadsafeLookup(aLookup);
+ }
+
+ // -- Insertions -----------------------------------------------------------
+
+ // Overwrite existing value with |aValue|, or add it if not present. Returns
+ // false on OOM.
+ template <typename KeyInput, typename ValueInput>
+ [[nodiscard]] bool put(KeyInput&& aKey, ValueInput&& aValue) {
+ return put(aKey, std::forward<KeyInput>(aKey),
+ std::forward<ValueInput>(aValue));
+ }
+
+ template <typename KeyInput, typename ValueInput>
+ [[nodiscard]] bool put(const Lookup& aLookup, KeyInput&& aKey,
+ ValueInput&& aValue) {
+ AddPtr p = lookupForAdd(aLookup);
+ if (p) {
+ p->value() = std::forward<ValueInput>(aValue);
+ return true;
+ }
+ return add(p, std::forward<KeyInput>(aKey),
+ std::forward<ValueInput>(aValue));
+ }
+
+ // Like put(), but slightly faster. Must only be used when the given key is
+ // not already present. (In debug builds, assertions check this.)
+ template <typename KeyInput, typename ValueInput>
+ [[nodiscard]] bool putNew(KeyInput&& aKey, ValueInput&& aValue) {
+ return mImpl.putNew(aKey, std::forward<KeyInput>(aKey),
+ std::forward<ValueInput>(aValue));
+ }
+
+ template <typename KeyInput, typename ValueInput>
+ [[nodiscard]] bool putNew(const Lookup& aLookup, KeyInput&& aKey,
+ ValueInput&& aValue) {
+ return mImpl.putNew(aLookup, std::forward<KeyInput>(aKey),
+ std::forward<ValueInput>(aValue));
+ }
+
+ // Like putNew(), but should be only used when the table is known to be big
+ // enough for the insertion, and hashing cannot fail. Typically this is used
+ // to populate an empty map with known-unique keys after reserving space with
+ // reserve(), e.g.
+ //
+ // using HM = HashMap<int,char>;
+ // HM h;
+ // if (!h.reserve(3)) {
+ // MOZ_CRASH("OOM");
+ // }
+ // h.putNewInfallible(1, 'a'); // unique key
+ // h.putNewInfallible(2, 'b'); // unique key
+ // h.putNewInfallible(3, 'c'); // unique key
+ //
+ template <typename KeyInput, typename ValueInput>
+ void putNewInfallible(KeyInput&& aKey, ValueInput&& aValue) {
+ mImpl.putNewInfallible(aKey, std::forward<KeyInput>(aKey),
+ std::forward<ValueInput>(aValue));
+ }
+
+ // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
+ // insertion of Key |k| (where |HashPolicy::match(k,l) == true|) using
+ // |add(p,k,v)|. After |add(p,k,v)|, |p| points to the new key/value. E.g.:
+ //
+ // using HM = HashMap<int,char>;
+ // HM h;
+ // HM::AddPtr p = h.lookupForAdd(3);
+ // if (!p) {
+ // if (!h.add(p, 3, 'a')) {
+ // return false;
+ // }
+ // }
+ // assert(p->key() == 3);
+ // char val = p->value();
+ //
+ // N.B. The caller must ensure that no mutating hash table operations occur
+ // between a pair of lookupForAdd() and add() calls. To avoid looking up the
+ // key a second time, the caller may use the more efficient relookupOrAdd()
+ // method. This method reuses part of the hashing computation to more
+ // efficiently insert the key if it has not been added. For example, a
+ // mutation-handling version of the previous example:
+ //
+ // HM::AddPtr p = h.lookupForAdd(3);
+ // if (!p) {
+ // call_that_may_mutate_h();
+ // if (!h.relookupOrAdd(p, 3, 'a')) {
+ // return false;
+ // }
+ // }
+ // assert(p->key() == 3);
+ // char val = p->value();
+ //
+ using AddPtr = typename Impl::AddPtr;
+ MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) {
+ return mImpl.lookupForAdd(aLookup);
+ }
+
+ // Add a key/value. Returns false on OOM.
+ template <typename KeyInput, typename ValueInput>
+ [[nodiscard]] bool add(AddPtr& aPtr, KeyInput&& aKey, ValueInput&& aValue) {
+ return mImpl.add(aPtr, std::forward<KeyInput>(aKey),
+ std::forward<ValueInput>(aValue));
+ }
+
+ // See the comment above lookupForAdd() for details.
+ template <typename KeyInput, typename ValueInput>
+ [[nodiscard]] bool relookupOrAdd(AddPtr& aPtr, KeyInput&& aKey,
+ ValueInput&& aValue) {
+ return mImpl.relookupOrAdd(aPtr, aKey, std::forward<KeyInput>(aKey),
+ std::forward<ValueInput>(aValue));
+ }
+
+ // -- Removal --------------------------------------------------------------
+
+ // Lookup and remove the key/value matching |aLookup|, if present.
+ void remove(const Lookup& aLookup) {
+ if (Ptr p = lookup(aLookup)) {
+ remove(p);
+ }
+ }
+
+ // Remove a previously found key/value (assuming aPtr.found()). The map must
+ // not have been mutated in the interim.
+ void remove(Ptr aPtr) { mImpl.remove(aPtr); }
+
+ // Remove all keys/values without changing the capacity.
+ void clear() { mImpl.clear(); }
+
+ // Like clear() followed by compact().
+ void clearAndCompact() { mImpl.clearAndCompact(); }
+
+ // -- Rekeying -------------------------------------------------------------
+
+ // Infallibly rekey one entry, if necessary. Requires that template
+ // parameters Key and HashPolicy::Lookup are the same type.
+ void rekeyIfMoved(const Key& aOldKey, const Key& aNewKey) {
+ if (aOldKey != aNewKey) {
+ rekeyAs(aOldKey, aNewKey, aNewKey);
+ }
+ }
+
+ // Infallibly rekey one entry if present, and return whether that happened.
+ bool rekeyAs(const Lookup& aOldLookup, const Lookup& aNewLookup,
+ const Key& aNewKey) {
+ if (Ptr p = lookup(aOldLookup)) {
+ mImpl.rekeyAndMaybeRehash(p, aNewLookup, aNewKey);
+ return true;
+ }
+ return false;
+ }
+
+ // -- Iteration ------------------------------------------------------------
+
+ // |iter()| returns an Iterator:
+ //
+ // HashMap<int, char> h;
+ // for (auto iter = h.iter(); !iter.done(); iter.next()) {
+ // char c = iter.get().value();
+ // }
+ //
+ using Iterator = typename Impl::Iterator;
+ Iterator iter() const { return mImpl.iter(); }
+
+ // |modIter()| returns a ModIterator:
+ //
+ // HashMap<int, char> h;
+ // for (auto iter = h.modIter(); !iter.done(); iter.next()) {
+ // if (iter.get().value() == 'l') {
+ // iter.remove();
+ // }
+ // }
+ //
+ // Table resize may occur in ModIterator's destructor.
+ using ModIterator = typename Impl::ModIterator;
+ ModIterator modIter() { return mImpl.modIter(); }
+
+ // These are similar to Iterator/ModIterator/iter(), but use different
+ // terminology.
+ using Range = typename Impl::Range;
+ using Enum = typename Impl::Enum;
+ Range all() const { return mImpl.all(); }
+};
+
+//---------------------------------------------------------------------------
+// HashSet
+//---------------------------------------------------------------------------
+
+// HashSet is a fast hash-based set of values.
+//
+// Template parameter requirements:
+// - T: movable, destructible, assignable.
+// - HashPolicy: see the "Hash Policy" section below.
+// - AllocPolicy: see AllocPolicy.h
+//
+// Note:
+// - HashSet is not reentrant: T/HashPolicy/AllocPolicy members called by
+// HashSet must not call back into the same HashSet object.
+//
+template <class T, class HashPolicy = DefaultHasher<T>,
+ class AllocPolicy = MallocAllocPolicy>
+class HashSet {
+ // -- Implementation details -----------------------------------------------
+
+ // HashSet is not copyable or assignable.
+ HashSet(const HashSet& hs) = delete;
+ HashSet& operator=(const HashSet& hs) = delete;
+
+ struct SetHashPolicy : HashPolicy {
+ using Base = HashPolicy;
+ using KeyType = T;
+
+ static const KeyType& getKey(const T& aT) { return aT; }
+
+ static void setKey(T& aT, KeyType& aKey) { HashPolicy::rekey(aT, aKey); }
+ };
+
+ using Impl = detail::HashTable<const T, SetHashPolicy, AllocPolicy>;
+ Impl mImpl;
+
+ friend class Impl::Enum;
+
+ public:
+ using Lookup = typename HashPolicy::Lookup;
+ using Entry = T;
+
+ // -- Initialization -------------------------------------------------------
+
+ explicit HashSet(AllocPolicy aAllocPolicy = AllocPolicy(),
+ uint32_t aLen = Impl::sDefaultLen)
+ : mImpl(std::move(aAllocPolicy), aLen) {}
+
+ explicit HashSet(uint32_t aLen) : mImpl(AllocPolicy(), aLen) {}
+
+ // HashSet is movable.
+ HashSet(HashSet&& aRhs) = default;
+ HashSet& operator=(HashSet&& aRhs) = default;
+
+ // -- Status and sizing ----------------------------------------------------
+
+ // The set's current generation.
