summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/encodeframe_utils.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/encodeframe_utils.c1775
1 files changed, 1775 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/encodeframe_utils.c b/third_party/aom/av1/encoder/encodeframe_utils.c
new file mode 100644
index 0000000000..949837184a
--- /dev/null
+++ b/third_party/aom/av1/encoder/encodeframe_utils.c
@@ -0,0 +1,1775 @@
+/*
+ * Copyright (c) 2020, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include "av1/common/common_data.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/reconintra.h"
+
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/encodeframe_utils.h"
+#include "av1/encoder/rdopt.h"
+
+void av1_set_ssim_rdmult(const AV1_COMP *const cpi, int *errorperbit,
+ const BLOCK_SIZE bsize, const int mi_row,
+ const int mi_col, int *const rdmult) {
+ const AV1_COMMON *const cm = &cpi->common;
+
+ const BLOCK_SIZE bsize_base = BLOCK_16X16;
+ const int num_mi_w = mi_size_wide[bsize_base];
+ const int num_mi_h = mi_size_high[bsize_base];
+ const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
+ const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
+ const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
+ const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
+ int row, col;
+ double num_of_mi = 0.0;
+ double geom_mean_of_scale = 1.0;
+
+ // To avoid overflow of 'geom_mean_of_scale', bsize_base must be at least
+ // BLOCK_8X8.
+ //
+ // For bsize=BLOCK_128X128 and bsize_base=BLOCK_8X8, the loop below would
+ // iterate 256 times. Considering the maximum value of
+ // cpi->ssim_rdmult_scaling_factors (see av1_set_mb_ssim_rdmult_scaling()),
+ // geom_mean_of_scale can go up to 4.8323^256, which is within DBL_MAX
+ // (maximum value a double data type can hold). If bsize_base is modified to
+ // BLOCK_4X4 (minimum possible block size), geom_mean_of_scale can go up
+ // to 4.8323^1024 and exceed DBL_MAX, resulting in data overflow.
+ assert(bsize_base >= BLOCK_8X8);
+ assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM);
+
+ for (row = mi_row / num_mi_w;
+ row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
+ for (col = mi_col / num_mi_h;
+ col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
+ const int index = row * num_cols + col;
+ assert(cpi->ssim_rdmult_scaling_factors[index] != 0.0);
+ geom_mean_of_scale *= cpi->ssim_rdmult_scaling_factors[index];
+ num_of_mi += 1.0;
+ }
+ }
+ geom_mean_of_scale = pow(geom_mean_of_scale, (1.0 / num_of_mi));
+
+ *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5);
+ *rdmult = AOMMAX(*rdmult, 0);
+ av1_set_error_per_bit(errorperbit, *rdmult);
+}
+
+#if CONFIG_SALIENCY_MAP
+void av1_set_saliency_map_vmaf_rdmult(const AV1_COMP *const cpi,
+ int *errorperbit, const BLOCK_SIZE bsize,
+ const int mi_row, const int mi_col,
+ int *const rdmult) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_mi_w = mi_size_wide[bsize];
+ const int num_mi_h = mi_size_high[bsize];
+ const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
+
+ *rdmult =
+ (int)(*rdmult * cpi->sm_scaling_factor[(mi_row / num_mi_h) * num_cols +
+ (mi_col / num_mi_w)]);
+
+ *rdmult = AOMMAX(*rdmult, 0);
+ av1_set_error_per_bit(errorperbit, *rdmult);
+}
+#endif
+
+// TODO(angiebird): Move these function to tpl_model.c
+#if !CONFIG_REALTIME_ONLY
+// Return the end column for the current superblock, in unit of TPL blocks.
+static int get_superblock_tpl_column_end(const AV1_COMMON *const cm, int mi_col,
+ int num_mi_w) {
+ // Find the start column of this superblock.
+ const int sb_mi_col_start = (mi_col >> cm->seq_params->mib_size_log2)
+ << cm->seq_params->mib_size_log2;
+ // Same but in superres upscaled dimension.
+ const int sb_mi_col_start_sr =
+ coded_to_superres_mi(sb_mi_col_start, cm->superres_scale_denominator);
+ // Width of this superblock in mi units.
+ const int sb_mi_width = mi_size_wide[cm->seq_params->sb_size];
+ // Same but in superres upscaled dimension.
+ const int sb_mi_width_sr =
+ coded_to_superres_mi(sb_mi_width, cm->superres_scale_denominator);
+ // Superblock end in mi units.
+ const int sb_mi_end = sb_mi_col_start_sr + sb_mi_width_sr;
+ // Superblock end in TPL units.
+ return (sb_mi_end + num_mi_w - 1) / num_mi_w;
+}
+
+int av1_get_cb_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
+ const BLOCK_SIZE bsize, const int mi_row,
+ const int mi_col) {
+ const AV1_COMMON *const cm = &cpi->common;
+ assert(IMPLIES(cpi->ppi->gf_group.size > 0,
+ cpi->gf_frame_index < cpi->ppi->gf_group.size));
+ const int tpl_idx = cpi->gf_frame_index;
+ int deltaq_rdmult = set_rdmult(cpi, x, -1);
+ if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult;
+ if (cm->superres_scale_denominator != SCALE_NUMERATOR) return deltaq_rdmult;
+ if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult;
+ if (x->rb == 0) return deltaq_rdmult;
+
+ TplParams *const tpl_data = &cpi->ppi->tpl_data;
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
+ TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+
+ const int mi_wide = mi_size_wide[bsize];
+ const int mi_high = mi_size_high[bsize];
+
+ int tpl_stride = tpl_frame->stride;
+ double intra_cost_base = 0;
+ double mc_dep_cost_base = 0;
+ double cbcmp_base = 0;
+ const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
+
+ for (int row = mi_row; row < mi_row + mi_high; row += step) {
+ for (int col = mi_col; col < mi_col + mi_wide; col += step) {
+ if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
+ continue;
+
+ TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
+ row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
+
+ double cbcmp = (double)this_stats->srcrf_dist;
+ int64_t mc_dep_delta =
+ RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
+ this_stats->mc_dep_dist);
+ double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
+ intra_cost_base += log(dist_scaled) * cbcmp;
+ mc_dep_cost_base += log(3 * dist_scaled + mc_dep_delta) * cbcmp;
+ cbcmp_base += cbcmp;
+ }
+ }
+
+ if (cbcmp_base == 0) return deltaq_rdmult;
+
+ double rk = exp((intra_cost_base - mc_dep_cost_base) / cbcmp_base);
+ deltaq_rdmult = (int)(deltaq_rdmult * (rk / x->rb));
+
+ return AOMMAX(deltaq_rdmult, 1);
+}
+
+int av1_get_hier_tpl_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
+ const BLOCK_SIZE bsize, const int mi_row,
+ const int mi_col, int orig_rdmult) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
+ assert(IMPLIES(cpi->ppi->gf_group.size > 0,
+ cpi->gf_frame_index < cpi->ppi->gf_group.size));
+ const int tpl_idx = cpi->gf_frame_index;
+ const int deltaq_rdmult = set_rdmult(cpi, x, -1);
+ if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult;
+ if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index))
+ return deltaq_rdmult;
+ if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult;
+
+ const int mi_col_sr =
+ coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
+ const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
+ const int block_mi_width_sr =
+ coded_to_superres_mi(mi_size_wide[bsize], cm->superres_scale_denominator);
+
+ const BLOCK_SIZE bsize_base = BLOCK_16X16;
+ const int num_mi_w = mi_size_wide[bsize_base];
+ const int num_mi_h = mi_size_high[bsize_base];
+ const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
+ const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
+ const int num_bcols = (block_mi_width_sr + num_mi_w - 1) / num_mi_w;
+ const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
+ // This is required because the end col of superblock may be off by 1 in case
+ // of superres.
