summaryrefslogtreecommitdiffstats
path: root/modules/fdlibm/src/math_private.h
diff options
context:
space:
mode:
Diffstat (limited to 'modules/fdlibm/src/math_private.h')
-rw-r--r--modules/fdlibm/src/math_private.h964
1 files changed, 964 insertions, 0 deletions
diff --git a/modules/fdlibm/src/math_private.h b/modules/fdlibm/src/math_private.h
new file mode 100644
index 0000000000..b588a5905f
--- /dev/null
+++ b/modules/fdlibm/src/math_private.h
@@ -0,0 +1,964 @@
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * from: @(#)fdlibm.h 5.1 93/09/24
+ * $FreeBSD$
+ */
+
+#ifndef _MATH_PRIVATE_H_
+#define _MATH_PRIVATE_H_
+
+#include <cfloat>
+#include <stdint.h>
+#include <sys/types.h>
+
+#include "mozilla/EndianUtils.h"
+
+#include "fdlibm.h"
+
+/*
+ * Emulate FreeBSD internal double types.
+ * Adapted from https://github.com/freebsd/freebsd-src/search?q=__double_t
+ */
+
+typedef double __double_t;
+typedef __double_t double_t;
+typedef float __float_t;
+
+/*
+ * The original fdlibm code used statements like:
+ * n0 = ((*(int*)&one)>>29)^1; * index of high word *
+ * ix0 = *(n0+(int*)&x); * high word of x *
+ * ix1 = *((1-n0)+(int*)&x); * low word of x *
+ * to dig two 32 bit words out of the 64 bit IEEE floating point
+ * value. That is non-ANSI, and, moreover, the gcc instruction
+ * scheduler gets it wrong. We instead use the following macros.
+ * Unlike the original code, we determine the endianness at compile
+ * time, not at run time; I don't see much benefit to selecting
+ * endianness at run time.
+ */
+
+#ifndef u_int32_t
+#define u_int32_t uint32_t
+#endif
+#ifndef u_int64_t
+#define u_int64_t uint64_t
+#endif
+
+/* A union which permits us to convert between a long double and
+ four 32 bit ints. */
+
+#if MOZ_BIG_ENDIAN()
+
+typedef union
+{
+ long double value;
+ struct {
+ u_int32_t mswhi;
+ u_int32_t mswlo;
+ u_int32_t lswhi;
+ u_int32_t lswlo;
+ } parts32;
+ struct {
+ u_int64_t msw;
+ u_int64_t lsw;
+ } parts64;
+} ieee_quad_shape_type;
+
+#endif
+
+#if MOZ_LITTLE_ENDIAN()
+
+typedef union
+{
+ long double value;
+ struct {
+ u_int32_t lswlo;
+ u_int32_t lswhi;
+ u_int32_t mswlo;
+ u_int32_t mswhi;
+ } parts32;
+ struct {
+ u_int64_t lsw;
+ u_int64_t msw;
+ } parts64;
+} ieee_quad_shape_type;
+
+#endif
+
+#if MOZ_BIG_ENDIAN()
+
+typedef union
+{
+ double value;
+ struct
+ {
+ u_int32_t msw;
+ u_int32_t lsw;
+ } parts;
+ struct
+ {
+ u_int64_t w;
+ } xparts;
+} ieee_double_shape_type;
+
+#endif
+
+#if MOZ_LITTLE_ENDIAN()
+
+typedef union
+{
+ double value;
+ struct
+ {
+ u_int32_t lsw;
+ u_int32_t msw;
+ } parts;
+ struct
+ {
+ u_int64_t w;
+ } xparts;
+} ieee_double_shape_type;
+
+#endif
+
+/* Get two 32 bit ints from a double. */
+
+#define EXTRACT_WORDS(ix0,ix1,d) \
+do { \
+ ieee_double_shape_type ew_u; \
+ ew_u.value = (d); \
+ (ix0) = ew_u.parts.msw; \
+ (ix1) = ew_u.parts.lsw; \
+} while (0)
+
+/* Get a 64-bit int from a double. */
+#define EXTRACT_WORD64(ix,d) \
+do { \
