summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/arm/highbd_warp_plane_neon.h
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/common/arm/highbd_warp_plane_neon.h424
1 files changed, 424 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/arm/highbd_warp_plane_neon.h b/third_party/aom/av1/common/arm/highbd_warp_plane_neon.h
new file mode 100644
index 0000000000..3b8982898e
--- /dev/null
+++ b/third_party/aom/av1/common/arm/highbd_warp_plane_neon.h
@@ -0,0 +1,424 @@
+/*
+ * Copyright (c) 2023, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+#ifndef AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_
+#define AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_
+
+#include <arm_neon.h>
+#include <assert.h>
+#include <stdbool.h>
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/arm/mem_neon.h"
+#include "aom_dsp/arm/sum_neon.h"
+#include "aom_ports/mem.h"
+#include "av1/common/scale.h"
+#include "av1/common/warped_motion.h"
+#include "config/av1_rtcd.h"
+
+static INLINE int16x8_t highbd_horizontal_filter_4x1_f4(uint16x8x2_t in, int bd,
+ int sx, int alpha);
+
+static INLINE int16x8_t highbd_horizontal_filter_8x1_f8(uint16x8x2_t in, int bd,
+ int sx, int alpha);
+
+static INLINE int16x8_t highbd_horizontal_filter_4x1_f1(uint16x8x2_t in, int bd,
+ int sx);
+
+static INLINE int16x8_t highbd_horizontal_filter_8x1_f1(uint16x8x2_t in, int bd,
+ int sx);
+
+static INLINE int32x4_t vertical_filter_4x1_f1(const int16x8_t *tmp, int sy);
+
+static INLINE int32x4x2_t vertical_filter_8x1_f1(const int16x8_t *tmp, int sy);
+
+static INLINE int32x4_t vertical_filter_4x1_f4(const int16x8_t *tmp, int sy,
+ int gamma);
+
+static INLINE int32x4x2_t vertical_filter_8x1_f8(const int16x8_t *tmp, int sy,
+ int gamma);
+
+static INLINE int16x8_t load_filters_1(int ofs) {
+ const int ofs0 = ROUND_POWER_OF_TWO(ofs, WARPEDDIFF_PREC_BITS);
+
+ const int16_t *base =
+ (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8;
+ return vld1q_s16(base + ofs0 * 8);
+}
+
+static INLINE void load_filters_4(int16x8_t out[], int ofs, int stride) {
+ const int ofs0 = ROUND_POWER_OF_TWO(ofs + stride * 0, WARPEDDIFF_PREC_BITS);
+ const int ofs1 = ROUND_POWER_OF_TWO(ofs + stride * 1, WARPEDDIFF_PREC_BITS);
+ const int ofs2 = ROUND_POWER_OF_TWO(ofs + stride * 2, WARPEDDIFF_PREC_BITS);
+ const int ofs3 = ROUND_POWER_OF_TWO(ofs + stride * 3, WARPEDDIFF_PREC_BITS);
+
+ const int16_t *base =
+ (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8;
+ out[0] = vld1q_s16(base + ofs0 * 8);
+ out[1] = vld1q_s16(base + ofs1 * 8);
+ out[2] = vld1q_s16(base + ofs2 * 8);
+ out[3] = vld1q_s16(base + ofs3 * 8);
+}
+
+static INLINE void load_filters_8(int16x8_t out[], int ofs, int stride) {
+ const int ofs0 = ROUND_POWER_OF_TWO(ofs + stride * 0, WARPEDDIFF_PREC_BITS);
+ const int ofs1 = ROUND_POWER_OF_TWO(ofs + stride * 1, WARPEDDIFF_PREC_BITS);
+ const int ofs2 = ROUND_POWER_OF_TWO(ofs + stride * 2, WARPEDDIFF_PREC_BITS);
+ const int ofs3 = ROUND_POWER_OF_TWO(ofs + stride * 3, WARPEDDIFF_PREC_BITS);
+ const int ofs4 = ROUND_POWER_OF_TWO(ofs + stride * 4, WARPEDDIFF_PREC_BITS);
+ const int ofs5 = ROUND_POWER_OF_TWO(ofs + stride * 5, WARPEDDIFF_PREC_BITS);
