summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/arm/sum_squares_neon.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/aom_dsp/arm/sum_squares_neon.c574
1 files changed, 574 insertions, 0 deletions
diff --git a/third_party/aom/aom_dsp/arm/sum_squares_neon.c b/third_party/aom/aom_dsp/arm/sum_squares_neon.c
new file mode 100644
index 0000000000..424b2b4445
--- /dev/null
+++ b/third_party/aom/aom_dsp/arm/sum_squares_neon.c
@@ -0,0 +1,574 @@
+/*
+ * Copyright (c) 2020, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <arm_neon.h>
+#include <assert.h>
+
+#include "aom_dsp/arm/mem_neon.h"
+#include "aom_dsp/arm/sum_neon.h"
+#include "config/aom_dsp_rtcd.h"
+
+static INLINE uint64_t aom_sum_squares_2d_i16_4x4_neon(const int16_t *src,
+ int stride) {
+ int16x4_t s0 = vld1_s16(src + 0 * stride);
+ int16x4_t s1 = vld1_s16(src + 1 * stride);
+ int16x4_t s2 = vld1_s16(src + 2 * stride);
+ int16x4_t s3 = vld1_s16(src + 3 * stride);
+
+ int32x4_t sum_squares = vmull_s16(s0, s0);
+ sum_squares = vmlal_s16(sum_squares, s1, s1);
+ sum_squares = vmlal_s16(sum_squares, s2, s2);
+ sum_squares = vmlal_s16(sum_squares, s3, s3);
+
+ return horizontal_long_add_u32x4(vreinterpretq_u32_s32(sum_squares));
+}
+
+static INLINE uint64_t aom_sum_squares_2d_i16_4xn_neon(const int16_t *src,
+ int stride, int height) {
+ int32x4_t sum_squares[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
+
+ int h = height;
+ do {
+ int16x4_t s0 = vld1_s16(src + 0 * stride);
+ int16x4_t s1 = vld1_s16(src + 1 * stride);
+ int16x4_t s2 = vld1_s16(src + 2 * stride);
+ int16x4_t s3 = vld1_s16(src + 3 * stride);
+
+ sum_squares[0] = vmlal_s16(sum_squares[0], s0, s0);
+ sum_squares[0] = vmlal_s16(sum_squares[0], s1, s1);
+ sum_squares[1] = vmlal_s16(sum_squares[1], s2, s2);
+ sum_squares[1] = vmlal_s16(sum_squares[1], s3, s3);
+
+ src += 4 * stride;
+ h -= 4;
+ } while (h != 0);
+
+ return horizontal_long_add_u32x4(
+ vreinterpretq_u32_s32(vaddq_s32(sum_squares[0], sum_squares[1])));
+}
+
+static INLINE uint64_t aom_sum_squares_2d_i16_nxn_neon(const int16_t *src,
+ int stride, int width,
+ int height) {
+ uint64x2_t sum_squares = vdupq_n_u64(0);
+
+ int h = height;
+ do {
+ int32x4_t ss_row[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
+ int w = 0;
+ do {
+ const int16_t *s = src + w;
+ int16x8_t s0 = vld1q_s16(s + 0 * stride);
+ int16x8_t s1 = vld1q_s16(s + 1 * stride);
+ int16x8_t s2 = vld1q_s16(s + 2 * stride);
+ int16x8_t s3 = vld1q_s16(s + 3 * stride);
+
+ ss_row[0] = vmlal_s16(ss_row[0], vget_low_s16(s0), vget_low_s16(s0));
+ ss_row[0] = vmlal_s16(ss_row[0], vget_low_s16(s1), vget_low_s16(s1));
+ ss_row[0] = vmlal_s16(ss_row[0], vget_low_s16(s2), vget_low_s16(s2));
+ ss_row[0] = vmlal_s16(ss_row[0], vget_low_s16(s3), vget_low_s16(s3));
+ ss_row[1] = vmlal_s16(ss_row[1], vget_high_s16(s0), vget_high_s16(s0));
+ ss_row[1] = vmlal_s16(ss_row[1], vget_high_s16(s1), vget_high_s16(s1));
+ ss_row[1] = vmlal_s16(ss_row[1], vget_high_s16(s2), vget_high_s16(s2));
+ ss_row[1] = vmlal_s16(ss_row[1], vget_high_s16(s3), vget_high_s16(s3));
+ w += 8;
+ } while (w < width);
+
+ sum_squares = vpadalq_u32(
+ sum_squares, vreinterpretq_u32_s32(vaddq_s32(ss_row[0], ss_row[1])));
+
+ src += 4 * stride;
+ h -= 4;
+ } while (h != 0);
+
+ return horizontal_add_u64x2(sum_squares);
+}
+
+uint64_t aom_sum_squares_2d_i16_neon(const int16_t *src, int stride, int width,
+ int height) {
+ // 4 elements per row only requires half an SIMD register, so this
+ // must be a special case, but also note that over 75% of all calls
+ // are with size == 4, so it is also the common case.
