summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/allintra_vis.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/allintra_vis.c1055
1 files changed, 1055 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/allintra_vis.c b/third_party/aom/av1/encoder/allintra_vis.c
new file mode 100644
index 0000000000..8dcef5fc85
--- /dev/null
+++ b/third_party/aom/av1/encoder/allintra_vis.c
@@ -0,0 +1,1055 @@
+/*
+ * Copyright (c) 2021, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+
+#include "config/aom_config.h"
+
+#if CONFIG_TFLITE
+#include "tensorflow/lite/c/c_api.h"
+#include "av1/encoder/deltaq4_model.c"
+#endif
+
+#include "av1/common/common_data.h"
+#include "av1/common/enums.h"
+#include "av1/common/idct.h"
+#include "av1/common/reconinter.h"
+#include "av1/encoder/allintra_vis.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/ethread.h"
+#include "av1/encoder/hybrid_fwd_txfm.h"
+#include "av1/encoder/model_rd.h"
+#include "av1/encoder/rdopt_utils.h"
+
+#define MB_WIENER_PRED_BLOCK_SIZE BLOCK_128X128
+#define MB_WIENER_PRED_BUF_STRIDE 128
+
+void av1_alloc_mb_wiener_var_pred_buf(AV1_COMMON *cm, ThreadData *td) {
+ const int is_high_bitdepth = is_cur_buf_hbd(&td->mb.e_mbd);
+ assert(MB_WIENER_PRED_BLOCK_SIZE < BLOCK_SIZES_ALL);
+ const int buf_width = block_size_wide[MB_WIENER_PRED_BLOCK_SIZE];
+ const int buf_height = block_size_high[MB_WIENER_PRED_BLOCK_SIZE];
+ assert(buf_width == MB_WIENER_PRED_BUF_STRIDE);
+ const size_t buf_size =
+ (buf_width * buf_height * sizeof(*td->wiener_tmp_pred_buf))
+ << is_high_bitdepth;
+ CHECK_MEM_ERROR(cm, td->wiener_tmp_pred_buf, aom_memalign(32, buf_size));
+}
+
+void av1_dealloc_mb_wiener_var_pred_buf(ThreadData *td) {
+ aom_free(td->wiener_tmp_pred_buf);
+ td->wiener_tmp_pred_buf = NULL;
+}
+
+void av1_init_mb_wiener_var_buffer(AV1_COMP *cpi) {
+ AV1_COMMON *cm = &cpi->common;
+
+ // This block size is also used to determine number of workers in
+ // multi-threading. If it is changed, one needs to change it accordingly in
+ // "compute_num_ai_workers()".
+ cpi->weber_bsize = BLOCK_8X8;
+
+ if (cpi->oxcf.enable_rate_guide_deltaq) {
+ if (cpi->mb_weber_stats && cpi->prep_rate_estimates &&
+ cpi->ext_rate_distribution)
+ return;
+ } else {
+ if (cpi->mb_weber_stats) return;
+ }
+
+ CHECK_MEM_ERROR(cm, cpi->mb_weber_stats,
+ aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols,
+ sizeof(*cpi->mb_weber_stats)));
+
+ if (cpi->oxcf.enable_rate_guide_deltaq) {
+ CHECK_MEM_ERROR(
+ cm, cpi->prep_rate_estimates,
+ aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols,
+ sizeof(*cpi->prep_rate_estimates)));
+
+ CHECK_MEM_ERROR(
+ cm, cpi->ext_rate_distribution,
+ aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols,
+ sizeof(*cpi->ext_rate_distribution)));
+ }
+}
+
+static int64_t get_satd(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
+ int mi_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int mi_wide = mi_size_wide[bsize];
+ const int mi_high = mi_size_high[bsize];
+
+ const int mi_step = mi_size_wide[cpi->weber_bsize];
+ int mb_stride = cpi->frame_info.mi_cols;
+ int mb_count = 0;
+ int64_t satd = 0;
+
+ for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
+ for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
+ if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
+ continue;
+
+ satd += cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)]
+ .satd;
+ ++mb_count;
+ }
+ }
+
+ if (mb_count) satd = (int)(satd / mb_count);
+ satd = AOMMAX(1, satd);
+
+ return (int)satd;
+}
+
+static int64_t get_sse(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
+ int mi_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int mi_wide = mi_size_wide[bsize];
+ const int mi_high = mi_size_high[bsize];
+
+ const int mi_step = mi_size_wide[cpi->weber_bsize];
+ int mb_stride = cpi->frame_info.mi_cols;
+ int mb_count = 0;
+ int64_t distortion = 0;
+
+ for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
+ for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
+ if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
+ continue;
+
+ distortion +=
+ cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)]
+ .distortion;
+ ++mb_count;
+ }
+ }
+
+ if (mb_count) distortion = (int)(distortion / mb_count);
+ distortion = AOMMAX(1, distortion);
+
+ return (int)distortion;
+}
+
+static double get_max_scale(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
+ int mi_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int mi_wide = mi_size_wide[bsize];
+ const int mi_high = mi_size_high[bsize];
+ const int mi_step = mi_size_wide[cpi->weber_bsize];
+ int mb_stride = cpi->frame_info.mi_cols;
+ double min_max_scale = 10.0;
+
+ for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
+ for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
+ if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
+ continue;
+ WeberStats *weber_stats =
+ &cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)];
+ if (weber_stats->max_scale < 1.0) continue;
+ if (weber_stats->max_scale < min_max_scale)
