summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/flow_estimation/x86/disflow_sse4.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/aom_dsp/flow_estimation/x86/disflow_sse4.c558
1 files changed, 558 insertions, 0 deletions
diff --git a/third_party/aom/aom_dsp/flow_estimation/x86/disflow_sse4.c b/third_party/aom/aom_dsp/flow_estimation/x86/disflow_sse4.c
new file mode 100644
index 0000000000..d2b04c1973
--- /dev/null
+++ b/third_party/aom/aom_dsp/flow_estimation/x86/disflow_sse4.c
@@ -0,0 +1,558 @@
+/*
+ * Copyright (c) 2022, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 3-Clause Clear License
+ * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
+ * License was not distributed with this source code in the LICENSE file, you
+ * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
+ * Alliance for Open Media Patent License 1.0 was not distributed with this
+ * source code in the PATENTS file, you can obtain it at
+ * aomedia.org/license/patent-license/.
+ */
+
+#include <assert.h>
+#include <math.h>
+#include <smmintrin.h>
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/flow_estimation/disflow.h"
+#include "aom_dsp/x86/synonyms.h"
+
+#include "config/aom_dsp_rtcd.h"
+
+// Internal cross-check against C code
+// If you set this to 1 and compile in debug mode, then the outputs of the two
+// convolution stages will be checked against the plain C version of the code,
+// and an assertion will be fired if the results differ.
+#define CHECK_RESULTS 0
+
+// Note: Max sum(+ve coefficients) = 1.125 * scale
+static INLINE void get_cubic_kernel_dbl(double x, double kernel[4]) {
+ // Check that the fractional position is in range.
+ //
+ // Note: x is calculated from (eg.) `u_frac = u - floor(u)`.
+ // Mathematically, this implies that 0 <= x < 1. However, in practice it is
+ // possible to have x == 1 due to floating point rounding. This is fine,
+ // and we still interpolate correctly if we allow x = 1.
+ assert(0 <= x && x <= 1);
+
+ double x2 = x * x;
+ double x3 = x2 * x;
+ kernel[0] = -0.5 * x + x2 - 0.5 * x3;
+ kernel[1] = 1.0 - 2.5 * x2 + 1.5 * x3;
+ kernel[2] = 0.5 * x + 2.0 * x2 - 1.5 * x3;
+ kernel[3] = -0.5 * x2 + 0.5 * x3;
+}
+
+static INLINE void get_cubic_kernel_int(double x, int16_t kernel[4]) {
+ double kernel_dbl[4];
+ get_cubic_kernel_dbl(x, kernel_dbl);
+
+ kernel[0] = (int16_t)rint(kernel_dbl[0] * (1 << DISFLOW_INTERP_BITS));
+ kernel[1] = (int16_t)rint(kernel_dbl[1] * (1 << DISFLOW_INTERP_BITS));
+ kernel[2] = (int16_t)rint(kernel_dbl[2] * (1 << DISFLOW_INTERP_BITS));
+ kernel[3] = (int16_t)rint(kernel_dbl[3] * (1 << DISFLOW_INTERP_BITS));
+}
+
+#if CHECK_RESULTS
+static INLINE int get_cubic_value_int(const int *p, const int16_t kernel[4]) {
+ return kernel[0] * p[0] + kernel[1] * p[1] + kernel[2] * p[2] +
+ kernel[3] * p[3];
+}
+#endif // CHECK_RESULTS
+
+// Compare two regions of width x height pixels, one rooted at position
+// (x, y) in src and the other at (x + u, y + v) in ref.
+// This function returns the sum of squared pixel differences between
+// the two regions.
+//
+// TODO(rachelbarker): Test speed/quality impact of using bilinear interpolation
+// instad of bicubic interpolation
+static INLINE void compute_flow_vector(const uint8_t *src, const uint8_t *ref,
+ int width, int height, int stride, int x,
+ int y, double u, double v,
+ const int16_t *dx, const int16_t *dy,
+ int *b) {
+ // This function is written to do 8x8 convolutions only
+ assert(DISFLOW_PATCH_SIZE == 8);
+
+ // Accumulate 4 32-bit partial sums for each element of b
+ // These will be flattened at the end.
