summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/ethread.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/ethread.c3469
1 files changed, 3469 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/ethread.c b/third_party/aom/av1/encoder/ethread.c
new file mode 100644
index 0000000000..d6a806d504
--- /dev/null
+++ b/third_party/aom/av1/encoder/ethread.c
@@ -0,0 +1,3469 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <stdbool.h>
+
+#include "av1/common/warped_motion.h"
+#include "av1/common/thread_common.h"
+
+#include "av1/encoder/allintra_vis.h"
+#include "av1/encoder/bitstream.h"
+#include "av1/encoder/encodeframe.h"
+#include "av1/encoder/encodeframe_utils.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/encoder_alloc.h"
+#include "av1/encoder/ethread.h"
+#if !CONFIG_REALTIME_ONLY
+#include "av1/encoder/firstpass.h"
+#endif
+#include "av1/encoder/global_motion.h"
+#include "av1/encoder/global_motion_facade.h"
+#include "av1/encoder/intra_mode_search_utils.h"
+#include "av1/encoder/picklpf.h"
+#include "av1/encoder/rdopt.h"
+#include "aom_dsp/aom_dsp_common.h"
+#include "av1/encoder/temporal_filter.h"
+#include "av1/encoder/tpl_model.h"
+
+static AOM_INLINE void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) {
+ td->rd_counts.compound_ref_used_flag |=
+ td_t->rd_counts.compound_ref_used_flag;
+ td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag;
+
+ for (int i = 0; i < TX_SIZES_ALL; i++) {
+ for (int j = 0; j < TX_TYPES; j++)
+ td->rd_counts.tx_type_used[i][j] += td_t->rd_counts.tx_type_used[i][j];
+ }
+
+ for (int i = 0; i < BLOCK_SIZES_ALL; i++) {
+ for (int j = 0; j < 2; j++) {
+ td->rd_counts.obmc_used[i][j] += td_t->rd_counts.obmc_used[i][j];
+ }
+ }
+
+ for (int i = 0; i < 2; i++) {
+ td->rd_counts.warped_used[i] += td_t->rd_counts.warped_used[i];
+ }
+
+ td->rd_counts.seg_tmp_pred_cost[0] += td_t->rd_counts.seg_tmp_pred_cost[0];
+ td->rd_counts.seg_tmp_pred_cost[1] += td_t->rd_counts.seg_tmp_pred_cost[1];
+
+ td->rd_counts.newmv_or_intra_blocks += td_t->rd_counts.newmv_or_intra_blocks;
+}
+
+static AOM_INLINE void update_delta_lf_for_row_mt(AV1_COMP *cpi) {
+ AV1_COMMON *cm = &cpi->common;
+ MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
+ const int mib_size = cm->seq_params->mib_size;
+ const int frame_lf_count =
+ av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
+ for (int row = 0; row < cm->tiles.rows; row++) {
+ for (int col = 0; col < cm->tiles.cols; col++) {
+ TileDataEnc *tile_data = &cpi->tile_data[row * cm->tiles.cols + col];
+ const TileInfo *const tile_info = &tile_data->tile_info;
+ for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
+ mi_row += mib_size) {
+ if (mi_row == tile_info->mi_row_start)
+ av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
+ for (int mi_col = tile_info->mi_col_start;
+ mi_col < tile_info->mi_col_end; mi_col += mib_size) {
+ const int idx_str = cm->mi_params.mi_stride * mi_row + mi_col;
+ MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + idx_str;
+ MB_MODE_INFO *mbmi = mi[0];
+ if (mbmi->skip_txfm == 1 &&
+ (mbmi->bsize == cm->seq_params->sb_size)) {
+ for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
+ mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
+ mbmi->delta_lf_from_base = xd->delta_lf_from_base;
+ } else {
+ if (cm->delta_q_info.delta_lf_multi) {
+ for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
+ xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
+ } else {
+ xd->delta_lf_from_base = mbmi->delta_lf_from_base;
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+void av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
+ int c) {
+ (void)row_mt_sync;
+ (void)r;
+ (void)c;
+}
+
+void av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
+ int c, int cols) {
+ (void)row_mt_sync;
+ (void)r;
+ (void)c;
+ (void)cols;
+}
+
+void av1_row_mt_sync_read(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c) {
+#if CONFIG_MULTITHREAD
+ const int nsync = row_mt_sync->sync_range;
+
+ if (r) {
+ pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1];
+ pthread_mutex_lock(mutex);
+
+ while (c > row_mt_sync->num_finished_cols[r - 1] - nsync -
+ row_mt_sync->intrabc_extra_top_right_sb_delay) {
+ pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex);
+ }
+ pthread_mutex_unlock(mutex);
+ }
+#else
+ (void)row_mt_sync;
+ (void)r;
+ (void)c;
+#endif // CONFIG_MULTITHREAD
+}
+
+void av1_row_mt_sync_write(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c,
+ int cols) {
+#if CONFIG_MULTITHREAD
+ const int nsync = row_mt_sync->sync_range;
+ int cur;
+ // Only signal when there are enough encoded blocks for next row to run.