+ min_max_scale = weber_stats->max_scale;
+ }
+ }
+ return min_max_scale;
+}
+
+static int get_window_wiener_var(AV1_COMP *const cpi, BLOCK_SIZE bsize,
+ int mi_row, int mi_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int mi_wide = mi_size_wide[bsize];
+ const int mi_high = mi_size_high[bsize];
+
+ const int mi_step = mi_size_wide[cpi->weber_bsize];
+ int sb_wiener_var = 0;
+ int mb_stride = cpi->frame_info.mi_cols;
+ int mb_count = 0;
+ double base_num = 1;
+ double base_den = 1;
+ double base_reg = 1;
+
+ for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
+ for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
+ if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
+ continue;
+
+ WeberStats *weber_stats =
+ &cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)];
+
+ base_num += ((double)weber_stats->distortion) *
+ sqrt((double)weber_stats->src_variance) *
+ weber_stats->rec_pix_max;
+
+ base_den += fabs(
+ weber_stats->rec_pix_max * sqrt((double)weber_stats->src_variance) -
+ weber_stats->src_pix_max * sqrt((double)weber_stats->rec_variance));
+
+ base_reg += sqrt((double)weber_stats->distortion) *
+ sqrt((double)weber_stats->src_pix_max) * 0.1;
+ ++mb_count;
+ }
+ }
+
+ sb_wiener_var =
+ (int)(((base_num + base_reg) / (base_den + base_reg)) / mb_count);
+ sb_wiener_var = AOMMAX(1, sb_wiener_var);
+
+ return (int)sb_wiener_var;
+}
+
+static int get_var_perceptual_ai(AV1_COMP *const cpi, BLOCK_SIZE bsize,
+ int mi_row, int mi_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int mi_wide = mi_size_wide[bsize];
+ const int mi_high = mi_size_high[bsize];
+
+ int sb_wiener_var = get_window_wiener_var(cpi, bsize, mi_row, mi_col);
+
+ if (mi_row >= (mi_high / 2)) {
+ sb_wiener_var =
+ AOMMIN(sb_wiener_var,
+ get_window_wiener_var(cpi, bsize, mi_row - mi_high / 2, mi_col));
+ }
+ if (mi_row <= (cm->mi_params.mi_rows - mi_high - (mi_high / 2))) {
+ sb_wiener_var =
+ AOMMIN(sb_wiener_var,
+ get_window_wiener_var(cpi, bsize, mi_row + mi_high / 2, mi_col));
+ }
+ if (mi_col >= (mi_wide / 2)) {
+ sb_wiener_var =
+ AOMMIN(sb_wiener_var,
+ get_window_wiener_var(cpi, bsize, mi_row, mi_col - mi_wide / 2));
+ }
+ if (mi_col <= (cm->mi_params.mi_cols - mi_wide - (mi_wide / 2))) {
+ sb_wiener_var =
+ AOMMIN(sb_wiener_var,
+ get_window_wiener_var(cpi, bsize, mi_row, mi_col + mi_wide / 2));
+ }
+
+ return sb_wiener_var;
+}
+
+static int rate_estimator(const tran_low_t *qcoeff, int eob, TX_SIZE tx_size) {
+ const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
+
+ assert((1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]) >= eob);
+ int rate_cost = 1;
+
+ for (int idx = 0; idx < eob; ++idx) {
+ int abs_level = abs(qcoeff[scan_order->scan[idx]]);
+ rate_cost += (int)(log1p(abs_level) / log(2.0)) + 1 + (abs_level > 0);
+ }
+
+ return (rate_cost << AV1_PROB_COST_SHIFT);
+}
+
+void av1_calc_mb_wiener_var_row(AV1_COMP *const cpi, MACROBLOCK *x,
+ MACROBLOCKD *xd, const int mi_row,
+ int16_t *src_diff, tran_low_t *coeff,
+ tran_low_t *qcoeff, tran_low_t *dqcoeff,
+ double *sum_rec_distortion,
+ double *sum_est_rate, uint8_t *pred_buffer) {
+ AV1_COMMON *const cm = &cpi->common;
+ uint8_t *buffer = cpi->source->y_buffer;
+ int buf_stride = cpi->source->y_stride;
+ MB_MODE_INFO mbmi;
+ memset(&mbmi, 0, sizeof(mbmi));
+ MB_MODE_INFO *mbmi_ptr = &mbmi;
+ xd->mi = &mbmi_ptr;
+ const BLOCK_SIZE bsize = cpi->weber_bsize;
+ const TX_SIZE tx_size = max_txsize_lookup[bsize];
+ const int block_size = tx_size_wide[tx_size];
+ const int coeff_count = block_size * block_size;
+ const int mb_step = mi_size_wide[bsize];
+ const BitDepthInfo bd_info = get_bit_depth_info(xd);
+ const MultiThreadInfo *const mt_info = &cpi->mt_info;
+ const AV1EncAllIntraMultiThreadInfo *const intra_mt = &mt_info->intra_mt;
+ AV1EncRowMultiThreadSync *const intra_row_mt_sync =
+ &cpi->ppi->intra_row_mt_sync;
+ const int mi_cols = cm->mi_params.mi_cols;
+ const int mt_thread_id = mi_row / mb_step;
+ // TODO(chengchen): test different unit step size
+ const int mt_unit_step = mi_size_wide[MB_WIENER_MT_UNIT_SIZE];
+ const int mt_unit_cols = (mi_cols + (mt_unit_step >> 1)) / mt_unit_step;
+ int mt_unit_col = 0;
+ const int is_high_bitdepth = is_cur_buf_hbd(xd);
+
+ uint8_t *dst_buffer = pred_buffer;
+ const int dst_buffer_stride = MB_WIENER_PRED_BUF_STRIDE;
+
+ if (is_high_bitdepth) {
+ uint16_t *pred_buffer_16 = (uint16_t *)pred_buffer;
+ dst_buffer = CONVERT_TO_BYTEPTR(pred_buffer_16);
+ }
+
+ for (int mi_col = 0; mi_col < mi_cols; mi_col += mb_step) {
+ if (mi_col % mt_unit_step == 0) {
+ intra_mt->intra_sync_read_ptr(intra_row_mt_sync, mt_thread_id,
+ mt_unit_col);
+#if CONFIG_MULTITHREAD
+ const int num_workers =
+ AOMMIN(mt_info->num_mod_workers[MOD_AI], mt_info->num_workers);
+ if (num_workers > 1) {
+ const AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
+ pthread_mutex_lock(enc_row_mt->mutex_);
+ const bool exit = enc_row_mt->mb_wiener_mt_exit;
+ pthread_mutex_unlock(enc_row_mt->mutex_);
+ // Stop further processing in case any worker has encountered an error.