+ const int sb_bcol_end = get_superblock_tpl_column_end(cm, mi_col, num_mi_w);
+ int row, col;
+ double base_block_count = 0.0;
+ double geom_mean_of_scale = 0.0;
+ for (row = mi_row / num_mi_w;
+ row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
+ for (col = mi_col_sr / num_mi_h;
+ col < num_cols && col < mi_col_sr / num_mi_h + num_bcols &&
+ col < sb_bcol_end;
+ ++col) {
+ const int index = row * num_cols + col;
+ geom_mean_of_scale += log(cpi->ppi->tpl_sb_rdmult_scaling_factors[index]);
+ base_block_count += 1.0;
+ }
+ }
+ geom_mean_of_scale = exp(geom_mean_of_scale / base_block_count);
+ int rdmult = (int)((double)orig_rdmult * geom_mean_of_scale + 0.5);
+ rdmult = AOMMAX(rdmult, 0);
+ av1_set_error_per_bit(&x->errorperbit, rdmult);
+#if !CONFIG_RD_COMMAND
+ if (bsize == cm->seq_params->sb_size) {
+ const int rdmult_sb = set_rdmult(cpi, x, -1);
+ assert(rdmult_sb == rdmult);
+ (void)rdmult_sb;
+ }
+#endif // !CONFIG_RD_COMMAND
+ return rdmult;
+}
+#endif // !CONFIG_REALTIME_ONLY
+
+static AOM_INLINE void update_filter_type_count(FRAME_COUNTS *counts,
+ const MACROBLOCKD *xd,
+ const MB_MODE_INFO *mbmi) {
+ int dir;
+ for (dir = 0; dir < 2; ++dir) {
+ const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
+ InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir);
+
+ // Only allow the 3 valid SWITCHABLE_FILTERS.
+ assert(filter < SWITCHABLE_FILTERS);
+ ++counts->switchable_interp[ctx][filter];
+ }
+}
+
+// This function will copy the best reference mode information from
+// MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT.
+static INLINE void copy_mbmi_ext_frame_to_mbmi_ext(
+ MB_MODE_INFO_EXT *mbmi_ext,
+ const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) {
+ memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack,
+ sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
+ memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight,
+ sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
+ mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context;
+ mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count;
+ memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs,
+ sizeof(mbmi_ext->global_mvs));
+}
+
+void av1_update_state(const AV1_COMP *const cpi, ThreadData *td,
+ const PICK_MODE_CONTEXT *const ctx, int mi_row,
+ int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) {
+ int i, x_idx, y;
+ const AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ const MB_MODE_INFO *const mi = &ctx->mic;
+ MB_MODE_INFO *const mi_addr = xd->mi[0];
+ const struct segmentation *const seg = &cm->seg;
+ assert(bsize < BLOCK_SIZES_ALL);
+ const int bw = mi_size_wide[mi->bsize];
+ const int bh = mi_size_high[mi->bsize];
+ const int mis = mi_params->mi_stride;
+ const int mi_width = mi_size_wide[bsize];
+ const int mi_height = mi_size_high[bsize];
+ TxfmSearchInfo *txfm_info = &x->txfm_search_info;
+
+ assert(mi->bsize == bsize);
+
+ *mi_addr = *mi;
+ copy_mbmi_ext_frame_to_mbmi_ext(&x->mbmi_ext, &ctx->mbmi_ext_best,
+ av1_ref_frame_type(ctx->mic.ref_frame));
+
+ memcpy(txfm_info->blk_skip, ctx->blk_skip,
+ sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
+
+ txfm_info->skip_txfm = ctx->rd_stats.skip_txfm;
+
+ xd->tx_type_map = ctx->tx_type_map;
+ xd->tx_type_map_stride = mi_size_wide[bsize];
+ // If not dry_run, copy the transform type data into the frame level buffer.
+ // Encoder will fetch tx types when writing bitstream.
+ if (!dry_run) {
+ const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
+ uint8_t *const tx_type_map = mi_params->tx_type_map + grid_idx;
+ const int mi_stride = mi_params->mi_stride;
+ for (int blk_row = 0; blk_row < bh; ++blk_row) {
+ av1_copy_array(tx_type_map + blk_row * mi_stride,
+ xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw);
+ }
+ xd->tx_type_map = tx_type_map;
+ xd->tx_type_map_stride = mi_stride;
+ }
+
+ // If segmentation in use
+ if (seg->enabled) {
+ // For in frame complexity AQ copy the segment id from the segment map.
+ if (cpi->oxcf.q_cfg.aq_mode == COMPLEXITY_AQ) {
+ const uint8_t *const map =
+ seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
+ mi_addr->segment_id =
+ map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0;
+ }
+ // Else for cyclic refresh mode update the segment map, set the segment id
+ // and then update the quantizer.
+ if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
+ !cpi->rc.rtc_external_ratectrl) {
+ av1_cyclic_refresh_update_segment(cpi, x, mi_row, mi_col, bsize,
+ ctx->rd_stats.rate, ctx->rd_stats.dist,
+ txfm_info->skip_txfm, dry_run);
+ }
+ if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd))
+ mi_addr->uv_mode = UV_DC_PRED;
+
+ if (!dry_run && !mi_addr->skip_txfm) {
+ int cdf_num;
+ const uint8_t spatial_pred = av1_get_spatial_seg_pred(
+ cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4);
+ const uint8_t coded_id = av1_neg_interleave(
+ mi_addr->segment_id, spatial_pred, seg->last_active_segid + 1);
+ int64_t spatial_cost = x->mode_costs.spatial_pred_cost[cdf_num][coded_id];
+ td->rd_counts.seg_tmp_pred_cost[0] += spatial_cost;
+
+ const int pred_segment_id =
+ cm->last_frame_seg_map
+ ? get_segment_id(mi_params, cm->last_frame_seg_map, bsize, mi_row,
+ mi_col)
+ : 0;
+ const int use_tmp_pred = pred_segment_id == mi_addr->segment_id;
+ const uint8_t tmp_pred_ctx = av1_get_pred_context_seg_id(xd);
+ td->rd_counts.seg_tmp_pred_cost[1] +=
+ x->mode_costs.tmp_pred_cost[tmp_pred_ctx][use_tmp_pred];
+ if (!use_tmp_pred) {
+ td->rd_counts.seg_tmp_pred_cost[1] += spatial_cost;
+ }
+ }
+ }
+
+ // Count zero motion vector.
+ if (!dry_run && !frame_is_intra_only(cm)) {
+ const MV mv = mi->mv[0].as_mv;
+ if (is_inter_block(mi) && mi->ref_frame[0] == LAST_FRAME &&
+ abs(mv.row) < 8 && abs(mv.col) < 8) {
+ const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh);
+ // Accumulate low_content_frame.
+ for (int mi_y = 0; mi_y < ymis; mi_y += 2) x->cnt_zeromv += bw << 1;
+ }
+ }
+
+ for (i = 0; i < num_planes; ++i) {
+ p[i].coeff = ctx->coeff[i];
+ p[i].qcoeff = ctx->qcoeff[i];
+ p[i].dqcoeff = ctx->dqcoeff[i];
+ p[i].eobs = ctx->eobs[i];
+ p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
+ }
+ for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
+ // Restore the coding context of the MB to that that was in place
+ // when the mode was picked for it
+
+ const int cols =
+ AOMMIN((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width, mi_width);
+ const int rows = AOMMIN(
+ (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height, mi_height);
+ for (y = 0; y < rows; y++) {
+ for (x_idx = 0; x_idx < cols; x_idx++) xd->mi[x_idx + y * mis] = mi_addr;
+ }
+
+ if (cpi->oxcf.q_cfg.aq_mode)
+ av1_init_plane_quantizers(cpi, x, mi_addr->segment_id, 0);
+
+ if (dry_run) return;
+
+#if CONFIG_INTERNAL_STATS
+ {
+ unsigned int *const mode_chosen_counts =
+ (unsigned int *)cpi->mode_chosen_counts; // Cast const away.
+ if (frame_is_intra_only(cm)) {
+ static const int kf_mode_index[] = {
+ THR_DC /*DC_PRED*/,
+ THR_V_PRED /*V_PRED*/,
+ THR_H_PRED /*H_PRED*/,
+ THR_D45_PRED /*D45_PRED*/,
+ THR_D135_PRED /*D135_PRED*/,
+ THR_D113_PRED /*D113_PRED*/,
+ THR_D157_PRED /*D157_PRED*/,
+ THR_D203_PRED /*D203_PRED*/,
+ THR_D67_PRED /*D67_PRED*/,
+ THR_SMOOTH, /*SMOOTH_PRED*/
+ THR_SMOOTH_V, /*SMOOTH_V_PRED*/
+ THR_SMOOTH_H, /*SMOOTH_H_PRED*/
+ THR_PAETH /*PAETH_PRED*/,
+ };
+ ++mode_chosen_counts[kf_mode_index[mi_addr->mode]];
+ } else {
+ // Note how often each mode chosen as best
+ ++mode_chosen_counts[ctx->best_mode_index];
+ }
+ }
+#endif
+ if (!frame_is_intra_only(cm)) {
+ if (is_inter_block(mi) && cm->features.interp_filter == SWITCHABLE) {
+ // When the frame interp filter is SWITCHABLE, several cases that always
+ // use the default type (EIGHTTAP_REGULAR) are described in
+ // av1_is_interp_needed(). Here, we should keep the counts for all
+ // applicable blocks, so the frame filter resetting decision in
+ // fix_interp_filter() is made correctly.
