diff options
Diffstat (limited to 'third_party/aom/aom_dsp/fwd_txfm.c')
-rw-r--r-- | third_party/aom/aom_dsp/fwd_txfm.c | 245 |
1 files changed, 245 insertions, 0 deletions
diff --git a/third_party/aom/aom_dsp/fwd_txfm.c b/third_party/aom/aom_dsp/fwd_txfm.c new file mode 100644 index 0000000000..5503501d62 --- /dev/null +++ b/third_party/aom/aom_dsp/fwd_txfm.c @@ -0,0 +1,245 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include "aom_dsp/txfm_common.h" +#include "config/aom_dsp_rtcd.h" + +void aom_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) { + // The 2D transform is done with two passes which are actually pretty + // similar. In the first one, we transform the columns and transpose + // the results. In the second one, we transform the rows. + // We need an intermediate buffer between passes. + tran_low_t intermediate[4 * 4]; + const tran_low_t *in_low = NULL; + tran_low_t *out = intermediate; + // Do the two transform passes + for (int pass = 0; pass < 2; ++pass) { + tran_high_t in_high[4]; // canbe16 + tran_high_t step[4]; // canbe16 + tran_low_t temp[4]; + for (int i = 0; i < 4; ++i) { + // Load inputs. + if (pass == 0) { + in_high[0] = input[0 * stride] * 16; + in_high[1] = input[1 * stride] * 16; + in_high[2] = input[2 * stride] * 16; + in_high[3] = input[3 * stride] * 16; + if (i == 0 && in_high[0]) { + ++in_high[0]; + } + ++input; // Next column + } else { + assert(in_low != NULL); + in_high[0] = in_low[0 * 4]; + in_high[1] = in_low[1 * 4]; + in_high[2] = in_low[2 * 4]; + in_high[3] = in_low[3 * 4]; + ++in_low; // Next column (which is a transposed row) + } + // Transform. + step[0] = in_high[0] + in_high[3]; + step[1] = in_high[1] + in_high[2]; + step[2] = in_high[1] - in_high[2]; + step[3] = in_high[0] - in_high[3]; + temp[0] = (tran_low_t)fdct_round_shift((step[0] + step[1]) * cospi_16_64); + temp[2] = (tran_low_t)fdct_round_shift((step[0] - step[1]) * cospi_16_64); + temp[1] = (tran_low_t)fdct_round_shift(step[2] * cospi_24_64 + + step[3] * cospi_8_64); + temp[3] = (tran_low_t)fdct_round_shift(-step[2] * cospi_8_64 + + step[3] * cospi_24_64); + // Only transpose the first pass. + if (pass == 0) { + out[0] = temp[0]; + out[1] = temp[1]; + out[2] = temp[2]; + out[3] = temp[3]; + out += 4; + } else { + out[0 * 4] = temp[0]; + out[1 * 4] = temp[1]; + out[2 * 4] = temp[2]; + out[3 * 4] = temp[3]; + ++out; + } + } + // Setup in/out for next pass. + in_low = intermediate; + out = output; + } + + for (int i = 0; i < 4; ++i) { + for (int j = 0; j < 4; ++j) + output[j + i * 4] = (output[j + i * 4] + 1) >> 2; + } +} + +void aom_fdct4x4_lp_c(const int16_t *input, int16_t *output, int stride) { + // The 2D transform is done with two passes which are actually pretty + // similar. In the first one, we transform the columns and transpose + // the results. In the second one, we transform the rows. + // We need an intermediate buffer between passes. + int16_t intermediate[4 * 4]; + const int16_t *in_low = NULL; + int16_t *out = intermediate; + // Do the two transform passes + for (int pass = 0; pass < 2; ++pass) { + int32_t in_high[4]; // canbe16 + int32_t step[4]; // canbe16 + int16_t temp[4]; + for (int i = 0; i < 4; ++i) { + // Load inputs. + if (pass == 0) { + in_high[0] = input[0 * stride] * 16; + in_high[1] = input[1 * stride] * 16; + in_high[2] = input[2 * stride] * 16; + in_high[3] = input[3 * stride] * 16; + ++input; + if (i == 0 && in_high[0]) { + ++in_high[0]; + } + } else { + assert(in_low != NULL); + in_high[0] = in_low[0 * 4]; + in_high[1] = in_low[1 * 4]; + in_high[2] = in_low[2 * 4]; + in_high[3] = in_low[3 * 