+ if (exit) break;
+ }
+#endif
+ }
+
+ PREDICTION_MODE best_mode = DC_PRED;
+ int best_intra_cost = INT_MAX;
+ const int mi_width = mi_size_wide[bsize];
+ const int mi_height = mi_size_high[bsize];
+ set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
+ mi_row, mi_col);
+ set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width,
+ AOMMIN(mi_row + mi_height, cm->mi_params.mi_rows),
+ AOMMIN(mi_col + mi_width, cm->mi_params.mi_cols));
+ set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize],
+ av1_num_planes(cm));
+ xd->mi[0]->bsize = bsize;
+ xd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
+ // Set above and left mbmi to NULL as they are not available in the
+ // preprocessing stage.
+ // They are used to detemine intra edge filter types in intra prediction.
+ if (xd->up_available) {
+ xd->above_mbmi = NULL;
+ }
+ if (xd->left_available) {
+ xd->left_mbmi = NULL;
+ }
+ uint8_t *mb_buffer =
+ buffer + mi_row * MI_SIZE * buf_stride + mi_col * MI_SIZE;
+ for (PREDICTION_MODE mode = INTRA_MODE_START; mode < INTRA_MODE_END;
+ ++mode) {
+ // TODO(chengchen): Here we use src instead of reconstructed frame as
+ // the intra predictor to make single and multithread version match.
+ // Ideally we want to use the reconstructed.
+ av1_predict_intra_block(
+ xd, cm->seq_params->sb_size, cm->seq_params->enable_intra_edge_filter,
+ block_size, block_size, tx_size, mode, 0, 0, FILTER_INTRA_MODES,
+ mb_buffer, buf_stride, dst_buffer, dst_buffer_stride, 0, 0, 0);
+ av1_subtract_block(bd_info, block_size, block_size, src_diff, block_size,
+ mb_buffer, buf_stride, dst_buffer, dst_buffer_stride);
+ av1_quick_txfm(0, tx_size, bd_info, src_diff, block_size, coeff);
+ int intra_cost = aom_satd(coeff, coeff_count);
+ if (intra_cost < best_intra_cost) {
+ best_intra_cost = intra_cost;
+ best_mode = mode;
+ }
+ }
+
+ av1_predict_intra_block(
+ xd, cm->seq_params->sb_size, cm->seq_params->enable_intra_edge_filter,
+ block_size, block_size, tx_size, best_mode, 0, 0, FILTER_INTRA_MODES,
+ mb_buffer, buf_stride, dst_buffer, dst_buffer_stride, 0, 0, 0);
+ av1_subtract_block(bd_info, block_size, block_size, src_diff, block_size,
+ mb_buffer, buf_stride, dst_buffer, dst_buffer_stride);
+ av1_quick_txfm(0, tx_size, bd_info, src_diff, block_size, coeff);
+
+ const struct macroblock_plane *const p = &x->plane[0];
+ uint16_t eob;
+ const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
+ QUANT_PARAM quant_param;
+ int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
+ av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param);
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (is_cur_buf_hbd(xd)) {
+ av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob,
+ scan_order, &quant_param);
+ } else {
+ av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob,
+ scan_order, &quant_param);
+ }
+#else
+ av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob, scan_order,
+ &quant_param);
+#endif // CONFIG_AV1_HIGHBITDEPTH
+
+ if (cpi->oxcf.enable_rate_guide_deltaq) {
+ const int rate_cost = rate_estimator(qcoeff, eob, tx_size);
+ cpi->prep_rate_estimates[(mi_row / mb_step) * cpi->frame_info.mi_cols +
+ (mi_col / mb_step)] = rate_cost;
+ }
+
+ av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst_buffer,
+ dst_buffer_stride, eob, 0);
+ WeberStats *weber_stats =
+ &cpi->mb_weber_stats[(mi_row / mb_step) * cpi->frame_info.mi_cols +
+ (mi_col / mb_step)];
+
+ weber_stats->rec_pix_max = 1;
+ weber_stats->rec_variance = 0;
+ weber_stats->src_pix_max = 1;
+ weber_stats->src_variance = 0;
+ weber_stats->distortion = 0;
+
+ int64_t src_mean = 0;
+ int64_t rec_mean = 0;
+ int64_t dist_mean = 0;
+
+ for (int pix_row = 0; pix_row < block_size; ++pix_row) {
+ for (int pix_col = 0; pix_col < block_size; ++pix_col) {
+ int src_pix, rec_pix;
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (is_cur_buf_hbd(xd)) {
+ uint16_t *src = CONVERT_TO_SHORTPTR(mb_buffer);
+ uint16_t *rec = CONVERT_TO_SHORTPTR(dst_buffer);
+ src_pix = src[pix_row * buf_stride + pix_col];
+ rec_pix = rec[pix_row * dst_buffer_stride + pix_col];
+ } else {
+ src_pix = mb_buffer[pix_row * buf_stride + pix_col];
+ rec_pix = dst_buffer[pix_row * dst_buffer_stride + pix_col];
+ }
+#else
+ src_pix = mb_buffer[pix_row * buf_stride + pix_col];
+ rec_pix = dst_buffer[pix_row * dst_buffer_stride + pix_col];
+#endif
+ src_mean += src_pix;
+ rec_mean += rec_pix;
+ dist_mean += src_pix - rec_pix;