+ update_filter_type_count(td->counts, xd, mi_addr);
+ }
+ }
+
+ const int x_mis = AOMMIN(bw, mi_params->mi_cols - mi_col);
+ const int y_mis = AOMMIN(bh, mi_params->mi_rows - mi_row);
+ if (cm->seq_params->order_hint_info.enable_ref_frame_mvs)
+ av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis);
+}
+
+void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts,
+ PREDICTION_MODE mode, int16_t mode_context) {
+ (void)counts;
+
+ int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
+ if (mode == NEWMV) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->newmv_mode[mode_ctx][0];
+#endif
+ update_cdf(fc->newmv_cdf[mode_ctx], 0, 2);
+ return;
+ }
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->newmv_mode[mode_ctx][1];
+#endif
+ update_cdf(fc->newmv_cdf[mode_ctx], 1, 2);
+
+ mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
+ if (mode == GLOBALMV) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->zeromv_mode[mode_ctx][0];
+#endif
+ update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2);
+ return;
+ }
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->zeromv_mode[mode_ctx][1];
+#endif
+ update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2);
+
+ mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
+#if CONFIG_ENTROPY_STATS
+ ++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
+#endif
+ update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2);
+}
+
+static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
+ FRAME_COUNTS *counts) {
+ FRAME_CONTEXT *fc = xd->tile_ctx;
+ const BLOCK_SIZE bsize = mbmi->bsize;
+ const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize);
+
+ (void)counts;
+
+ if (mbmi->mode == DC_PRED) {
+ const int n = pmi->palette_size[0];
+ const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0];
+#endif
+ update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx],
+ n > 0, 2);
+ if (n > 0) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
+#endif
+ update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx],
+ n - PALETTE_MIN_SIZE, PALETTE_SIZES);
+ }
+ }
+
+ if (mbmi->uv_mode == UV_DC_PRED) {
+ const int n = pmi->palette_size[1];
+ const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0];
+#endif
+ update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2);
+
+ if (n > 0) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
+#endif
+ update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx],
+ n - PALETTE_MIN_SIZE, PALETTE_SIZES);
+ }
+ }
+}
+
+void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts,
+ MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
+ const MB_MODE_INFO *above_mi,
+ const MB_MODE_INFO *left_mi, const int intraonly) {
+ FRAME_CONTEXT *fc = xd->tile_ctx;
+ const PREDICTION_MODE y_mode = mbmi->mode;
+ (void)counts;
+ const BLOCK_SIZE bsize = mbmi->bsize;
+
+ if (intraonly) {
+#if CONFIG_ENTROPY_STATS
+ const PREDICTION_MODE above = av1_above_block_mode(above_mi);
+ const PREDICTION_MODE left = av1_left_block_mode(left_mi);
+ const int above_ctx = intra_mode_context[above];
+ const int left_ctx = intra_mode_context[left];
+ ++counts->kf_y_mode[above_ctx][left_ctx][y_mode];
+#endif // CONFIG_ENTROPY_STATS
+ update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES);
+ } else {
+#if CONFIG_ENTROPY_STATS
+ ++counts->y_mode[size_group_lookup[bsize]][y_mode];
+#endif // CONFIG_ENTROPY_STATS
+ update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES);
+ }
+
+ if (av1_filter_intra_allowed(cm, mbmi)) {
+ const int use_filter_intra_mode =
+ mbmi->filter_intra_mode_info.use_filter_intra;
+#if CONFIG_ENTROPY_STATS
+ ++counts->filter_intra[mbmi->bsize][use_filter_intra_mode];
+ if (use_filter_intra_mode) {
+ ++counts
+ ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode];
+ }
+#endif // CONFIG_ENTROPY_STATS
+ update_cdf(fc->filter_intra_cdfs[mbmi->bsize], use_filter_intra_mode, 2);
+ if (use_filter_intra_mode) {
+ update_cdf(fc->filter_intra_mode_cdf,
+ mbmi->filter_intra_mode_info.filter_intra_mode,
+ FILTER_INTRA_MODES);
+ }
+ }
+ if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->angle_delta[mbmi->mode - V_PRED]
+ [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA];
+#endif
+ update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED],
+ mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA,
+ 2 * MAX_ANGLE_DELTA + 1);
+ }
+
+ if (!xd->is_chroma_ref) return;
+
+ const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
+ const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd);
+#if CONFIG_ENTROPY_STATS
+ ++counts->uv_mode[cfl_allowed][y_mode][uv_mode];
+#endif // CONFIG_ENTROPY_STATS
+ update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode,
+ UV_INTRA_MODES - !cfl_allowed);
+ if (uv_mode == UV_CFL_PRED) {
+ const int8_t joint_sign = mbmi->cfl_alpha_signs;
+ const uint8_t idx = mbmi->cfl_alpha_idx;
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->cfl_sign[joint_sign];
+#endif
+ update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS);
+ if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
+ aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)];
+#endif
+ update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE);
+ }
+ if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
+ aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)];
+#endif
+ update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE);
+ }
+ }
+ const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode);
+ if (av1_is_directional_mode(intra_mode) && av1_use_angle_delta(bsize)) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->angle_delta[intra_mode - V_PRED]
+ [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA];
+#endif
+ update_cdf(fc->angle_delta_cdf[intra_mode - V_PRED],
+ mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA,
+ 2 * MAX_ANGLE_DELTA + 1);
+ }
+ if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
+ update_palette_cdf(xd, mbmi, counts);
+ }
+}
+
+void av1_restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ const int num_planes) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ int p;
+ const int num_4x4_blocks_wide = mi_size_wide[bsize];
+ const int num_4x4_blocks_high = mi_size_high[bsize];
+ int mi_width = mi_size_wide[bsize];
+ int mi_height = mi_size_high[bsize];
+ for (p = 0; p < num_planes; p++) {
+ int tx_col = mi_col;
+ int tx_row = mi_row & MAX_MIB_MASK;
+ memcpy(
+ xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
+ ctx->a + num_4x4_blocks_wide * p,
+ (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
+ xd->plane[p].subsampling_x);
+ memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
+ ctx->l + num_4x4_blocks_high * p,
+ (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
+ xd->plane[p].subsampling_y);
+ }
+ memcpy(xd->above_partition_context + mi_col, ctx->sa,
+ sizeof(*xd->above_partition_context) * mi_width);
+ memcpy(xd->left_partition_context + (mi_row & MAX_MIB_MASK), ctx->sl,
+ sizeof(xd->left_partition_context[0]) * mi_height);
+ xd->above_txfm_context = ctx->p_ta;
+ xd->left_txfm_context = ctx->p_tl;
+ memcpy(xd->above_txfm_context, ctx->ta,
+ sizeof(*xd->above_txfm_context) * mi_width);
+ memcpy(xd->left_txfm_context, ctx->tl,
+ sizeof(*xd->left_txfm_context) * mi_height);
+}
+
+void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ const int num_planes) {
+ const MACROBLOCKD *xd = &x->e_mbd;
+ int p;
+ int mi_width = mi_size_wide[bsize];
+ int mi_height = mi_size_high[bsize];
+
+ // buffer the above/left context information of the block in search.