+ Generation generation() const { return mImpl.generation(); }
+
+ // Is the set empty?
+ bool empty() const { return mImpl.empty(); }
+
+ // Number of elements in the set.
+ uint32_t count() const { return mImpl.count(); }
+
+ // Number of element slots in the set. Note: resize will happen well before
+ // count() == capacity().
+ uint32_t capacity() const { return mImpl.capacity(); }
+
+ // The size of the set's entry storage, in bytes. If the elements contain
+ // pointers to other heap blocks, you must iterate over the set and measure
+ // them separately; hence the "shallow" prefix.
+ size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
+ return mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
+ }
+ size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
+ return aMallocSizeOf(this) +
+ mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
+ }
+
+ // Attempt to minimize the capacity(). If the table is empty, this will free
+ // the empty storage and upon regrowth it will be given the minimum capacity.
+ void compact() { mImpl.compact(); }
+
+ // Attempt to reserve enough space to fit at least |aLen| elements. This is
+ // total capacity, including elements already present. Does nothing if the
+ // map already has sufficient capacity.
+ [[nodiscard]] bool reserve(uint32_t aLen) { return mImpl.reserve(aLen); }
+
+ // -- Lookups --------------------------------------------------------------
+
+ // Does the set contain an element matching |aLookup|?
+ bool has(const Lookup& aLookup) const {
+ return mImpl.lookup(aLookup).found();
+ }
+
+ // Return a Ptr indicating whether an element matching |aLookup| is present
+ // in the set. E.g.:
+ //
+ // using HS = HashSet<int>;
+ // HS h;
+ // if (HS::Ptr p = h.lookup(3)) {
+ // assert(*p == 3); // p acts like a pointer to int
+ // }
+ //
+ using Ptr = typename Impl::Ptr;
+ MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const {
+ return mImpl.lookup(aLookup);
+ }
+
+ // Like lookup(), but does not assert if two threads call it at the same
+ // time. Only use this method when none of the threads will modify the set.
+ MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const {
+ return mImpl.readonlyThreadsafeLookup(aLookup);
+ }
+
+ // -- Insertions -----------------------------------------------------------
+
+ // Add |aU| if it is not present already. Returns false on OOM.
+ template <typename U>
+ [[nodiscard]] bool put(U&& aU) {
+ AddPtr p = lookupForAdd(aU);
+ return p ? true : add(p, std::forward<U>(aU));
+ }
+
+ // Like put(), but slightly faster. Must only be used when the given element
+ // is not already present. (In debug builds, assertions check this.)
+ template <typename U>
+ [[nodiscard]] bool putNew(U&& aU) {
+ return mImpl.putNew(aU, std::forward<U>(aU));
+ }
+
+ // Like the other putNew(), but for when |Lookup| is different to |T|.
+ template <typename U>
+ [[nodiscard]] bool putNew(const Lookup& aLookup, U&& aU) {
+ return mImpl.putNew(aLookup, std::forward<U>(aU));
+ }
+
+ // Like putNew(), but should be only used when the table is known to be big
+ // enough for the insertion, and hashing cannot fail. Typically this is used
+ // to populate an empty set with known-unique elements after reserving space
+ // with reserve(), e.g.
+ //
+ // using HS = HashMap<int>;
+ // HS h;
+ // if (!h.reserve(3)) {
+ // MOZ_CRASH("OOM");
+ // }
+ // h.putNewInfallible(1); // unique element
+ // h.putNewInfallible(2); // unique element
+ // h.putNewInfallible(3); // unique element
+ //
+ template <typename U>
+ void putNewInfallible(const Lookup& aLookup, U&& aU) {
+ mImpl.putNewInfallible(aLookup, std::forward<U>(aU));
+ }
+
+ // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
+ // insertion of T value |t| (where |HashPolicy::match(t,l) == true|) using
+ // |add(p,t)|. After |add(p,t)|, |p| points to the new element. E.g.:
+ //
+ // using HS = HashSet<int>;
+ // HS h;
+ // HS::AddPtr p = h.lookupForAdd(3);
+ // if (!p) {
+ // if (!h.add(p, 3)) {
+ // return false;
+ // }
+ // }
+ // assert(*p == 3); // p acts like a pointer to int
+ //
+ // N.B. The caller must ensure that no mutating hash table operations occur
+ // between a pair of lookupForAdd() and add() calls. To avoid looking up the
+ // key a second time, the caller may use the more efficient relookupOrAdd()
+ // method. This method reuses part of the hashing computation to more
+ // efficiently insert the key if it has not been added. For example, a
+ // mutation-handling version of the previous example:
+ //
+ // HS::AddPtr p = h.lookupForAdd(3);
+ // if (!p) {
+ // call_that_may_mutate_h();
+ // if (!h.relookupOrAdd(p, 3, 3)) {
+ // return false;
+ // }
+ // }
+ // assert(*p == 3);
+ //
+ // Note that relookupOrAdd(p,l,t) performs Lookup using |l| and adds the
+ // entry |t|, where the caller ensures match(l,t).
+ using AddPtr = typename Impl::AddPtr;
+ MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) {
+ return mImpl.lookupForAdd(aLookup);
+ }
+
+ // Add an element. Returns false on OOM.
+ template <typename U>
+ [[nodiscard]] bool add(AddPtr& aPtr, U&& aU) {
+ return mImpl.add(aPtr, std::forward<U>(aU));
+ }
+
+ // See the comment above lookupForAdd() for details.
+ template <typename U>
+ [[nodiscard]] bool relookupOrAdd(AddPtr& aPtr, const Lookup& aLookup,
+ U&& aU) {
+ return mImpl.relookupOrAdd(aPtr, aLookup, std::forward<U>(aU));
+ }
+
+ // -- Removal --------------------------------------------------------------
+
+ // Lookup and remove the element matching |aLookup|, if present.
+ void remove(const Lookup& aLookup) {
+ if (Ptr p = lookup(aLookup)) {
+ remove(p);
+ }
+ }
+
+ // Remove a previously found element (assuming aPtr.found()). The set must
+ // not have been mutated in the interim.
+ void remove(Ptr aPtr) { mImpl.remove(aPtr); }
+
+ // Remove all keys/values without changing the capacity.
+ void clear() { mImpl.clear(); }
+
+ // Like clear() followed by compact().
+ void clearAndCompact() { mImpl.clearAndCompact(); }
+
+ // -- Rekeying -------------------------------------------------------------
+
+ // Infallibly rekey one entry, if present. Requires that template parameters
+ // T and HashPolicy::Lookup are the same type.
+ void rekeyIfMoved(const Lookup& aOldValue, const T& aNewValue) {
+ if (aOldValue != aNewValue) {
+ rekeyAs(aOldValue, aNewValue, aNewValue);
+ }
+ }
+
+ // Infallibly rekey one entry if present, and return whether that happened.
+ bool rekeyAs(const Lookup& aOldLookup, const Lookup& aNewLookup,
+ const T& aNewValue) {
+ if (Ptr p = lookup(aOldLookup)) {
+ mImpl.rekeyAndMaybeRehash(p, aNewLookup, aNewValue);
+ return true;
+ }
+ return false;
+ }
+
+ // Infallibly replace the current key at |aPtr| with an equivalent key.
+ // Specifically, both HashPolicy::hash and HashPolicy::match must return
+ // identical results for the new and old key when applied against all
+ // possible matching values.
+ void replaceKey(Ptr aPtr, const Lookup& aLookup, const T& aNewValue) {
+ MOZ_ASSERT(aPtr.found());
+ MOZ_ASSERT(*aPtr != aNewValue);
+ MOZ_ASSERT(HashPolicy::match(*aPtr, aLookup));
+ MOZ_ASSERT(HashPolicy::match(aNewValue, aLookup));
+ const_cast<T&>(*aPtr) = aNewValue;
+ MOZ_ASSERT(*lookup(aLookup) == aNewValue);
+ }
+ void replaceKey(Ptr aPtr, const T& aNewValue) {
+ replaceKey(aPtr, aNewValue, aNewValue);
+ }
+
+ // -- Iteration ------------------------------------------------------------
+
+ // |iter()| returns an Iterator:
+ //
+ // HashSet<int> h;
+ // for (auto iter = h.iter(); !iter.done(); iter.next()) {
+ // int i = iter.get();
+ // }
+ //
+ using Iterator = typename Impl::Iterator;
+ Iterator iter() const { return mImpl.iter(); }
+
+ // |modIter()| returns a ModIterator:
+ //
+ // HashSet<int> h;
+ // for (auto iter = h.modIter(); !iter.done(); iter.next()) {
+ // if (iter.get() == 42) {
+ // iter.remove();
+ // }
+ // }
+ //
+ // Table resize may occur in ModIterator's destructor.
+ using ModIterator = typename Impl::ModIterator;
+ ModIterator modIter() { return mImpl.modIter(); }
+
+ // These are similar to Iterator/ModIterator/iter(), but use different
+ // terminology.
+ using Range = typename Impl::Range;
+ using Enum = typename Impl::Enum;
+ Range all() const { return mImpl.all(); }
+};
+
+//---------------------------------------------------------------------------
+// Hash Policy
+//---------------------------------------------------------------------------
+
+// A hash policy |HP| for a hash table with key-type |Key| must provide:
+//
+// - a type |HP::Lookup| to use to lookup table entries;
+//
+// - a static member function |HP::hash| that hashes lookup values:
+//
+// static mozilla::HashNumber hash(const Lookup&);
+//
+// - a static member function |HP::match| that tests equality of key and
+// lookup values:
+//
+// static bool match(const Key& aKey, const Lookup& aLookup);
+//
+// |aKey| and |aLookup| can have different hash numbers, only when a
+// collision happens with |prepareHash| operation, which is less frequent.