+ ieee_double_shape_type ew_u; \
+ ew_u.value = (d); \
+ (ix) = ew_u.xparts.w; \
+} while (0)
+
+/* Get the more significant 32 bit int from a double. */
+
+#define GET_HIGH_WORD(i,d) \
+do { \
+ ieee_double_shape_type gh_u; \
+ gh_u.value = (d); \
+ (i) = gh_u.parts.msw; \
+} while (0)
+
+/* Get the less significant 32 bit int from a double. */
+
+#define GET_LOW_WORD(i,d) \
+do { \
+ ieee_double_shape_type gl_u; \
+ gl_u.value = (d); \
+ (i) = gl_u.parts.lsw; \
+} while (0)
+
+/* Set a double from two 32 bit ints. */
+
+#define INSERT_WORDS(d,ix0,ix1) \
+do { \
+ ieee_double_shape_type iw_u; \
+ iw_u.parts.msw = (ix0); \
+ iw_u.parts.lsw = (ix1); \
+ (d) = iw_u.value; \
+} while (0)
+
+/* Set a double from a 64-bit int. */
+#define INSERT_WORD64(d,ix) \
+do { \
+ ieee_double_shape_type iw_u; \
+ iw_u.xparts.w = (ix); \
+ (d) = iw_u.value; \
+} while (0)
+
+/* Set the more significant 32 bits of a double from an int. */
+
+#define SET_HIGH_WORD(d,v) \
+do { \
+ ieee_double_shape_type sh_u; \
+ sh_u.value = (d); \
+ sh_u.parts.msw = (v); \
+ (d) = sh_u.value; \
+} while (0)
+
+/* Set the less significant 32 bits of a double from an int. */
+
+#define SET_LOW_WORD(d,v) \
+do { \
+ ieee_double_shape_type sl_u; \
+ sl_u.value = (d); \
+ sl_u.parts.lsw = (v); \
+ (d) = sl_u.value; \
+} while (0)
+
+/*
+ * A union which permits us to convert between a float and a 32 bit
+ * int.
+ */
+
+typedef union
+{
+ float value;
+ /* FIXME: Assumes 32 bit int. */
+ unsigned int word;
+} ieee_float_shape_type;
+
+/* Get a 32 bit int from a float. */
+
+#define GET_FLOAT_WORD(i,d) \
+do { \
+ ieee_float_shape_type gf_u; \
+ gf_u.value = (d); \
+ (i) = gf_u.word; \
+} while (0)
+
+/* Set a float from a 32 bit int. */
+
+#define SET_FLOAT_WORD(d,i) \
+do { \
+ ieee_float_shape_type sf_u; \
+ sf_u.word = (i); \
+ (d) = sf_u.value; \
+} while (0)
+
+/*
+ * Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long
+ * double.
+ */
+
+#define EXTRACT_LDBL80_WORDS(ix0,ix1,d) \
+do { \
+ union IEEEl2bits ew_u; \
+ ew_u.e = (d); \
+ (ix0) = ew_u.xbits.expsign; \
+ (ix1) = ew_u.xbits.man; \
+} while (0)
+
+/*
+ * Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit
+ * long double.
+ */
+
+#define EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d) \
+do { \
+ union IEEEl2bits ew_u; \
+ ew_u.e = (d); \
+ (ix0) = ew_u.xbits.expsign; \
+ (ix1) = ew_u.xbits.manh; \
+ (ix2) = ew_u.xbits.manl; \
+} while (0)
+
+/* Get expsign as a 16 bit int from a long double. */
+
+#define GET_LDBL_EXPSIGN(i,d) \
+do { \
+ union IEEEl2bits ge_u; \
+ ge_u.e = (d); \
+ (i) = ge_u.xbits.expsign; \
+} while (0)
+
+/*
+ * Set an 80 bit long double from a 16 bit int expsign and a 64 bit int
+ * mantissa.
+ */
+
+#define INSERT_LDBL80_WORDS(d,ix0,ix1) \
+do { \
+ union IEEEl2bits iw_u; \
+ iw_u.xbits.expsign = (ix0); \
+ iw_u.xbits.man = (ix1); \
+ (d) = iw_u.e; \
+} while (0)
+
+/*
+ * Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints
+ * comprising the mantissa.
