summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/flow_estimation/disflow.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/aom_dsp/flow_estimation/disflow.c823
1 files changed, 823 insertions, 0 deletions
diff --git a/third_party/aom/aom_dsp/flow_estimation/disflow.c b/third_party/aom/aom_dsp/flow_estimation/disflow.c
new file mode 100644
index 0000000000..147a8ab3b3
--- /dev/null
+++ b/third_party/aom/aom_dsp/flow_estimation/disflow.c
@@ -0,0 +1,823 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+// Dense Inverse Search flow algorithm
+// Paper: https://arxiv.org/abs/1603.03590
+
+#include <assert.h>
+#include <math.h>
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/flow_estimation/corner_detect.h"
+#include "aom_dsp/flow_estimation/disflow.h"
+#include "aom_dsp/flow_estimation/ransac.h"
+#include "aom_dsp/pyramid.h"
+#include "aom_mem/aom_mem.h"
+
+#include "config/aom_dsp_rtcd.h"
+
+// Amount to downsample the flow field by.
+// eg. DOWNSAMPLE_SHIFT = 2 (DOWNSAMPLE_FACTOR == 4) means we calculate
+// one flow point for each 4x4 pixel region of the frame
+// Must be a power of 2
+#define DOWNSAMPLE_SHIFT 3
+#define DOWNSAMPLE_FACTOR (1 << DOWNSAMPLE_SHIFT)
+
+// Filters used when upscaling the flow field from one pyramid level
+// to another. See upscale_flow_component for details on kernel selection
+#define FLOW_UPSCALE_TAPS 4
+
+// Number of outermost flow field entries (on each edge) which can't be
+// computed, because the patch they correspond to extends outside of the
+// frame
+// The border is (DISFLOW_PATCH_SIZE >> 1) pixels, which is
+// (DISFLOW_PATCH_SIZE >> 1) >> DOWNSAMPLE_SHIFT many flow field entries
+#define FLOW_BORDER_INNER ((DISFLOW_PATCH_SIZE >> 1) >> DOWNSAMPLE_SHIFT)
+
+// Number of extra padding entries on each side of the flow field.
+// These samples are added so that we do not need to apply clamping when
+// interpolating or upsampling the flow field
+#define FLOW_BORDER_OUTER (FLOW_UPSCALE_TAPS / 2)
+
+// When downsampling the flow field, each flow field entry covers a square
+// region of pixels in the image pyramid. This value is equal to the position
+// of the center of that region, as an offset from the top/left edge.
+//
+// Note: Using ((DOWNSAMPLE_FACTOR - 1) / 2) is equivalent to the more
+// natural expression ((DOWNSAMPLE_FACTOR / 2) - 1),
+// unless DOWNSAMPLE_FACTOR == 1 (ie, no downsampling), in which case
+// this gives the correct offset of 0 instead of -1.
+#define UPSAMPLE_CENTER_OFFSET ((DOWNSAMPLE_FACTOR - 1) / 2)
+
+static double flow_upscale_filter[2][FLOW_UPSCALE_TAPS] = {
+ // Cubic interpolation kernels for phase=0.75 and phase=0.25, respectively
+ { -3 / 128., 29 / 128., 111 / 128., -9 / 128. },
+ { -9 / 128., 111 / 128., 29 / 128., -3 / 128. }
+};
+
+static INLINE void get_cubic_kernel_dbl(double x, double kernel[4]) {
+ // Check that the fractional position is in range.
+ //
+ // Note: x is calculated from (eg.) `u_frac = u - floor(u)`.
+ // Mathematically, this implies that 0 <= x < 1. However, in practice it is
+ // possible to have x == 1 due to floating point rounding. This is fine,
+ // and we still interpolate correctly if we allow x = 1.
