summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/bitstream.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/bitstream.c4248
1 files changed, 4248 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/bitstream.c b/third_party/aom/av1/encoder/bitstream.c
new file mode 100644
index 0000000000..219784fedf
--- /dev/null
+++ b/third_party/aom/av1/encoder/bitstream.c
@@ -0,0 +1,4248 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <limits.h>
+#include <stdio.h>
+
+#include "aom/aom_encoder.h"
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/binary_codes_writer.h"
+#include "aom_dsp/bitwriter_buffer.h"
+#include "aom_mem/aom_mem.h"
+#include "aom_ports/bitops.h"
+#include "aom_ports/mem_ops.h"
+#if CONFIG_BITSTREAM_DEBUG
+#include "aom_util/debug_util.h"
+#endif // CONFIG_BITSTREAM_DEBUG
+
+#include "av1/common/cdef.h"
+#include "av1/common/cfl.h"
+#include "av1/common/entropy.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/entropymv.h"
+#include "av1/common/mvref_common.h"
+#include "av1/common/pred_common.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/reconintra.h"
+#include "av1/common/seg_common.h"
+#include "av1/common/tile_common.h"
+
+#include "av1/encoder/bitstream.h"
+#include "av1/encoder/cost.h"
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/encodetxb.h"
+#include "av1/encoder/ethread.h"
+#include "av1/encoder/mcomp.h"
+#include "av1/encoder/palette.h"
+#include "av1/encoder/pickrst.h"
+#include "av1/encoder/segmentation.h"
+#include "av1/encoder/tokenize.h"
+
+#define ENC_MISMATCH_DEBUG 0
+#define SETUP_TIME_OH_CONST 5 // Setup time overhead constant per worker
+#define JOB_DISP_TIME_OH_CONST 1 // Job dispatch time overhead per tile
+
+static INLINE void write_uniform(aom_writer *w, int n, int v) {
+ const int l = get_unsigned_bits(n);
+ const int m = (1 << l) - n;
+ if (l == 0) return;
+ if (v < m) {
+ aom_write_literal(w, v, l - 1);
+ } else {
+ aom_write_literal(w, m + ((v - m) >> 1), l - 1);
+ aom_write_literal(w, (v - m) & 1, 1);
+ }
+}
+
+#if !CONFIG_REALTIME_ONLY
+static AOM_INLINE void loop_restoration_write_sb_coeffs(
+ const AV1_COMMON *const cm, MACROBLOCKD *xd, int runit_idx,
+ aom_writer *const w, int plane, FRAME_COUNTS *counts);
+#endif
+
+static AOM_INLINE void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx,
+ const MB_MODE_INFO *mi,
+ const MB_MODE_INFO *above_mi,
+ const MB_MODE_INFO *left_mi,
+ PREDICTION_MODE mode,
+ aom_writer *w) {
+ assert(!is_intrabc_block(mi));
+ (void)mi;
+ aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi),
+ INTRA_MODES);
+}
+
+static AOM_INLINE void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
+ FRAME_CONTEXT *ec_ctx,
+ const int16_t mode_ctx) {
+ const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
+
+ aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2);
+
+ if (mode != NEWMV) {
+ const int16_t zeromv_ctx =
+ (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
+ aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2);
+
+ if (mode != GLOBALMV) {
+ int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
+ aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2);
+ }
+ }
+}
+
+static AOM_INLINE void write_drl_idx(
+ FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi,
+ const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
+ assert(mbmi->ref_mv_idx < 3);
+
+ const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
+ if (new_mv) {
+ int idx;
+ for (idx = 0; idx < 2; ++idx) {
+ if (mbmi_ext_frame->ref_mv_count > idx + 1) {
+ uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
+
+ aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx],
+ 2);
+ if (mbmi->ref_mv_idx == idx) return;
+ }
+ }
+ return;
+ }
+
+ if (have_nearmv_in_inter_mode(mbmi->mode)) {
+ int idx;
+ // TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
+ for (idx = 1; idx < 3; ++idx) {
+ if (mbmi_ext_frame->ref_mv_count > idx + 1) {
+ uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
+ aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1),
+ ec_ctx->drl_cdf[drl_ctx], 2);
+ if (mbmi->ref_mv_idx == (idx - 1)) return;
+ }
+ }
+ return;
+ }
+}
+
+static AOM_INLINE void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w,
+ PREDICTION_MODE mode,
+ const int16_t mode_ctx) {
+ assert(is_inter_compound_mode(mode));
+ aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode),
+ xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
+ INTER_COMPOUND_MODES);
+}
+
+static AOM_INLINE void write_tx_size_vartx(MACROBLOCKD *xd,
+ const MB_MODE_INFO *mbmi,
+ TX_SIZE tx_size, int depth,
+ int blk_row, int blk_col,
+ aom_writer *w) {
+ FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
+ const int max_blocks_high = max_block_high(xd, mbmi->bsize, 0);
+ const int max_blocks_wide = max_block_wide(xd, mbmi->bsize, 0);
+
+ if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
+
+ if (depth == MAX_VARTX_DEPTH) {
+ txfm_partition_update(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row, tx_size, tx_size);
+ return;
+ }
+
+ const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row,
+ mbmi->bsize, tx_size);
+ const int txb_size_index =
+ av1_get_txb_size_index(mbmi->bsize, blk_row, blk_col);
+ const int write_txfm_partition =
+ tx_size == mbmi->inter_tx_size[txb_size_index];
+ if (write_txfm_partition) {
+ aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2);
+
+ txfm_partition_update(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row, tx_size, tx_size);
+ // TODO(yuec): set correct txfm partition update for qttx
+ } else {
+ const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
+ const int bsw = tx_size_wide_unit[sub_txs];
+ const int bsh = tx_size_high_unit[sub_txs];
+
+ aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2);
+
+ if (sub_txs == TX_4X4) {
+ txfm_partition_update(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row, sub_txs, tx_size);
+ return;
+ }
+
+ assert(bsw > 0 && bsh > 0);
+ for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
+ const int offsetr = blk_row + row;
+ for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
+ const int offsetc = blk_col + col;
+ write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w);
+ }
+ }
+ }
+}
+
+static AOM_INLINE void write_selected_tx_size(const MACROBLOCKD *xd,
+ aom_writer *w) {
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const BLOCK_SIZE bsize = mbmi->bsize;
+ FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
+ if (block_signals_txsize(bsize)) {
+ const TX_SIZE tx_size = mbmi->tx_size;
+ const int tx_size_ctx = get_tx_size_context(xd);
+ const int depth = tx_size_to_depth(tx_size, bsize);
+ const int max_depths = bsize_to_max_depth(bsize);
+ const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
+
+ assert(depth >= 0 && depth <= max_depths);
+ assert(!is_inter_block(mbmi));
+ assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
+
+ aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
+ max_depths + 1);
+ }
+}
+
+static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
+ uint8_t segment_id, const MB_MODE_INFO *mi,
+ aom_writer *w) {
+ if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
+ return 1;
+ } else {
+ const int skip_txfm = mi->skip_txfm;
+ const int ctx = av1_get_skip_txfm_context(xd);
+ FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
+ aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2);
+ return skip_txfm;
+ }
+}
+
+static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd,
+ uint8_t segment_id, const MB_MODE_INFO *mi,
+ aom_writer *w) {
+ if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
+ if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
+ return 0;
+ }
+ const int skip_mode = mi->skip_mode;
+ if (!is_comp_ref_allowed(mi->bsize)) {
+ assert(!skip_mode);
+ return 0;
+ }
+ if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
+ segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
+ // These features imply single-reference mode, while skip mode implies
+ // compound reference. Hence, the two are mutually exclusive.
+ // In other words, skip_mode is implicitly 0 here.
+ assert(!skip_mode);
+ return 0;
+ }
+ const int ctx = av1_get_skip_mode_context(xd);
+ aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2);
+ return skip_mode;
+}
+
+static AOM_INLINE void write_is_inter(const AV1_COMMON *cm,
+ const MACROBLOCKD *xd, uint8_t segment_id,
+ aom_writer *w, const int is_inter) {
+ if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
+ if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
+ assert(is_inter);
+ return;
+ }
+ const int ctx = av1_get_intra_inter_context(xd);
+ FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
+ aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
+ }
+}
+
+static AOM_INLINE void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd,
+ const MB_MODE_INFO *mbmi,
+ aom_writer *w) {
+ MOTION_MODE last_motion_mode_allowed =
+ cm->features.switchable_motion_mode
+ ? motion_mode_allowed(cm->global_motion, xd, mbmi,
+ cm->features.allow_warped_motion)
+ : SIMPLE_TRANSLATION;
+ assert(mbmi->motion_mode <= last_motion_mode_allowed);
+ switch (last_motion_mode_allowed) {
+ case SIMPLE_TRANSLATION: break;
+ case OBMC_CAUSAL:
+ aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL,
+ xd->tile_ctx->obmc_cdf[mbmi->bsize], 2);
+ break;
+ default:
+ aom_write_symbol(w, mbmi->motion_mode,
+ xd->tile_ctx->motion_mode_cdf[mbmi->bsize],
+ MOTION_MODES);
+ }
+}
+
+static AOM_INLINE void write_delta_qindex(const MACROBLOCKD *xd,
+ int delta_qindex, aom_writer *w) {
+ int sign = delta_qindex < 0;
+ int abs = sign ? -delta_qindex : delta_qindex;
+ int rem_bits, thr;
+ int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
+ FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
+
+ aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
+ DELTA_Q_PROBS + 1);
+
+ if (!smallval) {
+ rem_bits = get_msb(abs - 1);
+ thr = (1 << rem_bits) + 1;
+ aom_write_literal(w, rem_bits - 1, 3);
+ aom_write_literal(w, abs - thr, rem_bits);
+ }
+ if (abs > 0) {
+ aom_write_bit(w, sign);
+ }
+}
+
+static AOM_INLINE void write_delta_lflevel(const AV1_COMMON *cm,
+ const MACROBLOCKD *xd, int lf_id,
+ int delta_lflevel,
+ int delta_lf_multi, aom_writer *w) {
+ int sign = delta_lflevel < 0;
+ int abs = sign ? -delta_lflevel : delta_lflevel;
+ int rem_bits, thr;
+ int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
+ FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
+ (void)cm;
+
+ if (delta_lf_multi) {
+ assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT
+ : FRAME_LF_COUNT - 2));
+ aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL),
+ ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1);
+ } else {
+ aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
+ DELTA_LF_PROBS + 1);
+ }
+
+ if (!smallval) {
+ rem_bits = get_msb(abs - 1);
+ thr = (1 << rem_bits) + 1;
+ aom_write_literal(w, rem_bits - 1, 3);
+ aom_write_literal(w, abs - thr, rem_bits);
+ }
+ if (abs > 0) {
+ aom_write_bit(w, sign);
+ }
+}
+
+static AOM_INLINE void pack_map_tokens(aom_writer *w, const TokenExtra **tp,
+ int n, int num, MapCdf map_pb_cdf) {
+ const TokenExtra *p = *tp;
+ const int palette_size_idx = n - PALETTE_MIN_SIZE;
+ write_uniform(w, n, p->token); // The first color index.
+ ++p;
+ --num;
+ for (int i = 0; i < num; ++i) {
+ assert((p->color_ctx >= 0) &&
+ (p->color_ctx < PALETTE_COLOR_INDEX_CONTEXTS));
+ aom_cdf_prob *color_map_cdf = map_pb_cdf[palette_size_idx][p->color_ctx];
+ aom_write_symbol(w, p->token, color_map_cdf, n);
+ ++p;
+ }
+ *tp = p;
+}
+
+static AOM_INLINE void pack_txb_tokens(
+ aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp,
+ const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
+ int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block,
+ int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) {
+ const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
+ const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
+
+ if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
+
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const TX_SIZE plane_tx_size =
+ plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
+ pd->subsampling_y)
+ : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
+ blk_col)];
+
+ if (tx_size == plane_tx_size || plane) {
+ av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size);
+#if CONFIG_RD_DEBUG
+ TOKEN_STATS tmp_token_stats;
+ init_token_stats(&tmp_token_stats);
+ token_stats->cost += tmp_token_stats.cost;
+#endif
+ } else {
+ const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
+ const int bsw = tx_size_wide_unit[sub_txs];
+ const int bsh = tx_size_high_unit[sub_txs];
+ const int step = bsh * bsw;
+ const int row_end =
+ AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
+ const int col_end =
+ AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
+
+ assert(bsw > 0 && bsh > 0);
+
+ for (int r = 0; r < row_end; r += bsh) {
+ const int offsetr = blk_row + r;
+ for (int c = 0; c < col_end; c += bsw) {
+ const int offsetc = blk_col + c;
+ pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize,
+ bit_depth, block, offsetr, offsetc, sub_txs,
+ token_stats);
+ block += step;
+ }
+ }
+ }
+}
+
+static INLINE void set_spatial_segment_id(
+ const CommonModeInfoParams *const mi_params, uint8_t *segment_ids,
+ BLOCK_SIZE bsize, int mi_row, int mi_col, uint8_t segment_id) {
+ const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
+ const int bw = mi_size_wide[bsize];
+ const int bh = mi_size_high[bsize];
+ const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw);
+ const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh);
+
+ const int mi_stride = mi_params->mi_cols;
+
+ set_segment_id(segment_ids, mi_offset, xmis, ymis, mi_stride, segment_id);
+}
+
+int av1_neg_interleave(int x, int ref, int max) {
+ assert(x < max);
+ const int diff = x - ref;
+ if (!ref) return x;
+ if (ref >= (max - 1)) return -x + max - 1;
+ if (2 * ref < max) {
+ if (abs(diff) <= ref) {
+ if (diff > 0)
+ return (diff << 1) - 1;
+ else
+ return ((-diff) << 1);
+ }
+ return x;
+ } else {
+ if (abs(diff) < (max - ref)) {
+ if (diff > 0)
+ return (diff << 1) - 1;
+ else
+ return ((-diff) << 1);
+ }
+ return (max - x) - 1;
+ }
+}
+
+static AOM_INLINE void write_segment_id(AV1_COMP *cpi, MACROBLOCKD *const xd,
+ const MB_MODE_INFO *const mbmi,
+ aom_writer *w,
+ const struct segmentation *seg,
+ struct segmentation_probs *segp,
+ int skip_txfm) {
+ if (!seg->enabled || !seg->update_map) return;
+
+ AV1_COMMON *const cm = &cpi->common;
+ int cdf_num;
+ const uint8_t pred = av1_get_spatial_seg_pred(
+ cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4);
+ const int mi_row = xd->mi_row;
+ const int mi_col = xd->mi_col;
+
+ if (skip_txfm) {
+ // Still need to transmit tx size for intra blocks even if skip_txfm is
+ // true. Changing segment_id may make the tx size become invalid, e.g
+ // changing from lossless to lossy.
+ assert(is_inter_block(mbmi) || !cpi->enc_seg.has_lossless_segment);
+
+ set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
+ mi_row, mi_col, pred);
+ set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, mbmi->bsize,
+ mi_row, mi_col, pred);
+ /* mbmi is read only but we need to update segment_id */
+ ((MB_MODE_INFO *)mbmi)->segment_id = pred;
+ return;
+ }
+
+ const int coded_id =
+ av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1);
+ aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
+ aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS);
+ set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
+ mi_row, mi_col, mbmi->segment_id);
+}
+
+#define WRITE_REF_BIT(bname, pname) \
+ aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2)
+
+// This function encodes the reference frame
+static AOM_INLINE void write_ref_frames(const AV1_COMMON *cm,
+ const MACROBLOCKD *xd, aom_writer *w) {
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int is_compound = has_second_ref(mbmi);
+ const uint8_t segment_id = mbmi->segment_id;
+
+ // If segment level coding of this signal is disabled...
+ // or the segment allows multiple reference frame options
+ if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
+ assert(!is_compound);
+ assert(mbmi->ref_frame[0] ==
+ get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
+ } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
+ segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
+ assert(!is_compound);
+ assert(mbmi->ref_frame[0] == LAST_FRAME);
+ } else {
+ // does the feature use compound prediction or not
+ // (if not specified at the frame/segment level)
+ if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
+ if (is_comp_ref_allowed(mbmi->bsize))
+ aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2);
+ } else {
+ assert((!is_compound) ==
+ (cm->current_frame.reference_mode == SINGLE_REFERENCE));
+ }
+
+ if (is_compound) {
+ const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
+ ? UNIDIR_COMP_REFERENCE
+ : BIDIR_COMP_REFERENCE;
+ aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd),
+ 2);
+
+ if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
+ const int bit = mbmi->ref_frame[0] == BWDREF_FRAME;
+ WRITE_REF_BIT(bit, uni_comp_ref_p);
+
+ if (!bit) {
+ assert(mbmi->ref_frame[0] == LAST_FRAME);
+ const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME ||
+ mbmi->ref_frame[1] == GOLDEN_FRAME;
+ WRITE_REF_BIT(bit1, uni_comp_ref_p1);
+ if (bit1) {
+ const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME;
+ WRITE_REF_BIT(bit2, uni_comp_ref_p2);
+ }
+ } else {
+ assert(mbmi->ref_frame[1] == ALTREF_FRAME);
+ }
+
+ return;
+ }
+
+ assert(comp_ref_type == BIDIR_COMP_REFERENCE);
+
+ const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
+ mbmi->ref_frame[0] == LAST3_FRAME);
+ WRITE_REF_BIT(bit, comp_ref_p);
+
+ if (!bit) {
+ const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME;
+ WRITE_REF_BIT(bit1, comp_ref_p1);
+ } else {
+ const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
+ WRITE_REF_BIT(bit2, comp_ref_p2);
+ }
+
+ const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
+ WRITE_REF_BIT(bit_bwd, comp_bwdref_p);
+
+ if (!bit_bwd) {
+ WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1);
+ }
+
+ } else {
+ const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME &&
+ mbmi->ref_frame[0] >= BWDREF_FRAME);
+ WRITE_REF_BIT(bit0, single_ref_p1);
+
+ if (bit0) {
+ const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
+ WRITE_REF_BIT(bit1, single_ref_p2);
+
+ if (!bit1) {
+ WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6);
+ }
+ } else {
+ const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
+ mbmi->ref_frame[0] == GOLDEN_FRAME);
+ WRITE_REF_BIT(bit2, single_ref_p3);
+
+ if (!bit2) {
+ const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
+ WRITE_REF_BIT(bit3, single_ref_p4);
+ } else {
+ const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
+ WRITE_REF_BIT(bit4, single_ref_p5);
+ }
+ }
+ }
+ }
+}
+
+static AOM_INLINE void write_filter_intra_mode_info(
+ const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
+ aom_writer *w) {
+ if (av1_filter_intra_allowed(cm, mbmi)) {
+ aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra,
+ xd->tile_ctx->filter_intra_cdfs[mbmi->bsize], 2);
+ if (mbmi->filter_intra_mode_info.use_filter_intra) {
+ const FILTER_INTRA_MODE mode =
+ mbmi->filter_intra_mode_info.filter_intra_mode;
+ aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf,
+ FILTER_INTRA_MODES);
+ }
+ }
+}
+
+static AOM_INLINE void write_angle_delta(aom_writer *w, int angle_delta,
+ aom_cdf_prob *cdf) {
+ aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf,
+ 2 * MAX_ANGLE_DELTA + 1);
+}
+
+static AOM_INLINE void write_mb_interp_filter(AV1_COMMON *const cm,
+ ThreadData *td, aom_writer *w) {
+ const MACROBLOCKD *xd = &td->mb.e_mbd;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
+
+ if (!av1_is_interp_needed(xd)) {
+ int_interpfilters filters = av1_broadcast_interp_filter(
+ av1_unswitchable_filter(cm->features.interp_filter));
+ assert(mbmi->interp_filters.as_int == filters.as_int);
+ (void)filters;
+ return;
+ }
+ if (cm->features.interp_filter == SWITCHABLE) {
+ int dir;
+ for (dir = 0; dir < 2; ++dir) {
+ const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
+ InterpFilter filter =
+ av1_extract_interp_filter(mbmi->interp_filters, dir);
+ aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx],
+ SWITCHABLE_FILTERS);
+ ++td->interp_filter_selected[filter];
+ if (cm->seq_params->enable_dual_filter == 0) return;
+ }
+ }
+}
+
+// Transmit color values with delta encoding. Write the first value as
+// literal, and the deltas between each value and the previous one. "min_val" is
+// the smallest possible value of the deltas.