+ weber_stats->src_variance += src_pix * src_pix;
+ weber_stats->rec_variance += rec_pix * rec_pix;
+ weber_stats->src_pix_max = AOMMAX(weber_stats->src_pix_max, src_pix);
+ weber_stats->rec_pix_max = AOMMAX(weber_stats->rec_pix_max, rec_pix);
+ weber_stats->distortion += (src_pix - rec_pix) * (src_pix - rec_pix);
+ }
+ }
+
+ if (cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) {
+ *sum_rec_distortion += weber_stats->distortion;
+ int est_block_rate = 0;
+ int64_t est_block_dist = 0;
+ model_rd_sse_fn[MODELRD_LEGACY](cpi, x, bsize, 0, weber_stats->distortion,
+ pix_num, &est_block_rate,
+ &est_block_dist);
+ *sum_est_rate += est_block_rate;
+ }
+
+ weber_stats->src_variance -= (src_mean * src_mean) / pix_num;
+ weber_stats->rec_variance -= (rec_mean * rec_mean) / pix_num;
+ weber_stats->distortion -= (dist_mean * dist_mean) / pix_num;
+ weber_stats->satd = best_intra_cost;
+
+ qcoeff[0] = 0;
+ int max_scale = 0;
+ for (int idx = 1; idx < coeff_count; ++idx) {
+ const int abs_qcoeff = abs(qcoeff[idx]);
+ max_scale = AOMMAX(max_scale, abs_qcoeff);
+ }
+ weber_stats->max_scale = max_scale;
+
+ if ((mi_col + mb_step) % mt_unit_step == 0 ||
+ (mi_col + mb_step) >= mi_cols) {
+ intra_mt->intra_sync_write_ptr(intra_row_mt_sync, mt_thread_id,
+ mt_unit_col, mt_unit_cols);
+ ++mt_unit_col;
+ }
+ }
+ // Set the pointer to null since mbmi is only allocated inside this function.
+ xd->mi = NULL;
+}
+
+static void calc_mb_wiener_var(AV1_COMP *const cpi, double *sum_rec_distortion,
+ double *sum_est_rate) {
+ MACROBLOCK *x = &cpi->td.mb;
+ MACROBLOCKD *xd = &x->e_mbd;
+ const BLOCK_SIZE bsize = cpi->weber_bsize;
+ const int mb_step = mi_size_wide[bsize];
+ DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]);
+ DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]);
+ DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]);
+ DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]);
+ for (int mi_row = 0; mi_row < cpi->frame_info.mi_rows; mi_row += mb_step) {
+ av1_calc_mb_wiener_var_row(cpi, x, xd, mi_row, src_diff, coeff, qcoeff,
+ dqcoeff, sum_rec_distortion, sum_est_rate,
+ cpi->td.wiener_tmp_pred_buf);
+ }
+}
+
+static int64_t estimate_wiener_var_norm(AV1_COMP *const cpi,
+ const BLOCK_SIZE norm_block_size) {
+ const AV1_COMMON *const cm = &cpi->common;
+ int64_t norm_factor = 1;
+ assert(norm_block_size >= BLOCK_16X16 && norm_block_size <= BLOCK_128X128);
+ const int norm_step = mi_size_wide[norm_block_size];
+ double sb_wiener_log = 0;
+ double sb_count = 0;
+ for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += norm_step) {
+ for (int mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += norm_step) {
+ const int sb_wiener_var =
+ get_var_perceptual_ai(cpi, norm_block_size, mi_row, mi_col);
+ const int64_t satd = get_satd(cpi, norm_block_size, mi_row, mi_col);
+ const int64_t sse = get_sse(cpi, norm_block_size, mi_row, mi_col);
+ const double scaled_satd = (double)satd / sqrt((double)sse);
+ sb_wiener_log += scaled_satd * log(sb_wiener_var);
+ sb_count += scaled_satd;
+ }
+ }
+ if (sb_count > 0) norm_factor = (int64_t)(exp(sb_wiener_log / sb_count));
+ norm_factor = AOMMAX(1, norm_factor);
+
+ return norm_factor;
+}
+
+static void automatic_intra_tools_off(AV1_COMP *cpi,
+ const double sum_rec_distortion,
+ const double sum_est_rate) {
+ if (!cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) return;
+
+ // Thresholds
+ const int high_quality_qindex = 128;
+ const double high_quality_bpp = 2.0;
+ const double high_quality_dist_per_pix = 4.0;
+
+ AV1_COMMON *const cm = &cpi->common;
+ const int qindex = cm->quant_params.base_qindex;
+ const double dist_per_pix =
+ (double)sum_rec_distortion / (cm->width * cm->height);
+ // The estimate bpp is not accurate, an empirical constant 100 is divided.
+ const double estimate_bpp = sum_est_rate / (cm->width * cm->height * 100);
+
+ if (qindex < high_quality_qindex && estimate_bpp > high_quality_bpp &&
+ dist_per_pix < high_quality_dist_per_pix) {
+ cpi->oxcf.intra_mode_cfg.enable_smooth_intra = 0;
+ cpi->oxcf.intra_mode_cfg.enable_paeth_intra = 0;
+ cpi->oxcf.intra_mode_cfg.enable_cfl_intra = 0;
+ cpi->oxcf.intra_mode_cfg.enable_diagonal_intra = 0;
+ }
+}
+
+static void ext_rate_guided_quantization(AV1_COMP *cpi) {
+ // Calculation uses 8x8.
+ const int mb_step = mi_size_wide[cpi->weber_bsize];
+ // Accumulate to 16x16, step size is in the unit of mi.