+ assert(0 <= x && x <= 1);
+
+ double x2 = x * x;
+ double x3 = x2 * x;
+ kernel[0] = -0.5 * x + x2 - 0.5 * x3;
+ kernel[1] = 1.0 - 2.5 * x2 + 1.5 * x3;
+ kernel[2] = 0.5 * x + 2.0 * x2 - 1.5 * x3;
+ kernel[3] = -0.5 * x2 + 0.5 * x3;
+}
+
+static INLINE void get_cubic_kernel_int(double x, int kernel[4]) {
+ double kernel_dbl[4];
+ get_cubic_kernel_dbl(x, kernel_dbl);
+
+ kernel[0] = (int)rint(kernel_dbl[0] * (1 << DISFLOW_INTERP_BITS));
+ kernel[1] = (int)rint(kernel_dbl[1] * (1 << DISFLOW_INTERP_BITS));
+ kernel[2] = (int)rint(kernel_dbl[2] * (1 << DISFLOW_INTERP_BITS));
+ kernel[3] = (int)rint(kernel_dbl[3] * (1 << DISFLOW_INTERP_BITS));
+}
+
+static INLINE double get_cubic_value_dbl(const double *p,
+ const double kernel[4]) {
+ return kernel[0] * p[0] + kernel[1] * p[1] + kernel[2] * p[2] +
+ kernel[3] * p[3];
+}
+
+static INLINE int get_cubic_value_int(const int *p, const int kernel[4]) {
+ return kernel[0] * p[0] + kernel[1] * p[1] + kernel[2] * p[2] +
+ kernel[3] * p[3];
+}
+
+static INLINE double bicubic_interp_one(const double *arr, int stride,
+ const double h_kernel[4],
+ const double v_kernel[4]) {
+ double tmp[1 * 4];
+
+ // Horizontal convolution
+ for (int i = -1; i < 3; ++i) {
+ tmp[i + 1] = get_cubic_value_dbl(&arr[i * stride - 1], h_kernel);
+ }
+
+ // Vertical convolution
+ return get_cubic_value_dbl(tmp, v_kernel);
+}
+
+static int determine_disflow_correspondence(const ImagePyramid *src_pyr,
+ const ImagePyramid *ref_pyr,
+ CornerList *corners,
+ const FlowField *flow,
+ Correspondence *correspondences) {
+ const int width = flow->width;
+ const int height = flow->height;
+ const int stride = flow->stride;
+
+ int num_correspondences = 0;
+ for (int i = 0; i < corners->num_corners; ++i) {
+ const int x0 = corners->corners[2 * i];
+ const int y0 = corners->corners[2 * i + 1];
+
+ // Offset points, to compensate for the fact that (say) a flow field entry
+ // at horizontal index i, is nominally associated with the pixel at
+ // horizontal coordinate (i << DOWNSAMPLE_FACTOR) + UPSAMPLE_CENTER_OFFSET
+ // This offset must be applied before we split the coordinate into integer
+ // and fractional parts, in order for the interpolation to be correct.
+ const int x = x0 - UPSAMPLE_CENTER_OFFSET;
+ const int y = y0 - UPSAMPLE_CENTER_OFFSET;
+
+ // Split the pixel coordinates into integer flow field coordinates and
+ // an offset for interpolation
+ const int flow_x = x >> DOWNSAMPLE_SHIFT;
+ const double flow_sub_x =
+ (x & (DOWNSAMPLE_FACTOR - 1)) / (double)DOWNSAMPLE_FACTOR;
+ const int flow_y = y >> DOWNSAMPLE_SHIFT;
+ const double flow_sub_y =
+ (y & (DOWNSAMPLE_FACTOR - 1)) / (double)DOWNSAMPLE_FACTOR;
+
+ // Exclude points which would sample from the outer border of the flow
+ // field, as this would give lower-quality results.
+ //
+ // Note: As we never read from the border region at pyramid level 0, we
+ // can skip filling it in. If the conditions here are removed, or any
+ // other logic is added which reads from this border region, then
+ // compute_flow_field() will need to be modified to call
+ // fill_flow_field_borders() at pyramid level 0 to set up the correct
+ // border data.
+ if (flow_x < 1 || (flow_x + 2) >= width) continue;
+ if (flow_y < 1 || (flow_y + 2) >= height) continue;
+
+ double h_kernel[4];
+ double v_kernel[4];
+ get_cubic_kernel_dbl(flow_sub_x, h_kernel);
+ get_cubic_kernel_dbl(flow_sub_y, v_kernel);
+
+ double flow_u = bicubic_interp_one(&flow->u[flow_y * stride + flow_x],
+ stride, h_kernel, v_kernel);
+ double flow_v = bicubic_interp_one(&flow->v[flow_y * stride + flow_x],
+ stride, h_kernel, v_kernel);
+
+ // Refine the interpolated flow vector one last time
+ const int patch_tl_x = x0 - DISFLOW_PATCH_CENTER;
+ const int patch_tl_y = y0 - DISFLOW_PATCH_CENTER;
+ aom_compute_flow_at_point(
+ src_pyr->layers[0].buffer, ref_pyr->layers[0].buffer, patch_tl_x,
+ patch_tl_y, src_pyr->layers[0].width, src_pyr->layers[0].height,
+ src_pyr->layers[0].stride, &flow_u, &flow_v);
+
+ // Use original points (without offsets) when filling in correspondence
+ // array
+ correspondences[num_correspondences].x = x0;
+ correspondences[num_correspondences].y = y0;
+ correspondences[num_correspondences].rx = x0 + flow_u;
+ correspondences[num_correspondences].ry = y0 + flow_v;
+ num_correspondences++;
+ }
+ return num_correspondences;
+}
+
+// Compare two regions of width x height pixels, one rooted at position
+// (x, y) in src and the other at (x + u, y + v) in ref.