+ */
+
+#define INSERT_LDBL128_WORDS(d,ix0,ix1,ix2) \
+do { \
+ union IEEEl2bits iw_u; \
+ iw_u.xbits.expsign = (ix0); \
+ iw_u.xbits.manh = (ix1); \
+ iw_u.xbits.manl = (ix2); \
+ (d) = iw_u.e; \
+} while (0)
+
+/* Set expsign of a long double from a 16 bit int. */
+
+#define SET_LDBL_EXPSIGN(d,v) \
+do { \
+ union IEEEl2bits se_u; \
+ se_u.e = (d); \
+ se_u.xbits.expsign = (v); \
+ (d) = se_u.e; \
+} while (0)
+
+#ifdef __i386__
+/* Long double constants are broken on i386. */
+#define LD80C(m, ex, v) { \
+ .xbits.man = __CONCAT(m, ULL), \
+ .xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0), \
+}
+#else
+/* The above works on non-i386 too, but we use this to check v. */
+#define LD80C(m, ex, v) { .e = (v), }
+#endif
+
+#ifdef FLT_EVAL_METHOD
+/*
+ * Attempt to get strict C99 semantics for assignment with non-C99 compilers.
+ */
+#if !defined(_MSC_VER) && (FLT_EVAL_METHOD == 0 || __GNUC__ == 0)
+#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
+#else
+#define STRICT_ASSIGN(type, lval, rval) do { \
+ volatile type __lval; \
+ \
+ if (sizeof(type) >= sizeof(long double)) \
+ (lval) = (rval); \
+ else { \
+ __lval = (rval); \
+ (lval) = __lval; \
+ } \
+} while (0)
+#endif
+#else
+#define STRICT_ASSIGN(type, lval, rval) do { \
+ volatile type __lval; \
+ \
+ if (sizeof(type) >= sizeof(long double)) \
+ (lval) = (rval); \
+ else { \
+ __lval = (rval); \
+ (lval) = __lval; \
+ } \
+} while (0)
+#endif /* FLT_EVAL_METHOD */
+
+/* Support switching the mode to FP_PE if necessary. */
+#if defined(__i386__) && !defined(NO_FPSETPREC)
+#define ENTERI() ENTERIT(long double)
+#define ENTERIT(returntype) \
+ returntype __retval; \
+ fp_prec_t __oprec; \
+ \
+ if ((__oprec = fpgetprec()) != FP_PE) \
+ fpsetprec(FP_PE)
+#define RETURNI(x) do { \
+ __retval = (x); \
+ if (__oprec != FP_PE) \
+ fpsetprec(__oprec); \
+ RETURNF(__retval); \
+} while (0)
+#define ENTERV() \
+ fp_prec_t __oprec; \
+ \
+ if ((__oprec = fpgetprec()) != FP_PE) \
+ fpsetprec(FP_PE)
+#define RETURNV() do { \
+ if (__oprec != FP_PE) \
+ fpsetprec(__oprec); \
+ return; \
+} while (0)
+#else
+#define ENTERI()
+#define ENTERIT(x)
+#define RETURNI(x) RETURNF(x)
+#define ENTERV()
+#define RETURNV() return
+#endif
+
+/* Default return statement if hack*_t() is not used. */
+#define RETURNF(v) return (v)
+
+/*
+ * 2sum gives the same result as 2sumF without requiring |a| >= |b| or
+ * a == 0, but is slower.
+ */
+#define _2sum(a, b) do { \
+ __typeof(a) __s, __w; \
+ \
+ __w = (a) + (b); \
+ __s = __w - (a); \
+ (b) = ((a) - (__w - __s)) + ((b) - __s); \
+ (a) = __w; \
+} while (0)
+
+/*
+ * 2sumF algorithm.
+ *
+ * "Normalize" the terms in the infinite-precision expression a + b for
+ * the sum of 2 floating point values so that b is as small as possible
+ * relative to 'a'. (The resulting 'a' is the value of the expression in
+ * the same precision as 'a' and the resulting b is the rounding error.)