+ const int ofs6 = ROUND_POWER_OF_TWO(ofs + stride * 6, WARPEDDIFF_PREC_BITS);
+ const int ofs7 = ROUND_POWER_OF_TWO(ofs + stride * 7, WARPEDDIFF_PREC_BITS);
+
+ const int16_t *base =
+ (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8;
+ out[0] = vld1q_s16(base + ofs0 * 8);
+ out[1] = vld1q_s16(base + ofs1 * 8);
+ out[2] = vld1q_s16(base + ofs2 * 8);
+ out[3] = vld1q_s16(base + ofs3 * 8);
+ out[4] = vld1q_s16(base + ofs4 * 8);
+ out[5] = vld1q_s16(base + ofs5 * 8);
+ out[6] = vld1q_s16(base + ofs6 * 8);
+ out[7] = vld1q_s16(base + ofs7 * 8);
+}
+
+static INLINE uint16x4_t clip_pixel_highbd_vec(int32x4_t val, int bd) {
+ const int limit = (1 << bd) - 1;
+ return vqmovun_s32(vminq_s32(val, vdupq_n_s32(limit)));
+}
+
+static INLINE void warp_affine_horizontal(const uint16_t *ref, int width,
+ int height, int stride, int p_width,
+ int16_t alpha, int16_t beta, int iy4,
+ int sx4, int ix4, int16x8_t tmp[],
+ int bd) {
+ const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS;
+
+ if (ix4 <= -7) {
+ for (int k = 0; k < 15; ++k) {
+ int iy = clamp(iy4 + k - 7, 0, height - 1);
+ int32_t dup_val = (1 << (bd + FILTER_BITS - round0 - 1)) +
+ ref[iy * stride] * (1 << (FILTER_BITS - round0));
+ tmp[k] = vdupq_n_s16(dup_val);
+ }
+ return;
+ } else if (ix4 >= width + 6) {
+ for (int k = 0; k < 15; ++k) {
+ int iy = clamp(iy4 + k - 7, 0, height - 1);
+ int32_t dup_val =
+ (1 << (bd + FILTER_BITS - round0 - 1)) +
+ ref[iy * stride + (width - 1)] * (1 << (FILTER_BITS - round0));
+ tmp[k] = vdupq_n_s16(dup_val);
+ }
+ return;
+ }
+
+ static const uint16_t kIotaArr[] = { 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15 };
+ const uint16x8_t indx0 = vld1q_u16(kIotaArr);
+ const uint16x8_t indx1 = vld1q_u16(kIotaArr + 8);
+
+ const int out_of_boundary_left = -(ix4 - 6);
+ const int out_of_boundary_right = (ix4 + 8) - width;
+
+#define APPLY_HORIZONTAL_SHIFT(fn, ...) \
+ do { \
+ if (out_of_boundary_left >= 0 || out_of_boundary_right >= 0) { \
+ for (int k = 0; k < 15; ++k) { \
+ const int iy = clamp(iy4 + k - 7, 0, height - 1); \
+ uint16x8x2_t src_1 = vld1q_u16_x2(ref + iy * stride + ix4 - 7); \
+ \
+ if (out_of_boundary_left >= 0) { \
+ uint16x8_t cmp_vec = vdupq_n_u16(out_of_boundary_left); \
+ uint16x8_t vec_dup = vdupq_n_u16(ref[iy * stride]); \
+ uint16x8_t mask0 = vcleq_u16(indx0, cmp_vec); \
+ uint16x8_t mask1 = vcleq_u16(indx1, cmp_vec); \
+ src_1.val[0] = vbslq_u16(mask0, vec_dup, src_1.val[0]); \
+ src_1.val[1] = vbslq_u16(mask1, vec_dup, src_1.val[1]); \
+ } \
+ if (out_of_boundary_right >= 0) { \
+ uint16x8_t cmp_vec = vdupq_n_u16(15 - out_of_boundary_right); \
+ uint16x8_t vec_dup = vdupq_n_u16(ref[iy * stride + width - 1]); \
+ uint16x8_t mask0 = vcgeq_u16(indx0, cmp_vec); \
+ uint16x8_t mask1 = vcgeq_u16(indx1, cmp_vec); \
+ src_1.val[0] = vbslq_u16(mask0, vec_dup, src_1.val[0]); \
+ src_1.val[1] = vbslq_u16(mask1, vec_dup, src_1.val[1]); \
+ } \
+ tmp[k] = (fn)(src_1, __VA_ARGS__); \
+ } \
+ } else { \
+ for (int k = 0; k < 15; ++k) { \
+ const int iy = clamp(iy4 + k - 7, 0, height - 1); \
+ uint16x8x2_t src_1 = vld1q_u16_x2(ref + iy * stride + ix4 - 7); \
+ tmp[k] = (fn)(src_1, __VA_ARGS__); \
+ } \
+ } \
+ } while (0)
+
+ if (p_width == 4) {