+static AOM_INLINE void delta_encode_palette_colors(const int *colors, int num,
+ int bit_depth, int min_val,
+ aom_writer *w) {
+ if (num <= 0) return;
+ assert(colors[0] < (1 << bit_depth));
+ aom_write_literal(w, colors[0], bit_depth);
+ if (num == 1) return;
+ int max_delta = 0;
+ int deltas[PALETTE_MAX_SIZE];
+ memset(deltas, 0, sizeof(deltas));
+ for (int i = 1; i < num; ++i) {
+ assert(colors[i] < (1 << bit_depth));
+ const int delta = colors[i] - colors[i - 1];
+ deltas[i - 1] = delta;
+ assert(delta >= min_val);
+ if (delta > max_delta) max_delta = delta;
+ }
+ const int min_bits = bit_depth - 3;
+ int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
+ assert(bits <= bit_depth);
+ int range = (1 << bit_depth) - colors[0] - min_val;
+ aom_write_literal(w, bits - min_bits, 2);
+ for (int i = 0; i < num - 1; ++i) {
+ aom_write_literal(w, deltas[i] - min_val, bits);
+ range -= deltas[i];
+ bits = AOMMIN(bits, av1_ceil_log2(range));
+ }
+}
+
+// Transmit luma palette color values. First signal if each color in the color
+// cache is used. Those colors that are not in the cache are transmitted with
+// delta encoding.
+static AOM_INLINE void write_palette_colors_y(
+ const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
+ int bit_depth, aom_writer *w) {
+ const int n = pmi->palette_size[0];
+ uint16_t color_cache[2 * PALETTE_MAX_SIZE];
+ const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
+ int out_cache_colors[PALETTE_MAX_SIZE];
+ uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
+ const int n_out_cache =
+ av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
+ cache_color_found, out_cache_colors);
+ int n_in_cache = 0;
+ for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
+ const int found = cache_color_found[i];
+ aom_write_bit(w, found);
+ n_in_cache += found;
+ }
+ assert(n_in_cache + n_out_cache == n);
+ delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
+}
+
+// Write chroma palette color values. U channel is handled similarly to the luma
+// channel. For v channel, either use delta encoding or transmit raw values
+// directly, whichever costs less.
+static AOM_INLINE void write_palette_colors_uv(
+ const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
+ int bit_depth, aom_writer *w) {
+ const int n = pmi->palette_size[1];
+ const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
+ const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
+ // U channel colors.
+ uint16_t color_cache[2 * PALETTE_MAX_SIZE];
+ const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
+ int out_cache_colors[PALETTE_MAX_SIZE];
+ uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
+ const int n_out_cache = av1_index_color_cache(
+ color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
+ int n_in_cache = 0;
+ for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
+ const int found = cache_color_found[i];
+ aom_write_bit(w, found);
+ n_in_cache += found;
+ }
+ delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);
+
+ // V channel colors. Don't use color cache as the colors are not sorted.
+ const int max_val = 1 << bit_depth;
+ int zero_count = 0, min_bits_v = 0;
+ int bits_v =
+ av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
+ const int rate_using_delta =
+ 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
+ const int rate_using_raw = bit_depth * n;
+ if (rate_using_delta < rate_using_raw) { // delta encoding
+ assert(colors_v[0] < (1 << bit_depth));
+ aom_write_bit(w, 1);
+ aom_write_literal(w, bits_v - min_bits_v, 2);
+ aom_write_literal(w, colors_v[0], bit_depth);
+ for (int i = 1; i < n; ++i) {
+ assert(colors_v[i] < (1 << bit_depth));
+ if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit.
+ aom_write_literal(w, 0, bits_v);
+ continue;
+ }
+ const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
+ const int sign_bit = colors_v[i] < colors_v[i - 1];
+ if (delta <= max_val - delta) {
+ aom_write_literal(w, delta, bits_v);
+ aom_write_bit(w, sign_bit);
+ } else {
+ aom_write_literal(w, max_val - delta, bits_v);
+ aom_write_bit(w, !sign_bit);
+ }
+ }
+ } else { // Transmit raw values.
+ aom_write_bit(w, 0);
+ for (int i = 0; i < n; ++i) {
+ assert(colors_v[i] < (1 << bit_depth));
+ aom_write_literal(w, colors_v[i], bit_depth);
+ }
+ }
+}
+
+static AOM_INLINE void write_palette_mode_info(const AV1_COMMON *cm,
+ const MACROBLOCKD *xd,
+ const MB_MODE_INFO *const mbmi,
+ aom_writer *w) {
+ const int num_planes = av1_num_planes(cm);
+ const BLOCK_SIZE bsize = mbmi->bsize;
+ assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
+ const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
+
+ if (mbmi->mode == DC_PRED) {
+ const int n = pmi->palette_size[0];
+ const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd);
+ aom_write_symbol(
+ w, n > 0,
+ xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2);
+ if (n > 0) {
+ aom_write_symbol(w, n - PALETTE_MIN_SIZE,
+ xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
+ PALETTE_SIZES);
+ write_palette_colors_y(xd, pmi, cm->seq_params->bit_depth, w);
+ }
+ }
+
+ const int uv_dc_pred =
+ num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref;
+ if (uv_dc_pred) {
+ const int n = pmi->palette_size[1];
+ const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
+ aom_write_symbol(w, n > 0,
+ xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2);
+ if (n > 0) {
+ aom_write_symbol(w, n - PALETTE_MIN_SIZE,
+ xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
+ PALETTE_SIZES);
+ write_palette_colors_uv(xd, pmi, cm->seq_params->bit_depth, w);
+ }
+ }
+}
+
+void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
+ TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w) {
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const FeatureFlags *const features = &cm->features;
+ const int is_inter = is_inter_block(mbmi);
+ if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 &&
+ ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) ||
+ (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
+ !mbmi->skip_txfm &&
+ !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
+ FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
+ const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
+ const TxSetType tx_set_type = av1_get_ext_tx_set_type(
+ tx_size, is_inter, features->reduced_tx_set_used);
+ const int eset =
+ get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used);
+ // eset == 0 should correspond to a set with only DCT_DCT and there
+ // is no need to send the tx_type
+ assert(eset > 0);
+ assert(av1_ext_tx_used[tx_set_type][tx_type]);
+ if (is_inter) {
+ aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type],
+ ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
+ av1_num_ext_tx_set[tx_set_type]);
+ } else {
+ PREDICTION_MODE intra_dir;
+ if (mbmi->filter_intra_mode_info.use_filter_intra)
+ intra_dir =
+ fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
+ else
+ intra_dir = mbmi->mode;
+ aom_write_symbol(
+ w, av1_ext_tx_ind[tx_set_type][tx_type],
+ ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
+ av1_num_ext_tx_set[tx_set_type]);
+ }
+ }
+}
+
+static AOM_INLINE void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx,
+ BLOCK_SIZE bsize,
+ PREDICTION_MODE mode,
+ aom_writer *w) {
+ aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
+ INTRA_MODES);
+}
+
+static AOM_INLINE void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
+ UV_PREDICTION_MODE uv_mode,
+ PREDICTION_MODE y_mode,
+ CFL_ALLOWED_TYPE cfl_allowed,
+ aom_writer *w) {
+ aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode],
+ UV_INTRA_MODES - !cfl_allowed);
+}
+
+static AOM_INLINE void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx,
+ uint8_t idx, int8_t joint_sign,
+ aom_writer *w) {
+ aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS);
+ // Magnitudes are only signaled for nonzero codes.
+ if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
+ aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
+ aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE);
+ }
+ if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
+ aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
+ aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE);
+ }
+}
+
+static AOM_INLINE void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd,
+ aom_writer *w, int skip) {
+ if (cm->features.coded_lossless || cm->features.allow_intrabc) return;
+
+ // At the start of a superblock, mark that we haven't yet written CDEF
+ // strengths for any of the CDEF units contained in this superblock.
+ const int sb_mask = (cm->seq_params->mib_size - 1);
+ const int mi_row_in_sb = (xd->mi_row & sb_mask);
+ const int mi_col_in_sb = (xd->mi_col & sb_mask);
+ if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
+ xd->cdef_transmitted[0] = xd->cdef_transmitted[1] =
+ xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false;
+ }
+
+ // CDEF unit size is 64x64 irrespective of the superblock size.
+ const int cdef_size = 1 << (6 - MI_SIZE_LOG2);
+
+ // Find index of this CDEF unit in this superblock.
+ const int index_mask = cdef_size;
+ const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0);
+ const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0);
+ const int index = (cm->seq_params->sb_size == BLOCK_128X128)
+ ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb
+ : 0;
+
+ // Write CDEF strength to the first non-skip coding block in this CDEF unit.
+ if (!xd->cdef_transmitted[index] && !skip) {
+ // CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO
+ // of the 1st block in this CDEF unit.
+ const int first_block_mask = ~(cdef_size - 1);
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ const int grid_idx =
+ get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
+ xd->mi_col & first_block_mask);
+ const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
+ aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits);
+ xd->cdef_transmitted[index] = true;
+ }
+}
+
+static AOM_INLINE void write_inter_segment_id(
+ AV1_COMP *cpi, MACROBLOCKD *const xd, aom_writer *w,
+ const struct segmentation *const seg, struct segmentation_probs *const segp,
+ int skip, int preskip) {
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ AV1_COMMON *const cm = &cpi->common;
+ const int mi_row = xd->mi_row;
+ const int mi_col = xd->mi_col;
+
+ if (seg->update_map) {
+ if (preskip) {
+ if (!seg->segid_preskip) return;
+ } else {
+ if (seg->segid_preskip) return;
+ if (skip) {
+ write_segment_id(cpi, xd, mbmi, w, seg, segp, 1);
+ if (seg->temporal_update) mbmi->seg_id_predicted = 0;
+ return;
+ }
+ }
+ if (seg->temporal_update) {
+ const int pred_flag = mbmi->seg_id_predicted;
+ aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd);
+ aom_write_symbol(w, pred_flag, pred_cdf, 2);
+ if (!pred_flag) {
+ write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
+ }
+ if (pred_flag) {
+ set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
+ mbmi->bsize, mi_row, mi_col, mbmi->segment_id);
+ }
+ } else {
+ write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
+ }
+ }
+}
+
+// If delta q is present, writes delta_q index.
+// Also writes delta_q loop filter levels, if present.
+static AOM_INLINE void write_delta_q_params(AV1_COMMON *const cm,
+ MACROBLOCKD *const xd, int skip,
+ aom_writer *w) {
+ const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
+
+ if (delta_q_info->delta_q_present_flag) {
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const BLOCK_SIZE bsize = mbmi->bsize;
+ const int super_block_upper_left =
+ ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
+ ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0);
+
+ if ((bsize != cm->seq_params->sb_size || skip == 0) &&
+ super_block_upper_left) {
+ assert(mbmi->current_qindex > 0);
+ const int reduced_delta_qindex =
+ (mbmi->current_qindex - xd->current_base_qindex) /
+ delta_q_info->delta_q_res;
+ write_delta_qindex(xd, reduced_delta_qindex, w);
+ xd->current_base_qindex = mbmi->current_qindex;
+ if (delta_q_info->delta_lf_present_flag) {
+ if (delta_q_info->delta_lf_multi) {
+ const int frame_lf_count =
+ av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
+ for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
+ int reduced_delta_lflevel =
+ (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
+ delta_q_info->delta_lf_res;
+ write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, 1, w);
+ xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
+ }
+ } else {
+ int reduced_delta_lflevel =
+ (mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
+ delta_q_info->delta_lf_res;
+ write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, 0, w);
+ xd->delta_lf_from_base = mbmi->delta_lf_from_base;
+ }
+ }
+ }
+ }
+}
+
+static AOM_INLINE void write_intra_prediction_modes(const AV1_COMMON *cm,
+ MACROBLOCKD *const xd,
+ int is_keyframe,
+ aom_writer *w) {
+ FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const PREDICTION_MODE mode = mbmi->mode;
+ const BLOCK_SIZE bsize = mbmi->bsize;
+
+ // Y mode.
+ if (is_keyframe) {
+ const MB_MODE_INFO *const above_mi = xd->above_mbmi;
+ const MB_MODE_INFO *const left_mi = xd->left_mbmi;
+ write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w);
+ } else {
+ write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w);
+ }
+
+ // Y angle delta.
+ const int use_angle_delta = av1_use_angle_delta(bsize);
+ if (use_angle_delta && av1_is_directional_mode(mode)) {
+ write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
+ ec_ctx->angle_delta_cdf[mode - V_PRED]);
+ }
+
+ // UV mode and UV angle delta.
+ if (!cm->seq_params->monochrome && xd->is_chroma_ref) {
+ const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
+ write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
+ if (uv_mode == UV_CFL_PRED)
+ write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
+ const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode);
+ if (use_angle_delta && av1_is_directional_mode(intra_mode)) {
+ write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV],
+ ec_ctx->angle_delta_cdf[intra_mode - V_PRED]);
+ }
+ }
+
+ // Palette.
+ if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
+ write_palette_mode_info(cm, xd, mbmi, w);
+ }
+
+ // Filter intra.
+ write_filter_intra_mode_info(cm, xd, mbmi, w);
+}
+
+static INLINE int16_t mode_context_analyzer(
+ const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) {
+ if (rf[1] <= INTRA_FRAME) return mode_context;
+
+ const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK;
+ const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
+
+ const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN(
+ newmv_ctx, COMP_NEWMV_CTXS - 1)];
+ return comp_ctx;
+}
+
+static INLINE int_mv get_ref_mv_from_stack(
+ int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx,
+ const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) {
+ const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
+ const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack;
+
+ if (ref_frame[1] > INTRA_FRAME) {
+ assert(ref_idx == 0 || ref_idx == 1);
+ return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
+ : curr_ref_mv_stack[ref_mv_idx].this_mv;
+ }
+
+ assert(ref_idx == 0);
+ return ref_mv_idx < mbmi_ext_frame->ref_mv_count
+ ? curr_ref_mv_stack[ref_mv_idx].this_mv
+ : mbmi_ext_frame->global_mvs[ref_frame_type];
+}
+
+static INLINE int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) {
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const MB_MODE_INFO *mbmi = xd->mi[0];
+ int ref_mv_idx = mbmi->ref_mv_idx;
+ if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) {
+ assert(has_second_ref(mbmi));
+ ref_mv_idx += 1;
+ }
+ return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx,
+ x->mbmi_ext_frame);
+}
+
+static AOM_INLINE void pack_inter_mode_mvs(AV1_COMP *cpi, ThreadData *const td,
+ aom_writer *w) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
+ const struct segmentation *const seg = &cm->seg;
+ struct segmentation_probs *const segp = &ec_ctx->seg;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame;
+ const PREDICTION_MODE mode = mbmi->mode;
+ const uint8_t segment_id = mbmi->segment_id;
+ const BLOCK_SIZE bsize = mbmi->bsize;
+ const int allow_hp = cm->features.allow_high_precision_mv;
+ const int is_inter = is_inter_block(mbmi);
+ const int is_compound = has_second_ref(mbmi);
+ int ref;
+
+ write_inter_segment_id(cpi, xd, w, seg, segp, 0, 1);
+
+ write_skip_mode(cm, xd, segment_id, mbmi, w);
+
+ assert(IMPLIES(mbmi->skip_mode, mbmi->skip_txfm));
+ const int skip =
+ mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w);
+
+ write_inter_segment_id(cpi, xd, w, seg, segp, skip, 0);
+
+ write_cdef(cm, xd, w, skip);
+
+ write_delta_q_params(cm, xd, skip, w);
+
+ if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter);
+
+ if (mbmi->skip_mode) return;
+
+ if (!is_inter) {
+ write_intra_prediction_modes(cm, xd, 0, w);
+ } else {
+ int16_t mode_ctx;
+
+ av1_collect_neighbors_ref_counts(xd);
+
+ write_ref_frames(cm, xd, w);
+
+ mode_ctx =
+ mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame);
+
+ // If segment skip is not enabled code the mode.