+ * |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and
+ * exponent overflow or underflow must not occur. This uses a Theorem of
+ * Dekker (1971). See Knuth (1981) 4.2.2 Theorem C. The name "TwoSum"
+ * is apparently due to Skewchuk (1997).
+ *
+ * For this to always work, assignment of a + b to 'a' must not retain any
+ * extra precision in a + b. This is required by C standards but broken
+ * in many compilers. The brokenness cannot be worked around using
+ * STRICT_ASSIGN() like we do elsewhere, since the efficiency of this
+ * algorithm would be destroyed by non-null strict assignments. (The
+ * compilers are correct to be broken -- the efficiency of all floating
+ * point code calculations would be destroyed similarly if they forced the
+ * conversions.)
+ *
+ * Fortunately, a case that works well can usually be arranged by building
+ * any extra precision into the type of 'a' -- 'a' should have type float_t,
+ * double_t or long double. b's type should be no larger than 'a's type.
+ * Callers should use these types with scopes as large as possible, to
+ * reduce their own extra-precision and efficiciency problems. In
+ * particular, they shouldn't convert back and forth just to call here.
+ */
+#ifdef DEBUG
+#define _2sumF(a, b) do { \
+ __typeof(a) __w; \
+ volatile __typeof(a) __ia, __ib, __r, __vw; \
+ \
+ __ia = (a); \
+ __ib = (b); \
+ assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib)); \
+ \
+ __w = (a) + (b); \
+ (b) = ((a) - __w) + (b); \
+ (a) = __w; \
+ \
+ /* The next 2 assertions are weak if (a) is already long double. */ \
+ assert((long double)__ia + __ib == (long double)(a) + (b)); \
+ __vw = __ia + __ib; \
+ __r = __ia - __vw; \
+ __r += __ib; \
+ assert(__vw == (a) && __r == (b)); \
+} while (0)
+#else /* !DEBUG */
+#define _2sumF(a, b) do { \
+ __typeof(a) __w; \
+ \
+ __w = (a) + (b); \
+ (b) = ((a) - __w) + (b); \
+ (a) = __w; \
+} while (0)
+#endif /* DEBUG */
+
+/*
+ * Set x += c, where x is represented in extra precision as a + b.
+ * x must be sufficiently normalized and sufficiently larger than c,
+ * and the result is then sufficiently normalized.
+ *
+ * The details of ordering are that |a| must be >= |c| (so that (a, c)
+ * can be normalized without extra work to swap 'a' with c). The details of
+ * the normalization are that b must be small relative to the normalized 'a'.
+ * Normalization of (a, c) makes the normalized c tiny relative to the
+ * normalized a, so b remains small relative to 'a' in the result. However,
+ * b need not ever be tiny relative to 'a'. For example, b might be about
+ * 2**20 times smaller than 'a' to give about 20 extra bits of precision.
+ * That is usually enough, and adding c (which by normalization is about
+ * 2**53 times smaller than a) cannot change b significantly. However,
+ * cancellation of 'a' with c in normalization of (a, c) may reduce 'a'
+ * significantly relative to b. The caller must ensure that significant
+ * cancellation doesn't occur, either by having c of the same sign as 'a',
+ * or by having |c| a few percent smaller than |a|. Pre-normalization of
+ * (a, b) may help.
+ *
+ * This is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2
+ * exercise 19). We gain considerable efficiency by requiring the terms to
+ * be sufficiently normalized and sufficiently increasing.
+ */
+#define _3sumF(a, b, c) do { \
+ __typeof(a) __tmp; \
+ \
+ __tmp = (c); \
+ _2sumF(__tmp, (a)); \
+ (b) += (a); \
+ (a) = __tmp; \
+} while (0)
+
+/*
+ * Common routine to process the arguments to nan(), nanf(), and nanl().
+ */
+void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
+
+/*
+ * Mix 0, 1 or 2 NaNs. First add 0 to each arg. This normally just turns
+ * signaling NaNs into quiet NaNs by setting a quiet bit. We do this
+ * because we want to never return a signaling NaN, and also because we
+ * don't want the quiet bit to affect the result. Then mix the converted
+ * args using the specified operation.