+ if (LIKELY(width == 4 && height == 4)) {
+ return aom_sum_squares_2d_i16_4x4_neon(src, stride);
+ } else if (LIKELY(width == 4 && (height & 3) == 0)) {
+ return aom_sum_squares_2d_i16_4xn_neon(src, stride, height);
+ } else if (LIKELY((width & 7) == 0 && (height & 3) == 0)) {
+ // Generic case
+ return aom_sum_squares_2d_i16_nxn_neon(src, stride, width, height);
+ } else {
+ return aom_sum_squares_2d_i16_c(src, stride, width, height);
+ }
+}
+
+static INLINE uint64_t aom_sum_sse_2d_i16_4x4_neon(const int16_t *src,
+ int stride, int *sum) {
+ int16x4_t s0 = vld1_s16(src + 0 * stride);
+ int16x4_t s1 = vld1_s16(src + 1 * stride);
+ int16x4_t s2 = vld1_s16(src + 2 * stride);
+ int16x4_t s3 = vld1_s16(src + 3 * stride);
+
+ int32x4_t sse = vmull_s16(s0, s0);
+ sse = vmlal_s16(sse, s1, s1);
+ sse = vmlal_s16(sse, s2, s2);
+ sse = vmlal_s16(sse, s3, s3);
+
+ int32x4_t sum_01 = vaddl_s16(s0, s1);
+ int32x4_t sum_23 = vaddl_s16(s2, s3);
+ *sum += horizontal_add_s32x4(vaddq_s32(sum_01, sum_23));
+
+ return horizontal_long_add_u32x4(vreinterpretq_u32_s32(sse));
+}
+
+static INLINE uint64_t aom_sum_sse_2d_i16_4xn_neon(const int16_t *src,
+ int stride, int height,
+ int *sum) {
+ int32x4_t sse[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
+ int32x2_t sum_acc[2] = { vdup_n_s32(0), vdup_n_s32(0) };
+
+ int h = height;
+ do {
+ int16x4_t s0 = vld1_s16(src + 0 * stride);
+ int16x4_t s1 = vld1_s16(src + 1 * stride);
+ int16x4_t s2 = vld1_s16(src + 2 * stride);
+ int16x4_t s3 = vld1_s16(src + 3 * stride);
+
+ sse[0] = vmlal_s16(sse[0], s0, s0);
+ sse[0] = vmlal_s16(sse[0], s1, s1);
+ sse[1] = vmlal_s16(sse[1], s2, s2);
+ sse[1] = vmlal_s16(sse[1], s3, s3);
+
+ sum_acc[0] = vpadal_s16(sum_acc[0], s0);
+ sum_acc[0] = vpadal_s16(sum_acc[0], s1);
+ sum_acc[1] = vpadal_s16(sum_acc[1], s2);
+ sum_acc[1] = vpadal_s16(sum_acc[1], s3);
+
+ src += 4 * stride;
+ h -= 4;
+ } while (h != 0);
+
+ *sum += horizontal_add_s32x4(vcombine_s32(sum_acc[0], sum_acc[1]));
+ return horizontal_long_add_u32x4(
+ vreinterpretq_u32_s32(vaddq_s32(sse[0], sse[1])));