+// Thus, |HP::match| shouldn't assume the hash equality in the comparison,
+// even if the hash numbers are almost always same between them.
+//
+// Normally, Lookup = Key. In general, though, different values and types of
+// values can be used to lookup and store. If a Lookup value |l| is not equal
+// to the added Key value |k|, the user must ensure that |HP::match(k,l)| is
+// true. E.g.:
+//
+// mozilla::HashSet<Key, HP>::AddPtr p = h.lookup(l);
+// if (!p) {
+// assert(HP::match(k, l)); // must hold
+// h.add(p, k);
+// }
+
+// A pointer hashing policy that uses HashGeneric() to create good hashes for
+// pointers. Note that we don't shift out the lowest k bits because we don't
+// want to assume anything about the alignment of the pointers.
+template <typename Key>
+struct PointerHasher {
+ using Lookup = Key;
+
+ static HashNumber hash(const Lookup& aLookup) { return HashGeneric(aLookup); }
+
+ static bool match(const Key& aKey, const Lookup& aLookup) {
+ return aKey == aLookup;
+ }
+
+ static void rekey(Key& aKey, const Key& aNewKey) { aKey = aNewKey; }
+};
+
+// The default hash policy, which only works with integers.
+template <class Key, typename>
+struct DefaultHasher {
+ using Lookup = Key;
+
+ static HashNumber hash(const Lookup& aLookup) {
+ // Just convert the integer to a HashNumber and use that as is. (This
+ // discards the high 32-bits of 64-bit integers!) ScrambleHashCode() is
+ // subsequently called on the value to improve the distribution.
+ return aLookup;
+ }
+
+ static bool match(const Key& aKey, const Lookup& aLookup) {
+ // Use builtin or overloaded operator==.
+ return aKey == aLookup;
+ }
+
+ static void rekey(Key& aKey, const Key& aNewKey) { aKey = aNewKey; }
+};
+
+// A DefaultHasher specialization for enums.
+template <class T>
+struct DefaultHasher<T, std::enable_if_t<std::is_enum_v<T>>> {
+ using Key = T;
+ using Lookup = Key;
+
+ static HashNumber hash(const Lookup& aLookup) { return HashGeneric(aLookup); }
+
+ static bool match(const Key& aKey, const Lookup& aLookup) {
+ // Use builtin or overloaded operator==.
+ return aKey == static_cast<Key>(aLookup);
+ }
+
+ static void rekey(Key& aKey, const Key& aNewKey) { aKey = aNewKey; }
+};
+
+// A DefaultHasher specialization for pointers.
+template <class T>
+struct DefaultHasher<T*> : PointerHasher<T*> {};
+
+// A DefaultHasher specialization for mozilla::UniquePtr.
+template <class T, class D>
+struct DefaultHasher<UniquePtr<T, D>> {
+ using Key = UniquePtr<T, D>;
+ using Lookup = Key;
+ using PtrHasher = PointerHasher<T*>;
+
+ static HashNumber hash(const Lookup& aLookup) {
+ return PtrHasher::hash(aLookup.get());
+ }
+
+ static bool match(const Key& aKey, const Lookup& aLookup) {
+ return PtrHasher::match(aKey.get(), aLookup.get());
+ }
+
+ static void rekey(UniquePtr<T, D>& aKey, UniquePtr<T, D>&& aNewKey) {
+ aKey = std::move(aNewKey);
+ }
+};
+
+// A DefaultHasher specialization for doubles.
+template <>
+struct DefaultHasher<double> {
+ using Key = double;
+ using Lookup = Key;
+
+ static HashNumber hash(const Lookup& aLookup) {
+ // Just xor the high bits with the low bits, and then treat the bits of the
+ // result as a uint32_t.
+ static_assert(sizeof(HashNumber) == 4,
+ "subsequent code assumes a four-byte hash");
+ uint64_t u = BitwiseCast<uint64_t>(aLookup);
+ return HashNumber(u ^ (u >> 32));
+ }
+
+ static bool match(const Key& aKey, const Lookup& aLookup) {
+ return BitwiseCast<uint64_t>(aKey) == BitwiseCast<uint64_t>(aLookup);
+ }
+};
+
+// A DefaultHasher specialization for floats.
+template <>
+struct DefaultHasher<float> {
+ using Key = float;
+ using Lookup = Key;
+
+ static HashNumber hash(const Lookup& aLookup) {
+ // Just use the value as if its bits form an integer. ScrambleHashCode() is
+ // subsequently called on the value to improve the distribution.
+ static_assert(sizeof(HashNumber) == 4,
+ "subsequent code assumes a four-byte hash");
+ return HashNumber(BitwiseCast<uint32_t>(aLookup));
+ }
+
+ static bool match(const Key& aKey, const Lookup& aLookup) {
+ return BitwiseCast<uint32_t>(aKey) == BitwiseCast<uint32_t>(aLookup);
+ }
+};
+
+// A hash policy for C strings.
+struct CStringHasher {
+ using Key = const char*;
+ using Lookup = const char*;
+
+ static HashNumber hash(const Lookup& aLookup) { return HashString(aLookup); }
+
+ static bool match(const Key& aKey, const Lookup& aLookup) {
+ return strcmp(aKey, aLookup) == 0;
+ }
+};
+
+//---------------------------------------------------------------------------
+// Fallible Hashing Interface
+//---------------------------------------------------------------------------
+
+// Most of the time generating a hash code is infallible, but sometimes it is
+// necessary to generate hash codes on demand in a way that can fail. Specialize
+// this class for your own hash policy to provide fallible hashing.
+//
+// This is used by MovableCellHasher to handle the fact that generating a unique
+// ID for cell pointer may fail due to OOM.
+//
+// The default implementations of these methods delegate to the usual HashPolicy
+// implementation and always succeed.
+template <typename HashPolicy>
+struct FallibleHashMethods {
+ // Return true if a hashcode is already available for its argument, and
+ // sets |aHashOut|. Once this succeeds for a specific argument it
+ // must continue to do so.
+ //
+ // Return false if a hashcode is not already available. This implies that any
+ // lookup must fail, as the hash code would have to have been successfully
+ // created on insertion.
+ template <typename Lookup>
+ static bool maybeGetHash(Lookup&& aLookup, HashNumber* aHashOut) {
+ *aHashOut = HashPolicy::hash(aLookup);
+ return true;
+ }
+
+ // Fallible method to ensure a hashcode exists for its argument and create one
+ // if not. Sets |aHashOut| to the hashcode and retuns true on success. Returns
+ // false on error, e.g. out of memory.
+ template <typename Lookup>
+ static bool ensureHash(Lookup&& aLookup, HashNumber* aHashOut) {
+ *aHashOut = HashPolicy::hash(aLookup);
+ return true;
+ }
+};
+
+template <typename HashPolicy, typename Lookup>
+static bool MaybeGetHash(Lookup&& aLookup, HashNumber* aHashOut) {
+ return FallibleHashMethods<typename HashPolicy::Base>::maybeGetHash(
+ std::forward<Lookup>(aLookup), aHashOut);
+}
+
+template <typename HashPolicy, typename Lookup>
+static bool EnsureHash(Lookup&& aLookup, HashNumber* aHashOut) {
+ return FallibleHashMethods<typename HashPolicy::Base>::ensureHash(
+ std::forward<Lookup>(aLookup), aHashOut);
+}
+
+//---------------------------------------------------------------------------
+// Implementation Details (HashMapEntry, HashTableEntry, HashTable)
+//---------------------------------------------------------------------------
+
+// Both HashMap and HashSet are implemented by a single HashTable that is even
+// more heavily parameterized than the other two. This leaves HashTable gnarly
+// and extremely coupled to HashMap and HashSet; thus code should not use
+// HashTable directly.
+
+template <class Key, class Value>
+class HashMapEntry {
+ Key key_;
+ Value value_;
+
+ template <class, class, class>
+ friend class detail::HashTable;
+ template <class>
+ friend class detail::HashTableEntry;
+ template <class, class, class, class>
+ friend class HashMap;
+
+ public:
+ template <typename KeyInput, typename ValueInput>
+ HashMapEntry(KeyInput&& aKey, ValueInput&& aValue)
+ : key_(std::forward<KeyInput>(aKey)),
+ value_(std::forward<ValueInput>(aValue)) {}
+
+ HashMapEntry(HashMapEntry&& aRhs) = default;
+ HashMapEntry& operator=(HashMapEntry&& aRhs) = default;
+
+ using KeyType = Key;
+ using ValueType = Value;
+
+ const Key& key() const { return key_; }
+
+ // Use this method with caution! If the key is changed such that its hash
+ // value also changes, the map will be left in an invalid state.
