summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/x86/cdef_block_avx2.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/common/x86/cdef_block_avx2.c357
1 files changed, 357 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/x86/cdef_block_avx2.c b/third_party/aom/av1/common/x86/cdef_block_avx2.c
new file mode 100644
index 0000000000..1ec4b6c332
--- /dev/null
+++ b/third_party/aom/av1/common/x86/cdef_block_avx2.c
@@ -0,0 +1,357 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include "aom_dsp/aom_simd.h"
+#define SIMD_FUNC(name) name##_avx2
+#include "av1/common/cdef_block_simd.h"
+
+// Mask used to shuffle the elements present in 256bit register.
+const int shuffle_reg_256bit[8] = { 0x0b0a0d0c, 0x07060908, 0x03020504,
+ 0x0f0e0100, 0x0b0a0d0c, 0x07060908,
+ 0x03020504, 0x0f0e0100 };
+
+/* partial A is a 16-bit vector of the form:
+[x8 - - x1 | x16 - - x9] and partial B has the form:
+[0 y1 - y7 | 0 y9 - y15].
+This function computes (x1^2+y1^2)*C1 + (x2^2+y2^2)*C2 + ...
+(x7^2+y2^7)*C7 + (x8^2+0^2)*C8 on each 128-bit lane. Here the C1..C8 constants
+are in const1 and const2. */
+static INLINE __m256i fold_mul_and_sum_avx2(__m256i *partiala,
+ __m256i *partialb,
+ const __m256i *const1,
+ const __m256i *const2) {
+ __m256i tmp;
+ /* Reverse partial B. */
+ *partialb = _mm256_shuffle_epi8(
+ *partialb, _mm256_loadu_si256((const __m256i *)shuffle_reg_256bit));
+
+ /* Interleave the x and y values of identical indices and pair x8 with 0. */
+ tmp = *partiala;
+ *partiala = _mm256_unpacklo_epi16(*partiala, *partialb);
+ *partialb = _mm256_unpackhi_epi16(tmp, *partialb);
+
+ /* Square and add the corresponding x and y values. */
+ *partiala = _mm256_madd_epi16(*partiala, *partiala);
+ *partialb = _mm256_madd_epi16(*partialb, *partialb);
+ /* Multiply by constant. */
+ *partiala = _mm256_mullo_epi32(*partiala, *const1);
+ *partialb = _mm256_mullo_epi32(*partialb, *const2);
+ /* Sum all results. */
+ *partiala = _mm256_add_epi32(*partiala, *partialb);
+ return *partiala;
+}
+
+static INLINE __m256i hsum4_avx2(__m256i *x0, __m256i *x1, __m256i *x2,
+ __m256i *x3) {
+ const __m256i t0 = _mm256_unpacklo_epi32(*x0, *x1);
+ const __m256i t1 = _mm256_unpacklo_epi32(*x2, *x3);
+ const __m256i t2 = _mm256_unpackhi_epi32(*x0, *x1);
+ const __m256i t3 = _mm256_unpackhi_epi32(*x2, *x3);
+
+ *x0 = _mm256_unpacklo_epi64(t0, t1);
+ *x1 = _mm256_unpackhi_epi64(t0, t1);
+ *x2 = _mm256_unpacklo_epi64(t2, t3);
+ *x3 = _mm256_unpackhi_epi64(t2, t3);
+ return _mm256_add_epi32(_mm256_add_epi32(*x0, *x1),
+ _mm256_add_epi32(*x2, *x3));
+}
+
+/* Computes cost for directions 0, 5, 6 and 7. We can call this function again
+to compute the remaining directions. */
+static INLINE __m256i compute_directions_avx2(__m256i *lines,
+ int32_t cost_frist_8x8[4],
+ int32_t cost_second_8x8[4]) {
+ __m256i partial4a, partial4b, partial5a, partial5b, partial7a, partial7b;
+ __m256i partial6;
+ __m256i tmp;
+ /* Partial sums for lines 0 and 1. */
+ partial4a = _mm256_slli_si256(lines[0], 14);
+ partial4b = _mm256_srli_si256(lines[0], 2);
+ partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[1], 12));
+ partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[1], 4));
+ tmp = _mm256_add_epi16(lines[0], lines[1]);
+ partial5a = _mm256_slli_si256(tmp, 10);
+ partial5b = _mm256_srli_si256(tmp, 6);
+ partial7a = _mm256_slli_si256(tmp, 4);
+ partial7b = _mm256_srli_si256(tmp, 12);
+ partial6 = tmp;
+
+ /* Partial sums for lines 2 and 3. */
+ partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[2], 10));
+ partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[2], 6));
+ partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[3], 8));
+ partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[3], 8));
+ tmp = _mm256_add_epi16(lines[2], lines[3]);
+ partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 8));
+ partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 8));
+ partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 6));
+ partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 10));
+ partial6 = _mm256_add_epi16(partial6, tmp);
+
+ /* Partial sums for lines 4 and 5. */
+ partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[4], 6));
+ partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[4], 10));
+ partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[5], 4));
+ partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[5], 12));
+ tmp = _mm256_add_epi16(lines[4], lines[5]);
+ partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 6));
+ partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 10));
+ partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 8));
+ partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 8));
+ partial6 = _mm256_add_epi16(partial6, tmp);
+
+ /* Partial sums for lines 6 and 7. */
+ partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[6], 2));
+ partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[6], 14));
+ partial4a = _mm256_add_epi16(partial4a, lines[7]);
+ tmp = _mm256_add_epi16(lines[6], lines[7]);
+ partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 4));
+ partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 12));
+ partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 10));
+ partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 6));
+ partial6 = _mm256_add_epi16(partial6, tmp);
+
+ const __m256i const_reg_1 =
+ _mm256_set_epi32(210, 280, 420, 840, 210, 280, 420, 840);
+ const __m256i const_reg_2 =
+ _mm256_set_epi32(105, 120, 140, 168, 105, 120, 140, 168);
+ const __m256i const_reg_3 = _mm256_set_epi32(210, 420, 0, 0, 210, 420, 0, 0);
+ const __m256i const_reg_4 =
+ _mm256_set_epi32(105, 105, 105, 140, 105, 105, 105, 140);
+
+ /* Compute costs in terms of partial sums. */
+ partial4a =
+ fold_mul_and_sum_avx2(&partial4a, &partial4b, &const_reg_1, &const_reg_2);
+ partial7a =
+ fold_mul_and_sum_avx2(&partial7a, &partial7b, &const_reg_3, &const_reg_4);
+ partial5a =
+ fold_mul_and_sum_avx2(&partial5a, &partial5b, &const_reg_3, &const_reg_4);
+ partial6 = _mm256_madd_epi16(partial6, partial6);
+ partial6 = _mm256_mullo_epi32(partial6, _mm256_set1_epi32(105));
+
+ partial4a = hsum4_avx2(&partial4a, &partial5a, &partial6, &partial7a);
+ _mm_storeu_si128((__m128i *)cost_frist_8x8,
+ _mm256_castsi256_si128(partial4a));
+ _mm_storeu_si128((__m128i *)cost_second_8x8,
+ _mm256_extractf128_si256(partial4a, 1));
+
+ return partial4a;
+}
+
+/* transpose and reverse the order of the lines -- equivalent to a 90-degree
+counter-clockwise rotation of the pixels. */
+static INLINE void array_reverse_transpose_8x8_avx2(__m256i *in, __m256i *res) {
+ const __m256i tr0_0 = _mm256_unpacklo_epi16(in[0], in[1]);
+ const __m256i tr0_1 = _mm256_unpacklo_epi16(in[2], in[3]);
+ const __m256i tr0_2 = _mm256_unpackhi_epi16(in[0], in[1]);
+ const __m256i tr0_3 = _mm256_unpackhi_epi16(in[2], in[3]);
+ const __m256i tr0_4 = _mm256_unpacklo_epi16(in[4], in[5]);
+ const __m256i tr0_5 = _mm256_unpacklo_epi16(in[6], in[7]);
+ const __m256i tr0_6 = _mm256_unpackhi_epi16(in[4], in[5]);
+ const __m256i tr0_7 = _mm256_unpackhi_epi16(in[6], in[7]);
+
+ const __m256i tr1_0 = _mm256_unpacklo_epi32(tr0_0, tr0_1);
+ const __m256i tr1_1 = _mm256_unpacklo_epi32(tr0_4, tr0_5);
+ const __m256i tr1_2 = _mm256_unpackhi_epi32(tr0_0, tr0_1);
+ const __m256i tr1_3 = _mm256_unpackhi_epi32(tr0_4, tr0_5);
+ const __m256i tr1_4 = _mm256_unpacklo_epi32(tr0_2, tr0_3);
+ const __m256i tr1_5 = _mm256_unpacklo_epi32(tr0_6, tr0_7);
+ const __m256i tr1_6 = _mm256_unpackhi_epi32(tr0_2, tr0_3);
+ const __m256i tr1_7 = _mm256_unpackhi_epi32(tr0_6, tr0_7);
+
+ res[7] = _mm256_unpacklo_epi64(tr1_0, tr1_1);
+ res[6] = _mm256_unpackhi_epi64(tr1_0, tr1_1);
+ res[5] = _mm256_unpacklo_epi64(tr1_2, tr1_3);
+ res[4] = _mm256_unpackhi_epi64(tr1_2, tr1_3);
+ res[3] = _mm256_unpacklo_epi64(tr1_4, tr1_5);
+ res[2] = _mm256_unpackhi_epi64(tr1_4, tr1_5);
+ res[1] = _mm256_unpacklo_epi64(tr1_6, tr1_7);
+ res[0] = _mm256_unpackhi_epi64(tr1_6, tr1_7);
+}
+
+void cdef_find_dir_dual_avx2(const uint16_t *img1, const uint16_t *img2,
+ int stride, int32_t *var_out_1st,
+ int32_t *var_out_2nd, int coeff_shift,
+ int *out_dir_1st_8x8, int *out_dir_2nd_8x8) {
+ int32_t cost_first_8x8[8];
+ int32_t cost_second_8x8[8];
+ // Used to store the best cost for 2 8x8's.