+ int sig = 1;
+
+ if (c < cols - 1) {
+ cur = c;
+ if (c % nsync) sig = 0;
+ } else {
+ cur = cols + nsync + row_mt_sync->intrabc_extra_top_right_sb_delay;
+ }
+
+ if (sig) {
+ pthread_mutex_lock(&row_mt_sync->mutex_[r]);
+
+ // When a thread encounters an error, num_finished_cols[r] is set to maximum
+ // column number. In this case, the AOMMAX operation here ensures that
+ // num_finished_cols[r] is not overwritten with a smaller value thus
+ // preventing the infinite waiting of threads in the relevant sync_read()
+ // function.
+ row_mt_sync->num_finished_cols[r] =
+ AOMMAX(row_mt_sync->num_finished_cols[r], cur);
+
+ pthread_cond_signal(&row_mt_sync->cond_[r]);
+ pthread_mutex_unlock(&row_mt_sync->mutex_[r]);
+ }
+#else
+ (void)row_mt_sync;
+ (void)r;
+ (void)c;
+ (void)cols;
+#endif // CONFIG_MULTITHREAD
+}
+
+// Allocate memory for row synchronization
+static void row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync *row_mt_sync,
+ AV1_COMMON *cm, int rows) {
+#if CONFIG_MULTITHREAD
+ int i;
+
+ CHECK_MEM_ERROR(cm, row_mt_sync->mutex_,
+ aom_malloc(sizeof(*row_mt_sync->mutex_) * rows));
+ if (row_mt_sync->mutex_) {
+ for (i = 0; i < rows; ++i) {
+ pthread_mutex_init(&row_mt_sync->mutex_[i], NULL);
+ }
+ }
+
+ CHECK_MEM_ERROR(cm, row_mt_sync->cond_,
+ aom_malloc(sizeof(*row_mt_sync->cond_) * rows));
+ if (row_mt_sync->cond_) {
+ for (i = 0; i < rows; ++i) {
+ pthread_cond_init(&row_mt_sync->cond_[i], NULL);
+ }
+ }
+#endif // CONFIG_MULTITHREAD
+
+ CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols,
+ aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows));
+
+ row_mt_sync->rows = rows;
+ // Set up nsync.
+ row_mt_sync->sync_range = 1;
+}
+
+// Deallocate row based multi-threading synchronization related mutex and data
+void av1_row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) {
+ if (row_mt_sync != NULL) {
+#if CONFIG_MULTITHREAD
+ int i;
+
+ if (row_mt_sync->mutex_ != NULL) {
+ for (i = 0; i < row_mt_sync->rows; ++i) {
+ pthread_mutex_destroy(&row_mt_sync->mutex_[i]);
+ }
+ aom_free(row_mt_sync->mutex_);
+ }
+ if (row_mt_sync->cond_ != NULL) {
+ for (i = 0; i < row_mt_sync->rows; ++i) {
+ pthread_cond_destroy(&row_mt_sync->cond_[i]);
+ }
+ aom_free(row_mt_sync->cond_);
+ }
+#endif // CONFIG_MULTITHREAD
+ aom_free(row_mt_sync->num_finished_cols);
+
+ // clear the structure as the source of this call may be dynamic change
+ // in tiles in which case this call will be followed by an _alloc()
+ // which may fail.