+ __m128i b0_acc = _mm_setzero_si128();
+ __m128i b1_acc = _mm_setzero_si128();
+#if CHECK_RESULTS
+ // Also keep a running sum using the C algorithm, for cross-checking
+ int c_result[2] = { 0 };
+#endif // CHECK_RESULTS
+
+ // Split offset into integer and fractional parts, and compute cubic
+ // interpolation kernels
+ const int u_int = (int)floor(u);
+ const int v_int = (int)floor(v);
+ const double u_frac = u - floor(u);
+ const double v_frac = v - floor(v);
+
+ int16_t h_kernel[4];
+ int16_t v_kernel[4];
+ get_cubic_kernel_int(u_frac, h_kernel);
+ get_cubic_kernel_int(v_frac, v_kernel);
+
+ // Storage for intermediate values between the two convolution directions
+ int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 3)];
+ int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE; // Offset by one row
+
+ // Clamp coordinates so that all pixels we fetch will remain within the
+ // allocated border region, but allow them to go far enough out that
+ // the border pixels' values do not change.
+ // Since we are calculating an 8x8 block, the bottom-right pixel
+ // in the block has coordinates (x0 + 7, y0 + 7). Then, the cubic
+ // interpolation has 4 taps, meaning that the output of pixel
+ // (x_w, y_w) depends on the pixels in the range
+ // ([x_w - 1, x_w + 2], [y_w - 1, y_w + 2]).
+ //
+ // Thus the most extreme coordinates which will be fetched are
+ // (x0 - 1, y0 - 1) and (x0 + 9, y0 + 9).
+ const int x0 = clamp(x + u_int, -9, width);
+ const int y0 = clamp(y + v_int, -9, height);
+
+ // Horizontal convolution
+
+ // Prepare the kernel vectors
+ // We split the kernel into two vectors with kernel indices:
+ // 0, 1, 0, 1, 0, 1, 0, 1, and
+ // 2, 3, 2, 3, 2, 3, 2, 3
+ __m128i h_kernel_01 = xx_set2_epi16(h_kernel[0], h_kernel[1]);
+ __m128i h_kernel_23 = xx_set2_epi16(h_kernel[2], h_kernel[3]);
+
+ __m128i round_const_h = _mm_set1_epi32(1 << (DISFLOW_INTERP_BITS - 6 - 1));
+
+ for (int i = -1; i < DISFLOW_PATCH_SIZE + 2; ++i) {
+ const int y_w = y0 + i;
+ const uint8_t *ref_row = &ref[y_w * stride + (x0 - 1)];
+ int16_t *tmp_row = &tmp[i * DISFLOW_PATCH_SIZE];
+
+ // Load this row of pixels.
+ // For an 8x8 patch, we need to load the 8 image pixels + 3 extras,
+ // for a total of 11 pixels. Here we load 16 pixels, but only use
+ // the first 11.
+ __m128i row = _mm_loadu_si128((__m128i *)ref_row);
+
+ // Expand pixels to int16s
+ __m128i px_0to7_i16 = _mm_cvtepu8_epi16(row);
+ __m128i px_4to10_i16 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 4));
+
+ // Relevant multiply instruction
+ // This multiplies pointwise, then sums in pairs.