+ if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
+ if (is_inter_compound_mode(mode))
+ write_inter_compound_mode(xd, w, mode, mode_ctx);
+ else if (is_inter_singleref_mode(mode))
+ write_inter_mode(w, mode, ec_ctx, mode_ctx);
+
+ if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode))
+ write_drl_idx(ec_ctx, mbmi, mbmi_ext_frame, w);
+ else
+ assert(mbmi->ref_mv_idx == 0);
+ }
+
+ if (mode == NEWMV || mode == NEW_NEWMV) {
+ for (ref = 0; ref < 1 + is_compound; ++ref) {
+ nmv_context *nmvc = &ec_ctx->nmvc;
+ const int_mv ref_mv = get_ref_mv(x, ref);
+ av1_encode_mv(cpi, w, td, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
+ allow_hp);
+ }
+ } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
+ nmv_context *nmvc = &ec_ctx->nmvc;
+ const int_mv ref_mv = get_ref_mv(x, 1);
+ av1_encode_mv(cpi, w, td, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc,
+ allow_hp);
+ } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
+ nmv_context *nmvc = &ec_ctx->nmvc;
+ const int_mv ref_mv = get_ref_mv(x, 0);
+ av1_encode_mv(cpi, w, td, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc,
+ allow_hp);
+ }
+
+ if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE &&
+ cpi->common.seq_params->enable_interintra_compound &&
+ is_interintra_allowed(mbmi)) {
+ const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
+ const int bsize_group = size_group_lookup[bsize];
+ aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2);
+ if (interintra) {
+ aom_write_symbol(w, mbmi->interintra_mode,
+ ec_ctx->interintra_mode_cdf[bsize_group],
+ INTERINTRA_MODES);
+ if (av1_is_wedge_used(bsize)) {
+ aom_write_symbol(w, mbmi->use_wedge_interintra,
+ ec_ctx->wedge_interintra_cdf[bsize], 2);
+ if (mbmi->use_wedge_interintra) {
+ aom_write_symbol(w, mbmi->interintra_wedge_index,
+ ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
+ }
+ }
+ }
+ }
+
+ if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w);
+
+ // First write idx to indicate current compound inter prediction mode group
+ // Group A (0): dist_wtd_comp, compound_average
+ // Group B (1): interintra, compound_diffwtd, wedge
+ if (has_second_ref(mbmi)) {
+ const int masked_compound_used = is_any_masked_compound_used(bsize) &&
+ cm->seq_params->enable_masked_compound;
+
+ if (masked_compound_used) {
+ const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
+ aom_write_symbol(w, mbmi->comp_group_idx,
+ ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2);
+ } else {
+ assert(mbmi->comp_group_idx == 0);
+ }
+
+ if (mbmi->comp_group_idx == 0) {
+ if (mbmi->compound_idx)
+ assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE);
+
+ if (cm->seq_params->order_hint_info.enable_dist_wtd_comp) {
+ const int comp_index_ctx = get_comp_index_context(cm, xd);
+ aom_write_symbol(w, mbmi->compound_idx,
+ ec_ctx->compound_index_cdf[comp_index_ctx], 2);
+ } else {
+ assert(mbmi->compound_idx == 1);
+ }
+ } else {
+ assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE &&
+ is_inter_compound_mode(mbmi->mode) &&
+ mbmi->motion_mode == SIMPLE_TRANSLATION);
+ assert(masked_compound_used);
+ // compound_diffwtd, wedge
+ assert(mbmi->interinter_comp.type == COMPOUND_WEDGE ||
+ mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
+
+ if (is_interinter_compound_used(COMPOUND_WEDGE, bsize))
+ aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE,
+ ec_ctx->compound_type_cdf[bsize],
+ MASKED_COMPOUND_TYPES);
+
+ if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
+ assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
+ aom_write_symbol(w, mbmi->interinter_comp.wedge_index,
+ ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
+ aom_write_bit(w, mbmi->interinter_comp.wedge_sign);
+ } else {
+ assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
+ aom_write_literal(w, mbmi->interinter_comp.mask_type,
+ MAX_DIFFWTD_MASK_BITS);
+ }
+ }
+ }
+ write_mb_interp_filter(cm, td, w);
+ }
+}
+
+static AOM_INLINE void write_intrabc_info(
+ MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
+ aom_writer *w) {
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ int use_intrabc = is_intrabc_block(mbmi);
+ FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
+ aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2);
+ if (use_intrabc) {
+ assert(mbmi->mode == DC_PRED);
+ assert(mbmi->uv_mode == UV_DC_PRED);
+ assert(mbmi->motion_mode == SIMPLE_TRANSLATION);
+ int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv;
+ av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
+ }
+}
+
+static AOM_INLINE void write_mb_modes_kf(
+ AV1_COMP *cpi, MACROBLOCKD *xd,
+ const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
+ AV1_COMMON *const cm = &cpi->common;
+ FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
+ const struct segmentation *const seg = &cm->seg;
+ struct segmentation_probs *const segp = &ec_ctx->seg;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+
+ if (seg->segid_preskip && seg->update_map)
+ write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
+
+ const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w);
+
+ if (!seg->segid_preskip && seg->update_map)
+ write_segment_id(cpi, xd, mbmi, w, seg, segp, skip);
+
+ write_cdef(cm, xd, w, skip);
+
+ write_delta_q_params(cm, xd, skip, w);
+
+ if (av1_allow_intrabc(cm)) {
+ write_intrabc_info(xd, mbmi_ext_frame, w);
+ if (is_intrabc_block(mbmi)) return;
+ }
+
+ write_intra_prediction_modes(cm, xd, 1, w);
+}
+
+#if CONFIG_RD_DEBUG
+static AOM_INLINE void dump_mode_info(MB_MODE_INFO *mi) {
+ printf("\nmi->mi_row == %d\n", mi->mi_row);
+ printf("&& mi->mi_col == %d\n", mi->mi_col);
+ printf("&& mi->bsize == %d\n", mi->bsize);
+ printf("&& mi->tx_size == %d\n", mi->tx_size);
+ printf("&& mi->mode == %d\n", mi->mode);
+}
+
+static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
+ int plane) {
+ if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
+ printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
+ plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
+ return 1;
+ }
+ return 0;
+}
+#endif
+
+#if ENC_MISMATCH_DEBUG
+static AOM_INLINE void enc_dump_logs(
+ const AV1_COMMON *const cm,
+ const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) {
+ const MB_MODE_INFO *const mbmi = *(
+ cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col));
+ const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame =
+ mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col,
+ cm->mi_params.mi_alloc_bsize,
+ mbmi_ext_info->stride);
+ if (is_inter_block(mbmi)) {
+#define FRAME_TO_CHECK 11
+ if (cm->current_frame.frame_number == FRAME_TO_CHECK &&
+ cm->show_frame == 1) {
+ const BLOCK_SIZE bsize = mbmi->bsize;
+
+ int_mv mv[2] = { 0 };
+ const int is_comp_ref = has_second_ref(mbmi);
+
+ for (int ref = 0; ref < 1 + is_comp_ref; ++ref)
+ mv[ref].as_mv = mbmi->mv[ref].as_mv;
+
+ if (!is_comp_ref) {
+ mv[1].as_int = 0;
+ }
+
+ const int16_t mode_ctx =
+ is_comp_ref ? 0
+ : mode_context_analyzer(mbmi_ext_frame->mode_context,
+ mbmi->ref_frame);
+
+ const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
+ int16_t zeromv_ctx = -1;
+ int16_t refmv_ctx = -1;
+
+ if (mbmi->mode != NEWMV) {
+ zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
+ if (mbmi->mode != GLOBALMV)
+ refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
+ }
+
+ printf(
+ "=== ENCODER ===: "
+ "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
+ "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
+ "ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
+ "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
+ cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
+ mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col,
+ mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
+ mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx,
+ zeromv_ctx, refmv_ctx, mbmi->tx_size);
+ }
+ }
+}
+#endif // ENC_MISMATCH_DEBUG
+
+static AOM_INLINE void write_mbmi_b(AV1_COMP *cpi, ThreadData *const td,
+ aom_writer *w) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &td->mb.e_mbd;
+ MB_MODE_INFO *m = xd->mi[0];
+
+ if (frame_is_intra_only(cm)) {
+ write_mb_modes_kf(cpi, xd, td->mb.mbmi_ext_frame, w);
+ } else {
+ // has_subpel_mv_component needs the ref frame buffers set up to look
+ // up if they are scaled. has_subpel_mv_component is in turn needed by
+ // write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
+ set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]);
+
+#if ENC_MISMATCH_DEBUG
+ enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col);
+#endif // ENC_MISMATCH_DEBUG
+
+ pack_inter_mode_mvs(cpi, td, w);
+ }
+}
+
+static AOM_INLINE void write_inter_txb_coeff(
+ AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi,
+ aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end,
+ TOKEN_STATS *token_stats, const int row, const int col, int *block,
+ const int plane) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE bsize = mbmi->bsize;
+ assert(bsize < BLOCK_SIZES_ALL);
+ const int ss_x = pd->subsampling_x;
+ const int ss_y = pd->subsampling_y;
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
+ assert(plane_bsize < BLOCK_SIZES_ALL);
+ const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
+ const int step =
+ tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
+ const int bkw = tx_size_wide_unit[max_tx_size];
+ const int bkh = tx_size_high_unit[max_tx_size];
+ const BLOCK_SIZE max_unit_bsize =
+ get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
+ const int num_4x4_w = mi_size_wide[plane_bsize];
+ const int num_4x4_h = mi_size_high[plane_bsize];
+ const int mu_blocks_wide = mi_size_wide[max_unit_bsize];
+ const int mu_blocks_high = mi_size_high[max_unit_bsize];
+ const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h);
+ const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w);
+ for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) {
+ for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) {
+ pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
+ cm->seq_params->bit_depth, *block, blk_row, blk_col,
+ max_tx_size, token_stats);
+ *block += step;
+ }
+ }
+}
+
+static AOM_INLINE void write_tokens_b(AV1_COMP *cpi, MACROBLOCK *const x,
+ aom_writer *w, const TokenExtra **tok,
+ const TokenExtra *const tok_end) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const BLOCK_SIZE bsize = mbmi->bsize;
+
+ assert(!mbmi->skip_txfm);
+
+ const int is_inter = is_inter_block(mbmi);
+ if (!is_inter) {
+ av1_write_intra_coeffs_mb(cm, x, w, bsize);
+ } else {
+ int block[MAX_MB_PLANE] = { 0 };
+ assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
+ xd->plane[0].subsampling_y));
+ const int num_4x4_w = mi_size_wide[bsize];
+ const int num_4x4_h = mi_size_high[bsize];
+ TOKEN_STATS token_stats;
+ init_token_stats(&token_stats);
+
+ const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
+ assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64,
+ xd->plane[0].subsampling_x,
+ xd->plane[0].subsampling_y));
+ int mu_blocks_wide = mi_size_wide[max_unit_bsize];
+ int mu_blocks_high = mi_size_high[max_unit_bsize];
+ mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide);
+ mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high);
+
+ const int num_planes = av1_num_planes(cm);
+ for (int row = 0; row < num_4x4_h; row += mu_blocks_high) {
+ for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) {
+ for (int plane = 0; plane < num_planes; ++plane) {
+ if (plane && !xd->is_chroma_ref) break;
+ write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row,
+ col, &block[plane], plane);
+ }
+ }
+ }
+#if CONFIG_RD_DEBUG
+ for (int plane = 0; plane < num_planes; ++plane) {
+ if (mbmi->bsize >= BLOCK_8X8 &&
+ rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
+ dump_mode_info(mbmi);
+ assert(0);
+ }
+ }
+#endif // CONFIG_RD_DEBUG
+ }
+}
+
+static AOM_INLINE void write_modes_b(AV1_COMP *cpi, ThreadData *const td,
+ const TileInfo *const tile, aom_writer *w,
+ const TokenExtra **tok,
+ const TokenExtra *const tok_end,
+ int mi_row, int mi_col) {
+ const AV1_COMMON *cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ MACROBLOCKD *xd = &td->mb.e_mbd;
+ FRAME_CONTEXT *tile_ctx = xd->tile_ctx;
+ const int grid_idx = mi_row * mi_params->mi_stride + mi_col;
+ xd->mi = mi_params->mi_grid_base + grid_idx;
+ td->mb.mbmi_ext_frame =
+ cpi->mbmi_ext_info.frame_base +
+ get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize,
+ cpi->mbmi_ext_info.stride);
+ xd->tx_type_map = mi_params->tx_type_map + grid_idx;
+ xd->tx_type_map_stride = mi_params->mi_stride;
+
+ const MB_MODE_INFO *mbmi = xd->mi[0];
+ const BLOCK_SIZE bsize = mbmi->bsize;
+ assert(bsize <= cm->seq_params->sb_size ||
+ (bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL));
+
+ const int bh = mi_size_high[bsize];
+ const int bw = mi_size_wide[bsize];
+ set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
+ mi_params->mi_cols);
+
+ xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+
+ write_mbmi_b(cpi, td, w);
+
+ for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) {
+ const uint8_t palette_size_plane =
+ mbmi->palette_mode_info.palette_size[plane];
+ assert(!mbmi->skip_mode || !palette_size_plane);
+ if (palette_size_plane > 0) {
+ assert(mbmi->use_intrabc == 0);
+ assert(av1_allow_palette(cm->features.allow_screen_content_tools,
+ mbmi->bsize));
+ assert(!plane || xd->is_chroma_ref);
+ int rows, cols;
+ av1_get_block_dimensions(mbmi->bsize, plane, xd, NULL, NULL, &rows,
+ &cols);
+ assert(*tok < tok_end);
+ MapCdf map_pb_cdf = plane ? tile_ctx->palette_uv_color_index_cdf
+ : tile_ctx->palette_y_color_index_cdf;
+ pack_map_tokens(w, tok, palette_size_plane, rows * cols, map_pb_cdf);
+ }
+ }
+
+ const int is_inter_tx = is_inter_block(mbmi);
+ const int skip_txfm = mbmi->skip_txfm;
+ const uint8_t segment_id = mbmi->segment_id;
+ if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
+ !(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) {
+ if (is_inter_tx) { // This implies skip flag is 0.
+ const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
+ const int txbh = tx_size_high_unit[max_tx_size];
+ const int txbw = tx_size_wide_unit[max_tx_size];
+ const int width = mi_size_wide[bsize];
+ const int height = mi_size_high[bsize];
+ for (int idy = 0; idy < height; idy += txbh) {
+ for (int idx = 0; idx < width; idx += txbw) {
+ write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w);
+ }
+ }
+ } else {
+ write_selected_tx_size(xd, w);
+ set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd);
+ }
+ } else {
+ set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
+ skip_txfm && is_inter_tx, xd);
+ }
+
+ if (!mbmi->skip_txfm) {
+ int start = aom_tell_size(w);
+
+ write_tokens_b(cpi, &td->mb, w, tok, tok_end);
+
+ const int end = aom_tell_size(w);
+ td->coefficient_size += end - start;
+ }
+}
+
+static AOM_INLINE void write_partition(const AV1_COMMON *const cm,
+ const MACROBLOCKD *const xd, int hbs,
+ int mi_row, int mi_col, PARTITION_TYPE p,
+ BLOCK_SIZE bsize, aom_writer *w) {
+ const int is_partition_point = bsize >= BLOCK_8X8;
+
+ if (!is_partition_point) return;
+
+ const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
+ const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;
+ const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
+ FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
+
+ if (!has_rows && !has_cols) {
+ assert(p == PARTITION_SPLIT);
+ return;
+ }
+
+ if (has_rows && has_cols) {
+ aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx],
+ partition_cdf_length(bsize));
+ } else if (!has_rows && has_cols) {
+ assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
+ assert(bsize > BLOCK_8X8);
+ aom_cdf_prob cdf[2];
+ partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
+ aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
+ } else {
+ assert(has_rows && !has_cols);
+ assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
+ assert(bsize > BLOCK_8X8);
+ aom_cdf_prob cdf[2];
+ partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
+ aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
+ }
+}
+
+static AOM_INLINE void write_modes_sb(
+ AV1_COMP *const cpi, ThreadData *const td, const TileInfo *const tile,
+ aom_writer *const w, const TokenExtra **tok,
+ const TokenExtra *const tok_end, int mi_row, int mi_col, BLOCK_SIZE bsize) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ MACROBLOCKD *const xd = &td->mb.e_mbd;
+ assert(bsize < BLOCK_SIZES_ALL);
+ const int hbs = mi_size_wide[bsize] / 2;
+ const int quarter_step = mi_size_wide[bsize] / 4;
+ int i;
+ const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
+
+ if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
+
+#if !CONFIG_REALTIME_ONLY
+ const int num_planes = av1_num_planes(cm);
+ for (int plane = 0; plane < num_planes; ++plane) {
+ int rcol0, rcol1, rrow0, rrow1;
+
+ // Skip some unnecessary work if loop restoration is disabled
+ if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
+
+ if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
+ &rcol0, &rcol1, &rrow0, &rrow1)) {
+ const int rstride = cm->rst_info[plane].horz_units;
+ for (int rrow = rrow0; rrow < rrow1; ++rrow) {
+ for (int rcol = rcol0; rcol < rcol1; ++rcol) {
+ const int runit_idx = rcol + rrow * rstride;
+ loop_restoration_write_sb_coeffs(cm, xd, runit_idx, w, plane,
+ td->counts);
+ }
+ }
+ }
+ }
+#endif
+
+ write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
+ switch (partition) {
+ case PARTITION_NONE:
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
+ break;
+ case PARTITION_HORZ:
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
+ if (mi_row + hbs < mi_params->mi_rows)
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
+ break;
+ case PARTITION_VERT:
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
+ if (mi_col + hbs < mi_params->mi_cols)
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
+ break;
+ case PARTITION_SPLIT:
+ write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col, subsize);
+ write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs,
+ subsize);
+ write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col,
+ subsize);
+ write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs,
+ subsize);
+ break;
+ case PARTITION_HORZ_A:
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
+ break;
+ case PARTITION_HORZ_B:
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
+ break;
+ case PARTITION_VERT_A:
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
+ break;
+ case PARTITION_VERT_B:
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
+ break;
+ case PARTITION_HORZ_4:
+ for (i = 0; i < 4; ++i) {
+ int this_mi_row = mi_row + i * quarter_step;
+ if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
+
+ write_modes_b(cpi, td, tile, w, tok, tok_end, this_mi_row, mi_col);
+ }
+ break;
+ case PARTITION_VERT_4:
+ for (i = 0; i < 4; ++i) {
+ int this_mi_col = mi_col + i * quarter_step;
+ if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
+
+ write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, this_mi_col);
+ }
+ break;
+ default: assert(0);
+ }
+
+ // update partition context
+ update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
+}
+
+// Populate token pointers appropriately based on token_info.