+ if (beta == 0) {
+ if (alpha == 0) {
+ APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_4x1_f1, bd, sx4);
+ } else {
+ APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_4x1_f4, bd, sx4, alpha);
+ }
+ } else {
+ if (alpha == 0) {
+ APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_4x1_f1, bd,
+ (sx4 + beta * (k - 3)));
+ } else {
+ APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_4x1_f4, bd,
+ (sx4 + beta * (k - 3)), alpha);
+ }
+ }
+ } else {
+ if (beta == 0) {
+ if (alpha == 0) {
+ APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_8x1_f1, bd, sx4);
+ } else {
+ APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_8x1_f8, bd, sx4, alpha);
+ }
+ } else {
+ if (alpha == 0) {
+ APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_8x1_f1, bd,
+ (sx4 + beta * (k - 3)));
+ } else {
+ APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_8x1_f8, bd,
+ (sx4 + beta * (k - 3)), alpha);
+ }
+ }
+ }
+}
+
+static INLINE void highbd_vertical_filter_4x1_f4(
+ uint16_t *pred, int p_stride, int bd, uint16_t *dst, int dst_stride,
+ bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd,
+ int bwd, int16_t gamma, const int16x8_t *tmp, int i, int sy, int j) {
+ int32x4_t sum0 = gamma == 0 ? vertical_filter_4x1_f1(tmp, sy)
+ : vertical_filter_4x1_f4(tmp, sy, gamma);
+
+ const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS;
+ const int offset_bits_vert = bd + 2 * FILTER_BITS - round0;
+
+ sum0 = vaddq_s32(sum0, vdupq_n_s32(1 << offset_bits_vert));
+
+ uint16_t *dst16 = &pred[i * p_stride + j];
+
+ if (!is_compound) {
+ const int reduce_bits_vert = 2 * FILTER_BITS - round0;
+ sum0 = vrshlq_s32(sum0, vdupq_n_s32(-reduce_bits_vert));
+
+ const int res_sub_const = (1 << (bd - 1)) + (1 << bd);
+ sum0 = vsubq_s32(sum0, vdupq_n_s32(res_sub_const));
+ uint16x4_t res0 = clip_pixel_highbd_vec(sum0, bd);
+ vst1_u16(dst16, res0);
+ return;
+ }
+
+ sum0 = vrshrq_n_s32(sum0, COMPOUND_ROUND1_BITS);
+
+ uint16_t *p = &dst[i * dst_stride + j];
+
+ if (!do_average) {
+ vst1_u16(p, vqmovun_s32(sum0));
+ return;
+ }
+
+ uint16x4_t p0 = vld1_u16(p);
+ int32x4_t p_vec0 = vreinterpretq_s32_u32(vmovl_u16(p0));
+ if (use_dist_wtd_comp_avg) {
+ p_vec0 = vmulq_n_s32(p_vec0, fwd);
+ p_vec0 = vmlaq_n_s32(p_vec0, sum0, bwd);
+ p_vec0 = vshrq_n_s32(p_vec0, DIST_PRECISION_BITS);
+ } else {
+ p_vec0 = vhaddq_s32(p_vec0, sum0);
+ }
+
+ const int offset_bits = bd + 2 * FILTER_BITS - round0;
+ const int round1 = COMPOUND_ROUND1_BITS;
+ const int res_sub_const =
+ (1 << (offset_bits - round1)) + (1 << (offset_bits - round1 - 1));
+ const int round_bits = 2 * FILTER_BITS - round0 - round1;
+
+ p_vec0 = vsubq_s32(p_vec0, vdupq_n_s32(res_sub_const));
+ p_vec0 = vrshlq_s32(p_vec0, vdupq_n_s32(-round_bits));
+ uint16x4_t res0 = clip_pixel_highbd_vec(p_vec0, bd);
+ vst1_u16(dst16, res0);
+}
+
+static INLINE void highbd_vertical_filter_8x1_f8(
+ uint16_t *pred, int p_stride, int bd, uint16_t *dst, int dst_stride,
+ bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd,
+ int bwd, int16_t gamma, const int16x8_t *tmp, int i, int sy, int j) {
+ int32x4x2_t sums = gamma == 0 ? vertical_filter_8x1_f1(tmp, sy)
+ : vertical_filter_8x1_f8(tmp, sy, gamma);
