summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/arm/variance_neon.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/aom_dsp/arm/variance_neon.c470
1 files changed, 470 insertions, 0 deletions
diff --git a/third_party/aom/aom_dsp/arm/variance_neon.c b/third_party/aom/aom_dsp/arm/variance_neon.c
new file mode 100644
index 0000000000..9e4e8c0cf0
--- /dev/null
+++ b/third_party/aom/aom_dsp/arm/variance_neon.c
@@ -0,0 +1,470 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <arm_neon.h>
+
+#include "aom/aom_integer.h"
+#include "aom_dsp/arm/mem_neon.h"
+#include "aom_dsp/arm/sum_neon.h"
+#include "aom_ports/mem.h"
+#include "config/aom_config.h"
+#include "config/aom_dsp_rtcd.h"
+
+static INLINE void variance_4xh_neon(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride, int h,
+ uint32_t *sse, int *sum) {
+ int16x8_t sum_s16 = vdupq_n_s16(0);
+ int32x4_t sse_s32 = vdupq_n_s32(0);
+
+ // Number of rows we can process before 'sum_s16' overflows:
+ // 32767 / 255 ~= 128, but we use an 8-wide accumulator; so 256 4-wide rows.
+ assert(h <= 256);
+
+ int i = h;
+ do {
+ uint8x8_t s = load_unaligned_u8(src, src_stride);
+ uint8x8_t r = load_unaligned_u8(ref, ref_stride);
+ int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r));
+
+ sum_s16 = vaddq_s16(sum_s16, diff);
+
+ sse_s32 = vmlal_s16(sse_s32, vget_low_s16(diff), vget_low_s16(diff));
+ sse_s32 = vmlal_s16(sse_s32, vget_high_s16(diff), vget_high_s16(diff));
+
+ src += 2 * src_stride;
+ ref += 2 * ref_stride;
+ i -= 2;
+ } while (i != 0);
+
+ *sum = horizontal_add_s16x8(sum_s16);
+ *sse = (uint32_t)horizontal_add_s32x4(sse_s32);
+}
+
+static INLINE void variance_8xh_neon(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride, int h,
+ uint32_t *sse, int *sum) {
+ int16x8_t sum_s16 = vdupq_n_s16(0);
+ int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
+
+ // Number of rows we can process before 'sum_s16' overflows:
+ // 32767 / 255 ~= 128
+ assert(h <= 128);
+
+ int i = h;
+ do {
+ uint8x8_t s = vld1_u8(src);
+ uint8x8_t r = vld1_u8(ref);
+ int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r));
+
+ sum_s16 = vaddq_s16(sum_s16, diff);
+
+ sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff), vget_low_s16(diff));
+ sse_s32[1] =
+ vmlal_s16(sse_s32[1], vget_high_s16(diff), vget_high_s16(diff));
+
+ src += src_stride;
+ ref += ref_stride;
+ } while (--i != 0);
+
+ *sum = horizontal_add_s16x8(sum_s16);
+ *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
+}
+
+static INLINE void variance_16xh_neon(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride, int h,
+ uint32_t *sse, int *sum) {
+ int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) };
+ int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
+
+ // Number of rows we can process before 'sum_s16' accumulators overflow:
+ // 32767 / 255 ~= 128, so 128 16-wide rows.
+ assert(h <= 128);
+
+ int i = h;
+ do {
+ uint8x16_t s = vld1q_u8(src);
+ uint8x16_t r = vld1q_u8(ref);
+
+ int16x8_t diff_l =
+ vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r)));
+ int16x8_t diff_h =
+ vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r)));
+
+ sum_s16[0] = vaddq_s16(sum_s16[0], diff_l);
+ sum_s16[1] = vaddq_s16(sum_s16[1], diff_h);
+
+ sse_s32[0] =
+ vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l));
+ sse_s32[1] =
+ vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l));
+ sse_s32[0] =
+ vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h));
+ sse_s32[1] =
+ vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h));
+
+ src += src_stride;
+ ref += ref_stride;
+ } while (--i != 0);
+
+ *sum = horizontal_add_s16x8(vaddq_s16(sum_s16[0], sum_s16[1]));
+ *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
+}
+
+static INLINE void variance_large_neon(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride,
+ int w, int h, int h_limit, uint32_t *sse,
+ int *sum) {
+ int32x4_t sum_s32 = vdupq_n_s32(0);
+ int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
+
+ // 'h_limit' is the number of 'w'-width rows we can process before our 16-bit
+ // accumulator overflows. After hitting this limit we accumulate into 32-bit
+ // elements.