+ //_mm_madd_epi16();
+
+ // Compute first four outputs
+ // input pixels 0, 1, 1, 2, 2, 3, 3, 4
+ // * kernel 0, 1, 0, 1, 0, 1, 0, 1
+ __m128i px0 =
+ _mm_unpacklo_epi16(px_0to7_i16, _mm_srli_si128(px_0to7_i16, 2));
+ // input pixels 2, 3, 3, 4, 4, 5, 5, 6
+ // * kernel 2, 3, 2, 3, 2, 3, 2, 3
+ __m128i px1 = _mm_unpacklo_epi16(_mm_srli_si128(px_0to7_i16, 4),
+ _mm_srli_si128(px_0to7_i16, 6));
+ // Convolve with kernel and sum 2x2 boxes to form first 4 outputs
+ __m128i sum0 = _mm_add_epi32(_mm_madd_epi16(px0, h_kernel_01),
+ _mm_madd_epi16(px1, h_kernel_23));
+
+ __m128i out0 = _mm_srai_epi32(_mm_add_epi32(sum0, round_const_h),
+ DISFLOW_INTERP_BITS - 6);
+
+ // Compute second four outputs
+ __m128i px2 =
+ _mm_unpacklo_epi16(px_4to10_i16, _mm_srli_si128(px_4to10_i16, 2));
+ __m128i px3 = _mm_unpacklo_epi16(_mm_srli_si128(px_4to10_i16, 4),
+ _mm_srli_si128(px_4to10_i16, 6));
+ __m128i sum1 = _mm_add_epi32(_mm_madd_epi16(px2, h_kernel_01),
+ _mm_madd_epi16(px3, h_kernel_23));
+
+ // Round by just enough bits that the result is
+ // guaranteed to fit into an i16. Then the next stage can use 16 x 16 -> 32
+ // bit multiplies, which should be a fair bit faster than 32 x 32 -> 32
+ // as it does now
+ // This means shifting down so we have 6 extra bits, for a maximum value
+ // of +18360, which can occur if u_frac == 0.5 and the input pixels are
+ // {0, 255, 255, 0}.
+ __m128i out1 = _mm_srai_epi32(_mm_add_epi32(sum1, round_const_h),
+ DISFLOW_INTERP_BITS - 6);
+
+ _mm_storeu_si128((__m128i *)tmp_row, _mm_packs_epi32(out0, out1));
+
+#if CHECK_RESULTS && !defined(NDEBUG)
+ // Cross-check
+ for (int j = 0; j < DISFLOW_PATCH_SIZE; ++j) {
+ const int x_w = x0 + j;
+ int arr[4];
+
+ arr[0] = (int)ref[y_w * stride + (x_w - 1)];
+ arr[1] = (int)ref[y_w * stride + (x_w + 0)];
+ arr[2] = (int)ref[y_w * stride + (x_w + 1)];
+ arr[3] = (int)ref[y_w * stride + (x_w + 2)];
+
+ // Apply kernel and round, keeping 6 extra bits of precision.
+ //
+ // 6 is the maximum allowable number of extra bits which will avoid
+ // the intermediate values overflowing an int16_t. The most extreme
+ // intermediate value occurs when:
+ // * The input pixels are [0, 255, 255, 0]
+ // * u_frac = 0.5
+ // In this case, the un-scaled output is 255 * 1.125 = 286.875.
+ // As an integer with 6 fractional bits, that is 18360, which fits
+ // in an int16_t. But with 7 fractional bits it would be 36720,
+ // which is too large.