+// This function returns the sum of squared pixel differences between
+// the two regions.
+static INLINE void compute_flow_vector(const uint8_t *src, const uint8_t *ref,
+ int width, int height, int stride, int x,
+ int y, double u, double v,
+ const int16_t *dx, const int16_t *dy,
+ int *b) {
+ memset(b, 0, 2 * sizeof(*b));
+
+ // Split offset into integer and fractional parts, and compute cubic
+ // interpolation kernels
+ const int u_int = (int)floor(u);
+ const int v_int = (int)floor(v);
+ const double u_frac = u - floor(u);
+ const double v_frac = v - floor(v);
+
+ int h_kernel[4];
+ int v_kernel[4];
+ get_cubic_kernel_int(u_frac, h_kernel);
+ get_cubic_kernel_int(v_frac, v_kernel);
+
+ // Storage for intermediate values between the two convolution directions
+ int tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 3)];
+ int *tmp = tmp_ + DISFLOW_PATCH_SIZE; // Offset by one row
+
+ // Clamp coordinates so that all pixels we fetch will remain within the
+ // allocated border region, but allow them to go far enough out that
+ // the border pixels' values do not change.
+ // Since we are calculating an 8x8 block, the bottom-right pixel
+ // in the block has coordinates (x0 + 7, y0 + 7). Then, the cubic
+ // interpolation has 4 taps, meaning that the output of pixel
+ // (x_w, y_w) depends on the pixels in the range
+ // ([x_w - 1, x_w + 2], [y_w - 1, y_w + 2]).
+ //
+ // Thus the most extreme coordinates which will be fetched are
+ // (x0 - 1, y0 - 1) and (x0 + 9, y0 + 9).
+ const int x0 = clamp(x + u_int, -9, width);
+ const int y0 = clamp(y + v_int, -9, height);
+
+ // Horizontal convolution
+ for (int i = -1; i < DISFLOW_PATCH_SIZE + 2; ++i) {
+ const int y_w = y0 + i;
+ for (int j = 0; j < DISFLOW_PATCH_SIZE; ++j) {
+ const int x_w = x0 + j;
+ int arr[4];
+
+ arr[0] = (int)ref[y_w * stride + (x_w - 1)];
+ arr[1] = (int)ref[y_w * stride + (x_w + 0)];
+ arr[2] = (int)ref[y_w * stride + (x_w + 1)];
+ arr[3] = (int)ref[y_w * stride + (x_w + 2)];
+
+ // Apply kernel and round, keeping 6 extra bits of precision.
+ //
+ // 6 is the maximum allowable number of extra bits which will avoid
+ // the intermediate values overflowing an int16_t. The most extreme
+ // intermediate value occurs when:
+ // * The input pixels are [0, 255, 255, 0]
+ // * u_frac = 0.5
+ // In this case, the un-scaled output is 255 * 1.125 = 286.875.
+ // As an integer with 6 fractional bits, that is 18360, which fits
+ // in an int16_t. But with 7 fractional bits it would be 36720,
+ // which is too large.
+ tmp[i * DISFLOW_PATCH_SIZE + j] = ROUND_POWER_OF_TWO(
+ get_cubic_value_int(arr, h_kernel), DISFLOW_INTERP_BITS - 6);
+ }
+ }
+
+ // Vertical convolution
+ for (int i = 0; i < DISFLOW_PATCH_SIZE; ++i) {
+ for (int j = 0; j < DISFLOW_PATCH_SIZE; ++j) {
+ const int *p = &tmp[i * DISFLOW_PATCH_SIZE + j];
+ const int arr[4] = { p[-DISFLOW_PATCH_SIZE], p[0], p[DISFLOW_PATCH_SIZE],
+ p[2 * DISFLOW_PATCH_SIZE] };
+ const int result = get_cubic_value_int(arr, v_kernel);
+
+ // Apply kernel and round.
+ // This time, we have to round off the 6 extra bits which were kept
+ // earlier, but we also want to keep DISFLOW_DERIV_SCALE_LOG2 extra bits
+ // of precision to match the scale of the dx and dy arrays.