+ int32_t best_cost[2] = { 0 };
+ // Best direction for 2 8x8's.
+ int best_dir[2] = { 0 };
+
+ const __m128i const_coeff_shift_reg = _mm_cvtsi32_si128(coeff_shift);
+ const __m256i const_128_reg = _mm256_set1_epi16(128);
+ __m256i lines[8];
+ for (int i = 0; i < 8; i++) {
+ const __m128i src_1 = _mm_loadu_si128((const __m128i *)&img1[i * stride]);
+ const __m128i src_2 = _mm_loadu_si128((const __m128i *)&img2[i * stride]);
+
+ lines[i] = _mm256_insertf128_si256(_mm256_castsi128_si256(src_1), src_2, 1);
+ lines[i] = _mm256_sub_epi16(
+ _mm256_sra_epi16(lines[i], const_coeff_shift_reg), const_128_reg);
+ }
+
+ /* Compute "mostly vertical" directions. */
+ const __m256i dir47 =
+ compute_directions_avx2(lines, cost_first_8x8 + 4, cost_second_8x8 + 4);
+
+ /* Transpose and reverse the order of the lines. */
+ array_reverse_transpose_8x8_avx2(lines, lines);
+
+ /* Compute "mostly horizontal" directions. */
+ const __m256i dir03 =
+ compute_directions_avx2(lines, cost_first_8x8, cost_second_8x8);
+
+ __m256i max = _mm256_max_epi32(dir03, dir47);
+ max =
+ _mm256_max_epi32(max, _mm256_or_si256(_mm256_srli_si256(max, 8),
+ _mm256_slli_si256(max, 16 - (8))));
+ max =
+ _mm256_max_epi32(max, _mm256_or_si256(_mm256_srli_si256(max, 4),
+ _mm256_slli_si256(max, 16 - (4))));
+
+ const __m128i first_8x8_output = _mm256_castsi256_si128(max);
+ const __m128i second_8x8_output = _mm256_extractf128_si256(max, 1);
+ const __m128i cmpeg_res_00 =
+ _mm_cmpeq_epi32(first_8x8_output, _mm256_castsi256_si128(dir47));
+ const __m128i cmpeg_res_01 =
+ _mm_cmpeq_epi32(first_8x8_output, _mm256_castsi256_si128(dir03));
+ const __m128i cmpeg_res_10 =
+ _mm_cmpeq_epi32(second_8x8_output, _mm256_extractf128_si256(dir47, 1));
+ const __m128i cmpeg_res_11 =
+ _mm_cmpeq_epi32(second_8x8_output, _mm256_extractf128_si256(dir03, 1));
+ const __m128i t_first_8x8 = _mm_packs_epi32(cmpeg_res_01, cmpeg_res_00);
+ const __m128i t_second_8x8 = _mm_packs_epi32(cmpeg_res_11, cmpeg_res_10);
+
+ best_cost[0] = _mm_cvtsi128_si32(_mm256_castsi256_si128(max));
+ best_cost[1] = _mm_cvtsi128_si32(second_8x8_output);
+ best_dir[0] = _mm_movemask_epi8(_mm_packs_epi16(t_first_8x8, t_first_8x8));
+ best_dir[0] =
+ get_msb(best_dir[0] ^ (best_dir[0] - 1)); // Count trailing zeros
+ best_dir[1] = _mm_movemask_epi8(_mm_packs_epi16(t_second_8x8, t_second_8x8));
+ best_dir[1] =
+ get_msb(best_dir[1] ^ (best_dir[1] - 1)); // Count trailing zeros
+
+ /* Difference between the optimal variance and the variance along the
+ orthogonal direction. Again, the sum(x^2) terms cancel out. */
+ *var_out_1st = best_cost[0] - cost_first_8x8[(best_dir[0] + 4) & 7];
+ *var_out_2nd = best_cost[1] - cost_second_8x8[(best_dir[1] + 4) & 7];
+
+ /* We'd normally divide by 840, but dividing by 1024 is close enough
+ for what we're going to do with this. */
+ *var_out_1st >>= 10;
+ *var_out_2nd >>= 10;
+ *out_dir_1st_8x8 = best_dir[0];
+ *out_dir_2nd_8x8 = best_dir[1];
+}
+
+void cdef_copy_rect8_8bit_to_16bit_avx2(uint16_t *dst, int dstride,
+ const uint8_t *src, int sstride,
+ int width, int height) {
+ int j = 0;
+ int remaining_width = width;
+ assert(height % 2 == 0);
+ assert(height > 0);
+ assert(width > 0);
+
+ // Process multiple 32 pixels at a time.