+ int32x4_t sum0 = sums.val[0];
+ int32x4_t sum1 = sums.val[1];
+
+ const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS;
+ const int offset_bits_vert = bd + 2 * FILTER_BITS - round0;
+
+ sum0 = vaddq_s32(sum0, vdupq_n_s32(1 << offset_bits_vert));
+ sum1 = vaddq_s32(sum1, vdupq_n_s32(1 << offset_bits_vert));
+
+ uint16_t *dst16 = &pred[i * p_stride + j];
+
+ if (!is_compound) {
+ const int reduce_bits_vert = 2 * FILTER_BITS - round0;
+ sum0 = vrshlq_s32(sum0, vdupq_n_s32(-reduce_bits_vert));
+ sum1 = vrshlq_s32(sum1, vdupq_n_s32(-reduce_bits_vert));
+
+ const int res_sub_const = (1 << (bd - 1)) + (1 << bd);
+ sum0 = vsubq_s32(sum0, vdupq_n_s32(res_sub_const));
+ sum1 = vsubq_s32(sum1, vdupq_n_s32(res_sub_const));
+ uint16x4_t res0 = clip_pixel_highbd_vec(sum0, bd);
+ uint16x4_t res1 = clip_pixel_highbd_vec(sum1, bd);
+ vst1_u16(dst16, res0);
+ vst1_u16(dst16 + 4, res1);
+ return;
+ }
+
+ sum0 = vrshrq_n_s32(sum0, COMPOUND_ROUND1_BITS);
+ sum1 = vrshrq_n_s32(sum1, COMPOUND_ROUND1_BITS);
+
+ uint16_t *p = &dst[i * dst_stride + j];
+
+ if (!do_average) {
+ vst1_u16(p, vqmovun_s32(sum0));
+ vst1_u16(p + 4, vqmovun_s32(sum1));
+ return;
+ }
+
+ uint16x8_t p0 = vld1q_u16(p);
+ int32x4_t p_vec0 = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(p0)));
+ int32x4_t p_vec1 = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(p0)));
+ if (use_dist_wtd_comp_avg) {
+ p_vec0 = vmulq_n_s32(p_vec0, fwd);
+ p_vec1 = vmulq_n_s32(p_vec1, fwd);
+ p_vec0 = vmlaq_n_s32(p_vec0, sum0, bwd);
+ p_vec1 = vmlaq_n_s32(p_vec1, sum1, bwd);
+ p_vec0 = vshrq_n_s32(p_vec0, DIST_PRECISION_BITS);
+ p_vec1 = vshrq_n_s32(p_vec1, DIST_PRECISION_BITS);
+ } else {
+ p_vec0 = vhaddq_s32(p_vec0, sum0);
+ p_vec1 = vhaddq_s32(p_vec1, sum1);
+ }
+
+ const int offset_bits = bd + 2 * FILTER_BITS - round0;
+ const int round1 = COMPOUND_ROUND1_BITS;
+ const int res_sub_const =
+ (1 << (offset_bits - round1)) + (1 << (offset_bits - round1 - 1));
+ const int round_bits = 2 * FILTER_BITS - round0 - round1;
+
+ p_vec0 = vsubq_s32(p_vec0, vdupq_n_s32(res_sub_const));
+ p_vec1 = vsubq_s32(p_vec1, vdupq_n_s32(res_sub_const));
+
+ p_vec0 = vrshlq_s32(p_vec0, vdupq_n_s32(-round_bits));
+ p_vec1 = vrshlq_s32(p_vec1, vdupq_n_s32(-round_bits));
+ uint16x4_t res0 = clip_pixel_highbd_vec(p_vec0, bd);
+ uint16x4_t res1 = clip_pixel_highbd_vec(p_vec1, bd);
+ vst1_u16(dst16, res0);
+ vst1_u16(dst16 + 4, res1);
+}
+
+static INLINE void warp_affine_vertical(
+ uint16_t *pred, int p_width, int p_height, int p_stride, int bd,
+ uint16_t *dst, int dst_stride, bool is_compound, bool do_average,
+ bool use_dist_wtd_comp_avg, int fwd, int bwd, int16_t gamma, int16_t delta,
+ const int16x8_t *tmp, int i, int sy4, int j) {
+ int limit_height = p_height > 4 ? 8 : 4;
+
+ if (p_width > 4) {
+ // p_width == 8
+ for (int k = 0; k < limit_height; ++k) {
+ int sy = sy4 + delta * k;
+ highbd_vertical_filter_8x1_f8(
+ pred, p_stride, bd, dst, dst_stride, is_compound, do_average,
+ use_dist_wtd_comp_avg, fwd, bwd, gamma, tmp + k, i + k, sy, j);
+ }
+ } else {
+ // p_width == 4
+ for (int k = 0; k < limit_height; ++k) {
+ int sy = sy4 + delta * k;
+ highbd_vertical_filter_4x1_f4(