+static AOM_INLINE void get_token_pointers(const TokenInfo *token_info,
+ const int tile_row, int tile_col,
+ const int sb_row_in_tile,
+ const TokenExtra **tok,
+ const TokenExtra **tok_end) {
+ if (!is_token_info_allocated(token_info)) {
+ *tok = NULL;
+ *tok_end = NULL;
+ return;
+ }
+ *tok = token_info->tplist[tile_row][tile_col][sb_row_in_tile].start;
+ *tok_end =
+ *tok + token_info->tplist[tile_row][tile_col][sb_row_in_tile].count;
+}
+
+static AOM_INLINE void write_modes(AV1_COMP *const cpi, ThreadData *const td,
+ const TileInfo *const tile,
+ aom_writer *const w, int tile_row,
+ int tile_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &td->mb.e_mbd;
+ const int mi_row_start = tile->mi_row_start;
+ const int mi_row_end = tile->mi_row_end;
+ const int mi_col_start = tile->mi_col_start;
+ const int mi_col_end = tile->mi_col_end;
+ const int num_planes = av1_num_planes(cm);
+
+ av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row);
+ av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd);
+
+ if (cpi->common.delta_q_info.delta_q_present_flag) {
+ xd->current_base_qindex = cpi->common.quant_params.base_qindex;
+ if (cpi->common.delta_q_info.delta_lf_present_flag) {
+ av1_reset_loop_filter_delta(xd, num_planes);
+ }
+ }
+
+ for (int mi_row = mi_row_start; mi_row < mi_row_end;
+ mi_row += cm->seq_params->mib_size) {
+ const int sb_row_in_tile =
+ (mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2;
+ const TokenInfo *token_info = &cpi->token_info;
+ const TokenExtra *tok;
+ const TokenExtra *tok_end;
+ get_token_pointers(token_info, tile_row, tile_col, sb_row_in_tile, &tok,
+ &tok_end);
+
+ av1_zero_left_context(xd);
+
+ for (int mi_col = mi_col_start; mi_col < mi_col_end;
+ mi_col += cm->seq_params->mib_size) {
+ td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
+ write_modes_sb(cpi, td, tile, w, &tok, tok_end, mi_row, mi_col,
+ cm->seq_params->sb_size);
+ }
+ assert(tok == tok_end);
+ }
+}
+
+static AOM_INLINE void encode_restoration_mode(
+ AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
+ assert(!cm->features.all_lossless);
+ if (!cm->seq_params->enable_restoration) return;
+ if (cm->features.allow_intrabc) return;
+ const int num_planes = av1_num_planes(cm);
+ int all_none = 1, chroma_none = 1;
+ for (int p = 0; p < num_planes; ++p) {
+ RestorationInfo *rsi = &cm->rst_info[p];
+ if (rsi->frame_restoration_type != RESTORE_NONE) {
+ all_none = 0;
+ chroma_none &= p == 0;
+ }
+ switch (rsi->frame_restoration_type) {
+ case RESTORE_NONE:
+ aom_wb_write_bit(wb, 0);
+ aom_wb_write_bit(wb, 0);
+ break;
+ case RESTORE_WIENER:
+ aom_wb_write_bit(wb, 1);
+ aom_wb_write_bit(wb, 0);
+ break;
+ case RESTORE_SGRPROJ:
+ aom_wb_write_bit(wb, 1);
+ aom_wb_write_bit(wb, 1);
+ break;
+ case RESTORE_SWITCHABLE:
+ aom_wb_write_bit(wb, 0);
+ aom_wb_write_bit(wb, 1);
+ break;
+ default: assert(0);
+ }
+ }
+ if (!all_none) {
+ assert(cm->seq_params->sb_size == BLOCK_64X64 ||
+ cm->seq_params->sb_size == BLOCK_128X128);
+ const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64;
+
+ RestorationInfo *rsi = &cm->rst_info[0];
+
+ assert(rsi->restoration_unit_size >= sb_size);
+ assert(RESTORATION_UNITSIZE_MAX == 256);
+
+ if (sb_size == 64) {
+ aom_wb_write_bit(wb, rsi->restoration_unit_size > 64);
+ }
+ if (rsi->restoration_unit_size > 64) {
+ aom_wb_write_bit(wb, rsi->restoration_unit_size > 128);
+ }
+ }
+
+ if (num_planes > 1) {
+ int s =
+ AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y);
+ if (s && !chroma_none) {
+ aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size !=
+ cm->rst_info[0].restoration_unit_size);
+ assert(cm->rst_info[1].restoration_unit_size ==
+ cm->rst_info[0].restoration_unit_size ||
+ cm->rst_info[1].restoration_unit_size ==
+ (cm->rst_info[0].restoration_unit_size >> s));
+ assert(cm->rst_info[2].restoration_unit_size ==
+ cm->rst_info[1].restoration_unit_size);
+ } else if (!s) {
+ assert(cm->rst_info[1].restoration_unit_size ==
+ cm->rst_info[0].restoration_unit_size);
+ assert(cm->rst_info[2].restoration_unit_size ==
+ cm->rst_info[1].restoration_unit_size);
+ }
+ }
+}
+
+#if !CONFIG_REALTIME_ONLY
+static AOM_INLINE void write_wiener_filter(int wiener_win,
+ const WienerInfo *wiener_info,
+ WienerInfo *ref_wiener_info,
+ aom_writer *wb) {
+ if (wiener_win == WIENER_WIN)
+ aom_write_primitive_refsubexpfin(
+ wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
+ WIENER_FILT_TAP0_SUBEXP_K,
+ ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
+ wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
+ else
+ assert(wiener_info->vfilter[0] == 0 &&
+ wiener_info->vfilter[WIENER_WIN - 1] == 0);
+ aom_write_primitive_refsubexpfin(
+ wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
+ WIENER_FILT_TAP1_SUBEXP_K,
+ ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
+ wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
+ aom_write_primitive_refsubexpfin(
+ wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
+ WIENER_FILT_TAP2_SUBEXP_K,
+ ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
+ wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
+ if (wiener_win == WIENER_WIN)
+ aom_write_primitive_refsubexpfin(
+ wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
+ WIENER_FILT_TAP0_SUBEXP_K,
+ ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
+ wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
+ else
+ assert(wiener_info->hfilter[0] == 0 &&
+ wiener_info->hfilter[WIENER_WIN - 1] == 0);
+ aom_write_primitive_refsubexpfin(
+ wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
+ WIENER_FILT_TAP1_SUBEXP_K,
+ ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
+ wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
+ aom_write_primitive_refsubexpfin(
+ wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
+ WIENER_FILT_TAP2_SUBEXP_K,
+ ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
+ wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
+ memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
+}
+
+static AOM_INLINE void write_sgrproj_filter(const SgrprojInfo *sgrproj_info,
+ SgrprojInfo *ref_sgrproj_info,
+ aom_writer *wb) {
+ aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
+ const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
+
+ if (params->r[0] == 0) {
+ assert(sgrproj_info->xqd[0] == 0);
+ aom_write_primitive_refsubexpfin(
+ wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
+ ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
+ sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
+ } else if (params->r[1] == 0) {
+ aom_write_primitive_refsubexpfin(
+ wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
+ ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
+ sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
+ } else {
+ aom_write_primitive_refsubexpfin(
+ wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
+ ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
+ sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
+ aom_write_primitive_refsubexpfin(
+ wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
+ ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
+ sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
+ }
+
+ memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
+}
+
+static AOM_INLINE void loop_restoration_write_sb_coeffs(
+ const AV1_COMMON *const cm, MACROBLOCKD *xd, int runit_idx,
+ aom_writer *const w, int plane, FRAME_COUNTS *counts) {
+ const RestorationUnitInfo *rui = &cm->rst_info[plane].unit_info[runit_idx];
+ const RestorationInfo *rsi = cm->rst_info + plane;
+ RestorationType frame_rtype = rsi->frame_restoration_type;
+ assert(frame_rtype != RESTORE_NONE);
+
+ (void)counts;
+ assert(!cm->features.all_lossless);
+
+ const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
+ WienerInfo *ref_wiener_info = &xd->wiener_info[plane];
+ SgrprojInfo *ref_sgrproj_info = &xd->sgrproj_info[plane];
+ RestorationType unit_rtype = rui->restoration_type;
+
+ if (frame_rtype == RESTORE_SWITCHABLE) {
+ aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf,
+ RESTORE_SWITCHABLE_TYPES);
+#if CONFIG_ENTROPY_STATS
+ ++counts->switchable_restore[unit_rtype];
+#endif
+ switch (unit_rtype) {
+ case RESTORE_WIENER:
+#if DEBUG_LR_COSTING
+ assert(!memcmp(
+ ref_wiener_info,
+ &lr_ref_params[RESTORE_SWITCHABLE][plane][runit_idx].wiener_info,
+ sizeof(*ref_wiener_info)));
+#endif
+ write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
+ break;
+ case RESTORE_SGRPROJ:
+#if DEBUG_LR_COSTING
+ assert(!memcmp(&ref_sgrproj_info->xqd,
+ &lr_ref_params[RESTORE_SWITCHABLE][plane][runit_idx]
+ .sgrproj_info.xqd,
+ sizeof(ref_sgrproj_info->xqd)));
+#endif
+ write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
+ break;
+ default: assert(unit_rtype == RESTORE_NONE); break;
+ }
+ } else if (frame_rtype == RESTORE_WIENER) {
+ aom_write_symbol(w, unit_rtype != RESTORE_NONE,
+ xd->tile_ctx->wiener_restore_cdf, 2);
+#if CONFIG_ENTROPY_STATS
+ ++counts->wiener_restore[unit_rtype != RESTORE_NONE];
+#endif
+ if (unit_rtype != RESTORE_NONE) {
+#if DEBUG_LR_COSTING
+ assert(
+ !memcmp(ref_wiener_info,
+ &lr_ref_params[RESTORE_WIENER][plane][runit_idx].wiener_info,
+ sizeof(*ref_wiener_info)));
+#endif
+ write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
+ }
+ } else if (frame_rtype == RESTORE_SGRPROJ) {
+ aom_write_symbol(w, unit_rtype != RESTORE_NONE,
+ xd->tile_ctx->sgrproj_restore_cdf, 2);
+#if CONFIG_ENTROPY_STATS
+ ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE];
+#endif
+ if (unit_rtype != RESTORE_NONE) {
+#if DEBUG_LR_COSTING
+ assert(!memcmp(
+ &ref_sgrproj_info->xqd,
+ &lr_ref_params[RESTORE_SGRPROJ][plane][runit_idx].sgrproj_info.xqd,
+ sizeof(ref_sgrproj_info->xqd)));
+#endif
+ write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
+ }
+ }
+}
+#endif // !CONFIG_REALTIME_ONLY
+
+// Only write out the ref delta section if any of the elements
+// will signal a delta.
+static bool is_mode_ref_delta_meaningful(AV1_COMMON *cm) {
+ struct loopfilter *lf = &cm->lf;
+ if (!lf->mode_ref_delta_update) {
+ return 0;
+ }
+ const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
+ int8_t last_ref_deltas[REF_FRAMES];
+ int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
+ if (buf == NULL) {
+ av1_set_default_ref_deltas(last_ref_deltas);
+ av1_set_default_mode_deltas(last_mode_deltas);
+ } else {
+ memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
+ memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
+ }
+ for (int i = 0; i < REF_FRAMES; i++) {
+ if (lf->ref_deltas[i] != last_ref_deltas[i]) {
+ return true;
+ }
+ }
+ for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
+ if (lf->mode_deltas[i] != last_mode_deltas[i]) {
+ return true;
+ }
+ }
+ return false;
+}
+
+static AOM_INLINE void encode_loopfilter(AV1_COMMON *cm,
+ struct aom_write_bit_buffer *wb) {
+ assert(!cm->features.coded_lossless);
+ if (cm->features.allow_intrabc) return;
+ const int num_planes = av1_num_planes(cm);
+ struct loopfilter *lf = &cm->lf;
+
+ // Encode the loop filter level and type
+ aom_wb_write_literal(wb, lf->filter_level[0], 6);
+ aom_wb_write_literal(wb, lf->filter_level[1], 6);
+ if (num_planes > 1) {
+ if (lf->filter_level[0] || lf->filter_level[1]) {
+ aom_wb_write_literal(wb, lf->filter_level_u, 6);
+ aom_wb_write_literal(wb, lf->filter_level_v, 6);
+ }
+ }
+ aom_wb_write_literal(wb, lf->sharpness_level, 3);
+
+ aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
+
+ // Write out loop filter deltas applied at the MB level based on mode or
+ // ref frame (if they are enabled), only if there is information to write.
+ int meaningful = is_mode_ref_delta_meaningful(cm);
+ aom_wb_write_bit(wb, meaningful);
+ if (!meaningful) {
+ return;
+ }
+
+ const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
+ int8_t last_ref_deltas[REF_FRAMES];
+ int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
+ if (buf == NULL) {
+ av1_set_default_ref_deltas(last_ref_deltas);
+ av1_set_default_mode_deltas(last_mode_deltas);
+ } else {
+ memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
+ memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
+ }
+ for (int i = 0; i < REF_FRAMES; i++) {
+ const int delta = lf->ref_deltas[i];
+ const int changed = delta != last_ref_deltas[i];
+ aom_wb_write_bit(wb, changed);
+ if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
+ }
+ for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
+ const int delta = lf->mode_deltas[i];
+ const int changed = delta != last_mode_deltas[i];
+ aom_wb_write_bit(wb, changed);
+ if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
+ }
+}
+
+static AOM_INLINE void encode_cdef(const AV1_COMMON *cm,
+ struct aom_write_bit_buffer *wb) {
+ assert(!cm->features.coded_lossless);
+ if (!cm->seq_params->enable_cdef) return;
+ if (cm->features.allow_intrabc) return;
+ const int num_planes = av1_num_planes(cm);
+ int i;
+ aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2);
+ aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2);
+ for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) {
+ aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i],
+ CDEF_STRENGTH_BITS);
+ if (num_planes > 1)
+ aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i],
+ CDEF_STRENGTH_BITS);
+ }
+}
+
+static AOM_INLINE void write_delta_q(struct aom_write_bit_buffer *wb,
+ int delta_q) {
+ if (delta_q != 0) {
+ aom_wb_write_bit(wb, 1);
+ aom_wb_write_inv_signed_literal(wb, delta_q, 6);
+ } else {
+ aom_wb_write_bit(wb, 0);
+ }
+}
+
+static AOM_INLINE void encode_quantization(
+ const CommonQuantParams *const quant_params, int num_planes,
+ bool separate_uv_delta_q, struct aom_write_bit_buffer *wb) {
+ aom_wb_write_literal(wb, quant_params->base_qindex, QINDEX_BITS);
+ write_delta_q(wb, quant_params->y_dc_delta_q);
+ if (num_planes > 1) {
+ int diff_uv_delta =
+ (quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) ||
+ (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q);
+ if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta);
+ write_delta_q(wb, quant_params->u_dc_delta_q);
+ write_delta_q(wb, quant_params->u_ac_delta_q);
+ if (diff_uv_delta) {
+ write_delta_q(wb, quant_params->v_dc_delta_q);
+ write_delta_q(wb, quant_params->v_ac_delta_q);
+ }
+ }
+ aom_wb_write_bit(wb, quant_params->using_qmatrix);
+ if (quant_params->using_qmatrix) {
+ aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS);
+ aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS);
+ if (!separate_uv_delta_q)
+ assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v);
+ else
+ aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS);
+ }
+}
+
+static AOM_INLINE void encode_segmentation(AV1_COMMON *cm,
+ struct aom_write_bit_buffer *wb) {
+ int i, j;
+ struct segmentation *seg = &cm->seg;
+
+ aom_wb_write_bit(wb, seg->enabled);
+ if (!seg->enabled) return;
+
+ // Write update flags
+ if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) {
+ aom_wb_write_bit(wb, seg->update_map);
+ if (seg->update_map) aom_wb_write_bit(wb, seg->temporal_update);
+ aom_wb_write_bit(wb, seg->update_data);
+ }
+
+ // Segmentation data
+ if (seg->update_data) {
+ for (i = 0; i < MAX_SEGMENTS; i++) {
+ for (j = 0; j < SEG_LVL_MAX; j++) {
+ const int active = segfeature_active(seg, i, j);
+ aom_wb_write_bit(wb, active);
+ if (active) {
+ const int data_max = av1_seg_feature_data_max(j);
+ const int data_min = -data_max;
+ const int ubits = get_unsigned_bits(data_max);
+ const int data = clamp(get_segdata(seg, i, j), data_min, data_max);
+
+ if (av1_is_segfeature_signed(j)) {
+ aom_wb_write_inv_signed_literal(wb, data, ubits);
+ } else {
+ aom_wb_write_literal(wb, data, ubits);
+ }
+ }
+ }
+ }
+ }
+}
+
+static AOM_INLINE void write_frame_interp_filter(
+ InterpFilter filter, struct aom_write_bit_buffer *wb) {
+ aom_wb_write_bit(wb, filter == SWITCHABLE);
+ if (filter != SWITCHABLE)
+ aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
+}
+
+// Same function as write_uniform but writing to uncompresses header wb
+static AOM_INLINE void wb_write_uniform(struct aom_write_bit_buffer *wb, int n,
+ int v) {
+ const int l = get_unsigned_bits(n);
+ const int m = (1 << l) - n;
+ if (l == 0) return;
+ if (v < m) {
+ aom_wb_write_literal(wb, v, l - 1);
+ } else {
+ aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
+ aom_wb_write_literal(wb, (v - m) & 1, 1);
+ }
+}
+
+static AOM_INLINE void write_tile_info_max_tile(
+ const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
+ int width_sb =
+ CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2);
+ int height_sb =
+ CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params->mib_size_log2);
+ int size_sb, i;
+ const CommonTileParams *const tiles = &cm->tiles;
+
+ aom_wb_write_bit(wb, tiles->uniform_spacing);
+
+ if (tiles->uniform_spacing) {
+ int ones = tiles->log2_cols - tiles->min_log2_cols;
+ while (ones--) {
+ aom_wb_write_bit(wb, 1);
+ }
+ if (tiles->log2_cols < tiles->max_log2_cols) {
+ aom_wb_write_bit(wb, 0);
+ }
+
+ // rows
+ ones = tiles->log2_rows - tiles->min_log2_rows;
+ while (ones--) {
+ aom_wb_write_bit(wb, 1);
+ }
+ if (tiles->log2_rows < tiles->max_log2_rows) {
+ aom_wb_write_bit(wb, 0);
+ }
+ } else {
+ // Explicit tiles with configurable tile widths and heights
+ // columns
+ for (i = 0; i < tiles->cols; i++) {
+ size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
+ wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1);
+ width_sb -= size_sb;
+ }
+ assert(width_sb == 0);
+
+ // rows
+ for (i = 0; i < tiles->rows; i++) {
+ size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i];
+ wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb),
+ size_sb - 1);
+ height_sb -= size_sb;
+ }
+ assert(height_sb == 0);
+ }
+}
+
+static AOM_INLINE void write_tile_info(const AV1_COMMON *const cm,
+ struct aom_write_bit_buffer *saved_wb,
+ struct aom_write_bit_buffer *wb) {
+ write_tile_info_max_tile(cm, wb);
+
+ *saved_wb = *wb;
+ if (cm->tiles.rows * cm->tiles.cols > 1) {
+ // tile id used for cdf update
+ aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows);
+ // Number of bytes in tile size - 1
+ aom_wb_write_literal(wb, 3, 2);
+ }
+}
+
+static AOM_INLINE void write_ext_tile_info(
+ const AV1_COMMON *const cm, struct aom_write_bit_buffer *saved_wb,
+ struct aom_write_bit_buffer *wb) {
+ // This information is stored as a separate byte.
+ int mod = wb->bit_offset % CHAR_BIT;
+ if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod);
+ assert(aom_wb_is_byte_aligned(wb));
+
+ *saved_wb = *wb;
+ if (cm->tiles.rows * cm->tiles.cols > 1) {
+ // Note that the last item in the uncompressed header is the data
+ // describing tile configuration.