+ Key& mutableKey() { return key_; }
+
+ const Value& value() const { return value_; }
+ Value& value() { return value_; }
+
+ private:
+ HashMapEntry(const HashMapEntry&) = delete;
+ void operator=(const HashMapEntry&) = delete;
+};
+
+namespace detail {
+
+template <class T, class HashPolicy, class AllocPolicy>
+class HashTable;
+
+template <typename T>
+class EntrySlot;
+
+template <typename T>
+class HashTableEntry {
+ private:
+ using NonConstT = std::remove_const_t<T>;
+
+ // Instead of having a hash table entry store that looks like this:
+ //
+ // +--------+--------+--------+--------+
+ // | entry0 | entry1 | .... | entryN |
+ // +--------+--------+--------+--------+
+ //
+ // where the entries contained their cached hash code, we're going to lay out
+ // the entry store thusly:
+ //
+ // +-------+-------+-------+-------+--------+--------+--------+--------+
+ // | hash0 | hash1 | ... | hashN | entry0 | entry1 | .... | entryN |
+ // +-------+-------+-------+-------+--------+--------+--------+--------+
+ //
+ // with all the cached hashes prior to the actual entries themselves.
+ //
+ // We do this because implementing the first strategy requires us to make
+ // HashTableEntry look roughly like:
+ //
+ // template <typename T>
+ // class HashTableEntry {
+ // HashNumber mKeyHash;
+ // T mValue;
+ // };
+ //
+ // The problem with this setup is that, depending on the layout of `T`, there
+ // may be platform ABI-mandated padding between `mKeyHash` and the first
+ // member of `T`. This ABI-mandated padding is wasted space, and can be
+ // surprisingly common, e.g. when `T` is a single pointer on 64-bit platforms.
+ // In such cases, we're throwing away a quarter of our entry store on padding,
+ // which is undesirable.
+ //
+ // The second layout above, namely:
+ //
+ // +-------+-------+-------+-------+--------+--------+--------+--------+
+ // | hash0 | hash1 | ... | hashN | entry0 | entry1 | .... | entryN |
+ // +-------+-------+-------+-------+--------+--------+--------+--------+
+ //
+ // means there is no wasted space between the hashes themselves, and no wasted
+ // space between the entries themselves. However, we would also like there to
+ // be no gap between the last hash and the first entry. The memory allocator
+ // guarantees the alignment of the start of the hashes. The use of a
+ // power-of-two capacity of at least 4 guarantees that the alignment of the
+ // *end* of the hash array is no less than the alignment of the start.
+ // Finally, the static_asserts here guarantee that the entries themselves
+ // don't need to be any more aligned than the alignment of the entry store
+ // itself.
+ //
+ // This assertion is safe for 32-bit builds because on both Windows and Linux
+ // (including Android), the minimum alignment for allocations larger than 8
+ // bytes is 8 bytes, and the actual data for entries in our entry store is
+ // guaranteed to have that alignment as well, thanks to the power-of-two
+ // number of cached hash values stored prior to the entry data.
+
+ // The allocation policy must allocate a table with at least this much
+ // alignment.
+ static constexpr size_t kMinimumAlignment = 8;
+
+ static_assert(alignof(HashNumber) <= kMinimumAlignment,
+ "[N*2 hashes, N*2 T values] allocation's alignment must be "
+ "enough to align each hash");
+ static_assert(alignof(NonConstT) <= 2 * sizeof(HashNumber),
+ "subsequent N*2 T values must not require more than an even "
+ "number of HashNumbers provides");
+
+ static const HashNumber sFreeKey = 0;
+ static const HashNumber sRemovedKey = 1;
+ static const HashNumber sCollisionBit = 1;
+
+ alignas(NonConstT) unsigned char mValueData[sizeof(NonConstT)];
+
+ private:
+ template <class, class, class>
+ friend class HashTable;
+ template <typename>
+ friend class EntrySlot;
+
+ // Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
+ // -Werror compile error) to reinterpret_cast<> |mValueData| to |T*|, even
+ // through |void*|. Placing the latter cast in these separate functions
+ // breaks the chain such that affected GCC versions no longer warn/error.
+ void* rawValuePtr() { return mValueData; }
+
+ static bool isLiveHash(HashNumber hash) { return hash > sRemovedKey; }
+
+ HashTableEntry(const HashTableEntry&) = delete;
+ void operator=(const HashTableEntry&) = delete;
+
+ NonConstT* valuePtr() { return reinterpret_cast<NonConstT*>(rawValuePtr()); }
+
+ void destroyStoredT() {
+ NonConstT* ptr = valuePtr();
+ ptr->~T();
+ MOZ_MAKE_MEM_UNDEFINED(ptr, sizeof(*ptr));
+ }
+
+ public:
+ HashTableEntry() = default;
+
+ ~HashTableEntry() { MOZ_MAKE_MEM_UNDEFINED(this, sizeof(*this)); }
+
+ void destroy() { destroyStoredT(); }
+
+ void swap(HashTableEntry* aOther, bool aIsLive) {
+ // This allows types to use Argument-Dependent-Lookup, and thus use a custom
+ // std::swap, which is needed by types like JS::Heap and such.
+ using std::swap;
+
+ if (this == aOther) {
+ return;
+ }
+ if (aIsLive) {
+ swap(*valuePtr(), *aOther->valuePtr());
+ } else {
+ *aOther->valuePtr() = std::move(*valuePtr());
+ destroy();
+ }
+ }
+
+ T& get() { return *valuePtr(); }
+
+ NonConstT& getMutable() { return *valuePtr(); }
+};
+
+// A slot represents a cached hash value and its associated entry stored
+// in the hash table. These two things are not stored in contiguous memory.
+template <class T>
+class EntrySlot {
+ using NonConstT = std::remove_const_t<T>;
+
+ using Entry = HashTableEntry<T>;
+
+ Entry* mEntry;
+ HashNumber* mKeyHash;
+
+ template <class, class, class>
+ friend class HashTable;
+
+ EntrySlot(Entry* aEntry, HashNumber* aKeyHash)
+ : mEntry(aEntry), mKeyHash(aKeyHash) {}
+
+ public:
+ static bool isLiveHash(HashNumber hash) { return hash > Entry::sRemovedKey; }
+
+ EntrySlot(const EntrySlot&) = default;
+ EntrySlot(EntrySlot&& aOther) = default;
+
+ EntrySlot& operator=(const EntrySlot&) = default;
+ EntrySlot& operator=(EntrySlot&&) = default;
+
+ bool operator==(const EntrySlot& aRhs) const { return mEntry == aRhs.mEntry; }
+
+ bool operator<(const EntrySlot& aRhs) const { return mEntry < aRhs.mEntry; }
+
+ EntrySlot& operator++() {
+ ++mEntry;
+ ++mKeyHash;
+ return *this;
+ }
+
+ void destroy() { mEntry->destroy(); }
+
+ void swap(EntrySlot& aOther) {
+ mEntry->swap(aOther.mEntry, aOther.isLive());
+ std::swap(*mKeyHash, *aOther.mKeyHash);
+ }
+
+ T& get() const { return mEntry->get(); }
+
+ NonConstT& getMutable() { return mEntry->getMutable(); }
+
+ bool isFree() const { return *mKeyHash == Entry::sFreeKey; }
+
+ void clearLive() {
+ MOZ_ASSERT(isLive());
+ *mKeyHash = Entry::sFreeKey;
+ mEntry->destroyStoredT();
+ }
+
+ void clear() {
+ if (isLive()) {
+ mEntry->destroyStoredT();
+ }
+ MOZ_MAKE_MEM_UNDEFINED(mEntry, sizeof(*mEntry));
+ *mKeyHash = Entry::sFreeKey;
+ }
+
+ bool isRemoved() const { return *mKeyHash == Entry::sRemovedKey; }
+
+ void removeLive() {
+ MOZ_ASSERT(isLive());
+ *mKeyHash = Entry::sRemovedKey;
+ mEntry->destroyStoredT();
+ }
+
+ bool isLive() const { return isLiveHash(*mKeyHash); }
+
+ void setCollision() {
+ MOZ_ASSERT(isLive());
+ *mKeyHash |= Entry::sCollisionBit;
+ }
+ void unsetCollision() { *mKeyHash &= ~Entry::sCollisionBit; }
+ bool hasCollision() const { return *mKeyHash & Entry::sCollisionBit; }
+ bool matchHash(HashNumber hn) {
+ return (*mKeyHash & ~Entry::sCollisionBit) == hn;
+ }
+ HashNumber getKeyHash() const { return *mKeyHash & ~Entry::sCollisionBit; }
+
+ template <typename... Args>
+ void setLive(HashNumber aHashNumber, Args&&... aArgs) {
+ MOZ_ASSERT(!isLive());
+ *mKeyHash = aHashNumber;
+ new (KnownNotNull, mEntry->valuePtr()) T(std::forward<Args>(aArgs)...);
+ MOZ_ASSERT(isLive());
+ }
+
+ Entry* toEntry() const { return mEntry; }
+};
+
+template <class T, class HashPolicy, class AllocPolicy>
+class HashTable : private AllocPolicy {
+ friend class mozilla::ReentrancyGuard;
+
+ using NonConstT = std::remove_const_t<T>;
+ using Key = typename HashPolicy::KeyType;
+ using Lookup = typename HashPolicy::Lookup;
+
+ public:
+ using Entry = HashTableEntry<T>;
+ using Slot = EntrySlot<T>;
+
+ template <typename F>
+ static void forEachSlot(char* aTable, uint32_t aCapacity, F&& f) {
+ auto hashes = reinterpret_cast<HashNumber*>(aTable);
+ auto entries = reinterpret_cast<Entry*>(&hashes[aCapacity]);
+ Slot slot(entries, hashes);
+ for (size_t i = 0; i < size_t(aCapacity); ++i) {
+ f(slot);
+ ++slot;
+ }
+ }
+
+ // A nullable pointer to a hash table element. A Ptr |p| can be tested
+ // either explicitly |if (p.found()) p->...| or using boolean conversion
+ // |if (p) p->...|. Ptr objects must not be used after any mutating hash
+ // table operations unless |generation()| is tested.