+ const int block_step = 4;
+
+ const char *filename = cpi->oxcf.rate_distribution_info;
+ FILE *pfile = fopen(filename, "r");
+ if (pfile == NULL) {
+ assert(pfile != NULL);
+ return;
+ }
+
+ double ext_rate_sum = 0.0;
+ for (int row = 0; row < cpi->frame_info.mi_rows; row += block_step) {
+ for (int col = 0; col < cpi->frame_info.mi_cols; col += block_step) {
+ float val;
+ const int fields_converted = fscanf(pfile, "%f", &val);
+ if (fields_converted != 1) {
+ assert(fields_converted == 1);
+ fclose(pfile);
+ return;
+ }
+ ext_rate_sum += val;
+ cpi->ext_rate_distribution[(row / mb_step) * cpi->frame_info.mi_cols +
+ (col / mb_step)] = val;
+ }
+ }
+ fclose(pfile);
+
+ int uniform_rate_sum = 0;
+ for (int row = 0; row < cpi->frame_info.mi_rows; row += block_step) {
+ for (int col = 0; col < cpi->frame_info.mi_cols; col += block_step) {
+ int rate_sum = 0;
+ for (int r = 0; r < block_step; r += mb_step) {
+ for (int c = 0; c < block_step; c += mb_step) {
+ const int mi_row = row + r;
+ const int mi_col = col + c;
+ rate_sum += cpi->prep_rate_estimates[(mi_row / mb_step) *
+ cpi->frame_info.mi_cols +
+ (mi_col / mb_step)];
+ }
+ }
+ uniform_rate_sum += rate_sum;
+ }
+ }
+
+ const double scale = uniform_rate_sum / ext_rate_sum;
+ cpi->ext_rate_scale = scale;
+}
+
+void av1_set_mb_wiener_variance(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ const SequenceHeader *const seq_params = cm->seq_params;
+ if (aom_realloc_frame_buffer(
+ &cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x,
+ seq_params->subsampling_y, seq_params->use_highbitdepth,
+ cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL,
+ NULL, cpi->image_pyramid_levels, 0))
+ aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate frame buffer");
+ av1_alloc_mb_wiener_var_pred_buf(&cpi->common, &cpi->td);
+ cpi->norm_wiener_variance = 0;
+
+ MACROBLOCK *x = &cpi->td.mb;
+ MACROBLOCKD *xd = &x->e_mbd;
+ // xd->mi needs to be setup since it is used in av1_frame_init_quantizer.
+ MB_MODE_INFO mbmi;
+ memset(&mbmi, 0, sizeof(mbmi));
+ MB_MODE_INFO *mbmi_ptr = &mbmi;
+ xd->mi = &mbmi_ptr;
+ cm->quant_params.base_qindex = cpi->oxcf.rc_cfg.cq_level;
+ av1_frame_init_quantizer(cpi);
+
+ double sum_rec_distortion = 0.0;
+ double sum_est_rate = 0.0;
+
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+ const int num_workers =
+ AOMMIN(mt_info->num_mod_workers[MOD_AI], mt_info->num_workers);
+ AV1EncAllIntraMultiThreadInfo *const intra_mt = &mt_info->intra_mt;
+ intra_mt->intra_sync_read_ptr = av1_row_mt_sync_read_dummy;
+ intra_mt->intra_sync_write_ptr = av1_row_mt_sync_write_dummy;
+ // Calculate differential contrast for each block for the entire image.
+ // TODO(chengchen): properly accumulate the distortion and rate in
+ // av1_calc_mb_wiener_var_mt(). Until then, call calc_mb_wiener_var() if
+ // auto_intra_tools_off is true.
+ if (num_workers > 1 && !cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) {
+ intra_mt->intra_sync_read_ptr = av1_row_mt_sync_read;
+ intra_mt->intra_sync_write_ptr = av1_row_mt_sync_write;
+ av1_calc_mb_wiener_var_mt(cpi, num_workers, &sum_rec_distortion,
+ &sum_est_rate);
+ } else {
+ calc_mb_wiener_var(cpi, &sum_rec_distortion, &sum_est_rate);
+ }
+
+ // Determine whether to turn off several intra coding tools.
+ automatic_intra_tools_off(cpi, sum_rec_distortion, sum_est_rate);
+
+ // Read external rate distribution and use it to guide delta quantization
+ if (cpi->oxcf.enable_rate_guide_deltaq) ext_rate_guided_quantization(cpi);
+
+ const BLOCK_SIZE norm_block_size = cm->seq_params->sb_size;
+ cpi->norm_wiener_variance = estimate_wiener_var_norm(cpi, norm_block_size);
+ const int norm_step = mi_size_wide[norm_block_size];
+
+ double sb_wiener_log = 0;
+ double sb_count = 0;
+ for (int its_cnt = 0; its_cnt < 2; ++its_cnt) {
+ sb_wiener_log = 0;
+ sb_count = 0;
+ for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += norm_step) {
+ for (int mi_col = 0; mi_col < cm->mi_params.mi_cols;
+ mi_col += norm_step) {
+ int sb_wiener_var =
+ get_var_perceptual_ai(cpi, norm_block_size, mi_row, mi_col);
+
+ double beta = (double)cpi->norm_wiener_variance / sb_wiener_var;
+ double min_max_scale = AOMMAX(
+ 1.0, get_max_scale(cpi, cm->seq_params->sb_size, mi_row, mi_col));
+
+ beta = AOMMIN(beta, 4);
+ beta = AOMMAX(beta, 0.25);
+
+ if (beta < 1 / min_max_scale) continue;
+
+ sb_wiener_var = (int)(cpi->norm_wiener_variance / beta);
+
+ int64_t satd = get_satd(cpi, norm_block_size, mi_row, mi_col);
+ int64_t sse = get_sse(cpi, norm_block_size, mi_row, mi_col);
+ double scaled_satd = (double)satd / sqrt((double)sse);
+ sb_wiener_log += scaled_satd * log(sb_wiener_var);
+ sb_count += scaled_satd;
+ }
+ }
+
+ if (sb_count > 0)
+ cpi->norm_wiener_variance = (int64_t)(exp(sb_wiener_log / sb_count));
+ cpi->norm_wiener_variance = AOMMAX(1, cpi->norm_wiener_variance);
+ }
+
+ // Set the pointer to null since mbmi is only allocated inside this function.