+ int h_tmp = h > h_limit ? h_limit : h;
+
+ int i = 0;
+ do {
+ int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) };
+ do {
+ int j = 0;
+ do {
+ uint8x16_t s = vld1q_u8(src + j);
+ uint8x16_t r = vld1q_u8(ref + j);
+
+ int16x8_t diff_l =
+ vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r)));
+ int16x8_t diff_h =
+ vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r)));
+
+ sum_s16[0] = vaddq_s16(sum_s16[0], diff_l);
+ sum_s16[1] = vaddq_s16(sum_s16[1], diff_h);
+
+ sse_s32[0] =
+ vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l));
+ sse_s32[1] =
+ vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l));
+ sse_s32[0] =
+ vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h));
+ sse_s32[1] =
+ vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h));
+
+ j += 16;
+ } while (j < w);
+
+ src += src_stride;
+ ref += ref_stride;
+ i++;
+ } while (i < h_tmp);
+
+ sum_s32 = vpadalq_s16(sum_s32, sum_s16[0]);
+ sum_s32 = vpadalq_s16(sum_s32, sum_s16[1]);
+
+ h_tmp += h_limit;
+ } while (i < h);
+
+ *sum = horizontal_add_s32x4(sum_s32);
+ *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
+}
+
+static INLINE void variance_32xh_neon(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride, int h,
+ uint32_t *sse, int *sum) {
+ variance_large_neon(src, src_stride, ref, ref_stride, 32, h, 64, sse, sum);
+}
+
+static INLINE void variance_64xh_neon(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride, int h,
+ uint32_t *sse, int *sum) {
+ variance_large_neon(src, src_stride, ref, ref_stride, 64, h, 32, sse, sum);
+}
+
+static INLINE void variance_128xh_neon(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride,
+ int h, uint32_t *sse, int *sum) {
+ variance_large_neon(src, src_stride, ref, ref_stride, 128, h, 16, sse, sum);
+}
+
+#define VARIANCE_WXH_NEON(w, h, shift) \
+ unsigned int aom_variance##w##x##h##_neon( \
+ const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
+ unsigned int *sse) { \
+ int sum; \
+ variance_##w##xh_neon(src, src_stride, ref, ref_stride, h, sse, &sum); \
+ return *sse - (uint32_t)(((int64_t)sum * sum) >> shift); \
+ }
+
+VARIANCE_WXH_NEON(4, 4, 4)
+VARIANCE_WXH_NEON(4, 8, 5)
+VARIANCE_WXH_NEON(4, 16, 6)
+
+VARIANCE_WXH_NEON(8, 4, 5)
+VARIANCE_WXH_NEON(8, 8, 6)
+VARIANCE_WXH_NEON(8, 16, 7)
+VARIANCE_WXH_NEON(8, 32, 8)
+
+VARIANCE_WXH_NEON(16, 4, 6)
+VARIANCE_WXH_NEON(16, 8, 7)
+VARIANCE_WXH_NEON(16, 16, 8)
+VARIANCE_WXH_NEON(16, 32, 9)
+VARIANCE_WXH_NEON(16, 64, 10)
+
+VARIANCE_WXH_NEON(32, 8, 8)
+VARIANCE_WXH_NEON(32, 16, 9)
+VARIANCE_WXH_NEON(32, 32, 10)
+VARIANCE_WXH_NEON(32, 64, 11)
+
+VARIANCE_WXH_NEON(64, 16, 10)
+VARIANCE_WXH_NEON(64, 32, 11)
+VARIANCE_WXH_NEON(64, 64, 12)
+VARIANCE_WXH_NEON(64, 128, 13)
+
+VARIANCE_WXH_NEON(128, 64, 13)
+VARIANCE_WXH_NEON(128, 128, 14)
+
+#undef VARIANCE_WXH_NEON
+
+// TODO(yunqingwang): Perform variance of two/four 8x8 blocks similar to that of
+// AVX2. Also, implement the NEON for variance computation present in this
+// function.
+void aom_get_var_sse_sum_8x8_quad_neon(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride,
+ uint32_t *sse8x8, int *sum8x8,
+ unsigned int *tot_sse, int *tot_sum,
+ uint32_t *var8x8) {
+ // Loop over four 8x8 blocks. Process one 8x32 block.
+ for (int k = 0; k < 4; k++) {
+ variance_8xh_neon(src + (k * 8), src_stride, ref + (k * 8), ref_stride, 8,
+ &sse8x8[k], &sum8x8[k]);
+ }
+
+ *tot_sse += sse8x8[0] + sse8x8[1] + sse8x8[2] + sse8x8[3];
+ *tot_sum += sum8x8[0] + sum8x8[1] + sum8x8[2] + sum8x8[3];
+ for (int i = 0; i < 4; i++) {
+ var8x8[i] = sse8x8[i] - (uint32_t)(((int64_t)sum8x8[i] * sum8x8[i]) >> 6);
+ }
+}
+
+void aom_get_var_sse_sum_16x16_dual_neon(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride,
+ uint32_t *sse16x16,
+ unsigned int *tot_sse, int *tot_sum,
+ uint32_t *var16x16) {
+ int sum16x16[2] = { 0 };
+ // Loop over two 16x16 blocks. Process one 16x32 block.