+ *
+ * When one arg is NaN, the result is typically that arg quieted. When both
+ * args are NaNs, the result is typically the quietening of the arg whose
+ * mantissa is largest after quietening. When neither arg is NaN, the
+ * result may be NaN because it is indeterminate, or finite for subsequent
+ * construction of a NaN as the indeterminate 0.0L/0.0L.
+ *
+ * Technical complications: the result in bits after rounding to the final
+ * precision might depend on the runtime precision and/or on compiler
+ * optimizations, especially when different register sets are used for
+ * different precisions. Try to make the result not depend on at least the
+ * runtime precision by always doing the main mixing step in long double
+ * precision. Try to reduce dependencies on optimizations by adding the
+ * the 0's in different precisions (unless everything is in long double
+ * precision).
+ */
+#define nan_mix(x, y) (nan_mix_op((x), (y), +))
+#define nan_mix_op(x, y, op) (((x) + 0.0L) op ((y) + 0))
+
+#ifdef _COMPLEX_H
+
+/*
+ * C99 specifies that complex numbers have the same representation as
+ * an array of two elements, where the first element is the real part
+ * and the second element is the imaginary part.
+ */
+typedef union {
+ float complex f;
+ float a[2];
+} float_complex;
+typedef union {
+ double complex f;
+ double a[2];
+} double_complex;
+typedef union {
+ long double complex f;
+ long double a[2];
+} long_double_complex;
+#define REALPART(z) ((z).a[0])
+#define IMAGPART(z) ((z).a[1])
+
+/*
+ * Inline functions that can be used to construct complex values.
+ *
+ * The C99 standard intends x+I*y to be used for this, but x+I*y is
+ * currently unusable in general since gcc introduces many overflow,
+ * underflow, sign and efficiency bugs by rewriting I*y as
+ * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
+ * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
+ * to -0.0+I*0.0.
+ *
+ * The C11 standard introduced the macros CMPLX(), CMPLXF() and CMPLXL()
+ * to construct complex values. Compilers that conform to the C99
+ * standard require the following functions to avoid the above issues.
+ */
+
+#ifndef CMPLXF
+static __inline float complex
+CMPLXF(float x, float y)
+{
+ float_complex z;
+
+ REALPART(z) = x;
+ IMAGPART(z) = y;
+ return (z.f);
+}
+#endif
+
+#ifndef CMPLX
+static __inline double complex
+CMPLX(double x, double y)
+{
+ double_complex z;
+
+ REALPART(z) = x;
+ IMAGPART(z) = y;
+ return (z.f);
+}
+#endif
+
+#ifndef CMPLXL
+static __inline long double complex
+CMPLXL(long double x, long double y)
+{
+ long_double_complex z;
+
+ REALPART(z) = x;
+ IMAGPART(z) = y;
+ return (z.f);
+}
+#endif
+
+#endif /* _COMPLEX_H */
+
+/*
+ * The rnint() family rounds to the nearest integer for a restricted range
+ * range of args (up to about 2**MANT_DIG). We assume that the current
+ * rounding mode is FE_TONEAREST so that this can be done efficiently.
+ * Extra precision causes more problems in practice, and we only centralize
+ * this here to reduce those problems, and have not solved the efficiency
+ * problems. The exp2() family uses a more delicate version of this that
+ * requires extracting bits from the intermediate value, so it is not
+ * centralized here and should copy any solution of the efficiency problems.
+ */
+
+static inline double
+rnint(__double_t x)
+{
+ /*
+ * This casts to double to kill any extra precision. This depends
+ * on the cast being applied to a double_t to avoid compiler bugs
+ * (this is a cleaner version of STRICT_ASSIGN()). This is
+ * inefficient if there actually is extra precision, but is hard
+ * to improve on. We use double_t in the API to minimise conversions
+ * for just calling here. Note that we cannot easily change the
+ * magic number to the one that works directly with double_t, since
+ * the rounding precision is variable at runtime on x86 so the
+ * magic number would need to be variable. Assuming that the
+ * rounding precision is always the default is too fragile. This
+ * and many other complications will move when the default is
+ * changed to FP_PE.