+ const int round_bits = DISFLOW_INTERP_BITS + 6 - DISFLOW_DERIV_SCALE_LOG2;
+ const int warped = ROUND_POWER_OF_TWO(result, round_bits);
+ const int src_px = src[(x + j) + (y + i) * stride] << 3;
+ const int dt = warped - src_px;
+ b[0] += dx[i * DISFLOW_PATCH_SIZE + j] * dt;
+ b[1] += dy[i * DISFLOW_PATCH_SIZE + j] * dt;
+ }
+ }
+}
+
+static INLINE void sobel_filter(const uint8_t *src, int src_stride,
+ int16_t *dst, int dst_stride, int dir) {
+ int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 2)];
+ int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE;
+
+ // Sobel filter kernel
+ // This must have an overall scale factor equal to DISFLOW_DERIV_SCALE,
+ // in order to produce correctly scaled outputs.
+ // To work out the scale factor, we multiply two factors:
+ //
+ // * For the derivative filter (sobel_a), comparing our filter
+ // image[x - 1] - image[x + 1]
+ // to the standard form
+ // d/dx image[x] = image[x+1] - image[x]
+ // tells us that we're actually calculating -2 * d/dx image[2]
+ //
+ // * For the smoothing filter (sobel_b), all coefficients are positive
+ // so the scale factor is just the sum of the coefficients
+ //
+ // Thus we need to make sure that DISFLOW_DERIV_SCALE = 2 * sum(sobel_b)
+ // (and take care of the - sign from sobel_a elsewhere)
+ static const int16_t sobel_a[3] = { 1, 0, -1 };
+ static const int16_t sobel_b[3] = { 1, 2, 1 };
+ const int taps = 3;
+
+ // horizontal filter
+ const int16_t *h_kernel = dir ? sobel_a : sobel_b;
+
+ for (int y = -1; y < DISFLOW_PATCH_SIZE + 1; ++y) {
+ for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) {
+ int sum = 0;
+ for (int k = 0; k < taps; ++k) {
+ sum += h_kernel[k] * src[y * src_stride + (x + k - 1)];
+ }
+ tmp[y * DISFLOW_PATCH_SIZE + x] = sum;
+ }
+ }
+
+ // vertical filter
+ const int16_t *v_kernel = dir ? sobel_b : sobel_a;
+
+ for (int y = 0; y < DISFLOW_PATCH_SIZE; ++y) {
+ for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) {
+ int sum = 0;
+ for (int k = 0; k < taps; ++k) {
+ sum += v_kernel[k] * tmp[(y + k - 1) * DISFLOW_PATCH_SIZE + x];
+ }
+ dst[y * dst_stride + x] = sum;
+ }
+ }
+}
+
+// Computes the components of the system of equations used to solve for
+// a flow vector.
+//
+// The flow equations are a least-squares system, derived as follows:
+//
+// For each pixel in the patch, we calculate the current error `dt`,
+// and the x and y gradients `dx` and `dy` of the source patch.
+// This means that, to first order, the squared error for this pixel is
+//
+// (dt + u * dx + v * dy)^2
+//
+// where (u, v) are the incremental changes to the flow vector.
+//
+// We then want to find the values of u and v which minimize the sum
+// of the squared error across all pixels. Conveniently, this fits exactly
+// into the form of a least squares problem, with one equation
+//
+// u * dx + v * dy = -dt
+//
+// for each pixel.
+//
+// Summing across all pixels in a square window of size DISFLOW_PATCH_SIZE,
+// and absorbing the - sign elsewhere, this results in the least squares system
+//
+// M = |sum(dx * dx) sum(dx * dy)|
+// |sum(dx * dy) sum(dy * dy)|
+//
+// b = |sum(dx * dt)|
+// |sum(dy * dt)|
+static INLINE void compute_flow_matrix(const int16_t *dx, int dx_stride,
+ const int16_t *dy, int dy_stride,
+ double *M) {
+ int tmp[4] = { 0 };
+
+ for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) {
+ for (int j = 0; j < DISFLOW_PATCH_SIZE; j++) {
+ tmp[0] += dx[i * dx_stride + j] * dx[i * dx_stride + j];
+ tmp[1] += dx[i * dx_stride + j] * dy[i * dy_stride + j];
+ // Don't compute tmp[2], as it should be equal to tmp[1]
+ tmp[3] += dy[i * dy_stride + j] * dy[i * dy_stride + j];
+ }
+ }
+
+ // Apply regularization
+ // We follow the standard regularization method of adding `k * I` before
+ // inverting. This ensures that the matrix will be invertible.
+ //
+ // Setting the regularization strength k to 1 seems to work well here, as
+ // typical values coming from the other equations are very large (1e5 to
+ // 1e6, with an upper limit of around 6e7, at the time of writing).
+ // It also preserves the property that all matrix values are whole numbers,
+ // which is convenient for integerized SIMD implementation.