+ for (int k = 0; k < 2; k++) {
+ variance_16xh_neon(src + (k * 16), src_stride, ref + (k * 16), ref_stride,
+ 16, &sse16x16[k], &sum16x16[k]);
+ }
+
+ *tot_sse += sse16x16[0] + sse16x16[1];
+ *tot_sum += sum16x16[0] + sum16x16[1];
+ for (int i = 0; i < 2; i++) {
+ var16x16[i] =
+ sse16x16[i] - (uint32_t)(((int64_t)sum16x16[i] * sum16x16[i]) >> 8);
+ }
+}
+
+static INLINE unsigned int mse8xh_neon(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride,
+ unsigned int *sse, int h) {
+ uint8x8_t s[2], r[2];
+ int16x4_t diff_lo[2], diff_hi[2];
+ uint16x8_t diff[2];
+ int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
+
+ int i = h;
+ do {
+ s[0] = vld1_u8(src);
+ src += src_stride;
+ s[1] = vld1_u8(src);
+ src += src_stride;
+ r[0] = vld1_u8(ref);
+ ref += ref_stride;
+ r[1] = vld1_u8(ref);
+ ref += ref_stride;
+
+ diff[0] = vsubl_u8(s[0], r[0]);
+ diff[1] = vsubl_u8(s[1], r[1]);
+
+ diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0]));
+ diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1]));
+ sse_s32[0] = vmlal_s16(sse_s32[0], diff_lo[0], diff_lo[0]);
+ sse_s32[1] = vmlal_s16(sse_s32[1], diff_lo[1], diff_lo[1]);
+
+ diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0]));
+ diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1]));
+ sse_s32[0] = vmlal_s16(sse_s32[0], diff_hi[0], diff_hi[0]);
+ sse_s32[1] = vmlal_s16(sse_s32[1], diff_hi[1], diff_hi[1]);
+
+ i -= 2;
+ } while (i != 0);
+
+ sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[1]);
+
+ *sse = horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
+ return horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
+}
+
+static INLINE unsigned int mse16xh_neon(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride,
+ unsigned int *sse, int h) {
+ uint8x16_t s[2], r[2];
+ int16x4_t diff_lo[4], diff_hi[4];
+ uint16x8_t diff[4];
+ int32x4_t sse_s32[4] = { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0),
+ vdupq_n_s32(0) };
+
+ int i = h;
+ do {
+ s[0] = vld1q_u8(src);
+ src += src_stride;
+ s[1] = vld1q_u8(src);
+ src += src_stride;
+ r[0] = vld1q_u8(ref);
+ ref += ref_stride;
+ r[1] = vld1q_u8(ref);
+ ref += ref_stride;
+
+ diff[0] = vsubl_u8(vget_low_u8(s[0]), vget_low_u8(r[0]));
+ diff[1] = vsubl_u8(vget_high_u8(s[0]), vget_high_u8(r[0]));
+ diff[2] = vsubl_u8(vget_low_u8(s[1]), vget_low_u8(r[1]));
+ diff[3] = vsubl_u8(vget_high_u8(s[1]), vget_high_u8(r[1]));
+
+ diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0]));
+ diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1]));
+ sse_s32[0] = vmlal_s16(sse_s32[0], diff_lo[0], diff_lo[0]);
+ sse_s32[1] = vmlal_s16(sse_s32[1], diff_lo[1], diff_lo[1]);
+
+ diff_lo[2] = vreinterpret_s16_u16(vget_low_u16(diff[2]));
+ diff_lo[3] = vreinterpret_s16_u16(vget_low_u16(diff[3]));
+ sse_s32[2] = vmlal_s16(sse_s32[2], diff_lo[2], diff_lo[2]);
+ sse_s32[3] = vmlal_s16(sse_s32[3], diff_lo[3], diff_lo[3]);
+
+ diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0]));
+ diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1]));
+ sse_s32[0] = vmlal_s16(sse_s32[0], diff_hi[0], diff_hi[0]);
+ sse_s32[1] = vmlal_s16(sse_s32[1], diff_hi[1], diff_hi[1]);
+
+ diff_hi[2] = vreinterpret_s16_u16(vget_high_u16(diff[2]));
+ diff_hi[3] = vreinterpret_s16_u16(vget_high_u16(diff[3]));
+ sse_s32[2] = vmlal_s16(sse_s32[2], diff_hi[2], diff_hi[2]);