+ const int c_value = ROUND_POWER_OF_TWO(get_cubic_value_int(arr, h_kernel),
+ DISFLOW_INTERP_BITS - 6);
+ (void)c_value; // Suppress warnings
+ assert(tmp_row[j] == c_value);
+ }
+#endif // CHECK_RESULTS
+ }
+
+ // Vertical convolution
+ const int round_bits = DISFLOW_INTERP_BITS + 6 - DISFLOW_DERIV_SCALE_LOG2;
+ __m128i round_const_v = _mm_set1_epi32(1 << (round_bits - 1));
+
+ __m128i v_kernel_01 = xx_set2_epi16(v_kernel[0], v_kernel[1]);
+ __m128i v_kernel_23 = xx_set2_epi16(v_kernel[2], v_kernel[3]);
+
+ for (int i = 0; i < DISFLOW_PATCH_SIZE; ++i) {
+ int16_t *tmp_row = &tmp[i * DISFLOW_PATCH_SIZE];
+
+ // Load 4 rows of 8 x 16-bit values
+ __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE));
+ __m128i px1 = _mm_loadu_si128((__m128i *)tmp_row);
+ __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE));
+ __m128i px3 =
+ _mm_loadu_si128((__m128i *)(tmp_row + 2 * DISFLOW_PATCH_SIZE));
+
+ // We want to calculate px0 * v_kernel[0] + px1 * v_kernel[1] + ... ,
+ // but each multiply expands its output to 32 bits. So we need to be
+ // a little clever about how we do this
+ __m128i sum0 = _mm_add_epi32(
+ _mm_madd_epi16(_mm_unpacklo_epi16(px0, px1), v_kernel_01),
+ _mm_madd_epi16(_mm_unpacklo_epi16(px2, px3), v_kernel_23));
+ __m128i sum1 = _mm_add_epi32(
+ _mm_madd_epi16(_mm_unpackhi_epi16(px0, px1), v_kernel_01),
+ _mm_madd_epi16(_mm_unpackhi_epi16(px2, px3), v_kernel_23));
+
+ __m128i sum0_rounded =
+ _mm_srai_epi32(_mm_add_epi32(sum0, round_const_v), round_bits);
+ __m128i sum1_rounded =
+ _mm_srai_epi32(_mm_add_epi32(sum1, round_const_v), round_bits);
+
+ __m128i warped = _mm_packs_epi32(sum0_rounded, sum1_rounded);
+ __m128i src_pixels_u8 =
+ _mm_loadl_epi64((__m128i *)&src[(y + i) * stride + x]);
+ __m128i src_pixels = _mm_slli_epi16(_mm_cvtepu8_epi16(src_pixels_u8), 3);
+
+ // Calculate delta from the target patch
+ __m128i dt = _mm_sub_epi16(warped, src_pixels);
+
+ // Load 8 elements each of dx and dt, to pair with the 8 elements of dt
+ // that we have just computed. Then compute 8 partial sums of dx * dt
+ // and dy * dt, implicitly sum to give 4 partial sums of each, and
+ // accumulate.
+ __m128i dx_row = _mm_loadu_si128((__m128i *)&dx[i * DISFLOW_PATCH_SIZE]);
+ __m128i dy_row = _mm_loadu_si128((__m128i *)&dy[i * DISFLOW_PATCH_SIZE]);
+ b0_acc = _mm_add_epi32(b0_acc, _mm_madd_epi16(dx_row, dt));
+ b1_acc = _mm_add_epi32(b1_acc, _mm_madd_epi16(dy_row, dt));
+
+#if CHECK_RESULTS
+ int16_t dt_arr[8];
+ memcpy(dt_arr, &dt, 8 * sizeof(*dt_arr));
+ for (int j = 0; j < DISFLOW_PATCH_SIZE; ++j) {
+ int16_t *p = &tmp[i * DISFLOW_PATCH_SIZE + j];
+ int arr[4] = { p[-DISFLOW_PATCH_SIZE], p[0], p[DISFLOW_PATCH_SIZE],
+ p[2 * DISFLOW_PATCH_SIZE] };
+ const int result = get_cubic_value_int(arr, v_kernel);
+
+ // Apply kernel and round.
+ // This time, we have to round off the 6 extra bits which were kept
+ // earlier, but we also want to keep DISFLOW_DERIV_SCALE_LOG2 extra bits
+ // of precision to match the scale of the dx and dy arrays.
+ const int c_warped = ROUND_POWER_OF_TWO(result, round_bits);
+ const int c_src_px = src[(x + j) + (y + i) * stride] << 3;
+ const int c_dt = c_warped - c_src_px;
+
+ assert(dt_arr[j] == c_dt);
+
+ c_result[0] += dx[i * DISFLOW_PATCH_SIZE + j] * c_dt;
+ c_result[1] += dy[i * DISFLOW_PATCH_SIZE + j] * c_dt;
+ }
+#endif // CHECK_RESULTS
+ }
+
+ // Flatten the two sets of partial sums to find the final value of b
+ // We need to set b[0] = sum(b0_acc), b[1] = sum(b1_acc).
