summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/arm/neon/temporal_filter_neon_dotprod.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/arm/neon/temporal_filter_neon_dotprod.c299
1 files changed, 299 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/arm/neon/temporal_filter_neon_dotprod.c b/third_party/aom/av1/encoder/arm/neon/temporal_filter_neon_dotprod.c
new file mode 100644
index 0000000000..5a52e701a2
--- /dev/null
+++ b/third_party/aom/av1/encoder/arm/neon/temporal_filter_neon_dotprod.c
@@ -0,0 +1,299 @@
+/*
+ * Copyright (c) 2023, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <arm_neon.h>
+
+#include "config/aom_config.h"
+#include "config/av1_rtcd.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/temporal_filter.h"
+#include "aom_dsp/mathutils.h"
+#include "aom_dsp/arm/mem_neon.h"
+#include "aom_dsp/arm/sum_neon.h"
+
+// For the squared error buffer, add padding for 4 samples.
+#define SSE_STRIDE (BW + 4)
+
+// clang-format off
+
+DECLARE_ALIGNED(16, static const uint8_t, kSlidingWindowMask[]) = {
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00,
+ 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00,
+ 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00,
+ 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
+};
+
+// clang-format on
+
+static INLINE void get_abs_diff(const uint8_t *frame1, const uint32_t stride1,
+ const uint8_t *frame2, const uint32_t stride2,
+ const uint32_t block_width,
+ const uint32_t block_height,
+ uint8_t *frame_abs_diff,
+ const unsigned int dst_stride) {
+ uint8_t *dst = frame_abs_diff;
+
+ uint32_t i = 0;
+ do {
+ uint32_t j = 0;
+ do {
+ uint8x16_t s = vld1q_u8(frame1 + i * stride1 + j);
+ uint8x16_t r = vld1q_u8(frame2 + i * stride2 + j);
+ uint8x16_t abs_diff = vabdq_u8(s, r);
+ vst1q_u8(dst + j + 2, abs_diff);
+ j += 16;
+ } while (j < block_width);
+
+ dst += dst_stride;
+ } while (++i < block_height);
+}
+
+static INLINE uint8x16_t load_and_pad(const uint8_t *src, const uint32_t col,
+ const uint32_t block_width) {
+ uint8x8_t s = vld1_u8(src);
+
+ if (col == 0) {
+ const uint8_t lane2 = vget_lane_u8(s, 2);
+ s = vset_lane_u8(lane2, s, 0);
+ s = vset_lane_u8(lane2, s, 1);
+ } else if (col >= block_width - 4) {
+ const uint8_t lane5 = vget_lane_u8(s, 5);
+ s = vset_lane_u8(lane5, s, 6);
+ s = vset_lane_u8(lane5, s, 7);
+ }
+ return vcombine_u8(s, s);
+}
+
+static void apply_temporal_filter(
+ const uint8_t *frame, const unsigned int stride, const uint32_t block_width,
+ const uint32_t block_height, const int *subblock_mses,
+ unsigned int *accumulator, uint16_t *count, const uint8_t *frame_abs_diff,
+ const uint32_t *luma_sse_sum, const double inv_num_ref_pixels,
+ const double decay_factor, const double inv_factor,
+ const double weight_factor, const double *d_factor, int tf_wgt_calc_lvl) {
+ assert(((block_width == 16) || (block_width == 32)) &&
+ ((block_height == 16) || (block_height == 32)));
+
+ uint32_t acc_5x5_neon[BH][BW];
+ const uint8x16x2_t vmask = vld1q_u8_x2(kSlidingWindowMask);
+
+ // Traverse 4 columns at a time - first and last two columns need padding.
+ for (uint32_t col = 0; col < block_width; col += 4) {
+ uint8x16_t vsrc[5][2];
+ const uint8_t *src = frame_abs_diff + col;
+
+ // Load, pad (for first and last two columns) and mask 3 rows from the top.
+ for (int i = 2; i < 5; i++) {
+ const uint8x16_t s = load_and_pad(src, col, block_width);
+ vsrc[i][0] = vandq_u8(s, vmask.val[0]);
+ vsrc[i][1] = vandq_u8(s, vmask.val[1]);
+ src += SSE_STRIDE;
+ }
+
+ // Pad the top 2 rows.
+ vsrc[0][0] = vsrc[2][0];
+ vsrc[0][1] = vsrc[2][1];
+ vsrc[1][0] = vsrc[2][0];
+ vsrc[1][1] = vsrc[2][1];
+
+ for (unsigned int row = 0; row < block_height; row++) {
+ uint32x4_t sum_01 = vdupq_n_u32(0);
+ uint32x4_t sum_23 = vdupq_n_u32(0);
+
+ sum_01 = vdotq_u32(sum_01, vsrc[0][0], vsrc[0][0]);
+ sum_01 = vdotq_u32(sum_01, vsrc[1][0], vsrc[1][0]);
+ sum_01 = vdotq_u32(sum_01, vsrc[2][0], vsrc[2][0]);
+ sum_01 = vdotq_u32(sum_01, vsrc[3][0], vsrc[3][0]);
+ sum_01 = vdotq_u32(sum_01, vsrc[4][0], vsrc[4][0]);
+
+ sum_23 = vdotq_u32(sum_23, vsrc[0][1], vsrc[0][1]);
+ sum_23 = vdotq_u32(sum_23, vsrc[1][1], vsrc[1][1]);
+ sum_23 = vdotq_u32(sum_23, vsrc[2][1], vsrc[2][1]);
+ sum_23 = vdotq_u32(sum_23, vsrc[3][1], vsrc[3][1]);
+ sum_23 = vdotq_u32(sum_23, vsrc[4][1], vsrc[4][1]);
+
+ vst1q_u32(&acc_5x5_neon[row][col], vpaddq_u32(sum_01, sum_23));
+
+ // Push all rows in the sliding window up one.