+ sse_s32[3] = vmlal_s16(sse_s32[3], diff_hi[3], diff_hi[3]);
+
+ i -= 2;
+ } while (i != 0);
+
+ sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[1]);
+ sse_s32[2] = vaddq_s32(sse_s32[2], sse_s32[3]);
+ sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[2]);
+
+ *sse = horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
+ return horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
+}
+
+#define MSE_WXH_NEON(w, h) \
+ unsigned int aom_mse##w##x##h##_neon(const uint8_t *src, int src_stride, \
+ const uint8_t *ref, int ref_stride, \
+ unsigned int *sse) { \
+ return mse##w##xh_neon(src, src_stride, ref, ref_stride, sse, h); \
+ }
+
+MSE_WXH_NEON(8, 8)
+MSE_WXH_NEON(8, 16)
+
+MSE_WXH_NEON(16, 8)
+MSE_WXH_NEON(16, 16)
+
+#undef MSE_WXH_NEON
+
+static INLINE uint64x2_t mse_accumulate_u16_u8_8x2(uint64x2_t sum,
+ uint16x8_t s0, uint16x8_t s1,
+ uint8x8_t d0, uint8x8_t d1) {
+ int16x8_t e0 = vreinterpretq_s16_u16(vsubw_u8(s0, d0));
+ int16x8_t e1 = vreinterpretq_s16_u16(vsubw_u8(s1, d1));
+
+ int32x4_t mse = vmull_s16(vget_low_s16(e0), vget_low_s16(e0));
+ mse = vmlal_s16(mse, vget_high_s16(e0), vget_high_s16(e0));
+ mse = vmlal_s16(mse, vget_low_s16(e1), vget_low_s16(e1));
+ mse = vmlal_s16(mse, vget_high_s16(e1), vget_high_s16(e1));
+
+ return vpadalq_u32(sum, vreinterpretq_u32_s32(mse));
+}
+
+static uint64x2_t mse_wxh_16bit(uint8_t *dst, int dstride, const uint16_t *src,
+ int sstride, int w, int h) {
+ assert((w == 8 || w == 4) && (h == 8 || h == 4));
+
+ uint64x2_t sum = vdupq_n_u64(0);
+
+ if (w == 8) {
+ do {
+ uint8x8_t d0 = vld1_u8(dst + 0 * dstride);
+ uint8x8_t d1 = vld1_u8(dst + 1 * dstride);
+ uint16x8_t s0 = vld1q_u16(src + 0 * sstride);
+ uint16x8_t s1 = vld1q_u16(src + 1 * sstride);
+
+ sum = mse_accumulate_u16_u8_8x2(sum, s0, s1, d0, d1);
+
+ dst += 2 * dstride;
+ src += 2 * sstride;
+ h -= 2;
+ } while (h != 0);
+ } else {
+ do {
+ uint8x8_t d0 = load_unaligned_u8_4x2(dst + 0 * dstride, dstride);
+ uint8x8_t d1 = load_unaligned_u8_4x2(dst + 2 * dstride, dstride);
+ uint16x8_t s0 = load_unaligned_u16_4x2(src + 0 * sstride, sstride);
+ uint16x8_t s1 = load_unaligned_u16_4x2(src + 2 * sstride, sstride);
+
+ sum = mse_accumulate_u16_u8_8x2(sum, s0, s1, d0, d1);
+
+ dst += 4 * dstride;
+ src += 4 * sstride;
+ h -= 4;
+ } while (h != 0);
+ }
+
+ return sum;
+}
+
+// Computes mse for a given block size. This function gets called for specific
+// block sizes, which are 8x8, 8x4, 4x8 and 4x4.
+uint64_t aom_mse_wxh_16bit_neon(uint8_t *dst, int dstride, uint16_t *src,
+ int sstride, int w, int h) {
+ return horizontal_add_u64x2(mse_wxh_16bit(dst, dstride, src, sstride, w, h));
+}
+
+uint32_t aom_get_mb_ss_neon(const int16_t *a) {
+ int32x4_t sse[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
+
+ for (int i = 0; i < 256; i = i + 8) {
+ int16x8_t a_s16 = vld1q_s16(a + i);
+
+ sse[0] = vmlal_s16(sse[0], vget_low_s16(a_s16), vget_low_s16(a_s16));
+ sse[1] = vmlal_s16(sse[1], vget_high_s16(a_s16), vget_high_s16(a_s16));
+ }
+
+ return horizontal_add_s32x4(vaddq_s32(sse[0], sse[1]));
+}
+
+uint64_t aom_mse_16xh_16bit_neon(uint8_t *dst, int dstride, uint16_t *src,
+ int w, int h) {
+ uint64x2_t sum = vdupq_n_u64(0);
+
+ int num_blks = 16 / w;
+ do {
+ sum = vaddq_u64(sum, mse_wxh_16bit(dst, dstride, src, w, w, h));
+ dst += w;
+ src += w * h;
+ } while (--num_blks != 0);
+
+ return horizontal_add_u64x2(sum);
+}