+ */
+ return ((double)(x + 0x1.8p52) - 0x1.8p52);
+}
+
+/*
+ * irint() and i64rint() give the same result as casting to their integer
+ * return type provided their arg is a floating point integer. They can
+ * sometimes be more efficient because no rounding is required.
+ */
+#if defined(amd64) || defined(__i386__)
+#define irint(x) \
+ (sizeof(x) == sizeof(float) && \
+ sizeof(__float_t) == sizeof(long double) ? irintf(x) : \
+ sizeof(x) == sizeof(double) && \
+ sizeof(__double_t) == sizeof(long double) ? irintd(x) : \
+ sizeof(x) == sizeof(long double) ? irintl(x) : (int)(x))
+#else
+#define irint(x) ((int)(x))
+#endif
+
+#define i64rint(x) ((int64_t)(x)) /* only needed for ld128 so not opt. */
+
+#if defined(__i386__)
+static __inline int
+irintf(float x)
+{
+ int n;
+
+ __asm("fistl %0" : "=m" (n) : "t" (x));
+ return (n);
+}
+
+static __inline int
+irintd(double x)
+{
+ int n;
+
+ __asm("fistl %0" : "=m" (n) : "t" (x));
+ return (n);
+}
+#endif
+
+#if defined(__amd64__) || defined(__i386__)
+static __inline int
+irintl(long double x)
+{
+ int n;
+
+ __asm("fistl %0" : "=m" (n) : "t" (x));
+ return (n);
+}
+#endif
+
+#ifdef DEBUG
+#if defined(__amd64__) || defined(__i386__)
+#define breakpoint() asm("int $3")
+#else
+#include <signal.h>
+
+#define breakpoint() raise(SIGTRAP)
+#endif
+#endif
+
+/* Write a pari script to test things externally. */
+#ifdef DOPRINT
+#include <stdio.h>
+
+#ifndef DOPRINT_SWIZZLE
+#define DOPRINT_SWIZZLE 0
+#endif
+
+#ifdef DOPRINT_LD80
+
+#define DOPRINT_START(xp) do { \
+ uint64_t __lx; \
+ uint16_t __hx; \
+ \
+ /* Hack to give more-problematic args. */ \
+ EXTRACT_LDBL80_WORDS(__hx, __lx, *xp); \
+ __lx ^= DOPRINT_SWIZZLE; \
+ INSERT_LDBL80_WORDS(*xp, __hx, __lx); \
+ printf("x = %.21Lg; ", (long double)*xp); \
+} while (0)
+#define DOPRINT_END1(v) \
+ printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
+#define DOPRINT_END2(hi, lo) \
+ printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
+ (long double)(hi), (long double)(lo))
+
+#elif defined(DOPRINT_D64)
+
+#define DOPRINT_START(xp) do { \
+ uint32_t __hx, __lx; \
+ \
+ EXTRACT_WORDS(__hx, __lx, *xp); \
+ __lx ^= DOPRINT_SWIZZLE; \
+ INSERT_WORDS(*xp, __hx, __lx); \
+ printf("x = %.21Lg; ", (long double)*xp); \
+} while (0)
+#define DOPRINT_END1(v) \
+ printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
+#define DOPRINT_END2(hi, lo) \
+ printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
+ (long double)(hi), (long double)(lo))
+
+#elif defined(DOPRINT_F32)
+
+#define DOPRINT_START(xp) do { \
+ uint32_t __hx; \
+ \
+ GET_FLOAT_WORD(__hx, *xp); \
+ __hx ^= DOPRINT_SWIZZLE; \
+ SET_FLOAT_WORD(*xp, __hx); \
+ printf("x = %.21Lg; ", (long double)*xp); \
+} while (0)
+#define DOPRINT_END1(v) \
+ printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
+#define DOPRINT_END2(hi, lo) \
+ printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
+ (long double)(hi), (long double)(lo))
+