+ tmp[0] += 1;
+ tmp[3] += 1;
+
+ tmp[2] = tmp[1];
+
+ M[0] = (double)tmp[0];
+ M[1] = (double)tmp[1];
+ M[2] = (double)tmp[2];
+ M[3] = (double)tmp[3];
+}
+
+// Try to invert the matrix M
+// Note: Due to the nature of how a least-squares matrix is constructed, all of
+// the eigenvalues will be >= 0, and therefore det M >= 0 as well.
+// The regularization term `+ k * I` further ensures that det M >= k^2.
+// As mentioned in compute_flow_matrix(), here we use k = 1, so det M >= 1.
+// So we don't have to worry about non-invertible matrices here.
+static INLINE void invert_2x2(const double *M, double *M_inv) {
+ double det = (M[0] * M[3]) - (M[1] * M[2]);
+ assert(det >= 1);
+ const double det_inv = 1 / det;
+
+ M_inv[0] = M[3] * det_inv;
+ M_inv[1] = -M[1] * det_inv;
+ M_inv[2] = -M[2] * det_inv;
+ M_inv[3] = M[0] * det_inv;
+}
+
+void aom_compute_flow_at_point_c(const uint8_t *src, const uint8_t *ref, int x,
+ int y, int width, int height, int stride,
+ double *u, double *v) {
+ double M[4];
+ double M_inv[4];
+ int b[2];
+ int16_t dx[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE];
+ int16_t dy[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE];
+
+ // Compute gradients within this patch
+ const uint8_t *src_patch = &src[y * stride + x];
+ sobel_filter(src_patch, stride, dx, DISFLOW_PATCH_SIZE, 1);
+ sobel_filter(src_patch, stride, dy, DISFLOW_PATCH_SIZE, 0);
+
+ compute_flow_matrix(dx, DISFLOW_PATCH_SIZE, dy, DISFLOW_PATCH_SIZE, M);
+ invert_2x2(M, M_inv);
+
+ for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) {
+ compute_flow_vector(src, ref, width, height, stride, x, y, *u, *v, dx, dy,
+ b);
+
+ // Solve flow equations to find a better estimate for the flow vector
+ // at this point
+ const double step_u = M_inv[0] * b[0] + M_inv[1] * b[1];
+ const double step_v = M_inv[2] * b[0] + M_inv[3] * b[1];
+ *u += fclamp(step_u * DISFLOW_STEP_SIZE, -2, 2);
+ *v += fclamp(step_v * DISFLOW_STEP_SIZE, -2, 2);
+
+ if (fabs(step_u) + fabs(step_v) < DISFLOW_STEP_SIZE_THRESOLD) {
+ // Stop iteration when we're close to convergence
+ break;
+ }
+ }
+}
+
+static void fill_flow_field_borders(double *flow, int width, int height,
+ int stride) {
+ // Calculate the bounds of the rectangle which was filled in by
+ // compute_flow_field() before calling this function.
+ // These indices are inclusive on both ends.
+ const int left_index = FLOW_BORDER_INNER;
+ const int right_index = (width - FLOW_BORDER_INNER - 1);
+ const int top_index = FLOW_BORDER_INNER;
+ const int bottom_index = (height - FLOW_BORDER_INNER - 1);
+
+ // Left area
+ for (int i = top_index; i <= bottom_index; i += 1) {
+ double *row = flow + i * stride;
+ const double left = row[left_index];
+ for (int j = -FLOW_BORDER_OUTER; j < left_index; j++) {
+ row[j] = left;
+ }
+ }
+
+ // Right area
+ for (int i = top_index; i <= bottom_index; i += 1) {
+ double *row = flow + i * stride;
+ const double right = row[right_index];
+ for (int j = right_index + 1; j < width + FLOW_BORDER_OUTER; j++) {
+ row[j] = right;
+ }
+ }
+
+ // Top area
+ const double *top_row = flow + top_index * stride - FLOW_BORDER_OUTER;
+ for (int i = -FLOW_BORDER_OUTER; i < top_index; i++) {
+ double *row = flow + i * stride - FLOW_BORDER_OUTER;
+ size_t length = width + 2 * FLOW_BORDER_OUTER;
+ memcpy(row, top_row, length * sizeof(*row));
+ }
+
+ // Bottom area
+ const double *bottom_row = flow + bottom_index * stride - FLOW_BORDER_OUTER;
+ for (int i = bottom_index + 1; i < height + FLOW_BORDER_OUTER; i++) {
+ double *row = flow + i * stride - FLOW_BORDER_OUTER;
+ size_t length = width + 2 * FLOW_BORDER_OUTER;
+ memcpy(row, bottom_row, length * sizeof(*row));
+ }
+}
+
+// Upscale one component of the flow field, from a size of
+// cur_width x cur_height to a size of (2*cur_width) x (2*cur_height), storing
+// the result back into the same buffer. This function also scales the flow
+// vector by 2, so that when we move to the next pyramid level down, the implied
+// motion vector is the same.