+ // Number of bytes in tile column size - 1
+ aom_wb_write_literal(wb, 0, 2);
+ // Number of bytes in tile size - 1
+ aom_wb_write_literal(wb, 0, 2);
+ }
+}
+
+static INLINE int find_identical_tile(
+ const int tile_row, const int tile_col,
+ TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) {
+ const MV32 candidate_offset[1] = { { 1, 0 } };
+ const uint8_t *const cur_tile_data =
+ tile_buffers[tile_row][tile_col].data + 4;
+ const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;
+
+ int i;
+
+ if (tile_row == 0) return 0;
+
+ // (TODO: yunqingwang) For now, only above tile is checked and used.
+ // More candidates such as left tile can be added later.
+ for (i = 0; i < 1; i++) {
+ int row_offset = candidate_offset[0].row;
+ int col_offset = candidate_offset[0].col;
+ int row = tile_row - row_offset;
+ int col = tile_col - col_offset;
+ const uint8_t *tile_data;
+ TileBufferEnc *candidate;
+
+ if (row < 0 || col < 0) continue;
+
+ const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data);
+
+ // Read out tile-copy-mode bit:
+ if ((tile_hdr >> 31) == 1) {
+ // The candidate is a copy tile itself: the offset is stored in bits
+ // 30 through 24 inclusive.
+ row_offset += (tile_hdr >> 24) & 0x7f;
+ row = tile_row - row_offset;
+ }
+
+ candidate = &tile_buffers[row][col];
+
+ if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
+
+ tile_data = candidate->data + 4;
+
+ if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
+
+ // Identical tile found
+ assert(row_offset > 0);
+ return row_offset;
+ }
+
+ // No identical tile found
+ return 0;
+}
+
+static AOM_INLINE void write_render_size(const AV1_COMMON *cm,
+ struct aom_write_bit_buffer *wb) {
+ const int scaling_active = av1_resize_scaled(cm);
+ aom_wb_write_bit(wb, scaling_active);
+ if (scaling_active) {
+ aom_wb_write_literal(wb, cm->render_width - 1, 16);
+ aom_wb_write_literal(wb, cm->render_height - 1, 16);
+ }
+}
+
+static AOM_INLINE void write_superres_scale(const AV1_COMMON *const cm,
+ struct aom_write_bit_buffer *wb) {
+ const SequenceHeader *const seq_params = cm->seq_params;
+ if (!seq_params->enable_superres) {
+ assert(cm->superres_scale_denominator == SCALE_NUMERATOR);
+ return;
+ }
+
+ // First bit is whether to to scale or not
+ if (cm->superres_scale_denominator == SCALE_NUMERATOR) {
+ aom_wb_write_bit(wb, 0); // no scaling
+ } else {
+ aom_wb_write_bit(wb, 1); // scaling, write scale factor
+ assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN);
+ assert(cm->superres_scale_denominator <
+ SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS));
+ aom_wb_write_literal(
+ wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN,
+ SUPERRES_SCALE_BITS);
+ }
+}
+
+static AOM_INLINE void write_frame_size(const AV1_COMMON *cm,
+ int frame_size_override,
+ struct aom_write_bit_buffer *wb) {
+ const int coded_width = cm->superres_upscaled_width - 1;
+ const int coded_height = cm->superres_upscaled_height - 1;
+
+ if (frame_size_override) {
+ const SequenceHeader *seq_params = cm->seq_params;
+ int num_bits_width = seq_params->num_bits_width;
+ int num_bits_height = seq_params->num_bits_height;
+ aom_wb_write_literal(wb, coded_width, num_bits_width);
+ aom_wb_write_literal(wb, coded_height, num_bits_height);
+ }
+
+ write_superres_scale(cm, wb);
+ write_render_size(cm, wb);
+}
+
+static AOM_INLINE void write_frame_size_with_refs(
+ const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
+ int found = 0;
+
+ MV_REFERENCE_FRAME ref_frame;
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame);
+
+ if (cfg != NULL) {
+ found = cm->superres_upscaled_width == cfg->y_crop_width &&
+ cm->superres_upscaled_height == cfg->y_crop_height;
+ found &= cm->render_width == cfg->render_width &&
+ cm->render_height == cfg->render_height;
+ }
+ aom_wb_write_bit(wb, found);
+ if (found) {
+ write_superres_scale(cm, wb);
+ break;
+ }
+ }
+
+ if (!found) {
+ int frame_size_override = 1; // Always equal to 1 in this function
+ write_frame_size(cm, frame_size_override, wb);
+ }
+}
+
+static AOM_INLINE void write_profile(BITSTREAM_PROFILE profile,
+ struct aom_write_bit_buffer *wb) {
+ assert(profile >= PROFILE_0 && profile < MAX_PROFILES);
+ aom_wb_write_literal(wb, profile, PROFILE_BITS);
+}
+
+static AOM_INLINE void write_bitdepth(const SequenceHeader *const seq_params,
+ struct aom_write_bit_buffer *wb) {
+ // Profile 0/1: [0] for 8 bit, [1] 10-bit
+ // Profile 2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit
+ aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1);
+ if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) {
+ aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1);
+ }
+}
+
+static AOM_INLINE void write_color_config(
+ const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
+ write_bitdepth(seq_params, wb);
+ const int is_monochrome = seq_params->monochrome;
+ // monochrome bit
+ if (seq_params->profile != PROFILE_1)
+ aom_wb_write_bit(wb, is_monochrome);
+ else
+ assert(!is_monochrome);
+ if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED &&
+ seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED &&
+ seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) {
+ aom_wb_write_bit(wb, 0); // No color description present
+ } else {
+ aom_wb_write_bit(wb, 1); // Color description present
+ aom_wb_write_literal(wb, seq_params->color_primaries, 8);
+ aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8);
+ aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8);
+ }
+ if (is_monochrome) {
+ // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
+ aom_wb_write_bit(wb, seq_params->color_range);
+ return;
+ }
+ if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
+ seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
+ seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
+ assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
+ assert(seq_params->profile == PROFILE_1 ||
+ (seq_params->profile == PROFILE_2 &&
+ seq_params->bit_depth == AOM_BITS_12));
+ } else {
+ // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
+ aom_wb_write_bit(wb, seq_params->color_range);
+ if (seq_params->profile == PROFILE_0) {
+ // 420 only
+ assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1);
+ } else if (seq_params->profile == PROFILE_1) {
+ // 444 only
+ assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
+ } else if (seq_params->profile == PROFILE_2) {
+ if (seq_params->bit_depth == AOM_BITS_12) {
+ // 420, 444 or 422
+ aom_wb_write_bit(wb, seq_params->subsampling_x);
+ if (seq_params->subsampling_x == 0) {
+ assert(seq_params->subsampling_y == 0 &&
+ "4:4:0 subsampling not allowed in AV1");
+ } else {
+ aom_wb_write_bit(wb, seq_params->subsampling_y);
+ }
+ } else {
+ // 422 only
+ assert(seq_params->subsampling_x == 1 &&
+ seq_params->subsampling_y == 0);
+ }
+ }
+ if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
+ assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
+ }
+ if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) {
+ aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2);
+ }
+ }
+ aom_wb_write_bit(wb, seq_params->separate_uv_delta_q);
+}
+
+static AOM_INLINE void write_timing_info_header(
+ const aom_timing_info_t *const timing_info,
+ struct aom_write_bit_buffer *wb) {
+ aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32);
+ aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32);
+ aom_wb_write_bit(wb, timing_info->equal_picture_interval);
+ if (timing_info->equal_picture_interval) {
+ aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1);
+ }
+}
+
+static AOM_INLINE void write_decoder_model_info(
+ const aom_dec_model_info_t *const decoder_model_info,
+ struct aom_write_bit_buffer *wb) {
+ aom_wb_write_literal(
+ wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5);
+ aom_wb_write_unsigned_literal(
+ wb, decoder_model_info->num_units_in_decoding_tick, 32);
+ aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1,
+ 5);
+ aom_wb_write_literal(
+ wb, decoder_model_info->frame_presentation_time_length - 1, 5);
+}
+
+static AOM_INLINE void write_dec_model_op_parameters(
+ const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length,
+ struct aom_write_bit_buffer *wb) {
+ aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay,
+ buffer_delay_length);
+ aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay,
+ buffer_delay_length);
+ aom_wb_write_bit(wb, op_params->low_delay_mode_flag);
+}
+
+static AOM_INLINE void write_tu_pts_info(AV1_COMMON *const cm,
+ struct aom_write_bit_buffer *wb) {
+ aom_wb_write_unsigned_literal(
+ wb, cm->frame_presentation_time,
+ cm->seq_params->decoder_model_info.frame_presentation_time_length);
+}
+
+static AOM_INLINE void write_film_grain_params(
+ const AV1_COMP *const cpi, struct aom_write_bit_buffer *wb) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params;
+ aom_wb_write_bit(wb, pars->apply_grain);
+ if (!pars->apply_grain) return;
+
+ aom_wb_write_literal(wb, pars->random_seed, 16);
+
+ if (cm->current_frame.frame_type == INTER_FRAME)
+ aom_wb_write_bit(wb, pars->update_parameters);
+
+ if (!pars->update_parameters) {
+ int ref_frame, ref_idx;
+ for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) {
+ ref_idx = get_ref_frame_map_idx(cm, ref_frame);
+ assert(ref_idx != INVALID_IDX);
+ const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx];
+ if (buf->film_grain_params_present &&
+ aom_check_grain_params_equiv(pars, &buf->film_grain_params)) {
+ break;
+ }
+ }
+ assert(ref_frame < REF_FRAMES);
+ aom_wb_write_literal(wb, ref_idx, 3);
+ return;
+ }
+
+ // Scaling functions parameters
+ aom_wb_write_literal(wb, pars->num_y_points, 4); // max 14
+ for (int i = 0; i < pars->num_y_points; i++) {
+ aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8);
+ aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8);
+ }
+
+ if (!cm->seq_params->monochrome) {
+ aom_wb_write_bit(wb, pars->chroma_scaling_from_luma);
+ } else {
+ assert(!pars->chroma_scaling_from_luma);
+ }
+
+ if (cm->seq_params->monochrome || pars->chroma_scaling_from_luma ||
+ ((cm->seq_params->subsampling_x == 1) &&
+ (cm->seq_params->subsampling_y == 1) && (pars->num_y_points == 0))) {
+ assert(pars->num_cb_points == 0 && pars->num_cr_points == 0);
+ } else {
+ aom_wb_write_literal(wb, pars->num_cb_points, 4); // max 10
+ for (int i = 0; i < pars->num_cb_points; i++) {
+ aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8);
+ aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8);
+ }
+
+ aom_wb_write_literal(wb, pars->num_cr_points, 4); // max 10
+ for (int i = 0; i < pars->num_cr_points; i++) {
+ aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8);
+ aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8);
+ }
+ }
+
+ aom_wb_write_literal(wb, pars->scaling_shift - 8, 2); // 8 + value
+
+ // AR coefficients
+ // Only sent if the corresponsing scaling function has
+ // more than 0 points
+
+ aom_wb_write_literal(wb, pars->ar_coeff_lag, 2);
+
+ int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
+ int num_pos_chroma = num_pos_luma;
+ if (pars->num_y_points > 0) ++num_pos_chroma;
+
+ if (pars->num_y_points)
+ for (int i = 0; i < num_pos_luma; i++)
+ aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8);
+
+ if (pars->num_cb_points || pars->chroma_scaling_from_luma)
+ for (int i = 0; i < num_pos_chroma; i++)
+ aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8);
+
+ if (pars->num_cr_points || pars->chroma_scaling_from_luma)
+ for (int i = 0; i < num_pos_chroma; i++)
+ aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8);
+
+ aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2); // 8 + value
+
+ aom_wb_write_literal(wb, pars->grain_scale_shift, 2);
+
+ if (pars->num_cb_points) {
+ aom_wb_write_literal(wb, pars->cb_mult, 8);
+ aom_wb_write_literal(wb, pars->cb_luma_mult, 8);
+ aom_wb_write_literal(wb, pars->cb_offset, 9);
+ }
+
+ if (pars->num_cr_points) {
+ aom_wb_write_literal(wb, pars->cr_mult, 8);
+ aom_wb_write_literal(wb, pars->cr_luma_mult, 8);
+ aom_wb_write_literal(wb, pars->cr_offset, 9);
+ }
+
+ aom_wb_write_bit(wb, pars->overlap_flag);
+
+ aom_wb_write_bit(wb, pars->clip_to_restricted_range);
+}
+
+static AOM_INLINE void write_sb_size(const SequenceHeader *const seq_params,
+ struct aom_write_bit_buffer *wb) {
+ (void)seq_params;
+ (void)wb;
+ assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]);
+ assert(seq_params->mib_size == 1 << seq_params->mib_size_log2);
+ assert(seq_params->sb_size == BLOCK_128X128 ||
+ seq_params->sb_size == BLOCK_64X64);
+ aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0);
+}
+
+static AOM_INLINE void write_sequence_header(
+ const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
+ aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4);
+ aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4);
+ aom_wb_write_literal(wb, seq_params->max_frame_width - 1,
+ seq_params->num_bits_width);
+ aom_wb_write_literal(wb, seq_params->max_frame_height - 1,
+ seq_params->num_bits_height);
+
+ if (!seq_params->reduced_still_picture_hdr) {
+ aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag);
+ if (seq_params->frame_id_numbers_present_flag) {
+ // We must always have delta_frame_id_length < frame_id_length,
+ // in order for a frame to be referenced with a unique delta.
+ // Avoid wasting bits by using a coding that enforces this restriction.
+ aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4);
+ aom_wb_write_literal(
+ wb,
+ seq_params->frame_id_length - seq_params->delta_frame_id_length - 1,
+ 3);
+ }
+ }
+
+ write_sb_size(seq_params, wb);
+
+ aom_wb_write_bit(wb, seq_params->enable_filter_intra);
+ aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter);
+
+ if (!seq_params->reduced_still_picture_hdr) {
+ aom_wb_write_bit(wb, seq_params->enable_interintra_compound);
+ aom_wb_write_bit(wb, seq_params->enable_masked_compound);
+ aom_wb_write_bit(wb, seq_params->enable_warped_motion);
+ aom_wb_write_bit(wb, seq_params->enable_dual_filter);
+
+ aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint);
+
+ if (seq_params->order_hint_info.enable_order_hint) {
+ aom_wb_write_bit(wb, seq_params->order_hint_info.enable_dist_wtd_comp);
+ aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs);
+ }
+ if (seq_params->force_screen_content_tools == 2) {
+ aom_wb_write_bit(wb, 1);
+ } else {
+ aom_wb_write_bit(wb, 0);
+ aom_wb_write_bit(wb, seq_params->force_screen_content_tools);
+ }
+ if (seq_params->force_screen_content_tools > 0) {
+ if (seq_params->force_integer_mv == 2) {
+ aom_wb_write_bit(wb, 1);
+ } else {
+ aom_wb_write_bit(wb, 0);
+ aom_wb_write_bit(wb, seq_params->force_integer_mv);
+ }
+ } else {
+ assert(seq_params->force_integer_mv == 2);
+ }
+ if (seq_params->order_hint_info.enable_order_hint)
+ aom_wb_write_literal(
+ wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3);
+ }
+
+ aom_wb_write_bit(wb, seq_params->enable_superres);
+ aom_wb_write_bit(wb, seq_params->enable_cdef);
+ aom_wb_write_bit(wb, seq_params->enable_restoration);
+}
+
+static AOM_INLINE void write_global_motion_params(
+ const WarpedMotionParams *params, const WarpedMotionParams *ref_params,
+ struct aom_write_bit_buffer *wb, int allow_hp) {
+ const TransformationType type = params->wmtype;
+
+ // As a workaround for an AV1 spec bug, we avoid choosing TRANSLATION
+ // type models. Check here that we don't accidentally pick one somehow.
+ // See comments in gm_get_motion_vector() for details on the bug we're
+ // working around here
+ assert(type != TRANSLATION);
+
+ aom_wb_write_bit(wb, type != IDENTITY);
+ if (type != IDENTITY) {
+ aom_wb_write_bit(wb, type == ROTZOOM);
+ if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION);
+ }
+
+ if (type >= ROTZOOM) {
+ aom_wb_write_signed_primitive_refsubexpfin(
+ wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
+ (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
+ (1 << GM_ALPHA_PREC_BITS),
+ (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
+ aom_wb_write_signed_primitive_refsubexpfin(
+ wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
+ (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
+ (params->wmmat[3] >> GM_ALPHA_PREC_DIFF));
+ }
+
+ if (type >= AFFINE) {
+ aom_wb_write_signed_primitive_refsubexpfin(
+ wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
+ (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF),
+ (params->wmmat[4] >> GM_ALPHA_PREC_DIFF));
+ aom_wb_write_signed_primitive_refsubexpfin(
+ wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
+ (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
+ (1 << GM_ALPHA_PREC_BITS),
+ (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
+ }
+
+ if (type >= TRANSLATION) {
+ const int trans_bits = (type == TRANSLATION)
+ ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
+ : GM_ABS_TRANS_BITS;
+ const int trans_prec_diff = (type == TRANSLATION)
+ ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
+ : GM_TRANS_PREC_DIFF;
+ aom_wb_write_signed_primitive_refsubexpfin(
+ wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
+ (ref_params->wmmat[0] >> trans_prec_diff),
+ (params->wmmat[0] >> trans_prec_diff));
+ aom_wb_write_signed_primitive_refsubexpfin(
+ wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
+ (ref_params->wmmat[1] >> trans_prec_diff),
+ (params->wmmat[1] >> trans_prec_diff));
+ }
+}
+
+static AOM_INLINE void write_global_motion(AV1_COMP *cpi,
+ struct aom_write_bit_buffer *wb) {
+ AV1_COMMON *const cm = &cpi->common;
+ int frame;
+ for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
+ const WarpedMotionParams *ref_params =
+ cm->prev_frame ? &cm->prev_frame->global_motion[frame]
+ : &default_warp_params;
+ write_global_motion_params(&cm->global_motion[frame], ref_params, wb,
+ cm->features.allow_high_precision_mv);
+ // TODO(sarahparker, debargha): The logic in the commented out code below
+ // does not work currently and causes mismatches when resize is on.
+ // Fix it before turning the optimization back on.
+ /*
+ YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame);
+ if (cpi->source->y_crop_width == ref_buf->y_crop_width &&
+ cpi->source->y_crop_height == ref_buf->y_crop_height) {
+ write_global_motion_params(&cm->global_motion[frame],
+ &cm->prev_frame->global_motion[frame], wb,
+ cm->features.allow_high_precision_mv);
+ } else {
+ assert(cm->global_motion[frame].wmtype == IDENTITY &&
+ "Invalid warp type for frames of different resolutions");
+ }
+ */
+ /*
+ printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n",
+ cm->current_frame.frame_number, cm->show_frame, frame,
+ cm->global_motion[frame].wmmat[0],
+ cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2],
+ cm->global_motion[frame].wmmat[3]);
+ */
+ }
+}
+
+static int check_frame_refs_short_signaling(AV1_COMMON *const cm,
+ bool enable_ref_short_signaling) {
+ // In rtc case when res < 360p and speed >= 9, we turn on
+ // frame_refs_short_signaling if it won't break the decoder.