+ pred, p_stride, bd, dst, dst_stride, is_compound, do_average,
+ use_dist_wtd_comp_avg, fwd, bwd, gamma, tmp + k, i + k, sy, j);
+ }
+ }
+}
+
+static INLINE void highbd_warp_affine_common(
+ const int32_t *mat, const uint16_t *ref, int width, int height, int stride,
+ uint16_t *pred, int p_col, int p_row, int p_width, int p_height,
+ int p_stride, int subsampling_x, int subsampling_y, int bd,
+ ConvolveParams *conv_params, int16_t alpha, int16_t beta, int16_t gamma,
+ int16_t delta) {
+ uint16_t *const dst = conv_params->dst;
+ const int dst_stride = conv_params->dst_stride;
+ const bool is_compound = conv_params->is_compound;
+ const bool do_average = conv_params->do_average;
+ const bool use_dist_wtd_comp_avg = conv_params->use_dist_wtd_comp_avg;
+ const int fwd = conv_params->fwd_offset;
+ const int bwd = conv_params->bck_offset;
+
+ assert(IMPLIES(is_compound, dst != NULL));
+
+ for (int i = 0; i < p_height; i += 8) {
+ for (int j = 0; j < p_width; j += 8) {
+ // Calculate the center of this 8x8 block,
+ // project to luma coordinates (if in a subsampled chroma plane),
+ // apply the affine transformation,
+ // then convert back to the original coordinates (if necessary)
+ const int32_t src_x = (j + 4 + p_col) << subsampling_x;
+ const int32_t src_y = (i + 4 + p_row) << subsampling_y;
+ const int64_t dst_x =
+ (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0];
+ const int64_t dst_y =
+ (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1];
+ const int64_t x4 = dst_x >> subsampling_x;
+ const int64_t y4 = dst_y >> subsampling_y;
+
+ const int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS);
+ int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
+ const int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS);
+ int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
+
+ sx4 += alpha * (-4) + beta * (-4);
+ sy4 += gamma * (-4) + delta * (-4);
+
+ sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
+ sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
+
+ // Each horizontal filter result is formed by the sum of up to eight
+ // multiplications by filter values and then a shift. Although both the
+ // inputs and filters are loaded as int16, the input data is at most bd
+ // bits and the filters are at most 8 bits each. Additionally since we
+ // know all possible filter values we know that the sum of absolute
+ // filter values will fit in at most 9 bits. With this in mind we can
+ // conclude that the sum of each filter application will fit in bd + 9
+ // bits. The shift following the summation is ROUND0_BITS (which is 3),
+ // +2 for 12-bit, which gives us a final storage of:
+ // bd == 8: ( 8 + 9) - 3 => 14 bits
+ // bd == 10: (10 + 9) - 3 => 16 bits
+ // bd == 12: (12 + 9) - 5 => 16 bits
+ // So it is safe to use int16x8_t as the intermediate storage type here.
+ int16x8_t tmp[15];
+
+ warp_affine_horizontal(ref, width, height, stride, p_width, alpha, beta,
+ iy4, sx4, ix4, tmp, bd);
+ warp_affine_vertical(pred, p_width, p_height, p_stride, bd, dst,
+ dst_stride, is_compound, do_average,
+ use_dist_wtd_comp_avg, fwd, bwd, gamma, delta, tmp,
+ i, sy4, j);
+ }
+ }
+}
+
+#endif // AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_