+//
+// The temporary buffer tmpbuf must be large enough to hold an intermediate
+// array of size stride * cur_height, *plus* FLOW_BORDER_OUTER rows above and
+// below. In other words, indices from -FLOW_BORDER_OUTER * stride to
+// (cur_height + FLOW_BORDER_OUTER) * stride - 1 must be valid.
+//
+// Note that the same stride is used for u before and after upscaling
+// and for the temporary buffer, for simplicity.
+//
+// A note on phasing:
+//
+// The flow fields at two adjacent pyramid levels are offset from each other,
+// and we need to account for this in the construction of the interpolation
+// kernels.
+//
+// Consider an 8x8 pixel patch at pyramid level n. This is split into four
+// patches at pyramid level n-1. Bringing these patches back up to pyramid level
+// n, each sub-patch covers 4x4 pixels, and between them they cover the same
+// 8x8 region.
+//
+// Therefore, at pyramid level n, two adjacent patches look like this:
+//
+// + - - - - - - - + - - - - - - - +
+// | | |
+// | x x | x x |
+// | | |
+// | # | # |
+// | | |
+// | x x | x x |
+// | | |
+// + - - - - - - - + - - - - - - - +
+//
+// where # marks the center of a patch at pyramid level n (the input to this
+// function), and x marks the center of a patch at pyramid level n-1 (the output
+// of this function).
+//
+// By counting pixels (marked by +, -, and |), we can see that the flow vectors
+// at pyramid level n-1 are offset relative to the flow vectors at pyramid
+// level n, by 1/4 of the larger (input) patch size. Therefore, our
+// interpolation kernels need to have phases of 0.25 and 0.75.
+//
+// In addition, in order to handle the frame edges correctly, we need to
+// generate one output vector to the left and one to the right of each input
+// vector, even though these must be interpolated using different source points.
+static void upscale_flow_component(double *flow, int cur_width, int cur_height,
+ int stride, double *tmpbuf) {
+ const int half_len = FLOW_UPSCALE_TAPS / 2;
+
+ // Check that the outer border is large enough to avoid needing to clamp
+ // the source locations
+ assert(half_len <= FLOW_BORDER_OUTER);
+
+ // Horizontal upscale and multiply by 2
+ for (int i = 0; i < cur_height; i++) {
+ for (int j = 0; j < cur_width; j++) {
+ double left = 0;
+ for (int k = -half_len; k < half_len; k++) {
+ left +=
+ flow[i * stride + (j + k)] * flow_upscale_filter[0][k + half_len];
+ }
+ tmpbuf[i * stride + (2 * j + 0)] = 2.0 * left;
+
+ // Right output pixel is 0.25 units to the right of the input pixel
+ double right = 0;
+ for (int k = -(half_len - 1); k < (half_len + 1); k++) {
+ right += flow[i * stride + (j + k)] *
+ flow_upscale_filter[1][k + (half_len - 1)];
+ }
+ tmpbuf[i * stride + (2 * j + 1)] = 2.0 * right;
+ }
+ }
+
+ // Fill in top and bottom borders of tmpbuf
+ const double *top_row = &tmpbuf[0];
+ for (int i = -FLOW_BORDER_OUTER; i < 0; i++) {
+ double *row = &tmpbuf[i * stride];
+ memcpy(row, top_row, 2 * cur_width * sizeof(*row));
+ }
+
+ const double *bottom_row = &tmpbuf[(cur_height - 1) * stride];
+ for (int i = cur_height; i < cur_height + FLOW_BORDER_OUTER; i++) {
+ double *row = &tmpbuf[i * stride];
+ memcpy(row, bottom_row, 2 * cur_width * sizeof(*row));
+ }
+
+ // Vertical upscale
+ int upscaled_width = cur_width * 2;
+ for (int i = 0; i < cur_height; i++) {
+ for (int j = 0; j < upscaled_width; j++) {
+ double top = 0;
+ for (int k = -half_len; k < half_len; k++) {
+ top +=
+ tmpbuf[(i + k) * stride + j] * flow_upscale_filter[0][k + half_len];
+ }
+ flow[(2 * i) * stride + j] = top;
+
+ double bottom = 0;
+ for (int k = -(half_len - 1); k < (half_len + 1); k++) {
+ bottom += tmpbuf[(i + k) * stride + j] *
+ flow_upscale_filter[1][k + (half_len - 1)];
+ }
+ flow[(2 * i + 1) * stride + j] = bottom;
+ }
+ }
+}
+