+}
+
+static INLINE uint64_t aom_sum_sse_2d_i16_nxn_neon(const int16_t *src,
+ int stride, int width,
+ int height, int *sum) {
+ uint64x2_t sse = vdupq_n_u64(0);
+ int32x4_t sum_acc = vdupq_n_s32(0);
+
+ int h = height;
+ do {
+ int32x4_t sse_row[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
+ int w = 0;
+ do {
+ const int16_t *s = src + w;
+ int16x8_t s0 = vld1q_s16(s + 0 * stride);
+ int16x8_t s1 = vld1q_s16(s + 1 * stride);
+ int16x8_t s2 = vld1q_s16(s + 2 * stride);
+ int16x8_t s3 = vld1q_s16(s + 3 * stride);
+
+ sse_row[0] = vmlal_s16(sse_row[0], vget_low_s16(s0), vget_low_s16(s0));
+ sse_row[0] = vmlal_s16(sse_row[0], vget_low_s16(s1), vget_low_s16(s1));
+ sse_row[0] = vmlal_s16(sse_row[0], vget_low_s16(s2), vget_low_s16(s2));
+ sse_row[0] = vmlal_s16(sse_row[0], vget_low_s16(s3), vget_low_s16(s3));
+ sse_row[1] = vmlal_s16(sse_row[1], vget_high_s16(s0), vget_high_s16(s0));
+ sse_row[1] = vmlal_s16(sse_row[1], vget_high_s16(s1), vget_high_s16(s1));
+ sse_row[1] = vmlal_s16(sse_row[1], vget_high_s16(s2), vget_high_s16(s2));
+ sse_row[1] = vmlal_s16(sse_row[1], vget_high_s16(s3), vget_high_s16(s3));
+
+ sum_acc = vpadalq_s16(sum_acc, s0);
+ sum_acc = vpadalq_s16(sum_acc, s1);
+ sum_acc = vpadalq_s16(sum_acc, s2);
+ sum_acc = vpadalq_s16(sum_acc, s3);
+
+ w += 8;
+ } while (w < width);
+
+ sse = vpadalq_u32(sse,
+ vreinterpretq_u32_s32(vaddq_s32(sse_row[0], sse_row[1])));
+
+ src += 4 * stride;
+ h -= 4;
+ } while (h != 0);
+
+ *sum += horizontal_add_s32x4(sum_acc);
+ return horizontal_add_u64x2(sse);
+}
+
+uint64_t aom_sum_sse_2d_i16_neon(const int16_t *src, int stride, int width,
+ int height, int *sum) {
+ uint64_t sse;
+
+ if (LIKELY(width == 4 && height == 4)) {
+ sse = aom_sum_sse_2d_i16_4x4_neon(src, stride, sum);
+ } else if (LIKELY(width == 4 && (height & 3) == 0)) {
+ // width = 4, height is a multiple of 4.
+ sse = aom_sum_sse_2d_i16_4xn_neon(src, stride, height, sum);
+ } else if (LIKELY((width & 7) == 0 && (height & 3) == 0)) {
+ // Generic case - width is multiple of 8, height is multiple of 4.