+ class Ptr {
+ friend class HashTable;
+
+ Slot mSlot;
+#ifdef DEBUG
+ const HashTable* mTable;
+ Generation mGeneration;
+#endif
+
+ protected:
+ Ptr(Slot aSlot, const HashTable& aTable)
+ : mSlot(aSlot)
+#ifdef DEBUG
+ ,
+ mTable(&aTable),
+ mGeneration(aTable.generation())
+#endif
+ {
+ }
+
+ // This constructor is used only by AddPtr() within lookupForAdd().
+ explicit Ptr(const HashTable& aTable)
+ : mSlot(nullptr, nullptr)
+#ifdef DEBUG
+ ,
+ mTable(&aTable),
+ mGeneration(aTable.generation())
+#endif
+ {
+ }
+
+ bool isValid() const { return !!mSlot.toEntry(); }
+
+ public:
+ Ptr()
+ : mSlot(nullptr, nullptr)
+#ifdef DEBUG
+ ,
+ mTable(nullptr),
+ mGeneration(0)
+#endif
+ {
+ }
+
+ bool found() const {
+ if (!isValid()) {
+ return false;
+ }
+#ifdef DEBUG
+ MOZ_ASSERT(mGeneration == mTable->generation());
+#endif
+ return mSlot.isLive();
+ }
+
+ explicit operator bool() const { return found(); }
+
+ bool operator==(const Ptr& aRhs) const {
+ MOZ_ASSERT(found() && aRhs.found());
+ return mSlot == aRhs.mSlot;
+ }
+
+ bool operator!=(const Ptr& aRhs) const {
+#ifdef DEBUG
+ MOZ_ASSERT(mGeneration == mTable->generation());
+#endif
+ return !(*this == aRhs);
+ }
+
+ T& operator*() const {
+#ifdef DEBUG
+ MOZ_ASSERT(found());
+ MOZ_ASSERT(mGeneration == mTable->generation());
+#endif
+ return mSlot.get();
+ }
+
+ T* operator->() const {
+#ifdef DEBUG
+ MOZ_ASSERT(found());
+ MOZ_ASSERT(mGeneration == mTable->generation());
+#endif
+ return &mSlot.get();
+ }
+ };
+
+ // A Ptr that can be used to add a key after a failed lookup.
+ class AddPtr : public Ptr {
+ friend class HashTable;
+
+ HashNumber mKeyHash;
+#ifdef DEBUG
+ uint64_t mMutationCount;
+#endif
+
+ AddPtr(Slot aSlot, const HashTable& aTable, HashNumber aHashNumber)
+ : Ptr(aSlot, aTable),
+ mKeyHash(aHashNumber)
+#ifdef DEBUG
+ ,
+ mMutationCount(aTable.mMutationCount)
+#endif
+ {
+ }
+
+ // This constructor is used when lookupForAdd() is performed on a table
+ // lacking entry storage; it leaves mSlot null but initializes everything
+ // else.
+ AddPtr(const HashTable& aTable, HashNumber aHashNumber)
+ : Ptr(aTable),
+ mKeyHash(aHashNumber)
+#ifdef DEBUG
+ ,
+ mMutationCount(aTable.mMutationCount)
+#endif
+ {
+ MOZ_ASSERT(isLive());
+ }
+
+ bool isLive() const { return isLiveHash(mKeyHash); }
+
+ public:
+ AddPtr() : mKeyHash(0) {}
+ };
+
+ // A hash table iterator that (mostly) doesn't allow table modifications.
+ // As with Ptr/AddPtr, Iterator objects must not be used after any mutating
+ // hash table operation unless the |generation()| is tested.
+ class Iterator {
+ void moveToNextLiveEntry() {
+ while (++mCur < mEnd && !mCur.isLive()) {
+ continue;
+ }
+ }
+
+ protected:
+ friend class HashTable;
+
+ explicit Iterator(const HashTable& aTable)
+ : mCur(aTable.slotForIndex(0)),
+ mEnd(aTable.slotForIndex(aTable.capacity()))
+#ifdef DEBUG
+ ,
+ mTable(aTable),
+ mMutationCount(aTable.mMutationCount),
+ mGeneration(aTable.generation()),
+ mValidEntry(true)
+#endif
+ {
+ if (!done() && !mCur.isLive()) {
+ moveToNextLiveEntry();
+ }
+ }
+
+ Slot mCur;
+ Slot mEnd;
+#ifdef DEBUG
+ const HashTable& mTable;
+ uint64_t mMutationCount;
+ Generation mGeneration;
+ bool mValidEntry;
+#endif
+
+ public:
+ bool done() const {
+ MOZ_ASSERT(mGeneration == mTable.generation());
+ MOZ_ASSERT(mMutationCount == mTable.mMutationCount);
+ return mCur == mEnd;
+ }
+
+ T& get() const {
+ MOZ_ASSERT(!done());
+ MOZ_ASSERT(mValidEntry);
+ MOZ_ASSERT(mGeneration == mTable.generation());
+ MOZ_ASSERT(mMutationCount == mTable.mMutationCount);
+ return mCur.get();
+ }
+
+ void next() {
+ MOZ_ASSERT(!done());
+ MOZ_ASSERT(mGeneration == mTable.generation());
+ MOZ_ASSERT(mMutationCount == mTable.mMutationCount);
+ moveToNextLiveEntry();
+#ifdef DEBUG
+ mValidEntry = true;
+#endif
+ }
+ };
+
+ // A hash table iterator that permits modification, removal and rekeying.
+ // Since rehashing when elements were removed during enumeration would be
+ // bad, it is postponed until the ModIterator is destructed. Since the
+ // ModIterator's destructor touches the hash table, the user must ensure
+ // that the hash table is still alive when the destructor runs.
+ class ModIterator : public Iterator {
+ friend class HashTable;
+
+ HashTable& mTable;
+ bool mRekeyed;
+ bool mRemoved;
+
+ // ModIterator is movable but not copyable.
+ ModIterator(const ModIterator&) = delete;
+ void operator=(const ModIterator&) = delete;
+
+ protected:
+ explicit ModIterator(HashTable& aTable)
+ : Iterator(aTable), mTable(aTable), mRekeyed(false), mRemoved(false) {}
+
+ public:
+ MOZ_IMPLICIT ModIterator(ModIterator&& aOther)
+ : Iterator(aOther),
+ mTable(aOther.mTable),
+ mRekeyed(aOther.mRekeyed),
+ mRemoved(aOther.mRemoved) {
+ aOther.mRekeyed = false;
+ aOther.mRemoved = false;
+ }
+
+ // Removes the current element from the table, leaving |get()|
+ // invalid until the next call to |next()|.
+ void remove() {
+ mTable.remove(this->mCur);
+ mRemoved = true;
+#ifdef DEBUG
+ this->mValidEntry = false;
+ this->mMutationCount = mTable.mMutationCount;
+#endif
+ }
+
+ NonConstT& getMutable() {
+ MOZ_ASSERT(!this->done());
+ MOZ_ASSERT(this->mValidEntry);
+ MOZ_ASSERT(this->mGeneration == this->Iterator::mTable.generation());
+ MOZ_ASSERT(this->mMutationCount == this->Iterator::mTable.mMutationCount);
+ return this->mCur.getMutable();
+ }
+
+ // Removes the current element and re-inserts it into the table with
+ // a new key at the new Lookup position. |get()| is invalid after
+ // this operation until the next call to |next()|.
+ void rekey(const Lookup& l, const Key& k) {
+ MOZ_ASSERT(&k != &HashPolicy::getKey(this->mCur.get()));
+ Ptr p(this->mCur, mTable);
+ mTable.rekeyWithoutRehash(p, l, k);
+ mRekeyed = true;
+#ifdef DEBUG
+ this->mValidEntry = false;
+ this->mMutationCount = mTable.mMutationCount;
+#endif
+ }
+
+ void rekey(const Key& k) { rekey(k, k); }
+
+ // Potentially rehashes the table.
+ ~ModIterator() {
+ if (mRekeyed) {
+ mTable.mGen++;
+ mTable.infallibleRehashIfOverloaded();
+ }
+
+ if (mRemoved) {
+ mTable.compact();
+ }
+ }
+ };
+
+ // Range is similar to Iterator, but uses different terminology.
+ class Range {
+ friend class HashTable;
+
+ Iterator mIter;
+
+ protected:
+ explicit Range(const HashTable& table) : mIter(table) {}
+
+ public:
+ bool empty() const { return mIter.done(); }
+
+ T& front() const { return mIter.get(); }
+
+ void popFront() { return mIter.next(); }
+ };
+
+ // Enum is similar to ModIterator, but uses different terminology.
+ class Enum {
+ ModIterator mIter;
+
+ // Enum is movable but not copyable.