+ // We need to do 6 additions in total; a `hadd` instruction can take care
+ // of four of them, leaving two scalar additions.
+ __m128i partial_sum = _mm_hadd_epi32(b0_acc, b1_acc);
+ b[0] = _mm_extract_epi32(partial_sum, 0) + _mm_extract_epi32(partial_sum, 1);
+ b[1] = _mm_extract_epi32(partial_sum, 2) + _mm_extract_epi32(partial_sum, 3);
+
+#if CHECK_RESULTS
+ assert(b[0] == c_result[0]);
+ assert(b[1] == c_result[1]);
+#endif // CHECK_RESULTS
+}
+
+static INLINE void sobel_filter_x(const uint8_t *src, int src_stride,
+ int16_t *dst, int dst_stride) {
+ int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 2)];
+ int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE;
+#if CHECK_RESULTS
+ const int taps = 3;
+#endif // CHECK_RESULTS
+
+ // Horizontal filter
+ // As the kernel is simply {1, 0, -1}, we implement this as simply
+ // out[x] = image[x-1] - image[x+1]
+ // rather than doing a "proper" convolution operation
+ for (int y = -1; y < DISFLOW_PATCH_SIZE + 1; ++y) {
+ const uint8_t *src_row = src + y * src_stride;
+ int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE;
+
+ // Load pixels and expand to 16 bits
+ __m128i row = _mm_loadu_si128((__m128i *)(src_row - 1));
+ __m128i px0 = _mm_cvtepu8_epi16(row);
+ __m128i px2 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 2));
+
+ __m128i out = _mm_sub_epi16(px0, px2);
+
+ // Store to intermediate array
+ _mm_storeu_si128((__m128i *)tmp_row, out);
+
+#if CHECK_RESULTS
+ // Cross-check
+ static const int16_t h_kernel[3] = { 1, 0, -1 };
+ for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) {
+ int sum = 0;
+ for (int k = 0; k < taps; ++k) {
+ sum += h_kernel[k] * src_row[x + k - 1];
+ }
+ (void)sum;
+ assert(tmp_row[x] == sum);
+ }
+#endif // CHECK_RESULTS
+ }
+
+ // Vertical filter
+ // Here the kernel is {1, 2, 1}, which can be implemented
+ // with simple sums rather than multiplies and adds.
+ // In order to minimize dependency chains, we evaluate in the order
+ // (image[y - 1] + image[y + 1]) + (image[y] << 1)
+ // This way, the first addition and the shift can happen in parallel
+ for (int y = 0; y < DISFLOW_PATCH_SIZE; ++y) {
+ const int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE;
+ int16_t *dst_row = dst + y * dst_stride;
+
+ __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE));
+ __m128i px1 = _mm_loadu_si128((__m128i *)tmp_row);
+ __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE));
+
+ __m128i out =
+ _mm_add_epi16(_mm_add_epi16(px0, px2), _mm_slli_epi16(px1, 1));
+
+ _mm_storeu_si128((__m128i *)dst_row, out);
+
+#if CHECK_RESULTS
+ static const int16_t v_kernel[3] = { 1, 2, 1 };
+ for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) {
+ int sum = 0;
+ for (int k = 0; k < taps; ++k) {
+ sum += v_kernel[k] * tmp[(y + k - 1) * DISFLOW_PATCH_SIZE + x];
+ }
+ (void)sum;
+ assert(dst_row[x] == sum);
+ }
+#endif // CHECK_RESULTS
+ }
+}
+
+static INLINE void sobel_filter_y(const uint8_t *src, int src_stride,
+ int16_t *dst, int dst_stride) {
+ int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 2)];
+ int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE;
+#if CHECK_RESULTS
+ const int taps = 3;
+#endif // CHECK_RESULTS
+
+ // Horizontal filter
+ // Here the kernel is {1, 2, 1}, which can be implemented
+ // with simple sums rather than multiplies and adds.