+ sse = aom_sum_sse_2d_i16_nxn_neon(src, stride, width, height, sum);
+ } else {
+ sse = aom_sum_sse_2d_i16_c(src, stride, width, height, sum);
+ }
+
+ return sse;
+}
+
+static INLINE uint64_t aom_sum_squares_i16_4xn_neon(const int16_t *src,
+ uint32_t n) {
+ uint64x2_t sum_u64 = vdupq_n_u64(0);
+
+ int i = n;
+ do {
+ uint32x4_t sum;
+ int16x4_t s0 = vld1_s16(src);
+
+ sum = vreinterpretq_u32_s32(vmull_s16(s0, s0));
+
+ sum_u64 = vpadalq_u32(sum_u64, sum);
+
+ src += 4;
+ i -= 4;
+ } while (i >= 4);
+
+ if (i > 0) {
+ return horizontal_add_u64x2(sum_u64) + aom_sum_squares_i16_c(src, i);
+ }
+ return horizontal_add_u64x2(sum_u64);
+}
+
+static INLINE uint64_t aom_sum_squares_i16_8xn_neon(const int16_t *src,
+ uint32_t n) {
+ uint64x2_t sum_u64[2] = { vdupq_n_u64(0), vdupq_n_u64(0) };
+
+ int i = n;
+ do {
+ uint32x4_t sum[2];
+ int16x8_t s0 = vld1q_s16(src);
+
+ sum[0] =
+ vreinterpretq_u32_s32(vmull_s16(vget_low_s16(s0), vget_low_s16(s0)));
+ sum[1] =
+ vreinterpretq_u32_s32(vmull_s16(vget_high_s16(s0), vget_high_s16(s0)));
+
+ sum_u64[0] = vpadalq_u32(sum_u64[0], sum[0]);
+ sum_u64[1] = vpadalq_u32(sum_u64[1], sum[1]);
+
+ src += 8;
+ i -= 8;
+ } while (i >= 8);
+
+ if (i > 0) {
+ return horizontal_add_u64x2(vaddq_u64(sum_u64[0], sum_u64[1])) +
+ aom_sum_squares_i16_c(src, i);
+ }
+ return horizontal_add_u64x2(vaddq_u64(sum_u64[0], sum_u64[1]));
+}
+
+uint64_t aom_sum_squares_i16_neon(const int16_t *src, uint32_t n) {
+ // This function seems to be called only for values of N >= 64. See
+ // av1/encoder/compound_type.c.
+ if (LIKELY(n >= 8)) {
+ return aom_sum_squares_i16_8xn_neon(src, n);
+ }
+ if (n >= 4) {
+ return aom_sum_squares_i16_4xn_neon(src, n);
+ }
+ return aom_sum_squares_i16_c(src, n);
+}
+
+static INLINE uint64_t aom_var_2d_u8_4xh_neon(uint8_t *src, int src_stride,
+ int width, int height) {
+ uint64_t sum = 0;
+ uint64_t sse = 0;
+ uint32x2_t sum_u32 = vdup_n_u32(0);
+ uint32x4_t sse_u32 = vdupq_n_u32(0);
+
+ // 255*256 = 65280, so we can accumulate up to 256 8-bit elements in a 16-bit
+ // element before we need to accumulate to 32-bit elements. Since we're
+ // accumulating in uint16x4_t vectors, this means we can accumulate up to 4
+ // rows of 256 elements. Therefore the limit can be computed as: h_limit = (4
+ // * 256) / width.
+ int h_limit = (4 * 256) / width;
+ int h_tmp = height > h_limit ? h_limit : height;
+
+ int h = 0;
+ do {
+ uint16x4_t sum_u16 = vdup_n_u16(0);
+ do {
+ uint8_t *src_ptr = src;
+ int w = width;
+ do {
+ uint8x8_t s0 = load_unaligned_u8(src_ptr, src_stride);
+
+ sum_u16 = vpadal_u8(sum_u16, s0);
+
+ uint16x8_t sse_u16 = vmull_u8(s0, s0);
+
+ sse_u32 = vpadalq_u16(sse_u32, sse_u16);
+
+ src_ptr += 8;
+ w -= 8;
+ } while (w >= 8);
+
+ // Process remaining columns in the row using C.
+ while (w > 0) {
+ int idx = width - w;
+ const uint8_t v = src[idx];
+ sum += v;
+ sse += v * v;
+ w--;
+ }
+
+ src += 2 * src_stride;
+ h += 2;
+ } while (h < h_tmp && h < height);
+
+ sum_u32 = vpadal_u16(sum_u32, sum_u16);
+ h_tmp += h_limit;
+ } while (h < height);
+
+ sum += horizontal_long_add_u32x2(sum_u32);
+ sse += horizontal_long_add_u32x4(sse_u32);
+
+ return sse - sum * sum / (width * height);
+}
+
+static INLINE uint64_t aom_var_2d_u8_8xh_neon(uint8_t *src, int src_stride,
+ int width, int height) {
+ uint64_t sum = 0;
+ uint64_t sse = 0;
+ uint32x2_t sum_u32 = vdup_n_u32(0);
+ uint32x4_t sse_u32 = vdupq_n_u32(0);
+
+ // 255*256 = 65280, so we can accumulate up to 256 8-bit elements in a 16-bit
+ // element before we need to accumulate to 32-bit elements. Since we're
+ // accumulating in uint16x4_t vectors, this means we can accumulate up to 4
+ // rows of 256 elements. Therefore the limit can be computed as: h_limit = (4
+ // * 256) / width.