+ for (p = 0; p < num_planes; ++p) {
+ int tx_col = mi_col;
+ int tx_row = mi_row & MAX_MIB_MASK;
+ memcpy(
+ ctx->a + mi_width * p,
+ xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
+ (sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x);
+ memcpy(ctx->l + mi_height * p,
+ xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
+ (sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y);
+ }
+ memcpy(ctx->sa, xd->above_partition_context + mi_col,
+ sizeof(*xd->above_partition_context) * mi_width);
+ memcpy(ctx->sl, xd->left_partition_context + (mi_row & MAX_MIB_MASK),
+ sizeof(xd->left_partition_context[0]) * mi_height);
+ memcpy(ctx->ta, xd->above_txfm_context,
+ sizeof(*xd->above_txfm_context) * mi_width);
+ memcpy(ctx->tl, xd->left_txfm_context,
+ sizeof(*xd->left_txfm_context) * mi_height);
+ ctx->p_ta = xd->above_txfm_context;
+ ctx->p_tl = xd->left_txfm_context;
+}
+
+static void set_partial_sb_partition(const AV1_COMMON *const cm,
+ MB_MODE_INFO *mi, int bh_in, int bw_in,
+ int mi_rows_remaining,
+ int mi_cols_remaining, BLOCK_SIZE bsize,
+ MB_MODE_INFO **mib) {
+ int bh = bh_in;
+ int r, c;
+ for (r = 0; r < cm->seq_params->mib_size; r += bh) {
+ int bw = bw_in;
+ for (c = 0; c < cm->seq_params->mib_size; c += bw) {
+ const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c);
+ const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c);
+ mib[grid_index] = mi + mi_index;
+ mib[grid_index]->bsize = find_partition_size(
+ bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
+ }
+ }
+}
+
+// This function attempts to set all mode info entries in a given superblock
+// to the same block partition size.
+// However, at the bottom and right borders of the image the requested size
+// may not be allowed in which case this code attempts to choose the largest
+// allowable partition.
+void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
+ MB_MODE_INFO **mib, int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ const int mi_rows_remaining = tile->mi_row_end - mi_row;
+ const int mi_cols_remaining = tile->mi_col_end - mi_col;
+ MB_MODE_INFO *const mi_upper_left =
+ mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col);
+ int bh = mi_size_high[bsize];
+ int bw = mi_size_wide[bsize];
+
+ assert(bsize >= mi_params->mi_alloc_bsize &&
+ "Attempted to use bsize < mi_params->mi_alloc_bsize");
+ assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
+
+ // Apply the requested partition size to the SB if it is all "in image"
+ if ((mi_cols_remaining >= cm->seq_params->mib_size) &&
+ (mi_rows_remaining >= cm->seq_params->mib_size)) {
+ for (int block_row = 0; block_row < cm->seq_params->mib_size;
+ block_row += bh) {
+ for (int block_col = 0; block_col < cm->seq_params->mib_size;
+ block_col += bw) {
+ const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col);
+ const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col);
+ mib[grid_index] = mi_upper_left + mi_index;
+ mib[grid_index]->bsize = bsize;
+ }
+ }
+ } else {
+ // Else this is a partial SB.
+ set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
+ mi_cols_remaining, bsize, mib);
+ }
+}
+
+int av1_is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ const int bs = mi_size_wide[bsize];
+ const int hbs = bs / 2;
+ assert(bsize >= BLOCK_8X8);
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+
+ for (int i = 0; i < 4; i++) {
+ int x_idx = (i & 1) * hbs;
+ int y_idx = (i >> 1) * hbs;
+ if ((mi_row + y_idx >= cm->mi_params.mi_rows) ||
+ (mi_col + x_idx >= cm->mi_params.mi_cols))
+ return 0;
+ if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) !=
+ PARTITION_NONE &&
+ subsize != BLOCK_8X8)
+ return 0;
+ }
+ return 1;
+}
+
+#if !CONFIG_REALTIME_ONLY
+int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
+ int mi_col, int orig_rdmult) {
+ AV1_COMMON *const cm = &cpi->common;
+ const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
+ assert(IMPLIES(cpi->ppi->gf_group.size > 0,
+ cpi->gf_frame_index < cpi->ppi->gf_group.size));
+ const int tpl_idx = cpi->gf_frame_index;
+ TplParams *const tpl_data = &cpi->ppi->tpl_data;
+ const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
+ int64_t intra_cost = 0;
+ int64_t mc_dep_cost = 0;
+ const int mi_wide = mi_size_wide[bsize];
+ const int mi_high = mi_size_high[bsize];
+
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
+ TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+ int tpl_stride = tpl_frame->stride;
+
+ if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, cpi->gf_frame_index)) {
+ return orig_rdmult;
+ }
+ if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) {
+ return orig_rdmult;
+ }
+
+#ifndef NDEBUG
+ int mi_count = 0;
+#endif
+ const int mi_col_sr =
+ coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
+ const int mi_col_end_sr =
+ coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
+ const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
+ const int step = 1 << block_mis_log2;
+ const int row_step = step;
+ const int col_step_sr =
+ coded_to_superres_mi(step, cm->superres_scale_denominator);
+ for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
+ for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
+ if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
+ TplDepStats *this_stats =
+ &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
+ int64_t mc_dep_delta =
+ RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
+ this_stats->mc_dep_dist);
+ intra_cost += this_stats->recrf_dist << RDDIV_BITS;
+ mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
+#ifndef NDEBUG
+ mi_count++;
+#endif
+ }
+ }
+ assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
+
+ double beta = 1.0;
+ if (mc_dep_cost > 0 && intra_cost > 0) {
+ const double r0 = cpi->rd.r0;
+ const double rk = (double)intra_cost / mc_dep_cost;
+ beta = (r0 / rk);
+ }
+
+ int rdmult = av1_get_adaptive_rdmult(cpi, beta);
+
+ rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2);
+ rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2);
+
+ rdmult = AOMMAX(1, rdmult);
+
+ return rdmult;
+}
+
+// Checks to see if a super block is on a horizontal image edge.
+// In most cases this is the "real" edge unless there are formatting
+// bars embedded in the stream.
+int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
+ int top_edge = 0;
+ int bottom_edge = cpi->common.mi_params.mi_rows;
+ int is_active_h_edge = 0;
+
+ // For two pass account for any formatting bars detected.
+ if (is_stat_consumption_stage_twopass(cpi)) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
+ &cpi->ppi->twopass, cm->current_frame.display_order_hint);
+ if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
+
+ // The inactive region is specified in MBs not mi units.
+ // The image edge is in the following MB row.
+ top_edge += (int)(this_frame_stats->inactive_zone_rows * 4);
+
+ bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4);
+ bottom_edge = AOMMAX(top_edge, bottom_edge);
+ }
+
+ if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
+ ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
+ is_active_h_edge = 1;
+ }
+ return is_active_h_edge;
+}
+
+// Checks to see if a super block is on a vertical image edge.
+// In most cases this is the "real" edge unless there are formatting
+// bars embedded in the stream.
+int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
+ int left_edge = 0;
+ int right_edge = cpi->common.mi_params.mi_cols;
+ int is_active_v_edge = 0;
+
+ // For two pass account for any formatting bars detected.
+ if (is_stat_consumption_stage_twopass(cpi)) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
+ &cpi->ppi->twopass, cm->current_frame.display_order_hint);
+ if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
+
+ // The inactive region is specified in MBs not mi units.
+ // The image edge is in the following MB row.
+ left_edge += (int)(this_frame_stats->inactive_zone_cols * 4);
+
+ right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4);
+ right_edge = AOMMAX(left_edge, right_edge);
+ }
+
+ if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
+ ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
+ is_active_v_edge = 1;
+ }
+ return is_active_v_edge;
+}
+
+void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
+ int mi_col, SuperBlockEnc *sb_enc) {
+ sb_enc->tpl_data_count = 0;
+
+ if (!cpi->oxcf.algo_cfg.enable_tpl_model) return;
+ if (cpi->common.current_frame.frame_type == KEY_FRAME) return;
+ const FRAME_UPDATE_TYPE update_type =
+ get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
+ if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE)
+ return;
+ assert(IMPLIES(cpi->ppi->gf_group.size > 0,
+ cpi->gf_frame_index < cpi->ppi->gf_group.size));
+
+ AV1_COMMON *const cm = &cpi->common;
+ const int gf_group_index = cpi->gf_frame_index;
+ TplParams *const tpl_data = &cpi->ppi->tpl_data;
+ if (!av1_tpl_stats_ready(tpl_data, gf_group_index)) return;
+ const int mi_wide = mi_size_wide[bsize];
+ const int mi_high = mi_size_high[bsize];
+
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index];
+ TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+ int tpl_stride = tpl_frame->stride;
+
+ int mi_count = 0;
+ int count = 0;
+ const int mi_col_sr =
+ coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
+ const int mi_col_end_sr =
+ coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
+ // mi_cols_sr is mi_cols at superres case.