+ // In order to minimize dependency chains, we evaluate in the order
+ // (image[y - 1] + image[y + 1]) + (image[y] << 1)
+ // This way, the first addition and the shift can happen in parallel
+ for (int y = -1; y < DISFLOW_PATCH_SIZE + 1; ++y) {
+ const uint8_t *src_row = src + y * src_stride;
+ int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE;
+
+ // Load pixels and expand to 16 bits
+ __m128i row = _mm_loadu_si128((__m128i *)(src_row - 1));
+ __m128i px0 = _mm_cvtepu8_epi16(row);
+ __m128i px1 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 1));
+ __m128i px2 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 2));
+
+ __m128i out =
+ _mm_add_epi16(_mm_add_epi16(px0, px2), _mm_slli_epi16(px1, 1));
+
+ // Store to intermediate array
+ _mm_storeu_si128((__m128i *)tmp_row, out);
+
+#if CHECK_RESULTS
+ // Cross-check
+ static const int16_t h_kernel[3] = { 1, 2, 1 };
+ for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) {
+ int sum = 0;
+ for (int k = 0; k < taps; ++k) {
+ sum += h_kernel[k] * src_row[x + k - 1];
+ }
+ (void)sum;
+ assert(tmp_row[x] == sum);
+ }
+#endif // CHECK_RESULTS
+ }
+
+ // Vertical filter
+ // As the kernel is simply {1, 0, -1}, we implement this as simply
+ // out[x] = image[x-1] - image[x+1]
+ // rather than doing a "proper" convolution operation
+ for (int y = 0; y < DISFLOW_PATCH_SIZE; ++y) {
+ const int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE;
+ int16_t *dst_row = dst + y * dst_stride;
+
+ __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE));
+ __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE));
+
+ __m128i out = _mm_sub_epi16(px0, px2);
+
+ _mm_storeu_si128((__m128i *)dst_row, out);
+
+#if CHECK_RESULTS
+ static const int16_t v_kernel[3] = { 1, 0, -1 };
+ for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) {
+ int sum = 0;
+ for (int k = 0; k < taps; ++k) {
+ sum += v_kernel[k] * tmp[(y + k - 1) * DISFLOW_PATCH_SIZE + x];
+ }
+ (void)sum;
+ assert(dst_row[x] == sum);
+ }
+#endif // CHECK_RESULTS
+ }
+}
+
+static INLINE void compute_flow_matrix(const int16_t *dx, int dx_stride,
+ const int16_t *dy, int dy_stride,
+ double *M) {
+ __m128i acc[4] = { 0 };
+
+ for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) {
+ __m128i dx_row = _mm_loadu_si128((__m128i *)&dx[i * dx_stride]);
+ __m128i dy_row = _mm_loadu_si128((__m128i *)&dy[i * dy_stride]);
+
+ acc[0] = _mm_add_epi32(acc[0], _mm_madd_epi16(dx_row, dx_row));
+ acc[1] = _mm_add_epi32(acc[1], _mm_madd_epi16(dx_row, dy_row));
+ // Don't compute acc[2], as it should be equal to acc[1]
+ acc[3] = _mm_add_epi32(acc[3], _mm_madd_epi16(dy_row, dy_row));
+ }
+
+ // Condense sums
+ __m128i partial_sum_0 = _mm_hadd_epi32(acc[0], acc[1]);
+ __m128i partial_sum_1 = _mm_hadd_epi32(acc[1], acc[3]);
+ __m128i result = _mm_hadd_epi32(partial_sum_0, partial_sum_1);
+
+ // Apply regularization
+ // We follow the standard regularization method of adding `k * I` before
+ // inverting. This ensures that the matrix will be invertible.
+ //
+ // Setting the regularization strength k to 1 seems to work well here, as
+ // typical values coming from the other equations are very large (1e5 to
+ // 1e6, with an upper limit of around 6e7, at the time of writing).