+ av1_zero(*row_mt_sync);
+ }
+}
+
+static AOM_INLINE int get_sb_rows_in_frame(AV1_COMMON *cm) {
+ return CEIL_POWER_OF_TWO(cm->mi_params.mi_rows,
+ cm->seq_params->mib_size_log2);
+}
+
+static void row_mt_mem_alloc(AV1_COMP *cpi, int max_rows, int max_cols,
+ int alloc_row_ctx) {
+ struct AV1Common *cm = &cpi->common;
+ AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
+ const int tile_cols = cm->tiles.cols;
+ const int tile_rows = cm->tiles.rows;
+ int tile_col, tile_row;
+
+ av1_row_mt_mem_dealloc(cpi);
+
+ // Allocate memory for row based multi-threading
+ for (tile_row = 0; tile_row < tile_rows; tile_row++) {
+ for (tile_col = 0; tile_col < tile_cols; tile_col++) {
+ int tile_index = tile_row * tile_cols + tile_col;
+ TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
+
+ row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, max_rows);
+
+ if (alloc_row_ctx) {
+ assert(max_cols > 0);
+ const int num_row_ctx = AOMMAX(1, (max_cols - 1));
+ CHECK_MEM_ERROR(cm, this_tile->row_ctx,
+ (FRAME_CONTEXT *)aom_memalign(
+ 16, num_row_ctx * sizeof(*this_tile->row_ctx)));
+ }
+ }
+ }
+ const int sb_rows = get_sb_rows_in_frame(cm);
+ CHECK_MEM_ERROR(
+ cm, enc_row_mt->num_tile_cols_done,
+ aom_malloc(sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows));
+
+ enc_row_mt->allocated_rows = max_rows;
+ enc_row_mt->allocated_cols = max_cols - 1;
+ enc_row_mt->allocated_sb_rows = sb_rows;
+}
+
+void av1_row_mt_mem_dealloc(AV1_COMP *cpi) {
+ AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
+ const int tile_cols = enc_row_mt->allocated_tile_cols;
+ const int tile_rows = enc_row_mt->allocated_tile_rows;
+ int tile_col, tile_row;
+
+ // Free row based multi-threading sync memory
+ for (tile_row = 0; tile_row < tile_rows; tile_row++) {
+ for (tile_col = 0; tile_col < tile_cols; tile_col++) {
+ int tile_index = tile_row * tile_cols + tile_col;
+ TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
+
+ av1_row_mt_sync_mem_dealloc(&this_tile->row_mt_sync);
+
+ if (cpi->oxcf.algo_cfg.cdf_update_mode) {
+ aom_free(this_tile->row_ctx);
+ this_tile->row_ctx = NULL;
+ }
+ }
+ }
+ aom_free(enc_row_mt->num_tile_cols_done);
+ enc_row_mt->num_tile_cols_done = NULL;
+ enc_row_mt->allocated_rows = 0;
+ enc_row_mt->allocated_cols = 0;
+ enc_row_mt->allocated_sb_rows = 0;
+}
+
+static AOM_INLINE void assign_tile_to_thread(int *thread_id_to_tile_id,
+ int num_tiles, int num_workers) {
+ int tile_id = 0;
+ int i;
+
+ for (i = 0; i < num_workers; i++) {
+ thread_id_to_tile_id[i] = tile_id++;
+ if (tile_id == num_tiles) tile_id = 0;
+ }
+}
+
+static AOM_INLINE int get_next_job(TileDataEnc *const tile_data,
+ int *current_mi_row, int mib_size) {
+ AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
+ const int mi_row_end = tile_data->tile_info.mi_row_end;
+
+ if (row_mt_sync->next_mi_row < mi_row_end) {
+ *current_mi_row = row_mt_sync->next_mi_row;
+ row_mt_sync->num_threads_working++;
+ row_mt_sync->next_mi_row += mib_size;
+ return 1;
+ }
+ return 0;
+}
+
+static AOM_INLINE void switch_tile_and_get_next_job(
+ AV1_COMMON *const cm, TileDataEnc *const tile_data, int *cur_tile_id,
+ int *current_mi_row, int *end_of_frame, int is_firstpass,
+ const BLOCK_SIZE fp_block_size) {
+ const int tile_cols = cm->tiles.cols;
+ const int tile_rows = cm->tiles.rows;
+
+ int tile_id = -1; // Stores the tile ID with minimum proc done
+ int max_mis_to_encode = 0;
+ int min_num_threads_working = INT_MAX;
+
+ for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
+ for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
+ int tile_index = tile_row * tile_cols + tile_col;
+ TileDataEnc *const this_tile = &tile_data[tile_index];
+ AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
+
+#if CONFIG_REALTIME_ONLY
+ int num_b_rows_in_tile =
+ av1_get_sb_rows_in_tile(cm, &this_tile->tile_info);
+ int num_b_cols_in_tile =
+ av1_get_sb_cols_in_tile(cm, &this_tile->tile_info);
+#else
+ int num_b_rows_in_tile =
+ is_firstpass
+ ? av1_get_unit_rows_in_tile(&this_tile->tile_info, fp_block_size)
+ : av1_get_sb_rows_in_tile(cm, &this_tile->tile_info);
+ int num_b_cols_in_tile =
+ is_firstpass
+ ? av1_get_unit_cols_in_tile(&this_tile->tile_info, fp_block_size)
+ : av1_get_sb_cols_in_tile(cm, &this_tile->tile_info);
+#endif
+ int theoretical_limit_on_threads =
+ AOMMIN((num_b_cols_in_tile + 1) >> 1, num_b_rows_in_tile);
+ int num_threads_working = row_mt_sync->num_threads_working;
+
+ if (num_threads_working < theoretical_limit_on_threads) {
+ int num_mis_to_encode =
+ this_tile->tile_info.mi_row_end - row_mt_sync->next_mi_row;
+
+ // Tile to be processed by this thread is selected on the basis of
+ // availability of jobs:
+ // 1) If jobs are available, tile to be processed is chosen on the
+ // basis of minimum number of threads working for that tile. If two or
+ // more tiles have same number of threads working for them, then the
+ // tile with maximum number of jobs available will be chosen.