+ if (enable_ref_short_signaling) {
+ const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
+ const int base =
+ 1 << (cm->seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
+
+ const int order_hint_group_cur =
+ cm->current_frame.display_order_hint / base;
+ const int order_hint_group_gld =
+ cm->ref_frame_map[gld_map_idx]->display_order_hint / base;
+ const int relative_dist = cm->current_frame.order_hint -
+ cm->ref_frame_map[gld_map_idx]->order_hint;
+
+ // If current frame and GOLDEN frame are in the same order_hint group, and
+ // they are not far apart (i.e., > 64 frames), then return 1.
+ if (order_hint_group_cur == order_hint_group_gld && relative_dist >= 0 &&
+ relative_dist <= 64) {
+ return 1;
+ }
+ return 0;
+ }
+
+ // Check whether all references are distinct frames.
+ const RefCntBuffer *seen_bufs[INTER_REFS_PER_FRAME] = { NULL };
+ int num_refs = 0;
+ for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
+ if (buf != NULL) {
+ int seen = 0;
+ for (int i = 0; i < num_refs; i++) {
+ if (seen_bufs[i] == buf) {
+ seen = 1;
+ break;
+ }
+ }
+ if (!seen) seen_bufs[num_refs++] = buf;
+ }
+ }
+
+ // We only turn on frame_refs_short_signaling when all references are
+ // distinct.
+ if (num_refs < INTER_REFS_PER_FRAME) {
+ // It indicates that there exist more than one reference frame pointing to
+ // the same reference buffer, i.e. two or more references are duplicate.
+ return 0;
+ }
+
+ // Check whether the encoder side ref frame choices are aligned with that to
+ // be derived at the decoder side.
+ int remapped_ref_idx_decoder[REF_FRAMES];
+
+ const int lst_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME);
+ const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
+
+ // Set up the frame refs mapping indexes according to the
+ // frame_refs_short_signaling policy.
+ av1_set_frame_refs(cm, remapped_ref_idx_decoder, lst_map_idx, gld_map_idx);
+
+ // We only turn on frame_refs_short_signaling when the encoder side decision
+ // on ref frames is identical to that at the decoder side.
+ int frame_refs_short_signaling = 1;
+ for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) {
+ // Compare the buffer index between two reference frames indexed
+ // respectively by the encoder and the decoder side decisions.
+ RefCntBuffer *ref_frame_buf_new = NULL;
+ if (remapped_ref_idx_decoder[ref_idx] != INVALID_IDX) {
+ ref_frame_buf_new = cm->ref_frame_map[remapped_ref_idx_decoder[ref_idx]];
+ }
+ if (get_ref_frame_buf(cm, LAST_FRAME + ref_idx) != ref_frame_buf_new) {
+ frame_refs_short_signaling = 0;
+ break;
+ }
+ }
+
+#if 0 // For debug
+ printf("\nFrame=%d: \n", cm->current_frame.frame_number);
+ printf("***frame_refs_short_signaling=%d\n", frame_refs_short_signaling);
+ for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ printf("enc_ref(map_idx=%d)=%d, vs. "
+ "dec_ref(map_idx=%d)=%d\n",
+ get_ref_frame_map_idx(cm, ref_frame), ref_frame,
+ cm->remapped_ref_idx[ref_frame - LAST_FRAME],
+ ref_frame);
+ }
+#endif // 0
+
+ return frame_refs_short_signaling;
+}
+
+// New function based on HLS R18
+static AOM_INLINE void write_uncompressed_header_obu(
+ AV1_COMP *cpi, MACROBLOCKD *const xd, struct aom_write_bit_buffer *saved_wb,
+ struct aom_write_bit_buffer *wb) {
+ AV1_COMMON *const cm = &cpi->common;
+ const SequenceHeader *const seq_params = cm->seq_params;
+ const CommonQuantParams *quant_params = &cm->quant_params;
+ CurrentFrame *const current_frame = &cm->current_frame;
+ FeatureFlags *const features = &cm->features;
+
+ if (!cpi->sf.rt_sf.enable_ref_short_signaling ||
+ !seq_params->order_hint_info.enable_order_hint ||
+ seq_params->order_hint_info.enable_ref_frame_mvs) {
+ current_frame->frame_refs_short_signaling = 0;
+ } else {
+ current_frame->frame_refs_short_signaling = 1;
+ }
+
+ if (seq_params->still_picture) {
+ assert(cm->show_existing_frame == 0);
+ assert(cm->show_frame == 1);
+ assert(current_frame->frame_type == KEY_FRAME);
+ }
+ if (!seq_params->reduced_still_picture_hdr) {
+ if (encode_show_existing_frame(cm)) {
+ aom_wb_write_bit(wb, 1); // show_existing_frame
+ aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
+
+ if (seq_params->decoder_model_info_present_flag &&
+ seq_params->timing_info.equal_picture_interval == 0) {
+ write_tu_pts_info(cm, wb);
+ }
+ if (seq_params->frame_id_numbers_present_flag) {
+ int frame_id_len = seq_params->frame_id_length;
+ int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
+ aom_wb_write_literal(wb, display_frame_id, frame_id_len);
+ }
+ return;
+ } else {
+ aom_wb_write_bit(wb, 0); // show_existing_frame
+ }
+
+ aom_wb_write_literal(wb, current_frame->frame_type, 2);
+
+ aom_wb_write_bit(wb, cm->show_frame);
+ if (cm->show_frame) {
+ if (seq_params->decoder_model_info_present_flag &&
+ seq_params->timing_info.equal_picture_interval == 0)
+ write_tu_pts_info(cm, wb);
+ } else {
+ aom_wb_write_bit(wb, cm->showable_frame);
+ }
+ if (frame_is_sframe(cm)) {
+ assert(features->error_resilient_mode);
+ } else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) {
+ aom_wb_write_bit(wb, features->error_resilient_mode);
+ }
+ }
+ aom_wb_write_bit(wb, features->disable_cdf_update);
+
+ if (seq_params->force_screen_content_tools == 2) {
+ aom_wb_write_bit(wb, features->allow_screen_content_tools);
+ } else {
+ assert(features->allow_screen_content_tools ==
+ seq_params->force_screen_content_tools);
+ }
+
+ if (features->allow_screen_content_tools) {
+ if (seq_params->force_integer_mv == 2) {
+ aom_wb_write_bit(wb, features->cur_frame_force_integer_mv);
+ } else {
+ assert(features->cur_frame_force_integer_mv ==
+ seq_params->force_integer_mv);
+ }
+ } else {
+ assert(features->cur_frame_force_integer_mv == 0);
+ }
+
+ int frame_size_override_flag = 0;
+
+ if (seq_params->reduced_still_picture_hdr) {
+ assert(cm->superres_upscaled_width == seq_params->max_frame_width &&
+ cm->superres_upscaled_height == seq_params->max_frame_height);
+ } else {
+ if (seq_params->frame_id_numbers_present_flag) {
+ int frame_id_len = seq_params->frame_id_length;
+ aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
+ }
+
+ if (cm->superres_upscaled_width > seq_params->max_frame_width ||
+ cm->superres_upscaled_height > seq_params->max_frame_height) {
+ aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
+ "Frame dimensions are larger than the maximum values");
+ }
+
+ frame_size_override_flag =
+ frame_is_sframe(cm)
+ ? 1
+ : (cm->superres_upscaled_width != seq_params->max_frame_width ||
+ cm->superres_upscaled_height != seq_params->max_frame_height);
+ if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag);
+
+ if (seq_params->order_hint_info.enable_order_hint)
+ aom_wb_write_literal(
+ wb, current_frame->order_hint,
+ seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
+
+ if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
+ aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS);
+ }
+ }
+
+ if (seq_params->decoder_model_info_present_flag) {
+ aom_wb_write_bit(wb, cpi->ppi->buffer_removal_time_present);
+ if (cpi->ppi->buffer_removal_time_present) {
+ for (int op_num = 0;
+ op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
+ if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
+ if (seq_params->operating_point_idc[op_num] == 0 ||
+ ((seq_params->operating_point_idc[op_num] >>
+ cm->temporal_layer_id) &
+ 0x1 &&
+ (seq_params->operating_point_idc[op_num] >>
+ (cm->spatial_layer_id + 8)) &
+ 0x1)) {
+ aom_wb_write_unsigned_literal(
+ wb, cm->buffer_removal_times[op_num],
+ seq_params->decoder_model_info.buffer_removal_time_length);
+ cm->buffer_removal_times[op_num]++;
+ if (cm->buffer_removal_times[op_num] == 0) {
+ aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
+ "buffer_removal_time overflowed");
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Shown keyframes and switch-frames automatically refreshes all reference
+ // frames. For all other frame types, we need to write refresh_frame_flags.
+ if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) ||
+ current_frame->frame_type == INTER_FRAME ||
+ current_frame->frame_type == INTRA_ONLY_FRAME)
+ aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES);
+
+ if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xff) {
+ // Write all ref frame order hints if error_resilient_mode == 1
+ if (features->error_resilient_mode &&
+ seq_params->order_hint_info.enable_order_hint) {
+ for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
+ aom_wb_write_literal(
+ wb, cm->ref_frame_map[ref_idx]->order_hint,
+ seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
+ }
+ }
+ }
+
+ if (current_frame->frame_type == KEY_FRAME) {
+ write_frame_size(cm, frame_size_override_flag, wb);
+ assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
+ if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
+ aom_wb_write_bit(wb, features->allow_intrabc);
+ } else {
+ if (current_frame->frame_type == INTRA_ONLY_FRAME) {
+ write_frame_size(cm, frame_size_override_flag, wb);
+ assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
+ if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
+ aom_wb_write_bit(wb, features->allow_intrabc);
+ } else if (current_frame->frame_type == INTER_FRAME ||
+ frame_is_sframe(cm)) {
+ MV_REFERENCE_FRAME ref_frame;
+
+ // NOTE: Error resilient mode turns off frame_refs_short_signaling
+ // automatically.
+#define FRAME_REFS_SHORT_SIGNALING 0
+#if FRAME_REFS_SHORT_SIGNALING
+ current_frame->frame_refs_short_signaling =
+ seq_params->order_hint_info.enable_order_hint;
+#endif // FRAME_REFS_SHORT_SIGNALING
+
+ if (current_frame->frame_refs_short_signaling) {
+ // In rtc case when cpi->sf.rt_sf.enable_ref_short_signaling is true,
+ // we turn on frame_refs_short_signaling when the current frame and
+ // golden frame are in the same order_hint group, and their relative
+ // distance is <= 64 (in order to be decodable).
+
+ // For other cases, an example solution for encoder-side
+ // implementation on frame_refs_short_signaling is also provided in
+ // this function, where frame_refs_short_signaling is only turned on
+ // when the encoder side decision on ref frames is identical to that
+ // at the decoder side.
+
+ current_frame->frame_refs_short_signaling =
+ check_frame_refs_short_signaling(
+ cm, cpi->sf.rt_sf.enable_ref_short_signaling);
+ }
+
+ if (seq_params->order_hint_info.enable_order_hint)
+ aom_wb_write_bit(wb, current_frame->frame_refs_short_signaling);
+
+ if (current_frame->frame_refs_short_signaling) {
+ const int lst_ref = get_ref_frame_map_idx(cm, LAST_FRAME);
+ aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2);
+
+ const int gld_ref = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
+ aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2);
+ }
+
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX);
+ if (!current_frame->frame_refs_short_signaling)
+ aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame),
+ REF_FRAMES_LOG2);
+ if (seq_params->frame_id_numbers_present_flag) {
+ int i = get_ref_frame_map_idx(cm, ref_frame);
+ int frame_id_len = seq_params->frame_id_length;
+ int diff_len = seq_params->delta_frame_id_length;
+ int delta_frame_id_minus_1 =
+ ((cm->current_frame_id - cm->ref_frame_id[i] +
+ (1 << frame_id_len)) %
+ (1 << frame_id_len)) -
+ 1;
+ if (delta_frame_id_minus_1 < 0 ||
+ delta_frame_id_minus_1 >= (1 << diff_len)) {
+ aom_internal_error(cm->error, AOM_CODEC_ERROR,
+ "Invalid delta_frame_id_minus_1");
+ }
+ aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len);
+ }
+ }
+
+ if (!features->error_resilient_mode && frame_size_override_flag) {
+ write_frame_size_with_refs(cm, wb);
+ } else {
+ write_frame_size(cm, frame_size_override_flag, wb);
+ }
+
+ if (!features->cur_frame_force_integer_mv)
+ aom_wb_write_bit(wb, features->allow_high_precision_mv);
+ write_frame_interp_filter(features->interp_filter, wb);
+ aom_wb_write_bit(wb, features->switchable_motion_mode);
+ if (frame_might_allow_ref_frame_mvs(cm)) {
+ aom_wb_write_bit(wb, features->allow_ref_frame_mvs);
+ } else {
+ assert(features->allow_ref_frame_mvs == 0);
+ }
+ }
+ }
+
+ const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
+ !(features->disable_cdf_update);
+ if (cm->tiles.large_scale)
+ assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
+
+ if (might_bwd_adapt) {
+ aom_wb_write_bit(
+ wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
+ }
+
+ write_tile_info(cm, saved_wb, wb);
+ encode_quantization(quant_params, av1_num_planes(cm),
+ cm->seq_params->separate_uv_delta_q, wb);
+ encode_segmentation(cm, wb);
+
+ const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
+ if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0);
+ if (quant_params->base_qindex > 0) {
+ aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag);
+ if (delta_q_info->delta_q_present_flag) {
+ aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2);
+ xd->current_base_qindex = quant_params->base_qindex;
+ if (features->allow_intrabc)
+ assert(delta_q_info->delta_lf_present_flag == 0);
+ else
+ aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag);
+ if (delta_q_info->delta_lf_present_flag) {
+ aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2);
+ aom_wb_write_bit(wb, delta_q_info->delta_lf_multi);
+ av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
+ }
+ }
+ }
+
+ if (features->all_lossless) {
+ assert(!av1_superres_scaled(cm));
+ } else {
+ if (!features->coded_lossless) {
+ encode_loopfilter(cm, wb);
+ encode_cdef(cm, wb);
+ }
+ encode_restoration_mode(cm, wb);
+ }
+
+ // Write TX mode
+ if (features->coded_lossless)
+ assert(features->tx_mode == ONLY_4X4);
+ else
+ aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT);
+
+ if (!frame_is_intra_only(cm)) {
+ const int use_hybrid_pred =
+ current_frame->reference_mode == REFERENCE_MODE_SELECT;
+
+ aom_wb_write_bit(wb, use_hybrid_pred);
+ }
+
+ if (current_frame->skip_mode_info.skip_mode_allowed)
+ aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag);
+
+ if (frame_might_allow_warped_motion(cm))
+ aom_wb_write_bit(wb, features->allow_warped_motion);
+ else
+ assert(!features->allow_warped_motion);
+
+ aom_wb_write_bit(wb, features->reduced_tx_set_used);
+
+ if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb);
+
+ if (seq_params->film_grain_params_present &&
+ (cm->show_frame || cm->showable_frame))
+ write_film_grain_params(cpi, wb);
+
+ if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb);
+}
+
+static int choose_size_bytes(uint32_t size, int spare_msbs) {
+ // Choose the number of bytes required to represent size, without
+ // using the 'spare_msbs' number of most significant bits.
+
+ // Make sure we will fit in 4 bytes to start with..
+ if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;
+
+ // Normalise to 32 bits
+ size <<= spare_msbs;
+
+ if (size >> 24 != 0)
+ return 4;
+ else if (size >> 16 != 0)
+ return 3;
+ else if (size >> 8 != 0)
+ return 2;
+ else
+ return 1;
+}
+
+static AOM_INLINE void mem_put_varsize(uint8_t *const dst, const int sz,
+ const int val) {
+ switch (sz) {
+ case 1: dst[0] = (uint8_t)(val & 0xff); break;
+ case 2: mem_put_le16(dst, val); break;
+ case 3: mem_put_le24(dst, val); break;
+ case 4: mem_put_le32(dst, val); break;
+ default: assert(0 && "Invalid size"); break;
+ }
+}
+
+static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst,
+ const uint32_t data_size, const uint32_t max_tile_size,
+ const uint32_t max_tile_col_size,
+ int *const tile_size_bytes,
+ int *const tile_col_size_bytes) {
+ // Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
+ int tsb;
+ int tcsb;
+
+ if (tiles->large_scale) {
+ // The top bit in the tile size field indicates tile copy mode, so we
+ // have 1 less bit to code the tile size
+ tsb = choose_size_bytes(max_tile_size, 1);
+ tcsb = choose_size_bytes(max_tile_col_size, 0);
+ } else {
+ tsb = choose_size_bytes(max_tile_size, 0);
+ tcsb = 4; // This is ignored
+ (void)max_tile_col_size;
+ }
+
+ assert(tsb > 0);
+ assert(tcsb > 0);
+
+ *tile_size_bytes = tsb;
+ *tile_col_size_bytes = tcsb;
+ if (tsb == 4 && tcsb == 4) return data_size;
+
+ uint32_t wpos = 0;
+ uint32_t rpos = 0;
+
+ if (tiles->large_scale) {
+ int tile_row;
+ int tile_col;
+
+ for (tile_col = 0; tile_col < tiles->cols; tile_col++) {
+ // All but the last column has a column header
+ if (tile_col < tiles->cols - 1) {
+ uint32_t tile_col_size = mem_get_le32(dst + rpos);
+ rpos += 4;
+
+ // Adjust the tile column size by the number of bytes removed
+ // from the tile size fields.
+ tile_col_size -= (4 - tsb) * tiles->rows;
+
+ mem_put_varsize(dst + wpos, tcsb, tile_col_size);
+ wpos += tcsb;
+ }
+
+ for (tile_row = 0; tile_row < tiles->rows; tile_row++) {
+ // All, including the last row has a header
+ uint32_t tile_header = mem_get_le32(dst + rpos);
+ rpos += 4;
+
+ // If this is a copy tile, we need to shift the MSB to the
+ // top bit of the new width, and there is no data to copy.