+ int h_limit = (4 * 256) / width;
+ int h_tmp = height > h_limit ? h_limit : height;
+
+ int h = 0;
+ do {
+ uint16x4_t sum_u16 = vdup_n_u16(0);
+ do {
+ uint8_t *src_ptr = src;
+ int w = width;
+ do {
+ uint8x8_t s0 = vld1_u8(src_ptr);
+
+ sum_u16 = vpadal_u8(sum_u16, s0);
+
+ uint16x8_t sse_u16 = vmull_u8(s0, s0);
+
+ sse_u32 = vpadalq_u16(sse_u32, sse_u16);
+
+ src_ptr += 8;
+ w -= 8;
+ } while (w >= 8);
+
+ // Process remaining columns in the row using C.
+ while (w > 0) {
+ int idx = width - w;
+ const uint8_t v = src[idx];
+ sum += v;
+ sse += v * v;
+ w--;
+ }
+
+ src += src_stride;
+ ++h;
+ } while (h < h_tmp && h < height);
+
+ sum_u32 = vpadal_u16(sum_u32, sum_u16);
+ h_tmp += h_limit;
+ } while (h < height);
+
+ sum += horizontal_long_add_u32x2(sum_u32);
+ sse += horizontal_long_add_u32x4(sse_u32);
+
+ return sse - sum * sum / (width * height);
+}
+
+static INLINE uint64_t aom_var_2d_u8_16xh_neon(uint8_t *src, int src_stride,
+ int width, int height) {
+ uint64_t sum = 0;
+ uint64_t sse = 0;
+ uint32x4_t sum_u32 = vdupq_n_u32(0);
+ uint32x4_t sse_u32[2] = { vdupq_n_u32(0), vdupq_n_u32(0) };
+
+ // 255*256 = 65280, so we can accumulate up to 256 8-bit elements in a 16-bit
+ // element before we need to accumulate to 32-bit elements. Since we're
+ // accumulating in uint16x8_t vectors, this means we can accumulate up to 8
+ // rows of 256 elements. Therefore the limit can be computed as: h_limit = (8
+ // * 256) / width.
+ int h_limit = (8 * 256) / width;
+ int h_tmp = height > h_limit ? h_limit : height;
+
+ int h = 0;
+ do {
+ uint16x8_t sum_u16 = vdupq_n_u16(0);
+ do {
+ int w = width;
+ uint8_t *src_ptr = src;
+ do {
+ uint8x16_t s0 = vld1q_u8(src_ptr);
+
+ sum_u16 = vpadalq_u8(sum_u16, s0);
+
+ uint16x8_t sse_u16_lo = vmull_u8(vget_low_u8(s0), vget_low_u8(s0));
+ uint16x8_t sse_u16_hi = vmull_u8(vget_high_u8(s0), vget_high_u8(s0));
+
+ sse_u32[0] = vpadalq_u16(sse_u32[0], sse_u16_lo);
+ sse_u32[1] = vpadalq_u16(sse_u32[1], sse_u16_hi);
+
+ src_ptr += 16;
+ w -= 16;
+ } while (w >= 16);
+
+ // Process remaining columns in the row using C.