+ // 2) If no jobs are available, then end_of_frame is reached.
+ if (num_mis_to_encode > 0) {
+ if (num_threads_working < min_num_threads_working) {
+ min_num_threads_working = num_threads_working;
+ max_mis_to_encode = 0;
+ }
+ if (num_threads_working == min_num_threads_working &&
+ num_mis_to_encode > max_mis_to_encode) {
+ tile_id = tile_index;
+ max_mis_to_encode = num_mis_to_encode;
+ }
+ }
+ }
+ }
+ }
+ if (tile_id == -1) {
+ *end_of_frame = 1;
+ } else {
+ // Update the current tile id to the tile id that will be processed next,
+ // which will be the least processed tile.
+ *cur_tile_id = tile_id;
+ const int unit_height = mi_size_high[fp_block_size];
+ get_next_job(&tile_data[tile_id], current_mi_row,
+ is_firstpass ? unit_height : cm->seq_params->mib_size);
+ }
+}
+
+#if !CONFIG_REALTIME_ONLY
+static void set_firstpass_encode_done(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
+ const int tile_cols = cm->tiles.cols;
+ const int tile_rows = cm->tiles.rows;
+ const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
+ const int unit_height = mi_size_high[fp_block_size];
+
+ // In case of multithreading of firstpass encode, due to top-right
+ // dependency, the worker on a firstpass row waits for the completion of the
+ // firstpass processing of the top and top-right fp_blocks. Hence, in case a
+ // thread (main/worker) encounters an error, update the firstpass processing
+ // of every row in the frame to indicate that it is complete in order to avoid
+ // dependent workers waiting indefinitely.
+ for (int tile_row = 0; tile_row < tile_rows; ++tile_row) {
+ for (int tile_col = 0; tile_col < tile_cols; ++tile_col) {
+ TileDataEnc *const tile_data =
+ &cpi->tile_data[tile_row * tile_cols + tile_col];
+ TileInfo *tile = &tile_data->tile_info;
+ AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
+ const int unit_cols_in_tile =
+ av1_get_unit_cols_in_tile(tile, fp_block_size);
+ for (int mi_row = tile->mi_row_start, unit_row_in_tile = 0;
+ mi_row < tile->mi_row_end;
+ mi_row += unit_height, unit_row_in_tile++) {
+ enc_row_mt->sync_write_ptr(row_mt_sync, unit_row_in_tile,
+ unit_cols_in_tile - 1, unit_cols_in_tile);
+ }
+ }
+ }
+}
+
+static int fp_enc_row_mt_worker_hook(void *arg1, void *unused) {
+ EncWorkerData *const thread_data = (EncWorkerData *)arg1;
+ AV1_COMP *const cpi = thread_data->cpi;
+ int thread_id = thread_data->thread_id;
+ AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
+#endif
+ (void)unused;
+ struct aom_internal_error_info *const error_info = &thread_data->error_info;
+ MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
+ xd->error_info = error_info;
+
+ // The jmp_buf is valid only for the duration of the function that calls
+ // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
+ // before it returns.