+ if (tile_header >> 31 != 0) {
+ if (tsb < 4) tile_header >>= 32 - 8 * tsb;
+ mem_put_varsize(dst + wpos, tsb, tile_header);
+ wpos += tsb;
+ } else {
+ mem_put_varsize(dst + wpos, tsb, tile_header);
+ wpos += tsb;
+
+ tile_header += AV1_MIN_TILE_SIZE_BYTES;
+ memmove(dst + wpos, dst + rpos, tile_header);
+ rpos += tile_header;
+ wpos += tile_header;
+ }
+ }
+ }
+
+ assert(rpos > wpos);
+ assert(rpos == data_size);
+
+ return wpos;
+ }
+ const int n_tiles = tiles->cols * tiles->rows;
+ int n;
+
+ for (n = 0; n < n_tiles; n++) {
+ int tile_size;
+
+ if (n == n_tiles - 1) {
+ tile_size = data_size - rpos;
+ } else {
+ tile_size = mem_get_le32(dst + rpos);
+ rpos += 4;
+ mem_put_varsize(dst + wpos, tsb, tile_size);
+ tile_size += AV1_MIN_TILE_SIZE_BYTES;
+ wpos += tsb;
+ }
+
+ memmove(dst + wpos, dst + rpos, tile_size);
+
+ rpos += tile_size;
+ wpos += tile_size;
+ }
+
+ assert(rpos > wpos);
+ assert(rpos == data_size);
+
+ return wpos;
+}
+
+uint32_t av1_write_obu_header(AV1LevelParams *const level_params,
+ int *frame_header_count, OBU_TYPE obu_type,
+ int obu_extension, uint8_t *const dst) {
+ if (level_params->keep_level_stats &&
+ (obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER))
+ ++(*frame_header_count);
+
+ struct aom_write_bit_buffer wb = { dst, 0 };
+ uint32_t size = 0;
+
+ aom_wb_write_literal(&wb, 0, 1); // forbidden bit.
+ aom_wb_write_literal(&wb, (int)obu_type, 4);
+ aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1);
+ aom_wb_write_literal(&wb, 1, 1); // obu_has_size_field
+ aom_wb_write_literal(&wb, 0, 1); // reserved
+
+ if (obu_extension) {
+ aom_wb_write_literal(&wb, obu_extension & 0xFF, 8);
+ }
+
+ size = aom_wb_bytes_written(&wb);
+ return size;
+}
+
+int av1_write_uleb_obu_size(size_t obu_header_size, size_t obu_payload_size,
+ uint8_t *dest) {
+ const size_t offset = obu_header_size;
+ size_t coded_obu_size = 0;
+ const uint32_t obu_size = (uint32_t)obu_payload_size;
+ assert(obu_size == obu_payload_size);
+
+ if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset,
+ &coded_obu_size) != 0) {
+ return AOM_CODEC_ERROR;
+ }
+
+ return AOM_CODEC_OK;
+}
+
+size_t av1_obu_memmove(size_t obu_header_size, size_t obu_payload_size,
+ uint8_t *data) {
+ const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
+ const size_t move_dst_offset = length_field_size + obu_header_size;
+ const size_t move_src_offset = obu_header_size;
+ const size_t move_size = obu_payload_size;
+ memmove(data + move_dst_offset, data + move_src_offset, move_size);
+ return length_field_size;
+}
+
+static AOM_INLINE void add_trailing_bits(struct aom_write_bit_buffer *wb) {
+ if (aom_wb_is_byte_aligned(wb)) {
+ aom_wb_write_literal(wb, 0x80, 8);
+ } else {
+ // assumes that the other bits are already 0s
+ aom_wb_write_bit(wb, 1);
+ }
+}
+
+static AOM_INLINE void write_bitstream_level(AV1_LEVEL seq_level_idx,
+ struct aom_write_bit_buffer *wb) {
+ assert(is_valid_seq_level_idx(seq_level_idx));
+ aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS);
+}
+
+uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params,
+ uint8_t *const dst) {
+ struct aom_write_bit_buffer wb = { dst, 0 };
+ uint32_t size = 0;
+
+ write_profile(seq_params->profile, &wb);
+
+ // Still picture or not
+ aom_wb_write_bit(&wb, seq_params->still_picture);
+ assert(IMPLIES(!seq_params->still_picture,
+ !seq_params->reduced_still_picture_hdr));
+ // whether to use reduced still picture header
+ aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr);
+
+ if (seq_params->reduced_still_picture_hdr) {
+ assert(seq_params->timing_info_present == 0);
+ assert(seq_params->decoder_model_info_present_flag == 0);
+ assert(seq_params->display_model_info_present_flag == 0);
+ write_bitstream_level(seq_params->seq_level_idx[0], &wb);
+ } else {
+ aom_wb_write_bit(
+ &wb, seq_params->timing_info_present); // timing info present flag
+
+ if (seq_params->timing_info_present) {
+ // timing_info
+ write_timing_info_header(&seq_params->timing_info, &wb);
+ aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag);
+ if (seq_params->decoder_model_info_present_flag) {
+ write_decoder_model_info(&seq_params->decoder_model_info, &wb);
+ }
+ }
+ aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag);
+ aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1,
+ OP_POINTS_CNT_MINUS_1_BITS);
+ int i;
+ for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
+ aom_wb_write_literal(&wb, seq_params->operating_point_idc[i],
+ OP_POINTS_IDC_BITS);
+ write_bitstream_level(seq_params->seq_level_idx[i], &wb);
+ if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0)
+ aom_wb_write_bit(&wb, seq_params->tier[i]);
+ if (seq_params->decoder_model_info_present_flag) {
+ aom_wb_write_bit(
+ &wb, seq_params->op_params[i].decoder_model_param_present_flag);
+ if (seq_params->op_params[i].decoder_model_param_present_flag) {
+ write_dec_model_op_parameters(
+ &seq_params->op_params[i],
+ seq_params->decoder_model_info
+ .encoder_decoder_buffer_delay_length,
+ &wb);
+ }
+ }
+ if (seq_params->display_model_info_present_flag) {
+ aom_wb_write_bit(
+ &wb, seq_params->op_params[i].display_model_param_present_flag);
+ if (seq_params->op_params[i].display_model_param_present_flag) {
+ assert(seq_params->op_params[i].initial_display_delay >= 1);
+ assert(seq_params->op_params[i].initial_display_delay <= 10);
+ aom_wb_write_literal(
+ &wb, seq_params->op_params[i].initial_display_delay - 1, 4);
+ }
+ }
+ }
+ }
+ write_sequence_header(seq_params, &wb);
+
+ write_color_config(seq_params, &wb);
+
+ aom_wb_write_bit(&wb, seq_params->film_grain_params_present);
+
+ add_trailing_bits(&wb);
+
+ size = aom_wb_bytes_written(&wb);
+ return size;
+}
+
+static uint32_t write_frame_header_obu(AV1_COMP *cpi, MACROBLOCKD *const xd,
+ struct aom_write_bit_buffer *saved_wb,
+ uint8_t *const dst,
+ int append_trailing_bits) {
+ struct aom_write_bit_buffer wb = { dst, 0 };
+ write_uncompressed_header_obu(cpi, xd, saved_wb, &wb);
+ if (append_trailing_bits) add_trailing_bits(&wb);
+ return aom_wb_bytes_written(&wb);
+}
+
+static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile,
+ int end_tile, int tiles_log2,
+ int tile_start_and_end_present_flag) {
+ struct aom_write_bit_buffer wb = { dst, 0 };
+ uint32_t size = 0;
+
+ if (!tiles_log2) return size;
+
+ aom_wb_write_bit(&wb, tile_start_and_end_present_flag);
+
+ if (tile_start_and_end_present_flag) {
+ aom_wb_write_literal(&wb, start_tile, tiles_log2);
+ aom_wb_write_literal(&wb, end_tile, tiles_log2);
+ }
+
+ size = aom_wb_bytes_written(&wb);
+ return size;
+}
+
+extern void av1_print_uncompressed_frame_header(const uint8_t *data, int size,
+ const char *filename);
+
+typedef struct {
+ uint32_t tg_hdr_size;
+ uint32_t frame_header_size;
+} LargeTileFrameOBU;
+
+// Initialize OBU header for large scale tile case.
+static uint32_t init_large_scale_tile_obu_header(
+ AV1_COMP *const cpi, uint8_t **data, struct aom_write_bit_buffer *saved_wb,
+ LargeTileFrameOBU *lst_obu) {
+ AV1LevelParams *const level_params = &cpi->ppi->level_params;
+ CurrentFrame *const current_frame = &cpi->common.current_frame;
+ // For large_scale_tile case, we always have only one tile group, so it can
+ // be written as an OBU_FRAME.
+ const OBU_TYPE obu_type = OBU_FRAME;
+ lst_obu->tg_hdr_size = av1_write_obu_header(
+ level_params, &cpi->frame_header_count, obu_type, 0, *data);
+ *data += lst_obu->tg_hdr_size;
+
+ const uint32_t frame_header_size =
+ write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, saved_wb, *data, 0);
+ *data += frame_header_size;
+ lst_obu->frame_header_size = frame_header_size;
+ // (yunqing) This test ensures the correctness of large scale tile coding.
+ if (cpi->oxcf.tile_cfg.enable_ext_tile_debug) {
+ char fn[20] = "./fh";
+ fn[4] = current_frame->frame_number / 100 + '0';
+ fn[5] = (current_frame->frame_number % 100) / 10 + '0';
+ fn[6] = (current_frame->frame_number % 10) + '0';
+ fn[7] = '\0';
+ av1_print_uncompressed_frame_header(*data - frame_header_size,
+ frame_header_size, fn);
+ }
+ return frame_header_size;
+}
+
+// Write total buffer size and related information into the OBU header for large
+// scale tile case.
+static void write_large_scale_tile_obu_size(
+ const CommonTileParams *const tiles, uint8_t *const dst, uint8_t *data,
+ struct aom_write_bit_buffer *saved_wb, LargeTileFrameOBU *const lst_obu,
+ int have_tiles, uint32_t *total_size, int max_tile_size,
+ int max_tile_col_size) {
+ int tile_size_bytes = 0;
+ int tile_col_size_bytes = 0;
+ if (have_tiles) {
+ *total_size = remux_tiles(
+ tiles, data, *total_size - lst_obu->frame_header_size, max_tile_size,
+ max_tile_col_size, &tile_size_bytes, &tile_col_size_bytes);
+ *total_size += lst_obu->frame_header_size;
+ }
+
+ // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write
+ // current tile group size before tile data(include tile column header).
+ // Tile group size doesn't include the bytes storing tg size.
+ *total_size += lst_obu->tg_hdr_size;
+ const uint32_t obu_payload_size = *total_size - lst_obu->tg_hdr_size;
+ const size_t length_field_size =
+ av1_obu_memmove(lst_obu->tg_hdr_size, obu_payload_size, dst);
+ if (av1_write_uleb_obu_size(lst_obu->tg_hdr_size, obu_payload_size, dst) !=
+ AOM_CODEC_OK)
+ assert(0);
+
+ *total_size += (uint32_t)length_field_size;
+ saved_wb->bit_buffer += length_field_size;
+
+ // Now fill in the gaps in the uncompressed header.
+ if (have_tiles) {
+ assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
+ aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2);
+
+ assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
+ aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
+ }
+}
+
+// Store information on each large scale tile in the OBU header.
+static void write_large_scale_tile_obu(
+ AV1_COMP *const cpi, uint8_t *const dst, LargeTileFrameOBU *const lst_obu,
+ int *const largest_tile_id, uint32_t *total_size, const int have_tiles,
+ unsigned int *const max_tile_size, unsigned int *const max_tile_col_size) {
+ AV1_COMMON *const cm = &cpi->common;
+ const CommonTileParams *const tiles = &cm->tiles;
+
+ TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS];
+ const int tile_cols = tiles->cols;
+ const int tile_rows = tiles->rows;
+ unsigned int tile_size = 0;
+
+ av1_reset_pack_bs_thread_data(&cpi->td);
+ for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
+ TileInfo tile_info;
+ const int is_last_col = (tile_col == tile_cols - 1);
+ const uint32_t col_offset = *total_size;
+
+ av1_tile_set_col(&tile_info, cm, tile_col);
+
+ // The last column does not have a column header
+ if (!is_last_col) *total_size += 4;
+
+ for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
+ TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
+ const int data_offset = have_tiles ? 4 : 0;
+ const int tile_idx = tile_row * tile_cols + tile_col;
+ TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
+ av1_tile_set_row(&tile_info, cm, tile_row);
+ aom_writer mode_bc;
+
+ buf->data = dst + *total_size + lst_obu->tg_hdr_size;
+
+ // Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
+ // even for the last one, unless no tiling is used at all.
+ *total_size += data_offset;
+ cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
+ mode_bc.allow_update_cdf = !tiles->large_scale;
+ mode_bc.allow_update_cdf =
+ mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
+ aom_start_encode(&mode_bc, buf->data + data_offset);
+ write_modes(cpi, &cpi->td, &tile_info, &mode_bc, tile_row, tile_col);
+ if (aom_stop_encode(&mode_bc) < 0) {
+ aom_internal_error(cm->error, AOM_CODEC_ERROR, "Error writing modes");
+ }
+ tile_size = mode_bc.pos;
+ buf->size = tile_size;
+
+ // Record the maximum tile size we see, so we can compact headers later.
+ if (tile_size > *max_tile_size) {
+ *max_tile_size = tile_size;
+ *largest_tile_id = tile_cols * tile_row + tile_col;
+ }
+
+ if (have_tiles) {
+ // tile header: size of this tile, or copy offset
+ uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES;
+ const int tile_copy_mode =
+ ((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256) ? 1
+ : 0;
+
+ // If tile_copy_mode = 1, check if this tile is a copy tile.
+ // Very low chances to have copy tiles on the key frames, so don't
+ // search on key frames to reduce unnecessary search.
+ if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) {
+ const int identical_tile_offset =
+ find_identical_tile(tile_row, tile_col, tile_buffers);
+
+ // Indicate a copy-tile by setting the most significant bit.
+ // The row-offset to copy from is stored in the highest byte.
+ // remux_tiles will move these around later
+ if (identical_tile_offset > 0) {
+ tile_size = 0;
+ tile_header = identical_tile_offset | 0x80;
+ tile_header <<= 24;
+ }
+ }
+
+ mem_put_le32(buf->data, (MEM_VALUE_T)tile_header);
+ }
+
+ *total_size += tile_size;
+ }
+ if (!is_last_col) {
+ uint32_t col_size = *total_size - col_offset - 4;
+ mem_put_le32(dst + col_offset + lst_obu->tg_hdr_size, col_size);
+
+ // Record the maximum tile column size we see.
+ *max_tile_col_size = AOMMAX(*max_tile_col_size, col_size);
+ }
+ }
+ av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
+}
+
+// Packs information in the obu header for large scale tiles.
+static INLINE uint32_t pack_large_scale_tiles_in_tg_obus(
+ AV1_COMP *const cpi, uint8_t *const dst,
+ struct aom_write_bit_buffer *saved_wb, int *const largest_tile_id) {
+ AV1_COMMON *const cm = &cpi->common;
+ const CommonTileParams *const tiles = &cm->tiles;
+ uint32_t total_size = 0;
+ unsigned int max_tile_size = 0;
+ unsigned int max_tile_col_size = 0;
+ const int have_tiles = tiles->cols * tiles->rows > 1;
+ uint8_t *data = dst;
+
+ LargeTileFrameOBU lst_obu;
+
+ total_size +=
+ init_large_scale_tile_obu_header(cpi, &data, saved_wb, &lst_obu);
+
+ write_large_scale_tile_obu(cpi, dst, &lst_obu, largest_tile_id, &total_size,
+ have_tiles, &max_tile_size, &max_tile_col_size);
+
+ write_large_scale_tile_obu_size(tiles, dst, data, saved_wb, &lst_obu,
+ have_tiles, &total_size, max_tile_size,
+ max_tile_col_size);
+
+ return total_size;
+}
+
+// Writes obu, tile group and uncompressed headers to bitstream.
+void av1_write_obu_tg_tile_headers(AV1_COMP *const cpi, MACROBLOCKD *const xd,
+ PackBSParams *const pack_bs_params,
+ const int tile_idx) {
+ AV1_COMMON *const cm = &cpi->common;
+ const CommonTileParams *const tiles = &cm->tiles;
+ int *const curr_tg_hdr_size = &pack_bs_params->curr_tg_hdr_size;
+ const int tg_size =
+ (tiles->rows * tiles->cols + cpi->num_tg - 1) / cpi->num_tg;
+
+ // Write Tile group, frame and OBU header
+ // A new tile group begins at this tile. Write the obu header and
+ // tile group header
+ const OBU_TYPE obu_type = (cpi->num_tg == 1) ? OBU_FRAME : OBU_TILE_GROUP;
+ *curr_tg_hdr_size = av1_write_obu_header(
+ &cpi->ppi->level_params, &cpi->frame_header_count, obu_type,
+ pack_bs_params->obu_extn_header, pack_bs_params->tile_data_curr);
+ pack_bs_params->obu_header_size = *curr_tg_hdr_size;
+
+ if (cpi->num_tg == 1)
+ *curr_tg_hdr_size += write_frame_header_obu(
+ cpi, xd, pack_bs_params->saved_wb,
+ pack_bs_params->tile_data_curr + *curr_tg_hdr_size, 0);
+ *curr_tg_hdr_size += write_tile_group_header(
+ pack_bs_params->tile_data_curr + *curr_tg_hdr_size, tile_idx,
+ AOMMIN(tile_idx + tg_size - 1, tiles->cols * tiles->rows - 1),
+ (tiles->log2_rows + tiles->log2_cols), cpi->num_tg > 1);
+ *pack_bs_params->total_size += *curr_tg_hdr_size;
+}
+
+// Pack tile data in the bitstream with tile_group, frame
+// and OBU header.
+void av1_pack_tile_info(AV1_COMP *const cpi, ThreadData *const td,
+ PackBSParams *const pack_bs_params) {
+ aom_writer mode_bc;
+ AV1_COMMON *const cm = &cpi->common;
+ int tile_row = pack_bs_params->tile_row;
+ int tile_col = pack_bs_params->tile_col;
+ uint32_t *const total_size = pack_bs_params->total_size;
+ TileInfo tile_info;
+ av1_tile_set_col(&tile_info, cm, tile_col);
+ av1_tile_set_row(&tile_info, cm, tile_row);
+ mode_bc.allow_update_cdf = 1;
+ mode_bc.allow_update_cdf =
+ mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
+
+ unsigned int tile_size;
+
+ const int num_planes = av1_num_planes(cm);
+ av1_reset_loop_restoration(&td->mb.e_mbd, num_planes);
+
+ pack_bs_params->buf.data = pack_bs_params->dst + *total_size;
+
+ // The last tile of the tile group does not have a header.