4]; + ++in_low; + } + // Transform. + step[0] = in_high[0] + in_high[3]; + step[1] = in_high[1] + in_high[2]; + step[2] = in_high[1] - in_high[2]; + step[3] = in_high[0] - in_high[3]; + temp[0] = (int16_t)fdct_round_shift((step[0] + step[1]) * cospi_16_64); + temp[2] = (int16_t)fdct_round_shift((step[0] - step[1]) * cospi_16_64); + temp[1] = (int16_t)fdct_round_shift(step[2] * cospi_24_64 + + step[3] * cospi_8_64); + temp[3] = (int16_t)fdct_round_shift(-step[2] * cospi_8_64 + + step[3] * cospi_24_64); + // Only transpose the first pass. + if (pass == 0) { + out[0] = temp[0]; + out[1] = temp[1]; + out[2] = temp[2]; + out[3] = temp[3]; + out += 4; + } else { + out[0 * 4] = temp[0]; + out[1 * 4] = temp[1]; + out[2 * 4] = temp[2]; + out[3 * 4] = temp[3]; + ++out; + } + } + // Setup in/out for next pass. + in_low = intermediate; + out = output; + } + + for (int i = 0; i < 4; ++i) { + for (int j = 0; j < 4; ++j) + output[j + i * 4] = (output[j + i * 4] + 1) >> 2; + } +} + +#if CONFIG_INTERNAL_STATS +void aom_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) { + int i, j; + tran_low_t intermediate[64]; + int pass; + tran_low_t *output = intermediate; + const tran_low_t *in = NULL; + + // Transform columns + for (pass = 0; pass < 2; ++pass) { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 + tran_high_t t0, t1, t2, t3; // needs32 + tran_high_t x0, x1, x2, x3; // canbe16 + + for (i = 0; i < 8; i++) { + // stage 1 + if (pass == 0) { + s0 = (input[0 * stride] + input[7 * stride]) * 4; + s1 = (input[1 * stride] + input[6 * stride]) * 4; + s2 = (input[2 * stride] + input[5 * stride]) * 4; + s3 = (input[3 * stride] + input[4 * stride]) * 4; + s4 = (input[3 * stride] - input[4 * stride]) * 4; + s5 = (input[2 * stride] - input[5 * stride]) * 4; + s6 = (input[1 * stride] - input[6 * stride]) * 4; + s7 = (input[0 * stride] - input[7 * stride]) * 4; + ++input; + } else { + s0 = in[0 * 8] + in[7 * 8]; + s1 = in[1 * 8] + in[6 * 8]; + s2 = in[2 * 8] + in[5 * 8]; + s3 = in[3 * 8] + in[4 * 8]; + s4 = in[3 * 8] - in[4 * 8]; + s5 = in[2 * 8] - in[5 * 8]; + s6 = in[1 * 8] - in[6 * 8]; + s7 = in[0 * 8] - in[7 * 8]; + ++in; + } + + // fdct4(step, step); + x0 = s0 + s3; + x1 = s1 + s2; + x2 = s1 - s2; + x3 = s0 - s3; + t0 = (x0 + x1) * cospi_16_64; + t1 = (x0 - x1) * cospi_16_64; + t2 = x2 * cospi_24_64 + x3 * cospi_8_64; + t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; + output[0] = (tran_low_t)fdct_round_shift(t0); + output[2] = (tran_low_t)fdct_round_shift(t2); + output[4] = (tran_low_t)fdct_round_shift(t1); + output[6] = (tran_low_t)fdct_round_shift(t3); + + // Stage 2 + t0 = (s6 - s5) * cospi_16_64; + t1 = (s6 + s5) * cospi_16_64; + t2 = fdct_round_shift(t0); + t3 = fdct_round_shift(t1); + + // Stage 3 + x0 = s4 + t2; + x1 = s4 - t2; + x2 = s7 - t3; + x3 = s7 + t3; + + // Stage 4 + t0 = x0 * cospi_28_64 + x3 * cospi_4_64; + t1 = x1 * cospi_12_64 + x2 * cospi_20_64; + t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; + t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; + output[1] = (tran_low_t)fdct_round_shift(t0); + output[3] = (tran_low_t)fdct_round_shift(t2); + output[5] = (tran_low_t)fdct_round_shift(t1); + output[7] = (tran_low_t)fdct_round_shift(t3); + output += 8; + } + in = intermediate; + output = final_output; + } + + // Rows + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) final_output[j + i * 8] /= 2; + } +} +#endif // CONFIG_INTERNAL_STATS + +#if CONFIG_AV1_HIGHBITDEPTH && CONFIG_INTERNAL_STATS +void aom_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output, + int stride) { + aom_fdct8x8_c(input, final_output, stride); +} +#endif |