+#else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */
+
+#ifndef DOPRINT_SWIZZLE_HIGH
+#define DOPRINT_SWIZZLE_HIGH 0
+#endif
+
+#define DOPRINT_START(xp) do { \
+ uint64_t __lx, __llx; \
+ uint16_t __hx; \
+ \
+ EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp); \
+ __llx ^= DOPRINT_SWIZZLE; \
+ __lx ^= DOPRINT_SWIZZLE_HIGH; \
+ INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx); \
+ printf("x = %.36Lg; ", (long double)*xp); \
+} while (0)
+#define DOPRINT_END1(v) \
+ printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v))
+#define DOPRINT_END2(hi, lo) \
+ printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n", \
+ (long double)(hi), (long double)(lo))
+
+#endif /* DOPRINT_LD80 */
+
+#else /* !DOPRINT */
+#define DOPRINT_START(xp)
+#define DOPRINT_END1(v)
+#define DOPRINT_END2(hi, lo)
+#endif /* DOPRINT */
+
+#define RETURNP(x) do { \
+ DOPRINT_END1(x); \
+ RETURNF(x); \
+} while (0)
+#define RETURNPI(x) do { \
+ DOPRINT_END1(x); \
+ RETURNI(x); \
+} while (0)
+#define RETURN2P(x, y) do { \
+ DOPRINT_END2((x), (y)); \
+ RETURNF((x) + (y)); \
+} while (0)
+#define RETURN2PI(x, y) do { \
+ DOPRINT_END2((x), (y)); \
+ RETURNI((x) + (y)); \
+} while (0)
+#ifdef STRUCT_RETURN
+#define RETURNSP(rp) do { \
+ if (!(rp)->lo_set) \
+ RETURNP((rp)->hi); \
+ RETURN2P((rp)->hi, (rp)->lo); \
+} while (0)
+#define RETURNSPI(rp) do { \
+ if (!(rp)->lo_set) \
+ RETURNPI((rp)->hi); \
+ RETURN2PI((rp)->hi, (rp)->lo); \
+} while (0)
+#endif
+#define SUM2P(x, y) ({ \
+ const __typeof (x) __x = (x); \
+ const __typeof (y) __y = (y); \
+ \
+ DOPRINT_END2(__x, __y); \
+ __x + __y; \
+})
+
+/*
+ * ieee style elementary functions
+ *
+ * We rename functions here to improve other sources' diffability
+ * against fdlibm.
+ */
+#define __ieee754_sqrt sqrt
+#define __ieee754_acos acos
+#define __ieee754_acosh acosh
+#define __ieee754_log log
+#define __ieee754_log2 log2
+#define __ieee754_atanh atanh
+#define __ieee754_asin asin
+#define __ieee754_atan2 atan2
+#define __ieee754_exp exp
+#define __ieee754_cosh cosh
+#define __ieee754_fmod fmod
+#define __ieee754_pow pow
+#define __ieee754_lgamma lgamma
+#define __ieee754_gamma gamma
+#define __ieee754_lgamma_r lgamma_r
+#define __ieee754_gamma_r gamma_r
+#define __ieee754_log10 log10
+#define __ieee754_sinh sinh
+#define __ieee754_hypot hypot
+#define __ieee754_j0 j0
+#define __ieee754_j1 j1
+#define __ieee754_y0 y0
+#define __ieee754_y1 y1
+#define __ieee754_jn jn
+#define __ieee754_yn yn
+#define __ieee754_remainder remainder
+#define __ieee754_scalb scalb
+#define __ieee754_sqrtf sqrtf
+#define __ieee754_acosf acosf
+#define __ieee754_acoshf acoshf
+#define __ieee754_logf logf
+#define __ieee754_atanhf atanhf
+#define __ieee754_asinf asinf
+#define __ieee754_atan2f atan2f
+#define __ieee754_expf expf
+#define __ieee754_coshf coshf
+#define __ieee754_fmodf fmodf
+#define __ieee754_powf powf
+#define __ieee754_lgammaf lgammaf
+#define __ieee754_gammaf gammaf
+#define __ieee754_lgammaf_r lgammaf_r