+ const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
+
+ // TPL store unit size is not the same as the motion estimation unit size.
+ // Here always use motion estimation size to avoid getting repetitive inter/
+ // intra cost.
+ const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
+ assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]);
+ const int row_step = mi_size_high[tpl_bsize];
+ const int col_step_sr = coded_to_superres_mi(mi_size_wide[tpl_bsize],
+ cm->superres_scale_denominator);
+
+ // Stride is only based on SB size, and we fill in values for every 16x16
+ // block in a SB.
+ sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / col_step_sr;
+
+ for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
+ for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
+ assert(count < MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
+ // Handle partial SB, so that no invalid values are used later.
+ if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) {
+ sb_enc->tpl_inter_cost[count] = INT64_MAX;
+ sb_enc->tpl_intra_cost[count] = INT64_MAX;
+ for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
+ sb_enc->tpl_mv[count][i].as_int = INVALID_MV;
+ }
+ count++;
+ continue;
+ }
+
+ TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
+ row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
+ sb_enc->tpl_inter_cost[count] = this_stats->inter_cost
+ << TPL_DEP_COST_SCALE_LOG2;
+ sb_enc->tpl_intra_cost[count] = this_stats->intra_cost
+ << TPL_DEP_COST_SCALE_LOG2;
+ memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv));
+ mi_count++;
+ count++;
+ }
+ }
+
+ assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
+ sb_enc->tpl_data_count = mi_count;
+}
+
+// analysis_type 0: Use mc_dep_cost and intra_cost
+// analysis_type 1: Use count of best inter predictor chosen
+// analysis_type 2: Use cost reduction from intra to inter for best inter
+// predictor chosen
+int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, ThreadData *td,
+ int64_t *delta_dist, BLOCK_SIZE bsize,
+ int mi_row, int mi_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ assert(IMPLIES(cpi->ppi->gf_group.size > 0,
+ cpi->gf_frame_index < cpi->ppi->gf_group.size));
+ const int tpl_idx = cpi->gf_frame_index;
+ TplParams *const tpl_data = &cpi->ppi->tpl_data;
+ const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
+ double intra_cost = 0;
+ double mc_dep_reg = 0;
+ double mc_dep_cost = 0;
+ double cbcmp_base = 1;
+ double srcrf_dist = 0;
+ double srcrf_sse = 0;
+ double srcrf_rate = 0;
+ const int mi_wide = mi_size_wide[bsize];
+ const int mi_high = mi_size_high[bsize];
+ const int base_qindex = cm->quant_params.base_qindex;
+
+ if (tpl_idx >= MAX_TPL_FRAME_IDX) return base_qindex;
+
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
+ TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+ int tpl_stride = tpl_frame->stride;
+ if (!tpl_frame->is_valid) return base_qindex;
+
+#ifndef NDEBUG
+ int mi_count = 0;
+#endif
+ const int mi_col_sr =
+ coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
+ const int mi_col_end_sr =
+ coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
+ const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
+ const int step = 1 << block_mis_log2;
+ const int row_step = step;
+ const int col_step_sr =
+ coded_to_superres_mi(step, cm->superres_scale_denominator);
+ for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
+ for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
+ if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
+ TplDepStats *this_stats =
+ &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
+ double cbcmp = (double)this_stats->srcrf_dist;
+ int64_t mc_dep_delta =
+ RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
+ this_stats->mc_dep_dist);
+ double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
+ intra_cost += log(dist_scaled) * cbcmp;
+ mc_dep_cost += log(dist_scaled + mc_dep_delta) * cbcmp;
+ mc_dep_reg += log(3 * dist_scaled + mc_dep_delta) * cbcmp;
+ srcrf_dist += (double)(this_stats->srcrf_dist << RDDIV_BITS);
+ srcrf_sse += (double)(this_stats->srcrf_sse << RDDIV_BITS);
+ srcrf_rate += (double)(this_stats->srcrf_rate << TPL_DEP_COST_SCALE_LOG2);
+#ifndef NDEBUG
+ mi_count++;
+#endif
+ cbcmp_base += cbcmp;
+ }
+ }
+ assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
+
+ int offset = 0;
+ double beta = 1.0;
+ double rk;
+ if (mc_dep_cost > 0 && intra_cost > 0) {
+ const double r0 = cpi->rd.r0;
+ rk = exp((intra_cost - mc_dep_cost) / cbcmp_base);
+ td->mb.rb = exp((intra_cost - mc_dep_reg) / cbcmp_base);
+ beta = (r0 / rk);
+ assert(beta > 0.0);
+ } else {
+ return base_qindex;
+ }
+ offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta);
+
+ const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
+ offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
+ offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
+ int qindex = cm->quant_params.base_qindex + offset;
+ qindex = AOMMIN(qindex, MAXQ);
+ qindex = AOMMAX(qindex, MINQ);
+
+ int frm_qstep = av1_dc_quant_QTX(base_qindex, 0, cm->seq_params->bit_depth);
+ int sbs_qstep =
+ av1_dc_quant_QTX(base_qindex, offset, cm->seq_params->bit_depth);
+
+ if (delta_dist) {
+ double sbs_dist = srcrf_dist * pow((double)sbs_qstep / frm_qstep, 2.0);
+ double sbs_rate = srcrf_rate * ((double)frm_qstep / sbs_qstep);
+ sbs_dist = AOMMIN(sbs_dist, srcrf_sse);
+ *delta_dist = (int64_t)((sbs_dist - srcrf_dist) / rk);
+ *delta_dist += RDCOST(tpl_frame->base_rdmult, 4 * 256, 0);
+ *delta_dist += RDCOST(tpl_frame->base_rdmult, sbs_rate - srcrf_rate, 0);
+ }
+ return qindex;
+}
+
+#if !DISABLE_HDR_LUMA_DELTAQ
+// offset table defined in Table3 of T-REC-H.Sup15 document.
+static const int hdr_thres[HDR_QP_LEVELS + 1] = { 0, 301, 367, 434, 501, 567,
+ 634, 701, 767, 834, 1024 };
+
+static const int hdr10_qp_offset[HDR_QP_LEVELS] = { 3, 2, 1, 0, -1,
+ -2, -3, -4, -5, -6 };
+#endif
+
+int av1_get_q_for_hdr(AV1_COMP *const cpi, MACROBLOCK *const x,
+ BLOCK_SIZE bsize, int mi_row, int mi_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ assert(cm->seq_params->bit_depth == AOM_BITS_10);
+
+#if DISABLE_HDR_LUMA_DELTAQ
+ (void)x;
+ (void)bsize;
+ (void)mi_row;
+ (void)mi_col;
+ return cm->quant_params.base_qindex;
+#else
+ // calculate pixel average
+ const int block_luma_avg = av1_log_block_avg(cpi, x, bsize, mi_row, mi_col);
+ // adjust offset based on average of the pixel block
+ int offset = 0;
+ for (int i = 0; i < HDR_QP_LEVELS; i++) {
+ if (block_luma_avg >= hdr_thres[i] && block_luma_avg < hdr_thres[i + 1]) {
+ offset = (int)(hdr10_qp_offset[i] * QP_SCALE_FACTOR);
+ break;
+ }
+ }
+
+ const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
+ offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
+ offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
+ int qindex = cm->quant_params.base_qindex + offset;
+ qindex = AOMMIN(qindex, MAXQ);
+ qindex = AOMMAX(qindex, MINQ);
+
+ return qindex;
+#endif
+}
+#endif // !CONFIG_REALTIME_ONLY
+
+void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree,
+ BLOCK_SIZE bsize) {
+ if (sms_tree == NULL) return;
+ sms_tree->partitioning = PARTITION_NONE;
+
+ if (bsize >= BLOCK_8X8) {
+ BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ for (int idx = 0; idx < 4; ++idx)
+ av1_reset_simple_motion_tree_partition(sms_tree->split[idx], subsize);
+ }
+}
+
+// Record the ref frames that have been selected by square partition blocks.