+ if (remaining_width > 31) {
+ int i = 0;
+ do {
+ j = 0;
+ do {
+ __m128i row00 =
+ _mm_loadu_si128((const __m128i *)&src[(i + 0) * sstride + (j + 0)]);
+ __m128i row01 = _mm_loadu_si128(
+ (const __m128i *)&src[(i + 0) * sstride + (j + 16)]);
+ __m128i row10 =
+ _mm_loadu_si128((const __m128i *)&src[(i + 1) * sstride + (j + 0)]);
+ __m128i row11 = _mm_loadu_si128(
+ (const __m128i *)&src[(i + 1) * sstride + (j + 16)]);
+ _mm256_storeu_si256((__m256i *)&dst[(i + 0) * dstride + (j + 0)],
+ _mm256_cvtepu8_epi16(row00));
+ _mm256_storeu_si256((__m256i *)&dst[(i + 0) * dstride + (j + 16)],
+ _mm256_cvtepu8_epi16(row01));
+ _mm256_storeu_si256((__m256i *)&dst[(i + 1) * dstride + (j + 0)],
+ _mm256_cvtepu8_epi16(row10));
+ _mm256_storeu_si256((__m256i *)&dst[(i + 1) * dstride + (j + 16)],
+ _mm256_cvtepu8_epi16(row11));
+ j += 32;
+ } while (j <= width - 32);
+ i += 2;
+ } while (i < height);
+ remaining_width = width & 31;
+ }
+
+ // Process 16 pixels at a time.
+ if (remaining_width > 15) {
+ int i = 0;
+ do {
+ __m128i row0 =
+ _mm_loadu_si128((const __m128i *)&src[(i + 0) * sstride + j]);
+ __m128i row1 =
+ _mm_loadu_si128((const __m128i *)&src[(i + 1) * sstride + j]);
+ _mm256_storeu_si256((__m256i *)&dst[(i + 0) * dstride + j],
+ _mm256_cvtepu8_epi16(row0));
+ _mm256_storeu_si256((__m256i *)&dst[(i + 1) * dstride + j],
+ _mm256_cvtepu8_epi16(row1));
+ i += 2;
+ } while (i < height);
+ remaining_width = width & 15;
+ j += 16;
+ }
+
+ // Process 8 pixels at a time.
+ if (remaining_width > 7) {
+ int i = 0;
+ do {
+ __m128i row0 =
+ _mm_loadl_epi64((const __m128i *)&src[(i + 0) * sstride + j]);
+ __m128i row1 =
+ _mm_loadl_epi64((const __m128i *)&src[(i + 1) * sstride + j]);
+ _mm_storeu_si128((__m128i *)&dst[(i + 0) * dstride + j],
+ _mm_unpacklo_epi8(row0, _mm_setzero_si128()));
+ _mm_storeu_si128((__m128i *)&dst[(i + 1) * dstride + j],
+ _mm_unpacklo_epi8(row1, _mm_setzero_si128()));
+ i += 2;
+ } while (i < height);
+ remaining_width = width & 7;
+ j += 8;
+ }
+
+ // Process 4 pixels at a time.
+ if (remaining_width > 3) {
+ int i = 0;
+ do {
+ __m128i row0 =
+ _mm_cvtsi32_si128(*((const int32_t *)&src[(i + 0) * sstride + j]));
+ __m128i row1 =
+ _mm_cvtsi32_si128(*((const int32_t *)&src[(i + 1) * sstride + j]));
+ _mm_storel_epi64((__m128i *)&dst[(i + 0) * dstride + j],
+ _mm_unpacklo_epi8(row0, _mm_setzero_si128()));
+ _mm_storel_epi64((__m128i *)&dst[(i + 1) * dstride + j],
+ _mm_unpacklo_epi8(row1, _mm_setzero_si128()));
+ i += 2;
+ } while (i < height);
+ remaining_width = width & 3;
+ j += 4;
+ }
+
+ // Process the remaining pixels.
+ if (remaining_width) {
+ for (int i = 0; i < height; i++) {
+ for (int k = j; k < width; k++) {
+ dst[i * dstride + k] = src[i * sstride + k];
+ }
+ }
+ }
+}