+#define __ieee754_gammaf_r gammaf_r
+#define __ieee754_log10f log10f
+#define __ieee754_log2f log2f
+#define __ieee754_sinhf sinhf
+#define __ieee754_hypotf hypotf
+#define __ieee754_j0f j0f
+#define __ieee754_j1f j1f
+#define __ieee754_y0f y0f
+#define __ieee754_y1f y1f
+#define __ieee754_jnf jnf
+#define __ieee754_ynf ynf
+#define __ieee754_remainderf remainderf
+#define __ieee754_scalbf scalbf
+
+#define acos fdlibm_acos
+#define acosf fdlibm_acosf
+#define asin fdlibm_asin
+#define asinf fdlibm_asinf
+#define atan fdlibm_atan
+#define atanf fdlibm_atanf
+#define atan2 fdlibm_atan2
+#define cos fdlibm_cos
+#define cosf fdlibm_cosf
+#define sin fdlibm_sin
+#define sinf fdlibm_sinf
+#define tan fdlibm_tan
+#define tanf fdlibm_tanf
+#define cosh fdlibm_cosh
+#define sinh fdlibm_sinh
+#define tanh fdlibm_tanh
+#define exp fdlibm_exp
+#define expf fdlibm_expf
+#define exp2 fdlibm_exp2
+#define exp2f fdlibm_exp2f
+#define log fdlibm_log
+#define logf fdlibm_logf
+#define log10 fdlibm_log10
+#define log10f fdlibm_log10f
+#define pow fdlibm_pow
+#define powf fdlibm_powf
+#define ceil fdlibm_ceil
+#define ceilf fdlibm_ceilf
+#define fabs fdlibm_fabs
+#define fabsf fdlibm_fabsf
+#define floor fdlibm_floor
+#define acosh fdlibm_acosh
+#define asinh fdlibm_asinh
+#define atanh fdlibm_atanh
+#define cbrt fdlibm_cbrt
+#define expm1 fdlibm_expm1
+#define hypot fdlibm_hypot
+#define hypotf fdlibm_hypotf
+#define log1p fdlibm_log1p
+#define log2 fdlibm_log2
+#define scalb fdlibm_scalb
+#define copysign fdlibm_copysign
+#define scalbn fdlibm_scalbn
+#define scalbnf fdlibm_scalbnf
+#define trunc fdlibm_trunc
+#define truncf fdlibm_truncf
+#define floorf fdlibm_floorf
+#define nearbyint fdlibm_nearbyint
+#define nearbyintf fdlibm_nearbyintf
+#define rint fdlibm_rint
+#define rintf fdlibm_rintf
+#define sqrtf fdlibm_sqrtf
+
+/* fdlibm kernel function */
+int __kernel_rem_pio2(double*,double*,int,int,int);
+
+/* double precision kernel functions */
+#ifndef INLINE_REM_PIO2
+int __ieee754_rem_pio2(double,double*);
+#endif
+double __kernel_sin(double,double,int);
+double __kernel_cos(double,double);
+double __kernel_tan(double,double,int);
+double __ldexp_exp(double,int);
+#ifdef _COMPLEX_H
+double complex __ldexp_cexp(double complex,int);
+#endif
+
+/* float precision kernel functions */
+#ifndef INLINE_REM_PIO2F
+int __ieee754_rem_pio2f(float,double*);
+#endif
+#ifndef INLINE_KERNEL_SINDF
+float __kernel_sindf(double);
+#endif
+#ifndef INLINE_KERNEL_COSDF
+float __kernel_cosdf(double);
+#endif
+#ifndef INLINE_KERNEL_TANDF
+float __kernel_tandf(double,int);
+#endif
+float __ldexp_expf(float,int);
+#ifdef _COMPLEX_H
+float complex __ldexp_cexpf(float complex,int);
+#endif
+
+/* long double precision kernel functions */
+long double __kernel_sinl(long double, long double, int);
+long double __kernel_cosl(long double, long double);
+long double __kernel_tanl(long double, long double, int);
+
+#endif /* !_MATH_PRIVATE_H_ */