+void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type,
+ BLOCK_SIZE bsize, int mib_size,
+ int mi_row, int mi_col) {
+ assert(mi_size_wide[bsize] == mi_size_high[bsize]);
+ const int sb_size_mask = mib_size - 1;
+ const int mi_row_in_sb = mi_row & sb_size_mask;
+ const int mi_col_in_sb = mi_col & sb_size_mask;
+ const int mi_size = mi_size_wide[bsize];
+ for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) {
+ for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) {
+ x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type;
+ }
+ }
+}
+
+static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr,
+ int num_cdfs, int cdf_stride, int nsymbs,
+ int wt_left, int wt_tr) {
+ for (int i = 0; i < num_cdfs; i++) {
+ for (int j = 0; j <= nsymbs; j++) {
+ cdf_ptr_left[i * cdf_stride + j] =
+ (aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left +
+ (int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr +
+ ((wt_left + wt_tr) / 2)) /
+ (wt_left + wt_tr));
+ assert(cdf_ptr_left[i * cdf_stride + j] >= 0 &&
+ cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP);
+ }
+ }
+}
+
+#define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \
+ AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs))
+
+#define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride) \
+ do { \
+ aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left; \
+ aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr; \
+ int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob); \
+ int num_cdfs = array_size / cdf_stride; \
+ avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \
+ wt_left, wt_tr); \
+ } while (0)
+
+static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left,
+ int wt_tr) {
+ AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4);
+ for (int i = 0; i < 2; i++) {
+ AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf,
+ MV_CLASSES);
+ AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf,
+ nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE);
+ AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE);
+ AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2);
+ AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf,
+ nmv_tr->comps[i].class0_hp_cdf, 2);
+ AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2);
+ AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf,
+ CLASS0_SIZE);
+ AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2);
+ }
+}
+
+// In case of row-based multi-threading of encoder, since we always
+// keep a top - right sync, we can average the top - right SB's CDFs and
+// the left SB's CDFs and use the same for current SB's encoding to
+// improve the performance. This function facilitates the averaging
+// of CDF and used only when row-mt is enabled in encoder.
+void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr,
+ int wt_left, int wt_tr) {
+ AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2);
+ AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2);
+ AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2);
+ AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5);
+ AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6);
+ AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7);
+ AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8);
+ AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9);
+ AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10);
+ AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11);
+ AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3);
+ AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4);
+ AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE);
+ AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2);
+ AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2);
+ AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2);
+ AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2);
+ AVERAGE_CDF(ctx_left->inter_compound_mode_cdf,
+ ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES);
+ AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf,
+ MASKED_COMPOUND_TYPES);
+ AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16);
+ AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2);
+ AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2);
+ AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf,
+ INTERINTRA_MODES);
+ AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES);
+ AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2);
+ AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf,
+ PALETTE_SIZES);
+ AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf,
+ PALETTE_SIZES);
+ for (int j = 0; j < PALETTE_SIZES; j++) {
+ int nsymbs = j + PALETTE_MIN_SIZE;
+ AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j],
+ ctx_tr->palette_y_color_index_cdf[j], nsymbs,
+ CDF_SIZE(PALETTE_COLORS));
+ AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j],
+ ctx_tr->palette_uv_color_index_cdf[j], nsymbs,
+ CDF_SIZE(PALETTE_COLORS));
+ }
+ AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2);
+ AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2);
+ AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2);
+ AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2);
+ AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2);
+ AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2);
+ AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2);
+ AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2);
+ AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2);
+ AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2);
+ AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2);
+ AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2);
+ AVERAGE_CDF(ctx_left->skip_txfm_cdfs, ctx_tr->skip_txfm_cdfs, 2);
+ AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2);
+ avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr);
+ avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr);
+ AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2);
+ AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2);
+ AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf,
+ ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS);
+ AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2);
+ AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf,
+ FILTER_INTRA_MODES);
+ AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf,
+ RESTORE_SWITCHABLE_TYPES);
+ AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2);
+ AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2);
+ AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES);
+ AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0],
+ UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES));
+ AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES);
+ for (int i = 0; i < PARTITION_CONTEXTS; i++) {
+ if (i < 4) {
+ AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4,
+ CDF_SIZE(10));
+ } else if (i < 16) {
+ AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10);
+ } else {
+ AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8,
+ CDF_SIZE(10));
+ }
+ }
+ AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf,
+ SWITCHABLE_FILTERS);
+ AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES);
+ AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf,
+ 2 * MAX_ANGLE_DELTA + 1);
+ AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH,
+ CDF_SIZE(MAX_TX_DEPTH + 1));
+ AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1],
+ MAX_TX_DEPTH + 1);
+ AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2],
+ MAX_TX_DEPTH + 1);
+ AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3],
+ MAX_TX_DEPTH + 1);
+ AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1);
+ AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1);
+ for (int i = 0; i < FRAME_LF_COUNT; i++) {
+ AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i],
+ DELTA_LF_PROBS + 1);
+ }
+ AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7,
+ CDF_SIZE(TX_TYPES));
+ AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5,
+ CDF_SIZE(TX_TYPES));
+ AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16,
+ CDF_SIZE(TX_TYPES));
+ AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12,
+ CDF_SIZE(TX_TYPES));
+ AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2,
+ CDF_SIZE(TX_TYPES));
+ AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS);
+ AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf,
+ CFL_ALPHABET_SIZE);
+}
+
+// Check neighbor blocks' motion information.
+static int check_neighbor_blocks(MB_MODE_INFO **mi, int mi_stride,
+ const TileInfo *const tile_info, int mi_row,
+ int mi_col) {
+ int is_above_low_motion = 1;
+ int is_left_low_motion = 1;
+ const int thr = 24;
+
+ // Check above block.
+ if (mi_row > tile_info->mi_row_start) {
+ const MB_MODE_INFO *above_mbmi = mi[-mi_stride];
+ const int_mv above_mv = above_mbmi->mv[0];
+ if (above_mbmi->mode >= INTRA_MODE_END &&
+ (abs(above_mv.as_mv.row) > thr || abs(above_mv.as_mv.col) > thr))
+ is_above_low_motion = 0;
+ }
+
+ // Check left block.
+ if (mi_col > tile_info->mi_col_start) {
+ const MB_MODE_INFO *left_mbmi = mi[-1];
+ const int_mv left_mv = left_mbmi->mv[0];
+ if (left_mbmi->mode >= INTRA_MODE_END &&
+ (abs(left_mv.as_mv.row) > thr || abs(left_mv.as_mv.col) > thr))
+ is_left_low_motion = 0;
+ }
+
+ return (is_above_low_motion && is_left_low_motion);
+}
+
+// Check this block's motion in a fast way.
+static int fast_detect_non_zero_motion(AV1_COMP *cpi, const uint8_t *src_y,
+ int src_ystride,
+ const uint8_t *last_src_y,
+ int last_src_ystride, int mi_row,
+ int mi_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ const BLOCK_SIZE bsize = cm->seq_params->sb_size;
+ unsigned int blk_sad = INT_MAX;
+ if (cpi->src_sad_blk_64x64 != NULL) {
+ const int sb_size_by_mb = (bsize == BLOCK_128X128)
+ ? (cm->seq_params->mib_size >> 1)
+ : cm->seq_params->mib_size;
+ const int sb_cols =
+ (cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb;
+ const int sbi_col = mi_col / sb_size_by_mb;
+ const int sbi_row = mi_row / sb_size_by_mb;
+ blk_sad = (unsigned int)cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols];
+ } else {
+ blk_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
+ last_src_ystride);
+ }
+
+ // Search 4 1-away points.
+ const uint8_t *const search_pos[4] = {
+ last_src_y - last_src_ystride,
+ last_src_y - 1,
+ last_src_y + 1,
+ last_src_y + last_src_ystride,
+ };
+ unsigned int sad_arr[4];
+ cpi->ppi->fn_ptr[bsize].sdx4df(src_y, src_ystride, search_pos,
+ last_src_ystride, sad_arr);
+
+ blk_sad = (blk_sad * 5) >> 3;
+ return (blk_sad < sad_arr[0] && blk_sad < sad_arr[1] &&
+ blk_sad < sad_arr[2] && blk_sad < sad_arr[3]);
+}
+
+// Grade the temporal variation of the source by comparing the current sb and
+// its collocated block in the last frame.