+ if (!pack_bs_params->is_last_tile_in_tg) *total_size += 4;
+
+ // Pack tile data
+ aom_start_encode(&mode_bc, pack_bs_params->dst + *total_size);
+ write_modes(cpi, td, &tile_info, &mode_bc, tile_row, tile_col);
+ if (aom_stop_encode(&mode_bc) < 0) {
+ aom_internal_error(td->mb.e_mbd.error_info, AOM_CODEC_ERROR,
+ "Error writing modes");
+ }
+ tile_size = mode_bc.pos;
+ assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES);
+
+ pack_bs_params->buf.size = tile_size;
+
+ // Write tile size
+ if (!pack_bs_params->is_last_tile_in_tg) {
+ // size of this tile
+ mem_put_le32(pack_bs_params->buf.data, tile_size - AV1_MIN_TILE_SIZE_BYTES);
+ }
+}
+
+void av1_write_last_tile_info(
+ AV1_COMP *const cpi, const FrameHeaderInfo *fh_info,
+ struct aom_write_bit_buffer *saved_wb, size_t *curr_tg_data_size,
+ uint8_t *curr_tg_start, uint32_t *const total_size,
+ uint8_t **tile_data_start, int *const largest_tile_id,
+ int *const is_first_tg, uint32_t obu_header_size, uint8_t obu_extn_header) {
+ // write current tile group size
+ const uint32_t obu_payload_size =
+ (uint32_t)(*curr_tg_data_size) - obu_header_size;
+ const size_t length_field_size =
+ av1_obu_memmove(obu_header_size, obu_payload_size, curr_tg_start);
+ if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size,
+ curr_tg_start) != AOM_CODEC_OK) {
+ assert(0);
+ }
+ *curr_tg_data_size += (int)length_field_size;
+ *total_size += (uint32_t)length_field_size;
+ *tile_data_start += length_field_size;
+ if (cpi->num_tg == 1) {
+ // if this tg is combined with the frame header then update saved
+ // frame header base offset according to length field size
+ saved_wb->bit_buffer += length_field_size;
+ }
+
+ if (!(*is_first_tg) && cpi->common.features.error_resilient_mode) {
+ // Make room for a duplicate Frame Header OBU.
+ memmove(curr_tg_start + fh_info->total_length, curr_tg_start,
+ *curr_tg_data_size);
+
+ // Insert a copy of the Frame Header OBU.
+ memcpy(curr_tg_start, fh_info->frame_header, fh_info->total_length);
+
+ // Force context update tile to be the first tile in error
+ // resilient mode as the duplicate frame headers will have
+ // context_update_tile_id set to 0
+ *largest_tile_id = 0;
+
+ // Rewrite the OBU header to change the OBU type to Redundant Frame
+ // Header.
+ av1_write_obu_header(&cpi->ppi->level_params, &cpi->frame_header_count,
+ OBU_REDUNDANT_FRAME_HEADER, obu_extn_header,
+ &curr_tg_start[fh_info->obu_header_byte_offset]);
+
+ *curr_tg_data_size += (int)(fh_info->total_length);
+ *total_size += (uint32_t)(fh_info->total_length);
+ }
+ *is_first_tg = 0;
+}
+
+void av1_reset_pack_bs_thread_data(ThreadData *const td) {
+ td->coefficient_size = 0;
+ td->max_mv_magnitude = 0;
+ av1_zero(td->interp_filter_selected);
+}
+
+void av1_accumulate_pack_bs_thread_data(AV1_COMP *const cpi,
+ ThreadData const *td) {
+ int do_max_mv_magnitude_update = 1;
+ cpi->rc.coefficient_size += td->coefficient_size;
+
+ // Disable max_mv_magnitude update for parallel frames based on update flag.
+ if (!cpi->do_frame_data_update) do_max_mv_magnitude_update = 0;
+
+ if (cpi->sf.mv_sf.auto_mv_step_size && do_max_mv_magnitude_update)
+ cpi->mv_search_params.max_mv_magnitude =
+ AOMMAX(cpi->mv_search_params.max_mv_magnitude, td->max_mv_magnitude);
+
+ for (InterpFilter filter = EIGHTTAP_REGULAR; filter < SWITCHABLE; filter++)
+ cpi->common.cur_frame->interp_filter_selected[filter] +=
+ td->interp_filter_selected[filter];
+}
+
+// Store information related to each default tile in the OBU header.
+static void write_tile_obu(
+ AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
+ struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
+ const FrameHeaderInfo *fh_info, int *const largest_tile_id,
+ unsigned int *max_tile_size, uint32_t *const obu_header_size,
+ uint8_t **tile_data_start) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+ const CommonTileParams *const tiles = &cm->tiles;
+ const int tile_cols = tiles->cols;
+ const int tile_rows = tiles->rows;
+ // Fixed size tile groups for the moment
+ const int num_tg_hdrs = cpi->num_tg;
+ const int tg_size = (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
+ int tile_count = 0;
+ size_t curr_tg_data_size = 0;
+ uint8_t *tile_data_curr = dst;
+ int new_tg = 1;
+ int is_first_tg = 1;
+
+ av1_reset_pack_bs_thread_data(&cpi->td);
+ for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
+ for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
+ const int tile_idx = tile_row * tile_cols + tile_col;
+ TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
+
+ int is_last_tile_in_tg = 0;
+ if (new_tg) {
+ tile_data_curr = dst + *total_size;
+ tile_count = 0;
+ }
+ tile_count++;
+
+ if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1))
+ is_last_tile_in_tg = 1;
+
+ xd->tile_ctx = &this_tile->tctx;
+
+ // PackBSParams stores all parameters required to pack tile and header
+ // info.
+ PackBSParams pack_bs_params;
+ pack_bs_params.dst = dst;
+ pack_bs_params.curr_tg_hdr_size = 0;
+ pack_bs_params.is_last_tile_in_tg = is_last_tile_in_tg;
+ pack_bs_params.new_tg = new_tg;
+ pack_bs_params.obu_extn_header = obu_extn_header;
+ pack_bs_params.obu_header_size = 0;
+ pack_bs_params.saved_wb = saved_wb;
+ pack_bs_params.tile_col = tile_col;
+ pack_bs_params.tile_row = tile_row;
+ pack_bs_params.tile_data_curr = tile_data_curr;
+ pack_bs_params.total_size = total_size;
+
+ if (new_tg)
+ av1_write_obu_tg_tile_headers(cpi, xd, &pack_bs_params, tile_idx);
+
+ av1_pack_tile_info(cpi, &cpi->td, &pack_bs_params);
+
+ if (new_tg) {
+ curr_tg_data_size = pack_bs_params.curr_tg_hdr_size;
+ *tile_data_start += pack_bs_params.curr_tg_hdr_size;
+ *obu_header_size = pack_bs_params.obu_header_size;
+ new_tg = 0;
+ }
+ if (is_last_tile_in_tg) new_tg = 1;
+
+ curr_tg_data_size +=
+ (pack_bs_params.buf.size + (is_last_tile_in_tg ? 0 : 4));
+
+ if (pack_bs_params.buf.size > *max_tile_size) {
+ *largest_tile_id = tile_idx;
+ *max_tile_size = (unsigned int)pack_bs_params.buf.size;
+ }
+
+ if (is_last_tile_in_tg)
+ av1_write_last_tile_info(cpi, fh_info, saved_wb, &curr_tg_data_size,
+ tile_data_curr, total_size, tile_data_start,
+ largest_tile_id, &is_first_tg,
+ *obu_header_size, obu_extn_header);
+ *total_size += (uint32_t)pack_bs_params.buf.size;
+ }
+ }
+ av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
+}
+
+// Write total buffer size and related information into the OBU header for
+// default tile case.
+static void write_tile_obu_size(AV1_COMP *const cpi, uint8_t *const dst,
+ struct aom_write_bit_buffer *saved_wb,
+ int largest_tile_id, uint32_t *const total_size,
+ unsigned int max_tile_size,
+ uint32_t obu_header_size,
+ uint8_t *tile_data_start) {
+ const CommonTileParams *const tiles = &cpi->common.tiles;
+
+ // Fill in context_update_tile_id indicating the tile to use for the
+ // cdf update. The encoder currently sets it to the largest tile
+ // (but is up to the encoder)
+ aom_wb_overwrite_literal(saved_wb, largest_tile_id,
+ (tiles->log2_cols + tiles->log2_rows));
+ // If more than one tile group. tile_size_bytes takes the default value 4
+ // and does not need to be set. For a single tile group it is set in the
+ // section below.
+ if (cpi->num_tg != 1) return;
+ int tile_size_bytes = 4, unused;
+ const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst);
+ const uint32_t tile_data_size = *total_size - tile_data_offset;
+
+ *total_size = remux_tiles(tiles, tile_data_start, tile_data_size,
+ max_tile_size, 0, &tile_size_bytes, &unused);
+ *total_size += tile_data_offset;
+ assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
+
+ aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
+
+ // Update the OBU length if remux_tiles() reduced the size.
+ uint64_t payload_size;
+ size_t length_field_size;
+ int res =
+ aom_uleb_decode(dst + obu_header_size, *total_size - obu_header_size,
+ &payload_size, &length_field_size);
+ assert(res == 0);
+ (void)res;
+
+ const uint64_t new_payload_size =
+ *total_size - obu_header_size - length_field_size;
+ if (new_payload_size != payload_size) {
+ size_t new_length_field_size;
+ res = aom_uleb_encode(new_payload_size, length_field_size,
+ dst + obu_header_size, &new_length_field_size);
+ assert(res == 0);
+ if (new_length_field_size < length_field_size) {
+ const size_t src_offset = obu_header_size + length_field_size;
+ const size_t dst_offset = obu_header_size + new_length_field_size;
+ memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size);
+ *total_size -= (int)(length_field_size - new_length_field_size);
+ }
+ }
+}
+
+// As per the experiments, single-thread bitstream packing is better for
+// frames with a smaller bitstream size. This behavior is due to setup time
+// overhead of multithread function would be more than that of time required
+// to pack the smaller bitstream of such frames. This function computes the
+// number of required number of workers based on setup time overhead and job
+// dispatch time overhead for given tiles and available workers.
+int calc_pack_bs_mt_workers(const TileDataEnc *tile_data, int num_tiles,
+ int avail_workers, bool pack_bs_mt_enabled) {
+ if (!pack_bs_mt_enabled) return 1;
+
+ uint64_t frame_abs_sum_level = 0;
+
+ for (int idx = 0; idx < num_tiles; idx++)
+ frame_abs_sum_level += tile_data[idx].abs_sum_level;
+
+ int ideal_num_workers = 1;
+ const float job_disp_time_const = (float)num_tiles * JOB_DISP_TIME_OH_CONST;
+ float max_sum = 0.0;
+
+ for (int num_workers = avail_workers; num_workers > 1; num_workers--) {
+ const float fas_per_worker_const =
+ ((float)(num_workers - 1) / num_workers) * frame_abs_sum_level;
+ const float setup_time_const = (float)num_workers * SETUP_TIME_OH_CONST;
+ const float this_sum = fas_per_worker_const - setup_time_const -
+ job_disp_time_const / num_workers;
+
+ if (this_sum > max_sum) {
+ max_sum = this_sum;
+ ideal_num_workers = num_workers;
+ }
+ }
+ return ideal_num_workers;
+}
+
+static INLINE uint32_t pack_tiles_in_tg_obus(
+ AV1_COMP *const cpi, uint8_t *const dst,
+ struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header,
+ const FrameHeaderInfo *fh_info, int *const largest_tile_id) {
+ const CommonTileParams *const tiles = &cpi->common.tiles;
+ uint32_t total_size = 0;
+ unsigned int max_tile_size = 0;
+ uint32_t obu_header_size = 0;
+ uint8_t *tile_data_start = dst;
+ const int tile_cols = tiles->cols;
+ const int tile_rows = tiles->rows;
+ const int num_tiles = tile_rows * tile_cols;
+
+ const int num_workers = calc_pack_bs_mt_workers(
+ cpi->tile_data, num_tiles, cpi->mt_info.num_mod_workers[MOD_PACK_BS],
+ cpi->mt_info.pack_bs_mt_enabled);
+
+ if (num_workers > 1) {
+ av1_write_tile_obu_mt(cpi, dst, &total_size, saved_wb, obu_extension_header,
+ fh_info, largest_tile_id, &max_tile_size,
+ &obu_header_size, &tile_data_start, num_workers);
+ } else {
+ write_tile_obu(cpi, dst, &total_size, saved_wb, obu_extension_header,
+ fh_info, largest_tile_id, &max_tile_size, &obu_header_size,
+ &tile_data_start);
+ }
+
+ if (num_tiles > 1)
+ write_tile_obu_size(cpi, dst, saved_wb, *largest_tile_id, &total_size,
+ max_tile_size, obu_header_size, tile_data_start);
+ return total_size;
+}
+
+static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst,
+ struct aom_write_bit_buffer *saved_wb,
+ uint8_t obu_extension_header,
+ const FrameHeaderInfo *fh_info,
+ int *const largest_tile_id) {
+ AV1_COMMON *const cm = &cpi->common;
+ const CommonTileParams *const tiles = &cm->tiles;
+ *largest_tile_id = 0;
+
+ // Select the coding strategy (temporal or spatial)
+ if (cm->seg.enabled && cm->seg.update_map) {
+ if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
+ cm->seg.temporal_update = 0;
+ } else {
+ cm->seg.temporal_update = 1;
+ if (cpi->td.rd_counts.seg_tmp_pred_cost[0] <
+ cpi->td.rd_counts.seg_tmp_pred_cost[1])
+ cm->seg.temporal_update = 0;
+ }
+ }
+
+ if (tiles->large_scale)
+ return pack_large_scale_tiles_in_tg_obus(cpi, dst, saved_wb,
+ largest_tile_id);
+
+ return pack_tiles_in_tg_obus(cpi, dst, saved_wb, obu_extension_header,
+ fh_info, largest_tile_id);
+}
+
+static size_t av1_write_metadata_obu(const aom_metadata_t *metadata,
+ uint8_t *const dst) {
+ size_t coded_metadata_size = 0;
+ const uint64_t metadata_type = (uint64_t)metadata->type;
+ if (aom_uleb_encode(metadata_type, sizeof(metadata_type), dst,
+ &coded_metadata_size) != 0) {
+ return 0;
+ }
+ memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz);
+ // Add trailing bits.
+ dst[coded_metadata_size + metadata->sz] = 0x80;
+ return (uint32_t)(coded_metadata_size + metadata->sz + 1);
+}
+
+static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst) {
+ if (!cpi->source) return 0;
+ AV1_COMMON *const cm = &cpi->common;
+ aom_metadata_array_t *arr = cpi->source->metadata;
+ if (!arr) return 0;
+ size_t obu_header_size = 0;
+ size_t obu_payload_size = 0;
+ size_t total_bytes_written = 0;
+ size_t length_field_size = 0;
+ for (size_t i = 0; i < arr->sz; i++) {
+ aom_metadata_t *current_metadata = arr->metadata_array[i];
+ if (current_metadata && current_metadata->payload) {
+ if ((cm->current_frame.frame_type == KEY_FRAME &&
+ current_metadata->insert_flag == AOM_MIF_KEY_FRAME) ||
+ (cm->current_frame.frame_type != KEY_FRAME &&
+ current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) ||
+ current_metadata->insert_flag == AOM_MIF_ANY_FRAME) {
+ obu_header_size = av1_write_obu_header(&cpi->ppi->level_params,
+ &cpi->frame_header_count,
+ OBU_METADATA, 0, dst);
+ obu_payload_size =
+ av1_write_metadata_obu(current_metadata, dst + obu_header_size);
+ length_field_size =
+ av1_obu_memmove(obu_header_size, obu_payload_size, dst);
+ if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) ==
+ AOM_CODEC_OK) {
+ const size_t obu_size = obu_header_size + obu_payload_size;
+ dst += obu_size + length_field_size;
+ total_bytes_written += obu_size + length_field_size;
+ } else {
+ aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
+ "Error writing metadata OBU size");
+ }
+ }
+ }
+ }
+ return total_bytes_written;
+}
+
+int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size,
+ int *const largest_tile_id) {
+ uint8_t *data = dst;
+ uint32_t data_size;
+ AV1_COMMON *const cm = &cpi->common;
+ AV1LevelParams *const level_params = &cpi->ppi->level_params;
+ uint32_t obu_header_size = 0;
+ uint32_t obu_payload_size = 0;
+ FrameHeaderInfo fh_info = { NULL, 0, 0 };
+ const uint8_t obu_extension_header =
+ cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0;
+
+ // If no non-zero delta_q has been used, reset delta_q_present_flag
+ if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
+ cm->delta_q_info.delta_q_present_flag = 0;
+ }
+
+#if CONFIG_BITSTREAM_DEBUG
+ bitstream_queue_reset_write();
+#endif
+
+ cpi->frame_header_count = 0;
+
+ // The TD is now written outside the frame encode loop
+
+ // write sequence header obu at each key frame or intra_only frame,
+ // preceded by 4-byte size
+ if (cm->current_frame.frame_type == INTRA_ONLY_FRAME ||
+ cm->current_frame.frame_type == KEY_FRAME) {
+ obu_header_size = av1_write_obu_header(
+ level_params, &cpi->frame_header_count, OBU_SEQUENCE_HEADER, 0, data);
+ obu_payload_size =
+ av1_write_sequence_header_obu(cm->seq_params, data + obu_header_size);
+ const size_t length_field_size =
+ av1_obu_memmove(obu_header_size, obu_payload_size, data);
+ if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
+ AOM_CODEC_OK) {
+ return AOM_CODEC_ERROR;
+ }
+
+ data += obu_header_size + obu_payload_size + length_field_size;
+ }
+
+ // write metadata obus before the frame obu that has the show_frame flag set
+ if (cm->show_frame) data += av1_write_metadata_array(cpi, data);
+
+ const int write_frame_header =
+ (cpi->num_tg > 1 || encode_show_existing_frame(cm));
+ struct aom_write_bit_buffer saved_wb = { NULL, 0 };
+ size_t length_field = 0;
+ if (write_frame_header) {
+ // Write Frame Header OBU.
+ fh_info.frame_header = data;
+ obu_header_size =
+ av1_write_obu_header(level_params, &cpi->frame_header_count,
+ OBU_FRAME_HEADER, obu_extension_header, data);
+ obu_payload_size = write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, &saved_wb,
+ data + obu_header_size, 1);
+
+ length_field = av1_obu_memmove(obu_header_size, obu_payload_size, data);
+ if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
+ AOM_CODEC_OK) {
+ return AOM_CODEC_ERROR;
+ }
+
+ fh_info.obu_header_byte_offset = 0;
+ fh_info.total_length = obu_header_size + obu_payload_size + length_field;
+ data += fh_info.total_length;
+ }
+
+ if (encode_show_existing_frame(cm)) {
+ data_size = 0;
+ } else {
+ // Since length_field is determined adaptively after frame header
+ // encoding, saved_wb must be adjusted accordingly.
+ if (saved_wb.bit_buffer != NULL) {
+ saved_wb.bit_buffer += length_field;
+ }
+
+ // Each tile group obu will be preceded by 4-byte size of the tile group
+ // obu
+ data_size = write_tiles_in_tg_obus(
+ cpi, data, &saved_wb, obu_extension_header, &fh_info, largest_tile_id);
+ }
+ data += data_size;
+ *size = data - dst;
+ return AOM_CODEC_OK;
+}