+ while (w > 0) {
+ int idx = width - w;
+ const uint8_t v = src[idx];
+ sum += v;
+ sse += v * v;
+ w--;
+ }
+
+ src += src_stride;
+ ++h;
+ } while (h < h_tmp && h < height);
+
+ sum_u32 = vpadalq_u16(sum_u32, sum_u16);
+ h_tmp += h_limit;
+ } while (h < height);
+
+ sum += horizontal_long_add_u32x4(sum_u32);
+ sse += horizontal_long_add_u32x4(vaddq_u32(sse_u32[0], sse_u32[1]));
+
+ return sse - sum * sum / (width * height);
+}
+
+uint64_t aom_var_2d_u8_neon(uint8_t *src, int src_stride, int width,
+ int height) {
+ if (width >= 16) {
+ return aom_var_2d_u8_16xh_neon(src, src_stride, width, height);
+ }
+ if (width >= 8) {
+ return aom_var_2d_u8_8xh_neon(src, src_stride, width, height);
+ }
+ if (width >= 4 && height % 2 == 0) {
+ return aom_var_2d_u8_4xh_neon(src, src_stride, width, height);
+ }
+ return aom_var_2d_u8_c(src, src_stride, width, height);
+}
+
+static INLINE uint64_t aom_var_2d_u16_4xh_neon(uint8_t *src, int src_stride,
+ int width, int height) {
+ uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src);
+ uint64_t sum = 0;
+ uint64_t sse = 0;
+ uint32x2_t sum_u32 = vdup_n_u32(0);
+ uint64x2_t sse_u64 = vdupq_n_u64(0);
+
+ int h = height;
+ do {
+ int w = width;
+ uint16_t *src_ptr = src_u16;
+ do {
+ uint16x4_t s0 = vld1_u16(src_ptr);
+
+ sum_u32 = vpadal_u16(sum_u32, s0);
+
+ uint32x4_t sse_u32 = vmull_u16(s0, s0);
+
+ sse_u64 = vpadalq_u32(sse_u64, sse_u32);
+
+ src_ptr += 4;
+ w -= 4;
+ } while (w >= 4);
+
+ // Process remaining columns in the row using C.
+ while (w > 0) {
+ int idx = width - w;
+ const uint16_t v = src_u16[idx];
+ sum += v;
+ sse += v * v;
+ w--;
+ }
+
+ src_u16 += src_stride;
+ } while (--h != 0);
+
+ sum += horizontal_long_add_u32x2(sum_u32);
+ sse += horizontal_add_u64x2(sse_u64);
+
+ return sse - sum * sum / (width * height);
+}
+
+static INLINE uint64_t aom_var_2d_u16_8xh_neon(uint8_t *src, int src_stride,
+ int width, int height) {
+ uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src);
+ uint64_t sum = 0;
+ uint64_t sse = 0;
+ uint32x4_t sum_u32 = vdupq_n_u32(0);
+ uint64x2_t sse_u64[2] = { vdupq_n_u64(0), vdupq_n_u64(0) };
+
+ int h = height;
+ do {
+ int w = width;
+ uint16_t *src_ptr = src_u16;
+ do {
+ uint16x8_t s0 = vld1q_u16(src_ptr);
+
+ sum_u32 = vpadalq_u16(sum_u32, s0);
+
+ uint32x4_t sse_u32_lo = vmull_u16(vget_low_u16(s0), vget_low_u16(s0));
+ uint32x4_t sse_u32_hi = vmull_u16(vget_high_u16(s0), vget_high_u16(s0));
+
+ sse_u64[0] = vpadalq_u32(sse_u64[0], sse_u32_lo);
+ sse_u64[1] = vpadalq_u32(sse_u64[1], sse_u32_hi);
+
+ src_ptr += 8;
+ w -= 8;
+ } while (w >= 8);
+
+ // Process remaining columns in the row using C.
+ while (w > 0) {
+ int idx = width - w;
+ const uint16_t v = src_u16[idx];
+ sum += v;
+ sse += v * v;
+ w--;
+ }
+
+ src_u16 += src_stride;
+ } while (--h != 0);
+
+ sum += horizontal_long_add_u32x4(sum_u32);
+ sse += horizontal_add_u64x2(vaddq_u64(sse_u64[0], sse_u64[1]));
+
+ return sse - sum * sum / (width * height);
+}
+
+uint64_t aom_var_2d_u16_neon(uint8_t *src, int src_stride, int width,
+ int height) {
+ if (width >= 8) {
+ return aom_var_2d_u16_8xh_neon(src, src_stride, width, height);
+ }
+ if (width >= 4) {
+ return aom_var_2d_u16_4xh_neon(src, src_stride, width, height);
+ }
+ return aom_var_2d_u16_c(src, src_stride, width, height);
+}