+// make sure flow_u and flow_v start at 0
+static bool compute_flow_field(const ImagePyramid *src_pyr,
+ const ImagePyramid *ref_pyr, FlowField *flow) {
+ bool mem_status = true;
+ assert(src_pyr->n_levels == ref_pyr->n_levels);
+
+ double *flow_u = flow->u;
+ double *flow_v = flow->v;
+
+ double *tmpbuf0;
+ double *tmpbuf;
+
+ if (src_pyr->n_levels < 2) {
+ // tmpbuf not needed
+ tmpbuf0 = NULL;
+ tmpbuf = NULL;
+ } else {
+ // This line must match the calculation of cur_flow_height below
+ const int layer1_height = src_pyr->layers[1].height >> DOWNSAMPLE_SHIFT;
+
+ const size_t tmpbuf_size =
+ (layer1_height + 2 * FLOW_BORDER_OUTER) * flow->stride;
+ tmpbuf0 = aom_malloc(tmpbuf_size * sizeof(*tmpbuf0));
+ if (!tmpbuf0) {
+ mem_status = false;
+ goto free_tmpbuf;
+ }
+ tmpbuf = tmpbuf0 + FLOW_BORDER_OUTER * flow->stride;
+ }
+
+ // Compute flow field from coarsest to finest level of the pyramid
+ //
+ // Note: We stop after refining pyramid level 1 and interpolating it to
+ // generate an initial flow field at level 0. We do *not* refine the dense
+ // flow field at level 0. Instead, we wait until we have generated
+ // correspondences by interpolating this flow field, and then refine the
+ // correspondences themselves. This is both faster and gives better output
+ // compared to refining the flow field at level 0 and then interpolating.
+ for (int level = src_pyr->n_levels - 1; level >= 1; --level) {
+ const PyramidLayer *cur_layer = &src_pyr->layers[level];
+ const int cur_width = cur_layer->width;
+ const int cur_height = cur_layer->height;
+ const int cur_stride = cur_layer->stride;
+
+ const uint8_t *src_buffer = cur_layer->buffer;
+ const uint8_t *ref_buffer = ref_pyr->layers[level].buffer;
+
+ const int cur_flow_width = cur_width >> DOWNSAMPLE_SHIFT;
+ const int cur_flow_height = cur_height >> DOWNSAMPLE_SHIFT;
+ const int cur_flow_stride = flow->stride;
+
+ for (int i = FLOW_BORDER_INNER; i < cur_flow_height - FLOW_BORDER_INNER;
+ i += 1) {
+ for (int j = FLOW_BORDER_INNER; j < cur_flow_width - FLOW_BORDER_INNER;
+ j += 1) {
+ const int flow_field_idx = i * cur_flow_stride + j;
+
+ // Calculate the position of a patch of size DISFLOW_PATCH_SIZE pixels,
+ // which is centered on the region covered by this flow field entry
+ const int patch_center_x =
+ (j << DOWNSAMPLE_SHIFT) + UPSAMPLE_CENTER_OFFSET; // In pixels
+ const int patch_center_y =
+ (i << DOWNSAMPLE_SHIFT) + UPSAMPLE_CENTER_OFFSET; // In pixels
+ const int patch_tl_x = patch_center_x - DISFLOW_PATCH_CENTER;
+ const int patch_tl_y = patch_center_y - DISFLOW_PATCH_CENTER;
+ assert(patch_tl_x >= 0);
+ assert(patch_tl_y >= 0);
+
+ aom_compute_flow_at_point(src_buffer, ref_buffer, patch_tl_x,
+ patch_tl_y, cur_width, cur_height, cur_stride,
+ &flow_u[flow_field_idx],
+ &flow_v[flow_field_idx]);
+ }
+ }
+
+ // Fill in the areas which we haven't explicitly computed, with copies
+ // of the outermost values which we did compute
+ fill_flow_field_borders(flow_u, cur_flow_width, cur_flow_height,
+ cur_flow_stride);
+ fill_flow_field_borders(flow_v, cur_flow_width, cur_flow_height,
+ cur_flow_stride);
+
+ if (level > 0) {
+ const int upscale_flow_width = cur_flow_width << 1;
+ const int upscale_flow_height = cur_flow_height << 1;
+ const int upscale_stride = flow->stride;
+
+ upscale_flow_component(flow_u, cur_flow_width, cur_flow_height,
+ cur_flow_stride, tmpbuf);
+ upscale_flow_component(flow_v, cur_flow_width, cur_flow_height,
+ cur_flow_stride, tmpbuf);
+
+ // If we didn't fill in the rightmost column or bottommost row during
+ // upsampling (in order to keep the ratio to exactly 2), fill them
+ // in here by copying the next closest column/row
+ const PyramidLayer *next_layer = &src_pyr->layers[level - 1];
+ const int next_flow_width = next_layer->width >> DOWNSAMPLE_SHIFT;