+ xd->mi = NULL;
+ aom_free_frame_buffer(&cm->cur_frame->buf);
+ av1_dealloc_mb_wiener_var_pred_buf(&cpi->td);
+}
+
+static int get_rate_guided_quantizer(AV1_COMP *const cpi, BLOCK_SIZE bsize,
+ int mi_row, int mi_col) {
+ // Calculation uses 8x8.
+ const int mb_step = mi_size_wide[cpi->weber_bsize];
+ // Accumulate to 16x16
+ const int block_step = mi_size_wide[BLOCK_16X16];
+ double sb_rate_hific = 0.0;
+ double sb_rate_uniform = 0.0;
+ for (int row = mi_row; row < mi_row + mi_size_wide[bsize];
+ row += block_step) {
+ for (int col = mi_col; col < mi_col + mi_size_high[bsize];
+ col += block_step) {
+ sb_rate_hific +=
+ cpi->ext_rate_distribution[(row / mb_step) * cpi->frame_info.mi_cols +
+ (col / mb_step)];
+
+ for (int r = 0; r < block_step; r += mb_step) {
+ for (int c = 0; c < block_step; c += mb_step) {
+ const int this_row = row + r;
+ const int this_col = col + c;
+ sb_rate_uniform +=
+ cpi->prep_rate_estimates[(this_row / mb_step) *
+ cpi->frame_info.mi_cols +
+ (this_col / mb_step)];
+ }
+ }
+ }
+ }
+ sb_rate_hific *= cpi->ext_rate_scale;
+
+ const double weight = 1.0;
+ const double rate_diff =
+ weight * (sb_rate_hific - sb_rate_uniform) / sb_rate_uniform;
+ double scale = pow(2, rate_diff);
+
+ scale = scale * scale;
+ double min_max_scale = AOMMAX(1.0, get_max_scale(cpi, bsize, mi_row, mi_col));
+ scale = 1.0 / AOMMIN(1.0 / scale, min_max_scale);
+
+ AV1_COMMON *const cm = &cpi->common;
+ const int base_qindex = cm->quant_params.base_qindex;
+ int offset =
+ av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, scale);
+ const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
+ const int max_offset = delta_q_info->delta_q_res * 10;
+ offset = AOMMIN(offset, max_offset - 1);
+ offset = AOMMAX(offset, -max_offset + 1);
+ int qindex = cm->quant_params.base_qindex + offset;
+ qindex = AOMMIN(qindex, MAXQ);
+ qindex = AOMMAX(qindex, MINQ);
+ if (base_qindex > MINQ) qindex = AOMMAX(qindex, MINQ + 1);
+
+ return qindex;
+}
+
+int av1_get_sbq_perceptual_ai(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
+ int mi_col) {
+ if (cpi->oxcf.enable_rate_guide_deltaq) {
+ return get_rate_guided_quantizer(cpi, bsize, mi_row, mi_col);
+ }
+
+ AV1_COMMON *const cm = &cpi->common;
+ const int base_qindex = cm->quant_params.base_qindex;
+ int sb_wiener_var = get_var_perceptual_ai(cpi, bsize, mi_row, mi_col);
+ int offset = 0;
+ double beta = (double)cpi->norm_wiener_variance / sb_wiener_var;
+ double min_max_scale = AOMMAX(1.0, get_max_scale(cpi, bsize, mi_row, mi_col));
+ beta = 1.0 / AOMMIN(1.0 / beta, min_max_scale);
+
+ // Cap beta such that the delta q value is not much far away from the base q.
+ beta = AOMMIN(beta, 4);
+ beta = AOMMAX(beta, 0.25);
+ offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta);
+ const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
+ offset = AOMMIN(offset, delta_q_info->delta_q_res * 20 - 1);
+ offset = AOMMAX(offset, -delta_q_info->delta_q_res * 20 + 1);
+ int qindex = cm->quant_params.base_qindex + offset;
+ qindex = AOMMIN(qindex, MAXQ);
+ qindex = AOMMAX(qindex, MINQ);
+ if (base_qindex > MINQ) qindex = AOMMAX(qindex, MINQ + 1);
+
+ return qindex;
+}
+
+void av1_init_mb_ur_var_buffer(AV1_COMP *cpi) {
+ AV1_COMMON *cm = &cpi->common;
+
+ if (cpi->mb_delta_q) return;
+
+ CHECK_MEM_ERROR(cm, cpi->mb_delta_q,
+ aom_calloc(cpi->frame_info.mb_rows * cpi->frame_info.mb_cols,
+ sizeof(*cpi->mb_delta_q)));
+}
+
+#if CONFIG_TFLITE
+static int model_predict(BLOCK_SIZE block_size, int num_cols, int num_rows,
+ int bit_depth, uint8_t *y_buffer, int y_stride,
+ float *predicts0, float *predicts1) {
+ // Create the model and interpreter options.
+ TfLiteModel *model =
+ TfLiteModelCreate(av1_deltaq4_model_file, av1_deltaq4_model_fsize);
+ if (model == NULL) return 1;
+
+ TfLiteInterpreterOptions *options = TfLiteInterpreterOptionsCreate();
+ TfLiteInterpreterOptionsSetNumThreads(options, 2);
+ if (options == NULL) {
+ TfLiteModelDelete(model);
+ return 1;
+ }
+
+ // Create the interpreter.
+ TfLiteInterpreter *interpreter = TfLiteInterpreterCreate(model, options);
+ if (interpreter == NULL) {
+ TfLiteInterpreterOptionsDelete(options);
+ TfLiteModelDelete(model);
+ return 1;
+ }
+
+ // Allocate tensors and populate the input tensor data.