+ for (int i = 0; i < 4; i++) {
+ vsrc[i][0] = vsrc[i + 1][0];
+ vsrc[i][1] = vsrc[i + 1][1];
+ }
+
+ if (row <= block_height - 4) {
+ // Load next row into the bottom of the sliding window.
+ uint8x16_t s = load_and_pad(src, col, block_width);
+ vsrc[4][0] = vandq_u8(s, vmask.val[0]);
+ vsrc[4][1] = vandq_u8(s, vmask.val[1]);
+ src += SSE_STRIDE;
+ } else {
+ // Pad the bottom 2 rows.
+ vsrc[4][0] = vsrc[3][0];
+ vsrc[4][1] = vsrc[3][1];
+ }
+ }
+ }
+
+ // Perform filtering.
+ if (tf_wgt_calc_lvl == 0) {
+ for (unsigned int i = 0, k = 0; i < block_height; i++) {
+ for (unsigned int j = 0; j < block_width; j++, k++) {
+ const int pixel_value = frame[i * stride + j];
+ const uint32_t diff_sse = acc_5x5_neon[i][j] + luma_sse_sum[i * BW + j];
+
+ const double window_error = diff_sse * inv_num_ref_pixels;
+ const int subblock_idx =
+ (i >= block_height / 2) * 2 + (j >= block_width / 2);
+ const double block_error = (double)subblock_mses[subblock_idx];
+ const double combined_error =
+ weight_factor * window_error + block_error * inv_factor;
+ // Compute filter weight.
+ double scaled_error =
+ combined_error * d_factor[subblock_idx] * decay_factor;
+ scaled_error = AOMMIN(scaled_error, 7);
+ const int weight = (int)(exp(-scaled_error) * TF_WEIGHT_SCALE);
+ accumulator[k] += weight * pixel_value;
+ count[k] += weight;
+ }
+ }
+ } else {
+ for (unsigned int i = 0, k = 0; i < block_height; i++) {
+ for (unsigned int j = 0; j < block_width; j++, k++) {
+ const int pixel_value = frame[i * stride + j];
+ const uint32_t diff_sse = acc_5x5_neon[i][j] + luma_sse_sum[i * BW + j];
+
+ const double window_error = diff_sse * inv_num_ref_pixels;
+ const int subblock_idx =
+ (i >= block_height / 2) * 2 + (j >= block_width / 2);
+ const double block_error = (double)subblock_mses[subblock_idx];
+ const double combined_error =
+ weight_factor * window_error + block_error * inv_factor;
+ // Compute filter weight.
+ double scaled_error =
+ combined_error * d_factor[subblock_idx] * decay_factor;
+ scaled_error = AOMMIN(scaled_error, 7);
+ const float fweight =
+ approx_exp((float)-scaled_error) * TF_WEIGHT_SCALE;
+ const int weight = iroundpf(fweight);
+ accumulator[k] += weight * pixel_value;
+ count[k] += weight;
+ }
+ }
+ }
+}
+
+void av1_apply_temporal_filter_neon_dotprod(
+ const YV12_BUFFER_CONFIG *frame_to_filter, const MACROBLOCKD *mbd,
+ const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
+ const int num_planes, const double *noise_levels, const MV *subblock_mvs,
+ const int *subblock_mses, const int q_factor, const int filter_strength,
+ int tf_wgt_calc_lvl, const uint8_t *pred, uint32_t *accum,
+ uint16_t *count) {
+ const int is_high_bitdepth = frame_to_filter->flags & YV12_FLAG_HIGHBITDEPTH;
+ assert(block_size == BLOCK_32X32 && "Only support 32x32 block with Neon!");
+ assert(TF_WINDOW_LENGTH == 5 && "Only support window length 5 with Neon!");
+ assert(!is_high_bitdepth && "Only support low bit-depth with Neon!");
+ assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
+ (void)is_high_bitdepth;
+
+ // Block information.
+ const int mb_height = block_size_high[block_size];
+ const int mb_width = block_size_wide[block_size];
+ // Frame information.
+ const int frame_height = frame_to_filter->y_crop_height;
+ const int frame_width = frame_to_filter->y_crop_width;
+ const int min_frame_size = AOMMIN(frame_height, frame_width);
+ // Variables to simplify combined error calculation.