+ // It also preserves the property that all matrix values are whole numbers,
+ // which is convenient for integerized SIMD implementation.
+ result = _mm_add_epi32(result, _mm_set_epi32(1, 0, 0, 1));
+
+#if CHECK_RESULTS
+ int tmp[4] = { 0 };
+
+ for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) {
+ for (int j = 0; j < DISFLOW_PATCH_SIZE; j++) {
+ tmp[0] += dx[i * dx_stride + j] * dx[i * dx_stride + j];
+ tmp[1] += dx[i * dx_stride + j] * dy[i * dy_stride + j];
+ // Don't compute tmp[2], as it should be equal to tmp[1]
+ tmp[3] += dy[i * dy_stride + j] * dy[i * dy_stride + j];
+ }
+ }
+
+ // Apply regularization
+ tmp[0] += 1;
+ tmp[3] += 1;
+
+ tmp[2] = tmp[1];
+
+ assert(tmp[0] == _mm_extract_epi32(result, 0));
+ assert(tmp[1] == _mm_extract_epi32(result, 1));
+ assert(tmp[2] == _mm_extract_epi32(result, 2));
+ assert(tmp[3] == _mm_extract_epi32(result, 3));
+#endif // CHECK_RESULTS
+
+ // Convert results to doubles and store
+ _mm_storeu_pd(M, _mm_cvtepi32_pd(result));
+ _mm_storeu_pd(M + 2, _mm_cvtepi32_pd(_mm_srli_si128(result, 8)));
+}
+
+// Try to invert the matrix M
+// Note: Due to the nature of how a least-squares matrix is constructed, all of
+// the eigenvalues will be >= 0, and therefore det M >= 0 as well.
+// The regularization term `+ k * I` further ensures that det M >= k^2.
+// As mentioned in compute_flow_matrix(), here we use k = 1, so det M >= 1.
+// So we don't have to worry about non-invertible matrices here.
+static INLINE void invert_2x2(const double *M, double *M_inv) {
+ double det = (M[0] * M[3]) - (M[1] * M[2]);
+ assert(det >= 1);
+ const double det_inv = 1 / det;
+
+ M_inv[0] = M[3] * det_inv;
+ M_inv[1] = -M[1] * det_inv;
+ M_inv[2] = -M[2] * det_inv;
+ M_inv[3] = M[0] * det_inv;
+}
+
+void aom_compute_flow_at_point_sse4_1(const uint8_t *src, const uint8_t *ref,
+ int x, int y, int width, int height,
+ int stride, double *u, double *v) {
+ double M[4];
+ double M_inv[4];
+ int b[2];
+ int16_t dx[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE];
+ int16_t dy[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE];
+
+ // Compute gradients within this patch
+ const uint8_t *src_patch = &src[y * stride + x];
+ sobel_filter_x(src_patch, stride, dx, DISFLOW_PATCH_SIZE);
+ sobel_filter_y(src_patch, stride, dy, DISFLOW_PATCH_SIZE);
+
+ compute_flow_matrix(dx, DISFLOW_PATCH_SIZE, dy, DISFLOW_PATCH_SIZE, M);
+ invert_2x2(M, M_inv);
+
+ for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) {
+ compute_flow_vector(src, ref, width, height, stride, x, y, *u, *v, dx, dy,
+ b);
+
+ // Solve flow equations to find a better estimate for the flow vector
+ // at this point
+ const double step_u = M_inv[0] * b[0] + M_inv[1] * b[1];
+ const double step_v = M_inv[2] * b[0] + M_inv[3] * b[1];
+ *u += fclamp(step_u * DISFLOW_STEP_SIZE, -2, 2);
+ *v += fclamp(step_v * DISFLOW_STEP_SIZE, -2, 2);
+
+ if (fabs(step_u) + fabs(step_v) < DISFLOW_STEP_SIZE_THRESOLD) {
+ // Stop iteration when we're close to convergence
+ break;
+ }
+ }
+}