+ TfLiteInterpreterAllocateTensors(interpreter);
+ TfLiteTensor *input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0);
+ if (input_tensor == NULL) {
+ TfLiteInterpreterDelete(interpreter);
+ TfLiteInterpreterOptionsDelete(options);
+ TfLiteModelDelete(model);
+ return 1;
+ }
+
+ size_t input_size = TfLiteTensorByteSize(input_tensor);
+ float *input_data = aom_calloc(input_size, 1);
+ if (input_data == NULL) {
+ TfLiteInterpreterDelete(interpreter);
+ TfLiteInterpreterOptionsDelete(options);
+ TfLiteModelDelete(model);
+ return 1;
+ }
+
+ const int num_mi_w = mi_size_wide[block_size];
+ const int num_mi_h = mi_size_high[block_size];
+ for (int row = 0; row < num_rows; ++row) {
+ for (int col = 0; col < num_cols; ++col) {
+ const int row_offset = (row * num_mi_h) << 2;
+ const int col_offset = (col * num_mi_w) << 2;
+
+ uint8_t *buf = y_buffer + row_offset * y_stride + col_offset;
+ int r = row_offset, pos = 0;
+ const float base = (float)((1 << bit_depth) - 1);
+ while (r < row_offset + (num_mi_h << 2)) {
+ for (int c = 0; c < (num_mi_w << 2); ++c) {
+ input_data[pos++] = bit_depth > 8
+ ? (float)*CONVERT_TO_SHORTPTR(buf + c) / base
+ : (float)*(buf + c) / base;
+ }
+ buf += y_stride;
+ ++r;
+ }
+ TfLiteTensorCopyFromBuffer(input_tensor, input_data, input_size);
+
+ // Execute inference.
+ if (TfLiteInterpreterInvoke(interpreter) != kTfLiteOk) {
+ TfLiteInterpreterDelete(interpreter);
+ TfLiteInterpreterOptionsDelete(options);
+ TfLiteModelDelete(model);
+ return 1;
+ }
+
+ // Extract the output tensor data.
+ const TfLiteTensor *output_tensor =
+ TfLiteInterpreterGetOutputTensor(interpreter, 0);
+ if (output_tensor == NULL) {
+ TfLiteInterpreterDelete(interpreter);
+ TfLiteInterpreterOptionsDelete(options);
+ TfLiteModelDelete(model);
+ return 1;
+ }
+
+ size_t output_size = TfLiteTensorByteSize(output_tensor);
+ float output_data[2];
+
+ TfLiteTensorCopyToBuffer(output_tensor, output_data, output_size);
+ predicts0[row * num_cols + col] = output_data[0];
+ predicts1[row * num_cols + col] = output_data[1];
+ }
+ }
+
+ // Dispose of the model and interpreter objects.
+ TfLiteInterpreterDelete(interpreter);
+ TfLiteInterpreterOptionsDelete(options);
+ TfLiteModelDelete(model);
+ aom_free(input_data);
+ return 0;
+}
+
+void av1_set_mb_ur_variance(AV1_COMP *cpi) {
+ const AV1_COMMON *cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ uint8_t *y_buffer = cpi->source->y_buffer;
+ const int y_stride = cpi->source->y_stride;
+ const int block_size = cpi->common.seq_params->sb_size;
+ const uint32_t bit_depth = cpi->td.mb.e_mbd.bd;
+
+ const int num_mi_w = mi_size_wide[block_size];
+ const int num_mi_h = mi_size_high[block_size];
+ const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
+ const int num_rows = (mi_params->mi_rows + num_mi_h - 1) / num_mi_h;
+
+ // TODO(sdeng): fit a better model_1; disable it at this time.
+ float *mb_delta_q0, *mb_delta_q1, delta_q_avg0 = 0.0f;
+ CHECK_MEM_ERROR(cm, mb_delta_q0,
+ aom_calloc(num_rows * num_cols, sizeof(float)));
+ CHECK_MEM_ERROR(cm, mb_delta_q1,
+ aom_calloc(num_rows * num_cols, sizeof(float)));
+
+ if (model_predict(block_size, num_cols, num_rows, bit_depth, y_buffer,
+ y_stride, mb_delta_q0, mb_delta_q1)) {
+ aom_internal_error(cm->error, AOM_CODEC_ERROR,
+ "Failed to call TFlite functions.");
+ }
+
+ // Loop through each SB block.
+ for (int row = 0; row < num_rows; ++row) {
+ for (int col = 0; col < num_cols; ++col) {
+ const int index = row * num_cols + col;
+ delta_q_avg0 += mb_delta_q0[index];
+ }
+ }
+
+ delta_q_avg0 /= (float)(num_rows * num_cols);
+
+ float scaling_factor;
+ const float cq_level = (float)cpi->oxcf.rc_cfg.cq_level / (float)MAXQ;
+ if (cq_level < delta_q_avg0) {
+ scaling_factor = cq_level / delta_q_avg0;
+ } else {
+ scaling_factor = 1.0f - (cq_level - delta_q_avg0) / (1.0f - delta_q_avg0);
+ }
+
+ for (int row = 0; row < num_rows; ++row) {
+ for (int col = 0; col < num_cols; ++col) {
+ const int index = row * num_cols + col;
+ cpi->mb_delta_q[index] =
+ RINT((float)cpi->oxcf.q_cfg.deltaq_strength / 100.0f * (float)MAXQ *
+ scaling_factor * (mb_delta_q0[index] - delta_q_avg0));
+ }
+ }
+
+ aom_free(mb_delta_q0);
+ aom_free(mb_delta_q1);
+}
+#else // !CONFIG_TFLITE
+void av1_set_mb_ur_variance(AV1_COMP *cpi) {
+ const AV1_COMMON *cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ const MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+ uint8_t *y_buffer = cpi->source->y_buffer;
+ const int y_stride = cpi->source->y_stride;
+ const int block_size = cpi->common.seq_params->sb_size;
+
+ const int num_mi_w = mi_size_wide[block_size];
+ const int num_mi_h = mi_size_high[block_size];
+ const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
+ const int num_rows = (mi_params->mi_rows + num_mi_h - 1) / num_mi_h;
+
+ int *mb_delta_q[2];
+ CHECK_MEM_ERROR(cm, mb_delta_q[0],
+ aom_calloc(num_rows * num_cols, sizeof(*mb_delta_q[0])));
+ CHECK_MEM_ERROR(cm, mb_delta_q[1],
+ aom_calloc(num_rows * num_cols, sizeof(*mb_delta_q[1])));
+
+ // Approximates the model change between current version (Spet 2021) and the
+ // baseline (July 2021).