+void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data,
+ int mi_row, int mi_col) {
+ if (cpi->last_source->y_width != cpi->source->y_width ||
+ cpi->last_source->y_height != cpi->source->y_height)
+ return;
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) return;
+#endif
+
+ unsigned int tmp_sse;
+ unsigned int tmp_variance;
+ const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size;
+ uint8_t *src_y = cpi->source->y_buffer;
+ const int src_ystride = cpi->source->y_stride;
+ const int src_offset = src_ystride * (mi_row << 2) + (mi_col << 2);
+ uint8_t *last_src_y = cpi->last_source->y_buffer;
+ const int last_src_ystride = cpi->last_source->y_stride;
+ const int last_src_offset = last_src_ystride * (mi_row << 2) + (mi_col << 2);
+ uint64_t avg_source_sse_threshold_verylow = 10000; // ~1.5*1.5*(64*64)
+ uint64_t avg_source_sse_threshold_low[2] = { 100000, // ~5*5*(64*64)
+ 36000 }; // ~3*3*(64*64)
+
+ uint64_t avg_source_sse_threshold_high = 1000000; // ~15*15*(64*64)
+ if (cpi->sf.rt_sf.increase_source_sad_thresh) {
+ avg_source_sse_threshold_high = avg_source_sse_threshold_high << 1;
+ avg_source_sse_threshold_low[0] = avg_source_sse_threshold_low[0] << 1;
+ avg_source_sse_threshold_verylow = avg_source_sse_threshold_verylow << 1;
+ }
+ uint64_t sum_sq_thresh = 10000; // sum = sqrt(thresh / 64*64)) ~1.5
+ src_y += src_offset;
+ last_src_y += last_src_offset;
+ tmp_variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y,
+ last_src_ystride, &tmp_sse);
+ // rd thresholds
+ if (tmp_sse < avg_source_sse_threshold_low[1])
+ x->content_state_sb.source_sad_rd = kLowSad;
+
+ // nonrd thresholds
+ if (tmp_sse == 0) {
+ x->content_state_sb.source_sad_nonrd = kZeroSad;
+ return;
+ }
+ if (tmp_sse < avg_source_sse_threshold_verylow)
+ x->content_state_sb.source_sad_nonrd = kVeryLowSad;
+ else if (tmp_sse < avg_source_sse_threshold_low[0])
+ x->content_state_sb.source_sad_nonrd = kLowSad;
+ else if (tmp_sse > avg_source_sse_threshold_high)
+ x->content_state_sb.source_sad_nonrd = kHighSad;
+
+ // Detect large lighting change.
+ // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
+ if (tmp_variance < (tmp_sse >> 1) && (tmp_sse - tmp_variance) > sum_sq_thresh)
+ x->content_state_sb.lighting_change = 1;
+ if ((tmp_sse - tmp_variance) < (sum_sq_thresh >> 1))
+ x->content_state_sb.low_sumdiff = 1;
+
+ if (!cpi->sf.rt_sf.use_rtc_tf || cpi->rc.high_source_sad ||
+ cpi->rc.frame_source_sad > 20000 || cpi->svc.number_spatial_layers > 1)
+ return;
+
+ // In-place temporal filter. If psnr calculation is enabled, we store the
+ // source for that.
+ AV1_COMMON *const cm = &cpi->common;
+ // Calculate n*mean^2
+ const unsigned int nmean2 = tmp_sse - tmp_variance;
+ const int ac_q_step = av1_ac_quant_QTX(cm->quant_params.base_qindex, 0,
+ cm->seq_params->bit_depth);
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const int avg_q_step = av1_ac_quant_QTX(p_rc->avg_frame_qindex[INTER_FRAME],
+ 0, cm->seq_params->bit_depth);
+
+ const unsigned int threshold =
+ (cpi->sf.rt_sf.use_rtc_tf == 1)
+ ? (clamp(avg_q_step, 250, 1000)) * ac_q_step
+ : 250 * ac_q_step;
+
+ // TODO(yunqing): use a weighted sum instead of averaging in filtering.
+ if (tmp_variance <= threshold && nmean2 <= 15) {
+ // Check neighbor blocks. If neighbor blocks aren't low-motion blocks,
+ // skip temporal filtering for this block.
+ MB_MODE_INFO **mi = cm->mi_params.mi_grid_base +
+ get_mi_grid_idx(&cm->mi_params, mi_row, mi_col);
+ const TileInfo *const tile_info = &tile_data->tile_info;
+ const int is_neighbor_blocks_low_motion = check_neighbor_blocks(
+ mi, cm->mi_params.mi_stride, tile_info, mi_row, mi_col);
+ if (!is_neighbor_blocks_low_motion) return;
+
+ // Only consider 64x64 SB for now. Need to extend to 128x128 for large SB
+ // size.
+ // Test several nearby points. If non-zero mv exists, don't do temporal
+ // filtering.
+ const int is_this_blk_low_motion = fast_detect_non_zero_motion(
+ cpi, src_y, src_ystride, last_src_y, last_src_ystride, mi_row, mi_col);
+
+ if (!is_this_blk_low_motion) return;
+
+ const int shift_x[2] = { 0, cpi->source->subsampling_x };
+ const int shift_y[2] = { 0, cpi->source->subsampling_y };
+ const uint8_t h = block_size_high[bsize];
+ const uint8_t w = block_size_wide[bsize];
+
+ for (int plane = 0; plane < av1_num_planes(cm); ++plane) {
+ uint8_t *src = cpi->source->buffers[plane];
+ const int src_stride = cpi->source->strides[plane != 0];
+ uint8_t *last_src = cpi->last_source->buffers[plane];
+ const int last_src_stride = cpi->last_source->strides[plane != 0];
+ src += src_stride * (mi_row << (2 - shift_y[plane != 0])) +
+ (mi_col << (2 - shift_x[plane != 0]));
+ last_src += last_src_stride * (mi_row << (2 - shift_y[plane != 0])) +
+ (mi_col << (2 - shift_x[plane != 0]));
+
+ for (int i = 0; i < (h >> shift_y[plane != 0]); ++i) {
+ for (int j = 0; j < (w >> shift_x[plane != 0]); ++j) {
+ src[j] = (last_src[j] + src[j]) >> 1;
+ }
+ src += src_stride;
+ last_src += last_src_stride;
+ }
+ }
+ }
+}
+
+// Memset the mbmis at the current superblock to 0
+void av1_reset_mbmi(CommonModeInfoParams *const mi_params, BLOCK_SIZE sb_size,
+ int mi_row, int mi_col) {
+ // size of sb in unit of mi (BLOCK_4X4)
+ const int sb_size_mi = mi_size_wide[sb_size];
+ const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
+ // size of sb in unit of allocated mi size
+ const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d;
+ assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 &&
+ "mi is not allocated as a multiple of sb!");
+ assert(mi_params->mi_stride % sb_size_mi == 0 &&
+ "mi_grid_base is not allocated as a multiple of sb!");
+
+ const int mi_rows = mi_size_high[sb_size];
+ for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) {
+ assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) <
+ mi_params->mi_stride);
+ const int mi_grid_idx =
+ get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col);
+ const int alloc_mi_idx =
+ get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col);
+ memset(&mi_params->mi_grid_base[mi_grid_idx], 0,
+ sb_size_mi * sizeof(*mi_params->mi_grid_base));
+ memset(&mi_params->tx_type_map[mi_grid_idx], 0,
+ sb_size_mi * sizeof(*mi_params->tx_type_map));
+ if (cur_mi_row % mi_alloc_size_1d == 0) {
+ memset(&mi_params->mi_alloc[alloc_mi_idx], 0,
+ sb_size_alloc_mi * sizeof(*mi_params->mi_alloc));
+ }
+ }
+}
+
+void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi,
+ ThreadData *td, const TileDataEnc *tile_data,
+ int mi_row, int mi_col) {
+ MACROBLOCK *x = &td->mb;
+ MACROBLOCKD *xd = &x->e_mbd;
+ const TileInfo *tile_info = &tile_data->tile_info;
+
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
+
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+ av1_save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes);
+
+ sb_fp_stats->rd_count = td->rd_counts;
+ sb_fp_stats->split_count = x->txfm_search_info.txb_split_count;
+
+ sb_fp_stats->fc = *td->counts;
+
+ // Don't copy in row_mt case, otherwise run into data race. No behavior change
+ // in row_mt case.