+ const double inv_factor = 1.0 / ((TF_WINDOW_BLOCK_BALANCE_WEIGHT + 1) *
+ TF_SEARCH_ERROR_NORM_WEIGHT);
+ const double weight_factor =
+ (double)TF_WINDOW_BLOCK_BALANCE_WEIGHT * inv_factor;
+ // Adjust filtering based on q.
+ // Larger q -> stronger filtering -> larger weight.
+ // Smaller q -> weaker filtering -> smaller weight.
+ double q_decay = pow((double)q_factor / TF_Q_DECAY_THRESHOLD, 2);
+ q_decay = CLIP(q_decay, 1e-5, 1);
+ if (q_factor >= TF_QINDEX_CUTOFF) {
+ // Max q_factor is 255, therefore the upper bound of q_decay is 8.
+ // We do not need a clip here.
+ q_decay = 0.5 * pow((double)q_factor / 64, 2);
+ }
+ // Smaller strength -> smaller filtering weight.
+ double s_decay = pow((double)filter_strength / TF_STRENGTH_THRESHOLD, 2);
+ s_decay = CLIP(s_decay, 1e-5, 1);
+ double d_factor[4] = { 0 };
+ uint8_t frame_abs_diff[SSE_STRIDE * BH] = { 0 };
+ uint32_t luma_sse_sum[BW * BH] = { 0 };
+
+ for (int subblock_idx = 0; subblock_idx < 4; subblock_idx++) {
+ // Larger motion vector -> smaller filtering weight.
+ const MV mv = subblock_mvs[subblock_idx];
+ const double distance = sqrt(pow(mv.row, 2) + pow(mv.col, 2));
+ double distance_threshold = min_frame_size * TF_SEARCH_DISTANCE_THRESHOLD;
+ distance_threshold = AOMMAX(distance_threshold, 1);
+ d_factor[subblock_idx] = distance / distance_threshold;
+ d_factor[subblock_idx] = AOMMAX(d_factor[subblock_idx], 1);
+ }
+
+ // Handle planes in sequence.
+ int plane_offset = 0;
+ for (int plane = 0; plane < num_planes; ++plane) {
+ const uint32_t plane_h = mb_height >> mbd->plane[plane].subsampling_y;
+ const uint32_t plane_w = mb_width >> mbd->plane[plane].subsampling_x;
+ const uint32_t frame_stride =
+ frame_to_filter->strides[plane == AOM_PLANE_Y ? 0 : 1];
+ const int frame_offset = mb_row * plane_h * frame_stride + mb_col * plane_w;
+
+ const uint8_t *ref = frame_to_filter->buffers[plane] + frame_offset;
+ const int ss_x_shift =
+ mbd->plane[plane].subsampling_x - mbd->plane[AOM_PLANE_Y].subsampling_x;
+ const int ss_y_shift =
+ mbd->plane[plane].subsampling_y - mbd->plane[AOM_PLANE_Y].subsampling_y;
+ const int num_ref_pixels = TF_WINDOW_LENGTH * TF_WINDOW_LENGTH +
+ ((plane) ? (1 << (ss_x_shift + ss_y_shift)) : 0);
+ const double inv_num_ref_pixels = 1.0 / num_ref_pixels;
+ // Larger noise -> larger filtering weight.
+ const double n_decay = 0.5 + log(2 * noise_levels[plane] + 5.0);
+ // Decay factors for non-local mean approach.
+ const double decay_factor = 1 / (n_decay * q_decay * s_decay);
+
+ // Filter U-plane and V-plane using Y-plane. This is because motion
+ // search is only done on Y-plane, so the information from Y-plane
+ // will be more accurate. The luma sse sum is reused in both chroma
+ // planes.
+ if (plane == AOM_PLANE_U) {
+ for (unsigned int i = 0; i < plane_h; i++) {
+ for (unsigned int j = 0; j < plane_w; j++) {
+ for (int ii = 0; ii < (1 << ss_y_shift); ++ii) {
+ for (int jj = 0; jj < (1 << ss_x_shift); ++jj) {
+ const int yy = (i << ss_y_shift) + ii; // Y-coord on Y-plane.
+ const int xx = (j << ss_x_shift) + jj; // X-coord on Y-plane.
+ luma_sse_sum[i * BW + j] +=
+ (frame_abs_diff[yy * SSE_STRIDE + xx + 2] *
+ frame_abs_diff[yy * SSE_STRIDE + xx + 2]);
+ }
+ }
+ }
+ }
+ }
+
+ get_abs_diff(ref, frame_stride, pred + plane_offset, plane_w, plane_w,
+ plane_h, frame_abs_diff, SSE_STRIDE);
+
+ apply_temporal_filter(pred + plane_offset, plane_w, plane_w, plane_h,
+ subblock_mses, accum + plane_offset,
+ count + plane_offset, frame_abs_diff, luma_sse_sum,
+ inv_num_ref_pixels, decay_factor, inv_factor,
+ weight_factor, d_factor, tf_wgt_calc_lvl);
+
+ plane_offset += plane_h * plane_w;
+ }
+}