+ const double model_change[] = { 3.0, 3.0 };
+ // The following parameters are fitted from user labeled data.
+ const double a[] = { -24.50 * 4.0, -17.20 * 4.0 };
+ const double b[] = { 0.004898, 0.003093 };
+ const double c[] = { (29.932 + model_change[0]) * 4.0,
+ (42.100 + model_change[1]) * 4.0 };
+ int delta_q_avg[2] = { 0, 0 };
+ // Loop through each SB block.
+ for (int row = 0; row < num_rows; ++row) {
+ for (int col = 0; col < num_cols; ++col) {
+ double var = 0.0, num_of_var = 0.0;
+ const int index = row * num_cols + col;
+
+ // Loop through each 8x8 block.
+ for (int mi_row = row * num_mi_h;
+ mi_row < mi_params->mi_rows && mi_row < (row + 1) * num_mi_h;
+ mi_row += 2) {
+ for (int mi_col = col * num_mi_w;
+ mi_col < mi_params->mi_cols && mi_col < (col + 1) * num_mi_w;
+ mi_col += 2) {
+ struct buf_2d buf;
+ const int row_offset_y = mi_row << 2;
+ const int col_offset_y = mi_col << 2;
+
+ buf.buf = y_buffer + row_offset_y * y_stride + col_offset_y;
+ buf.stride = y_stride;
+
+ unsigned int block_variance;
+ block_variance = av1_get_perpixel_variance_facade(
+ cpi, xd, &buf, BLOCK_8X8, AOM_PLANE_Y);
+
+ block_variance = AOMMAX(block_variance, 1);
+ var += log((double)block_variance);
+ num_of_var += 1.0;
+ }
+ }
+ var = exp(var / num_of_var);
+ mb_delta_q[0][index] = RINT(a[0] * exp(-b[0] * var) + c[0]);
+ mb_delta_q[1][index] = RINT(a[1] * exp(-b[1] * var) + c[1]);
+ delta_q_avg[0] += mb_delta_q[0][index];
+ delta_q_avg[1] += mb_delta_q[1][index];
+ }
+ }
+
+ delta_q_avg[0] = RINT((double)delta_q_avg[0] / (num_rows * num_cols));
+ delta_q_avg[1] = RINT((double)delta_q_avg[1] / (num_rows * num_cols));
+
+ int model_idx;
+ double scaling_factor;
+ const int cq_level = cpi->oxcf.rc_cfg.cq_level;
+ if (cq_level < delta_q_avg[0]) {
+ model_idx = 0;
+ scaling_factor = (double)cq_level / delta_q_avg[0];
+ } else if (cq_level < delta_q_avg[1]) {
+ model_idx = 2;
+ scaling_factor =
+ (double)(cq_level - delta_q_avg[0]) / (delta_q_avg[1] - delta_q_avg[0]);
+ } else {
+ model_idx = 1;
+ scaling_factor = (double)(MAXQ - cq_level) / (MAXQ - delta_q_avg[1]);
+ }
+
+ const double new_delta_q_avg =
+ delta_q_avg[0] + scaling_factor * (delta_q_avg[1] - delta_q_avg[0]);
+ for (int row = 0; row < num_rows; ++row) {
+ for (int col = 0; col < num_cols; ++col) {
+ const int index = row * num_cols + col;
+ if (model_idx == 2) {
+ const double delta_q =
+ mb_delta_q[0][index] +
+ scaling_factor * (mb_delta_q[1][index] - mb_delta_q[0][index]);
+ cpi->mb_delta_q[index] = RINT((double)cpi->oxcf.q_cfg.deltaq_strength /
+ 100.0 * (delta_q - new_delta_q_avg));
+ } else {
+ cpi->mb_delta_q[index] = RINT(
+ (double)cpi->oxcf.q_cfg.deltaq_strength / 100.0 * scaling_factor *
+ (mb_delta_q[model_idx][index] - delta_q_avg[model_idx]));
+ }
+ }
+ }
+
+ aom_free(mb_delta_q[0]);
+ aom_free(mb_delta_q[1]);
+}
+#endif
+
+int av1_get_sbq_user_rating_based(AV1_COMP *const cpi, int mi_row, int mi_col) {
+ const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size;
+ const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
+ AV1_COMMON *const cm = &cpi->common;
+ const int base_qindex = cm->quant_params.base_qindex;
+ if (base_qindex == MINQ || base_qindex == MAXQ) return base_qindex;
+
+ const int num_mi_w = mi_size_wide[bsize];
+ const int num_mi_h = mi_size_high[bsize];
+ const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
+ const int index = (mi_row / num_mi_h) * num_cols + (mi_col / num_mi_w);
+ const int delta_q = cpi->mb_delta_q[index];
+
+ int qindex = base_qindex + delta_q;
+ qindex = AOMMIN(qindex, MAXQ);
+ qindex = AOMMAX(qindex, MINQ + 1);
+
+ return qindex;
+}