+ const int next_flow_height = next_layer->height >> DOWNSAMPLE_SHIFT;
+
+ // Rightmost column
+ if (next_flow_width > upscale_flow_width) {
+ assert(next_flow_width == upscale_flow_width + 1);
+ for (int i = 0; i < upscale_flow_height; i++) {
+ const int index = i * upscale_stride + upscale_flow_width;
+ flow_u[index] = flow_u[index - 1];
+ flow_v[index] = flow_v[index - 1];
+ }
+ }
+
+ // Bottommost row
+ if (next_flow_height > upscale_flow_height) {
+ assert(next_flow_height == upscale_flow_height + 1);
+ for (int j = 0; j < next_flow_width; j++) {
+ const int index = upscale_flow_height * upscale_stride + j;
+ flow_u[index] = flow_u[index - upscale_stride];
+ flow_v[index] = flow_v[index - upscale_stride];
+ }
+ }
+ }
+ }
+
+free_tmpbuf:
+ aom_free(tmpbuf0);
+ return mem_status;
+}
+
+static FlowField *alloc_flow_field(int frame_width, int frame_height) {
+ FlowField *flow = (FlowField *)aom_malloc(sizeof(FlowField));
+ if (flow == NULL) return NULL;
+
+ // Calculate the size of the bottom (largest) layer of the flow pyramid
+ flow->width = frame_width >> DOWNSAMPLE_SHIFT;
+ flow->height = frame_height >> DOWNSAMPLE_SHIFT;
+ flow->stride = flow->width + 2 * FLOW_BORDER_OUTER;
+
+ const size_t flow_size =
+ flow->stride * (size_t)(flow->height + 2 * FLOW_BORDER_OUTER);
+
+ flow->buf0 = aom_calloc(2 * flow_size, sizeof(*flow->buf0));
+ if (!flow->buf0) {
+ aom_free(flow);
+ return NULL;
+ }
+
+ flow->u = flow->buf0 + FLOW_BORDER_OUTER * flow->stride + FLOW_BORDER_OUTER;
+ flow->v = flow->u + flow_size;
+
+ return flow;
+}
+
+static void free_flow_field(FlowField *flow) {
+ aom_free(flow->buf0);
+ aom_free(flow);
+}
+
+// Compute flow field between `src` and `ref`, and then use that flow to
+// compute a global motion model relating the two frames.
+//
+// Following the convention in flow_estimation.h, the flow vectors are computed
+// at fixed points in `src` and point to the corresponding locations in `ref`,
+// regardless of the temporal ordering of the frames.
+bool av1_compute_global_motion_disflow(TransformationType type,
+ YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *ref, int bit_depth,
+ MotionModel *motion_models,
+ int num_motion_models,
+ bool *mem_alloc_failed) {
+ // Precompute information we will need about each frame
+ ImagePyramid *src_pyramid = src->y_pyramid;
+ CornerList *src_corners = src->corners;
+ ImagePyramid *ref_pyramid = ref->y_pyramid;
+ if (!aom_compute_pyramid(src, bit_depth, src_pyramid)) {
+ *mem_alloc_failed = true;
+ return false;
+ }
+ if (!av1_compute_corner_list(src_pyramid, src_corners)) {
+ *mem_alloc_failed = true;
+ return false;
+ }
+ if (!aom_compute_pyramid(ref, bit_depth, ref_pyramid)) {
+ *mem_alloc_failed = true;
+ return false;
+ }
+
+ const int src_width = src_pyramid->layers[0].width;
+ const int src_height = src_pyramid->layers[0].height;
+ assert(ref_pyramid->layers[0].width == src_width);
+ assert(ref_pyramid->layers[0].height == src_height);
+
+ FlowField *flow = alloc_flow_field(src_width, src_height);
+ if (!flow) {
+ *mem_alloc_failed = true;
+ return false;
+ }
+
+ if (!compute_flow_field(src_pyramid, ref_pyramid, flow)) {
+ *mem_alloc_failed = true;
+ free_flow_field(flow);
+ return false;
+ }
+
+ // find correspondences between the two images using the flow field
+ Correspondence *correspondences =
+ aom_malloc(src_corners->num_corners * sizeof(*correspondences));
+ if (!correspondences) {
+ *mem_alloc_failed = true;
+ free_flow_field(flow);
+ return false;
+ }
+
+ const int num_correspondences = determine_disflow_correspondence(
+ src_pyramid, ref_pyramid, src_corners, flow, correspondences);
+
+ bool result = ransac(correspondences, num_correspondences, type,
+ motion_models, num_motion_models, mem_alloc_failed);
+
+ aom_free(correspondences);
+ free_flow_field(flow);
+ return result;
+}