+ Enum(const Enum&) = delete;
+ void operator=(const Enum&) = delete;
+
+ public:
+ template <class Map>
+ explicit Enum(Map& map) : mIter(map.mImpl) {}
+
+ MOZ_IMPLICIT Enum(Enum&& other) : mIter(std::move(other.mIter)) {}
+
+ bool empty() const { return mIter.done(); }
+
+ T& front() const { return mIter.get(); }
+
+ void popFront() { return mIter.next(); }
+
+ void removeFront() { mIter.remove(); }
+
+ NonConstT& mutableFront() { return mIter.getMutable(); }
+
+ void rekeyFront(const Lookup& aLookup, const Key& aKey) {
+ mIter.rekey(aLookup, aKey);
+ }
+
+ void rekeyFront(const Key& aKey) { mIter.rekey(aKey); }
+ };
+
+ // HashTable is movable
+ HashTable(HashTable&& aRhs) : AllocPolicy(std::move(aRhs)) { moveFrom(aRhs); }
+ HashTable& operator=(HashTable&& aRhs) {
+ MOZ_ASSERT(this != &aRhs, "self-move assignment is prohibited");
+ if (mTable) {
+ destroyTable(*this, mTable, capacity());
+ }
+ AllocPolicy::operator=(std::move(aRhs));
+ moveFrom(aRhs);
+ return *this;
+ }
+
+ private:
+ void moveFrom(HashTable& aRhs) {
+ mGen = aRhs.mGen;
+ mHashShift = aRhs.mHashShift;
+ mTable = aRhs.mTable;
+ mEntryCount = aRhs.mEntryCount;
+ mRemovedCount = aRhs.mRemovedCount;
+#ifdef DEBUG
+ mMutationCount = aRhs.mMutationCount;
+ mEntered = aRhs.mEntered;
+#endif
+ aRhs.mTable = nullptr;
+ aRhs.clearAndCompact();
+ }
+
+ // HashTable is not copyable or assignable
+ HashTable(const HashTable&) = delete;
+ void operator=(const HashTable&) = delete;
+
+ static const uint32_t CAP_BITS = 30;
+
+ public:
+ uint64_t mGen : 56; // entry storage generation number
+ uint64_t mHashShift : 8; // multiplicative hash shift
+ char* mTable; // entry storage
+ uint32_t mEntryCount; // number of entries in mTable
+ uint32_t mRemovedCount; // removed entry sentinels in mTable
+
+#ifdef DEBUG
+ uint64_t mMutationCount;
+ mutable bool mEntered;
+#endif
+
+ // The default initial capacity is 32 (enough to hold 16 elements), but it
+ // can be as low as 4.
+ static const uint32_t sDefaultLen = 16;
+ static const uint32_t sMinCapacity = 4;
+ // See the comments in HashTableEntry about this value.
+ static_assert(sMinCapacity >= 4, "too-small sMinCapacity breaks assumptions");
+ static const uint32_t sMaxInit = 1u << (CAP_BITS - 1);
+ static const uint32_t sMaxCapacity = 1u << CAP_BITS;
+
+ // Hash-table alpha is conceptually a fraction, but to avoid floating-point
+ // math we implement it as a ratio of integers.
+ static const uint8_t sAlphaDenominator = 4;
+ static const uint8_t sMinAlphaNumerator = 1; // min alpha: 1/4
+ static const uint8_t sMaxAlphaNumerator = 3; // max alpha: 3/4
+
+ static const HashNumber sFreeKey = Entry::sFreeKey;
+ static const HashNumber sRemovedKey = Entry::sRemovedKey;
+ static const HashNumber sCollisionBit = Entry::sCollisionBit;
+
+ static uint32_t bestCapacity(uint32_t aLen) {
+ static_assert(
+ (sMaxInit * sAlphaDenominator) / sAlphaDenominator == sMaxInit,
+ "multiplication in numerator below could overflow");
+ static_assert(
+ sMaxInit * sAlphaDenominator <= UINT32_MAX - sMaxAlphaNumerator,
+ "numerator calculation below could potentially overflow");
+
+ // Callers should ensure this is true.
+ MOZ_ASSERT(aLen <= sMaxInit);
+
+ // Compute the smallest capacity allowing |aLen| elements to be
+ // inserted without rehashing: ceil(aLen / max-alpha). (Ceiling
+ // integral division: <http://stackoverflow.com/a/2745086>.)
+ uint32_t capacity = (aLen * sAlphaDenominator + sMaxAlphaNumerator - 1) /
+ sMaxAlphaNumerator;
+ capacity = (capacity < sMinCapacity) ? sMinCapacity : RoundUpPow2(capacity);
+
+ MOZ_ASSERT(capacity >= aLen);
+ MOZ_ASSERT(capacity <= sMaxCapacity);
+
+ return capacity;
+ }
+
+ static uint32_t hashShift(uint32_t aLen) {
+ // Reject all lengths whose initial computed capacity would exceed
+ // sMaxCapacity. Round that maximum aLen down to the nearest power of two
+ // for speedier code.
+ if (MOZ_UNLIKELY(aLen > sMaxInit)) {
+ MOZ_CRASH("initial length is too large");
+ }
+
+ return kHashNumberBits - mozilla::CeilingLog2(bestCapacity(aLen));
+ }
+
+ static bool isLiveHash(HashNumber aHash) { return Entry::isLiveHash(aHash); }
+
+ static HashNumber prepareHash(HashNumber aInputHash) {
+ HashNumber keyHash = ScrambleHashCode(aInputHash);
+
+ // Avoid reserved hash codes.
+ if (!isLiveHash(keyHash)) {
+ keyHash -= (sRemovedKey + 1);
+ }
+ return keyHash & ~sCollisionBit;
+ }
+
+ enum FailureBehavior { DontReportFailure = false, ReportFailure = true };
+
+ // Fake a struct that we're going to alloc. See the comments in
+ // HashTableEntry about how the table is laid out, and why it's safe.
+ struct FakeSlot {
+ unsigned char c[sizeof(HashNumber) + sizeof(typename Entry::NonConstT)];
+ };
+
+ static char* createTable(AllocPolicy& aAllocPolicy, uint32_t aCapacity,
+ FailureBehavior aReportFailure = ReportFailure) {
+ FakeSlot* fake =
+ aReportFailure
+ ? aAllocPolicy.template pod_malloc<FakeSlot>(aCapacity)
+ : aAllocPolicy.template maybe_pod_malloc<FakeSlot>(aCapacity);
+
+ MOZ_ASSERT((reinterpret_cast<uintptr_t>(fake) % Entry::kMinimumAlignment) ==
+ 0);
+
+ char* table = reinterpret_cast<char*>(fake);
+ if (table) {
+ forEachSlot(table, aCapacity, [&](Slot& slot) {
+ *slot.mKeyHash = sFreeKey;
+ new (KnownNotNull, slot.toEntry()) Entry();
+ });
+ }
+ return table;
+ }
+
+ static void destroyTable(AllocPolicy& aAllocPolicy, char* aOldTable,
+ uint32_t aCapacity) {
+ forEachSlot(aOldTable, aCapacity, [&](const Slot& slot) {
+ if (slot.isLive()) {
+ slot.toEntry()->destroyStoredT();
+ }
+ });
+ freeTable(aAllocPolicy, aOldTable, aCapacity);
+ }
+
+ static void freeTable(AllocPolicy& aAllocPolicy, char* aOldTable,
+ uint32_t aCapacity) {
+ FakeSlot* fake = reinterpret_cast<FakeSlot*>(aOldTable);
+ aAllocPolicy.free_(fake, aCapacity);
+ }
+
+ public:
+ HashTable(AllocPolicy aAllocPolicy, uint32_t aLen)
+ : AllocPolicy(std::move(aAllocPolicy)),
+ mGen(0),
+ mHashShift(hashShift(aLen)),
+ mTable(nullptr),
+ mEntryCount(0),
+ mRemovedCount(0)
+#ifdef DEBUG
+ ,
+ mMutationCount(0),
+ mEntered(false)
+#endif
+ {
+ }
+
+ explicit HashTable(AllocPolicy aAllocPolicy)
+ : HashTable(aAllocPolicy, sDefaultLen) {}
+
+ ~HashTable() {
+ if (mTable) {
+ destroyTable(*this, mTable, capacity());
+ }
+ }
+
+ private:
+ HashNumber hash1(HashNumber aHash0) const { return aHash0 >> mHashShift; }
+
+ struct DoubleHash {
+ HashNumber mHash2;
+ HashNumber mSizeMask;
+ };
+
+ DoubleHash hash2(HashNumber aCurKeyHash) const {
+ uint32_t sizeLog2 = kHashNumberBits - mHashShift;
+ DoubleHash dh = {((aCurKeyHash << sizeLog2) >> mHashShift) | 1,
+ (HashNumber(1) << sizeLog2) - 1};
+ return dh;
+ }
+
+ static HashNumber applyDoubleHash(HashNumber aHash1,
+ const DoubleHash& aDoubleHash) {
+ return WrappingSubtract(aHash1, aDoubleHash.mHash2) & aDoubleHash.mSizeMask;
+ }
+
+ static MOZ_ALWAYS_INLINE bool match(T& aEntry, const Lookup& aLookup) {
+ return HashPolicy::match(HashPolicy::getKey(aEntry), aLookup);
+ }
+
+ enum LookupReason { ForNonAdd, ForAdd };
+
+ Slot slotForIndex(HashNumber aIndex) const {
+ auto hashes = reinterpret_cast<HashNumber*>(mTable);
+ auto entries = reinterpret_cast<Entry*>(&hashes[capacity()]);
+ return Slot(&entries[aIndex], &hashes[aIndex]);
+ }
+
+ // Warning: in order for readonlyThreadsafeLookup() to be safe this
+ // function must not modify the table in any way when Reason==ForNonAdd.