+ if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
+ memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models,
+ sizeof(sb_fp_stats->inter_mode_rd_models));
+ }
+
+ memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact,
+ sizeof(sb_fp_stats->thresh_freq_fact));
+
+ const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
+ sb_fp_stats->current_qindex =
+ cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex;
+
+#if CONFIG_INTERNAL_STATS
+ memcpy(sb_fp_stats->mode_chosen_counts, cpi->mode_chosen_counts,
+ sizeof(sb_fp_stats->mode_chosen_counts));
+#endif // CONFIG_INTERNAL_STATS
+}
+
+void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi,
+ ThreadData *td, TileDataEnc *tile_data, int mi_row,
+ int mi_col) {
+ MACROBLOCK *x = &td->mb;
+
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
+
+ av1_restore_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size,
+ num_planes);
+
+ td->rd_counts = sb_fp_stats->rd_count;
+ x->txfm_search_info.txb_split_count = sb_fp_stats->split_count;
+
+ *td->counts = sb_fp_stats->fc;
+
+ if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
+ memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models,
+ sizeof(sb_fp_stats->inter_mode_rd_models));
+ }
+
+ memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact,
+ sizeof(sb_fp_stats->thresh_freq_fact));
+
+ const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
+ cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex =
+ sb_fp_stats->current_qindex;
+
+#if CONFIG_INTERNAL_STATS
+ memcpy(cpi->mode_chosen_counts, sb_fp_stats->mode_chosen_counts,
+ sizeof(sb_fp_stats->mode_chosen_counts));
+#endif // CONFIG_INTERNAL_STATS
+}
+
+/*! Checks whether to skip updating the entropy cost based on tile info.
+ *
+ * This function contains the common code used to skip the cost update of coeff,
+ * mode, mv and dv symbols.
+ */
+static int skip_cost_update(const SequenceHeader *seq_params,
+ const TileInfo *const tile_info, const int mi_row,
+ const int mi_col,
+ INTERNAL_COST_UPDATE_TYPE upd_level) {
+ if (upd_level == INTERNAL_COST_UPD_SB) return 0;
+ if (upd_level == INTERNAL_COST_UPD_OFF) return 1;
+
+ // upd_level is at most as frequent as each sb_row in a tile.
+ if (mi_col != tile_info->mi_col_start) return 1;
+
+ if (upd_level == INTERNAL_COST_UPD_SBROW_SET) {
+ const int mib_size_log2 = seq_params->mib_size_log2;
+ const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2;
+ const int sb_size = seq_params->mib_size * MI_SIZE;
+ const int tile_height =
+ (tile_info->mi_row_end - tile_info->mi_row_start) * MI_SIZE;
+ // When upd_level = INTERNAL_COST_UPD_SBROW_SET, the cost update happens
+ // once for 2, 4 sb rows for sb size 128, sb size 64 respectively. However,
+ // as the update will not be equally spaced in smaller resolutions making
+ // it equally spaced by calculating (mv_num_rows_cost_update) the number of
+ // rows after which the cost update should happen.
+ const int sb_size_update_freq_map[2] = { 2, 4 };
+ const int update_freq_sb_rows =
+ sb_size_update_freq_map[sb_size != MAX_SB_SIZE];
+ const int update_freq_num_rows = sb_size * update_freq_sb_rows;
+ // Round-up the division result to next integer.
+ const int num_updates_per_tile =
+ (tile_height + update_freq_num_rows - 1) / update_freq_num_rows;
+ const int num_rows_update_per_tile = num_updates_per_tile * sb_size;
+ // Round-up the division result to next integer.
+ const int num_sb_rows_per_update =
+ (tile_height + num_rows_update_per_tile - 1) / num_rows_update_per_tile;
+ if ((sb_row % num_sb_rows_per_update) != 0) return 1;
+ }
+ return 0;
+}
+
+// Checks for skip status of mv cost update.
+static int skip_mv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
+ const int mi_row, const int mi_col) {
+ const AV1_COMMON *cm = &cpi->common;
+ // For intra frames, mv cdfs are not updated during the encode. Hence, the mv
+ // cost calculation is skipped in this case.
+ if (frame_is_intra_only(cm)) return 1;
+
+ return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
+ cpi->sf.inter_sf.mv_cost_upd_level);
+}
+
+// Checks for skip status of dv cost update.
+static int skip_dv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
+ const int mi_row, const int mi_col) {
+ const AV1_COMMON *cm = &cpi->common;
+ // Intrabc is only applicable to intra frames. So skip if intrabc is not
+ // allowed.
+ if (!av1_allow_intrabc(cm) || is_stat_generation_stage(cpi)) {
+ return 1;
+ }
+
+ return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
+ cpi->sf.intra_sf.dv_cost_upd_level);
+}
+
+// Update the rate costs of some symbols according to the frequency directed
+// by speed features
+void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td,
+ const TileInfo *const tile_info, const int mi_row,
+ const int mi_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+
+ if (cm->features.disable_cdf_update) {
+ return;
+ }
+
+ switch (cpi->sf.inter_sf.coeff_cost_upd_level) {
+ case INTERNAL_COST_UPD_OFF:
+ case INTERNAL_COST_UPD_TILE: // Tile level
+ break;
+ case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile
+ case INTERNAL_COST_UPD_SBROW: // SB row level in tile
+ case INTERNAL_COST_UPD_SB: // SB level
+ if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
+ cpi->sf.inter_sf.coeff_cost_upd_level))
+ break;
+ av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes);
+ break;
+ default: assert(0);
+ }
+
+ switch (cpi->sf.inter_sf.mode_cost_upd_level) {
+ case INTERNAL_COST_UPD_OFF:
+ case INTERNAL_COST_UPD_TILE: // Tile level
+ break;
+ case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile
+ case INTERNAL_COST_UPD_SBROW: // SB row level in tile
+ case INTERNAL_COST_UPD_SB: // SB level
+ if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
+ cpi->sf.inter_sf.mode_cost_upd_level))
+ break;
+ av1_fill_mode_rates(cm, &x->mode_costs, xd->tile_ctx);
+ break;
+ default: assert(0);
+ }
+
+ switch (cpi->sf.inter_sf.mv_cost_upd_level) {
+ case INTERNAL_COST_UPD_OFF:
+ case INTERNAL_COST_UPD_TILE: // Tile level
+ break;
+ case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile
+ case INTERNAL_COST_UPD_SBROW: // SB row level in tile
+ case INTERNAL_COST_UPD_SB: // SB level
+ // Checks for skip status of mv cost update.
+ if (skip_mv_cost_update(cpi, tile_info, mi_row, mi_col)) break;
+ av1_fill_mv_costs(&xd->tile_ctx->nmvc,
+ cm->features.cur_frame_force_integer_mv,
+ cm->features.allow_high_precision_mv, x->mv_costs);
+ break;
+ default: assert(0);
+ }
+
+ switch (cpi->sf.intra_sf.dv_cost_upd_level) {
+ case INTERNAL_COST_UPD_OFF:
+ case INTERNAL_COST_UPD_TILE: // Tile level
+ break;
+ case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile
+ case INTERNAL_COST_UPD_SBROW: // SB row level in tile
+ case INTERNAL_COST_UPD_SB: // SB level
+ // Checks for skip status of dv cost update.
+ if (skip_dv_cost_update(cpi, tile_info, mi_row, mi_col)) break;
+ av1_fill_dv_costs(&xd->tile_ctx->ndvc, x->dv_costs);
+ break;
+ default: assert(0);
+ }
+}
+
+void av1_dealloc_src_diff_buf(struct macroblock *mb, int num_planes) {
+ for (int plane = 0; plane < num_planes; ++plane) {
+ aom_free(mb->plane[plane].src_diff);
+ mb->plane[plane].src_diff = NULL;
+ }
+}
+
+void av1_alloc_src_diff_buf(const struct AV1Common *cm, struct macroblock *mb) {
+ const int num_planes = av1_num_planes(cm);
+#ifndef NDEBUG
+ for (int plane = 0; plane < num_planes; ++plane) {
+ assert(!mb->plane[plane].src_diff);
+ }
+#endif
+ for (int plane = 0; plane < num_planes; ++plane) {
+ const int subsampling_xy =
+ plane ? cm->seq_params->subsampling_x + cm->seq_params->subsampling_y
+ : 0;
+ const int sb_size = MAX_SB_SQUARE >> subsampling_xy;
+ CHECK_MEM_ERROR(cm, mb->plane[plane].src_diff,
+ (int16_t *)aom_memalign(
+ 32, sizeof(*mb->plane[plane].src_diff) * sb_size));
+ }
+}