+ template <LookupReason Reason>
+ MOZ_ALWAYS_INLINE Slot lookup(const Lookup& aLookup,
+ HashNumber aKeyHash) const {
+ MOZ_ASSERT(isLiveHash(aKeyHash));
+ MOZ_ASSERT(!(aKeyHash & sCollisionBit));
+ MOZ_ASSERT(mTable);
+
+ // Compute the primary hash address.
+ HashNumber h1 = hash1(aKeyHash);
+ Slot slot = slotForIndex(h1);
+
+ // Miss: return space for a new entry.
+ if (slot.isFree()) {
+ return slot;
+ }
+
+ // Hit: return entry.
+ if (slot.matchHash(aKeyHash) && match(slot.get(), aLookup)) {
+ return slot;
+ }
+
+ // Collision: double hash.
+ DoubleHash dh = hash2(aKeyHash);
+
+ // Save the first removed entry pointer so we can recycle later.
+ Maybe<Slot> firstRemoved;
+
+ while (true) {
+ if (Reason == ForAdd && !firstRemoved) {
+ if (MOZ_UNLIKELY(slot.isRemoved())) {
+ firstRemoved.emplace(slot);
+ } else {
+ slot.setCollision();
+ }
+ }
+
+ h1 = applyDoubleHash(h1, dh);
+
+ slot = slotForIndex(h1);
+ if (slot.isFree()) {
+ return firstRemoved.refOr(slot);
+ }
+
+ if (slot.matchHash(aKeyHash) && match(slot.get(), aLookup)) {
+ return slot;
+ }
+ }
+ }
+
+ // This is a copy of lookup() hardcoded to the assumptions:
+ // 1. the lookup is for an add;
+ // 2. the key, whose |keyHash| has been passed, is not in the table.
+ Slot findNonLiveSlot(HashNumber aKeyHash) {
+ MOZ_ASSERT(!(aKeyHash & sCollisionBit));
+ MOZ_ASSERT(mTable);
+
+ // We assume 'aKeyHash' has already been distributed.
+
+ // Compute the primary hash address.
+ HashNumber h1 = hash1(aKeyHash);
+ Slot slot = slotForIndex(h1);
+
+ // Miss: return space for a new entry.
+ if (!slot.isLive()) {
+ return slot;
+ }
+
+ // Collision: double hash.
+ DoubleHash dh = hash2(aKeyHash);
+
+ while (true) {
+ slot.setCollision();
+
+ h1 = applyDoubleHash(h1, dh);
+
+ slot = slotForIndex(h1);
+ if (!slot.isLive()) {
+ return slot;
+ }
+ }
+ }
+
+ enum RebuildStatus { NotOverloaded, Rehashed, RehashFailed };
+
+ RebuildStatus changeTableSize(
+ uint32_t newCapacity, FailureBehavior aReportFailure = ReportFailure) {
+ MOZ_ASSERT(IsPowerOfTwo(newCapacity));
+ MOZ_ASSERT(!!mTable == !!capacity());
+
+ // Look, but don't touch, until we succeed in getting new entry store.
+ char* oldTable = mTable;
+ uint32_t oldCapacity = capacity();
+ uint32_t newLog2 = mozilla::CeilingLog2(newCapacity);
+
+ if (MOZ_UNLIKELY(newCapacity > sMaxCapacity)) {
+ if (aReportFailure) {
+ this->reportAllocOverflow();
+ }
+ return RehashFailed;
+ }
+
+ char* newTable = createTable(*this, newCapacity, aReportFailure);
+ if (!newTable) {
+ return RehashFailed;
+ }
+
+ // We can't fail from here on, so update table parameters.
+ mHashShift = kHashNumberBits - newLog2;
+ mRemovedCount = 0;
+ mGen++;
+ mTable = newTable;
+
+ // Copy only live entries, leaving removed ones behind.
+ forEachSlot(oldTable, oldCapacity, [&](Slot& slot) {
+ if (slot.isLive()) {
+ HashNumber hn = slot.getKeyHash();
+ findNonLiveSlot(hn).setLive(
+ hn, std::move(const_cast<typename Entry::NonConstT&>(slot.get())));
+ }
+
+ slot.clear();
+ });
+
+ // All entries have been destroyed, no need to destroyTable.
+ freeTable(*this, oldTable, oldCapacity);
+ return Rehashed;
+ }
+
+ RebuildStatus rehashIfOverloaded(
+ FailureBehavior aReportFailure = ReportFailure) {
+ static_assert(sMaxCapacity <= UINT32_MAX / sMaxAlphaNumerator,
+ "multiplication below could overflow");
+
+ // Note: if capacity() is zero, this will always succeed, which is
+ // what we want.
+ bool overloaded = mEntryCount + mRemovedCount >=
+ capacity() * sMaxAlphaNumerator / sAlphaDenominator;
+
+ if (!overloaded) {
+ return NotOverloaded;
+ }
+
+ // Succeed if a quarter or more of all entries are removed. Note that this
+ // always succeeds if capacity() == 0 (i.e. entry storage has not been
+ // allocated), which is what we want, because it means changeTableSize()
+ // will allocate the requested capacity rather than doubling it.
+ bool manyRemoved = mRemovedCount >= (capacity() >> 2);
+ uint32_t newCapacity = manyRemoved ? rawCapacity() : rawCapacity() * 2;
+ return changeTableSize(newCapacity, aReportFailure);
+ }
+
+ void infallibleRehashIfOverloaded() {
+ if (rehashIfOverloaded(DontReportFailure) == RehashFailed) {
+ rehashTableInPlace();
+ }
+ }
+
+ void remove(Slot& aSlot) {
+ MOZ_ASSERT(mTable);
+
+ if (aSlot.hasCollision()) {
+ aSlot.removeLive();
+ mRemovedCount++;
+ } else {
+ aSlot.clearLive();
+ }
+ mEntryCount--;
+#ifdef DEBUG
+ mMutationCount++;
+#endif
+ }
+
+ void shrinkIfUnderloaded() {
+ static_assert(sMaxCapacity <= UINT32_MAX / sMinAlphaNumerator,
+ "multiplication below could overflow");
+ bool underloaded =
+ capacity() > sMinCapacity &&
+ mEntryCount <= capacity() * sMinAlphaNumerator / sAlphaDenominator;
+
+ if (underloaded) {
+ (void)changeTableSize(capacity() / 2, DontReportFailure);
+ }
+ }
+
+ // This is identical to changeTableSize(currentSize), but without requiring
+ // a second table. We do this by recycling the collision bits to tell us if
+ // the element is already inserted or still waiting to be inserted. Since
+ // already-inserted elements win any conflicts, we get the same table as we
+ // would have gotten through random insertion order.
+ void rehashTableInPlace() {
+ mRemovedCount = 0;
+ mGen++;
+ forEachSlot(mTable, capacity(), [&](Slot& slot) { slot.unsetCollision(); });
+ for (uint32_t i = 0; i < capacity();) {
+ Slot src = slotForIndex(i);
+
+ if (!src.isLive() || src.hasCollision()) {
+ ++i;
+ continue;
+ }
+
+ HashNumber keyHash = src.getKeyHash();
+ HashNumber h1 = hash1(keyHash);
+ DoubleHash dh = hash2(keyHash);
+ Slot tgt = slotForIndex(h1);
+ while (true) {
+ if (!tgt.hasCollision()) {
+ src.swap(tgt);
+ tgt.setCollision();
+ break;
+ }
+
+ h1 = applyDoubleHash(h1, dh);
+ tgt = slotForIndex(h1);
+ }
+ }
+
+ // TODO: this algorithm leaves collision bits on *all* elements, even if
+ // they are on no collision path. We have the option of setting the
+ // collision bits correctly on a subsequent pass or skipping the rehash
+ // unless we are totally filled with tombstones: benchmark to find out
+ // which approach is best.
+ }
+
+ // Prefer to use putNewInfallible; this function does not check
+ // invariants.
+ template <typename... Args>
+ void putNewInfallibleInternal(HashNumber aKeyHash, Args&&... aArgs) {
+ MOZ_ASSERT(mTable);
+
+ Slot slot = findNonLiveSlot(aKeyHash);
+
+ if (slot.isRemoved()) {
+ mRemovedCount--;
+ aKeyHash |= sCollisionBit;
+ }
+
+ slot.setLive(aKeyHash, std::forward<Args>(aArgs)...);
+ mEntryCount++;
+#ifdef DEBUG
+ mMutationCount++;
+#endif
+ }
+
+ public:
+ void clear() {
+ forEachSlot(mTable, capacity(), [&](Slot& slot) { slot.clear(); });
+ mRemovedCount = 0;
+ mEntryCount = 0;
+#ifdef DEBUG
+ mMutationCount++;
+#endif
+ }
+
+ // Resize the table down to the smallest capacity that doesn't overload the
+ // table. Since we call shrinkIfUnderloaded() on every remove, you only need
+ // to call this after a bulk removal of items done without calling remove().
+ void compact() {
+ if (empty()) {
+ // Free the entry storage.
+ freeTable(*this, mTable, capacity());
+ mGen++;
+ mHashShift = hashShift(0); // gives minimum capacity on regrowth
+ mTable = nullptr;
+ mRemovedCount = 0;
+ return;
+ }
+
+ uint32_t bestCapacity = this->bestCapacity(mEntryCount);
+ MOZ_ASSERT(bestCapacity <= capacity());
+
+ if (bestCapacity < capacity()) {
+ (void)changeTableSize(bestCapacity, DontReportFailure);
+ }
+ }
+
+ void clearAndCompact() {
+ clear();
+ compact();
+ }
+
+ [[nodiscard]] bool reserve(uint32_t aLen) {
+ if (aLen == 0) {
+ return true;
+ }
+
+ if (MOZ_UNLIKELY(aLen > sMaxInit)) {
+ this->reportAllocOverflow();
+ return false;
+ }
+
+ uint32_t bestCapacity = this->bestCapacity(aLen);
+ if (bestCapacity <= capacity()) {
+ return true; // Capacity is already sufficient.
+ }
+
+ RebuildStatus status = changeTableSize(bestCapacity, ReportFailure);
+ MOZ_ASSERT(status != NotOverloaded);
+ return status != RehashFailed;
+ }
+
+ Iterator iter() const { return Iterator(*this); }
+
+ ModIterator modIter() { return ModIterator(*this); }
+
+ Range all() const { return Range(*this); }
+
+ bool empty() const { return mEntryCount == 0; }
+
+ uint32_t count() const { return mEntryCount; }
+
+ uint32_t rawCapacity() const { return 1u << (kHashNumberBits - mHashShift); }
+
+ uint32_t capacity() const { return mTable ? rawCapacity() : 0; }
+
+ Generation generation() const { return Generation(mGen); }
+
+ size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
+ return aMallocSizeOf(mTable);
+ }
+
+ size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
+ return aMallocSizeOf(this) + shallowSizeOfExcludingThis(aMallocSizeOf);
+ }
+
+ MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const {
+ if (empty()) {
+ return Ptr();
+ }
+
+ HashNumber inputHash;
+ if (!MaybeGetHash<HashPolicy>(aLookup, &inputHash)) {
+ return Ptr();
+ }
+
+ HashNumber keyHash = prepareHash(inputHash);
+ return Ptr(lookup<ForNonAdd>(aLookup, keyHash), *this);
+ }
+
+ MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const {
+ ReentrancyGuard g(*this);
+ return readonlyThreadsafeLookup(aLookup);
+ }
+
+ MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) {
+ ReentrancyGuard g(*this);
+
+ HashNumber inputHash;
+ if (!EnsureHash<HashPolicy>(aLookup, &inputHash)) {
+ return AddPtr();
+ }
+
+ HashNumber keyHash = prepareHash(inputHash);
+
+ if (!mTable) {
+ return AddPtr(*this, keyHash);
+ }
+
+ // Directly call the constructor in the return statement to avoid
+ // excess copying when building with Visual Studio 2017.
+ // See bug 1385181.
+ return AddPtr(lookup<ForAdd>(aLookup, keyHash), *this, keyHash);
+ }
+
+ template <typename... Args>
+ [[nodiscard]] bool add(AddPtr& aPtr, Args&&... aArgs) {
+ ReentrancyGuard g(*this);
+ MOZ_ASSERT_IF(aPtr.isValid(), mTable);
+ MOZ_ASSERT_IF(aPtr.isValid(), aPtr.mTable == this);
+ MOZ_ASSERT(!aPtr.found());
+ MOZ_ASSERT(!(aPtr.mKeyHash & sCollisionBit));
+
+ // Check for error from ensureHash() here.
+ if (!aPtr.isLive()) {
+ return false;
+ }
+
+ MOZ_ASSERT(aPtr.mGeneration == generation());
+#ifdef DEBUG
+ MOZ_ASSERT(aPtr.mMutationCount == mMutationCount);
+#endif
+
+ if (!aPtr.isValid()) {
+ MOZ_ASSERT(!mTable && mEntryCount == 0);
+ uint32_t newCapacity = rawCapacity();
+ RebuildStatus status = changeTableSize(newCapacity, ReportFailure);
+ MOZ_ASSERT(status != NotOverloaded);
+ if (status == RehashFailed) {
+ return false;
+ }
+ aPtr.mSlot = findNonLiveSlot(aPtr.mKeyHash);
+
+ } else if (aPtr.mSlot.isRemoved()) {
+ // Changing an entry from removed to live does not affect whether we are
+ // overloaded and can be handled separately.
+ if (!this->checkSimulatedOOM()) {
+ return false;
+ }
+ mRemovedCount--;
+ aPtr.mKeyHash |= sCollisionBit;
+
+ } else {
+ // Preserve the validity of |aPtr.mSlot|.
+ RebuildStatus status = rehashIfOverloaded();
+ if (status == RehashFailed) {
+ return false;
+ }
+ if (status == NotOverloaded && !this->checkSimulatedOOM()) {
+ return false;
+ }
+ if (status == Rehashed) {
+ aPtr.mSlot = findNonLiveSlot(aPtr.mKeyHash);
+ }
+ }
+
+ aPtr.mSlot.setLive(aPtr.mKeyHash, std::forward<Args>(aArgs)...);
+ mEntryCount++;
+#ifdef DEBUG
+ mMutationCount++;
+ aPtr.mGeneration = generation();
+ aPtr.mMutationCount = mMutationCount;
+#endif
+ return true;
+ }
+
+ // Note: |aLookup| may reference pieces of arguments in |aArgs|, so this
+ // function must take care not to use |aLookup| after moving |aArgs|.
+ template <typename... Args>
+ void putNewInfallible(const Lookup& aLookup, Args&&... aArgs) {
+ MOZ_ASSERT(!lookup(aLookup).found());
+ ReentrancyGuard g(*this);
+ HashNumber keyHash = prepareHash(HashPolicy::hash(aLookup));
+ putNewInfallibleInternal(keyHash, std::forward<Args>(aArgs)...);
+ }
+
+ // Note: |aLookup| may alias arguments in |aArgs|, so this function must take
+ // care not to use |aLookup| after moving |aArgs|.
+ template <typename... Args>
+ [[nodiscard]] bool putNew(const Lookup& aLookup, Args&&... aArgs) {
+ MOZ_ASSERT(!lookup(aLookup).found());
+ ReentrancyGuard g(*this);
+ if (!this->checkSimulatedOOM()) {
+ return false;
+ }
+ HashNumber inputHash;
+ if (!EnsureHash<HashPolicy>(aLookup, &inputHash)) {
+ return false;
+ }
+ HashNumber keyHash = prepareHash(inputHash);
+ if (rehashIfOverloaded() == RehashFailed) {
+ return false;
+ }
+ putNewInfallibleInternal(keyHash, std::forward<Args>(aArgs)...);
+ return true;
+ }
+
+ // Note: |aLookup| may be a reference pieces of arguments in |aArgs|, so this
+ // function must take care not to use |aLookup| after moving |aArgs|.
+ template <typename... Args>
+ [[nodiscard]] bool relookupOrAdd(AddPtr& aPtr, const Lookup& aLookup,
+ Args&&... aArgs) {
+ // Check for error from ensureHash() here.
+ if (!aPtr.isLive()) {
+ return false;
+ }
+#ifdef DEBUG
+ aPtr.mGeneration = generation();
+ aPtr.mMutationCount = mMutationCount;
+#endif
+ if (mTable) {
+ ReentrancyGuard g(*this);
+ // Check that aLookup has not been destroyed.
+ MOZ_ASSERT(prepareHash(HashPolicy::hash(aLookup)) == aPtr.mKeyHash);
+ aPtr.mSlot = lookup<ForAdd>(aLookup, aPtr.mKeyHash);
+ if (aPtr.found()) {
+ return true;
+ }
+ } else {
+ // Clear aPtr so it's invalid; add() will allocate storage and redo the
+ // lookup.
+ aPtr.mSlot = Slot(nullptr, nullptr);
+ }
+ return add(aPtr, std::forward<Args>(aArgs)...);
+ }
+
+ void remove(Ptr aPtr) {
+ MOZ_ASSERT(mTable);
+ ReentrancyGuard g(*this);
+ MOZ_ASSERT(aPtr.found());
+ MOZ_ASSERT(aPtr.mGeneration == generation());
+ remove(aPtr.mSlot);
+ shrinkIfUnderloaded();
+ }
+
+ void rekeyWithoutRehash(Ptr aPtr, const Lookup& aLookup, const Key& aKey) {
+ MOZ_ASSERT(mTable);
+ ReentrancyGuard g(*this);
+ MOZ_ASSERT(aPtr.found());
+ MOZ_ASSERT(aPtr.mGeneration == generation());
+ typename HashTableEntry<T>::NonConstT t(std::move(*aPtr));
+ HashPolicy::setKey(t, const_cast<Key&>(aKey));
+ remove(aPtr.mSlot);
+ HashNumber keyHash = prepareHash(HashPolicy::hash(aLookup));
+ putNewInfallibleInternal(keyHash, std::move(t));
+ }
+
+ void rekeyAndMaybeRehash(Ptr aPtr, const Lookup& aLookup, const Key& aKey) {
+ rekeyWithoutRehash(aPtr, aLookup, aKey);
+ infallibleRehashIfOverloaded();
+ }
+};
+
+} // namespace detail
+} // namespace mozilla
+
+#endif /* mozilla_HashTable_h */