+ if (setjmp(error_info->jmp)) {
+ error_info->setjmp = 0;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(enc_row_mt_mutex_);
+ enc_row_mt->firstpass_mt_exit = true;
+ pthread_mutex_unlock(enc_row_mt_mutex_);
+#endif
+ set_firstpass_encode_done(cpi);
+ return 0;
+ }
+ error_info->setjmp = 1;
+
+ AV1_COMMON *const cm = &cpi->common;
+ int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
+ assert(cur_tile_id != -1);
+
+ const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
+ const int unit_height = mi_size_high[fp_block_size];
+ int end_of_frame = 0;
+ while (1) {
+ int current_mi_row = -1;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(enc_row_mt_mutex_);
+#endif
+ bool firstpass_mt_exit = enc_row_mt->firstpass_mt_exit;
+ if (!firstpass_mt_exit && !get_next_job(&cpi->tile_data[cur_tile_id],
+ &current_mi_row, unit_height)) {
+ // No jobs are available for the current tile. Query for the status of
+ // other tiles and get the next job if available
+ switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
+ &current_mi_row, &end_of_frame, 1,
+ fp_block_size);
+ }
+#if CONFIG_MULTITHREAD
+ pthread_mutex_unlock(enc_row_mt_mutex_);
+#endif
+ // When firstpass_mt_exit is set to true, other workers need not pursue any
+ // further jobs.
+ if (firstpass_mt_exit || end_of_frame) break;
+
+ TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
+ AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
+ ThreadData *td = thread_data->td;
+
+ assert(current_mi_row != -1 &&
+ current_mi_row < this_tile->tile_info.mi_row_end);
+
+ const int unit_height_log2 = mi_size_high_log2[fp_block_size];
+ av1_first_pass_row(cpi, td, this_tile, current_mi_row >> unit_height_log2,
+ fp_block_size);
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(enc_row_mt_mutex_);
+#endif
+ row_mt_sync->num_threads_working--;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_unlock(enc_row_mt_mutex_);
+#endif
+ }
+ error_info->setjmp = 0;
+ return 1;
+}
+#endif
+
+static void launch_loop_filter_rows(AV1_COMMON *cm, EncWorkerData *thread_data,
+ AV1EncRowMultiThreadInfo *enc_row_mt,
+ int mib_size_log2) {
+ AV1LfSync *const lf_sync = (AV1LfSync *)thread_data->lf_sync;
+ const int sb_rows = get_sb_rows_in_frame(cm);
+ AV1LfMTInfo *cur_job_info;
+ bool row_mt_exit = false;
+ (void)enc_row_mt;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
+#endif
+
+ while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) {
+ LFWorkerData *const lf_data = (LFWorkerData *)thread_data->lf_data;
+ const int lpf_opt_level = cur_job_info->lpf_opt_level;
+ (void)sb_rows;
+#if CONFIG_MULTITHREAD
+ const int cur_sb_row = cur_job_info->mi_row >> mib_size_log2;
+ const int next_sb_row = AOMMIN(sb_rows - 1, cur_sb_row + 1);
+ // Wait for current and next superblock row to finish encoding.
+ pthread_mutex_lock(enc_row_mt_mutex_);
+ while (!enc_row_mt->row_mt_exit &&
+ (enc_row_mt->num_tile_cols_done[cur_sb_row] < cm->tiles.cols ||
+ enc_row_mt->num_tile_cols_done[next_sb_row] < cm->tiles.cols)) {
+ pthread_cond_wait(enc_row_mt->cond_, enc_row_mt_mutex_);
+ }
+ row_mt_exit = enc_row_mt->row_mt_exit;
+ pthread_mutex_unlock(enc_row_mt_mutex_);
+#endif
+ if (row_mt_exit) return;
+
+ av1_thread_loop_filter_rows(
+ lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd,
+ cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir,
+ lpf_opt_level, lf_sync, &thread_data->error_info, lf_data->params_buf,
+ lf_data->tx_buf, mib_size_log2);
+ }
+}
+
+static void set_encoding_done(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int tile_cols = cm->tiles.cols;
+ const int tile_rows = cm->tiles.rows;
+ AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
+ const int mib_size = cm->seq_params->mib_size;
+
+ // In case of row-multithreading, due to top-right dependency, the worker on
+ // an SB row waits for the completion of the encode of the top and top-right
+ // SBs. Hence, in case a thread (main/worker) encounters an error, update that
+ // encoding of every SB row in the frame is complete in order to avoid the
+ // dependent workers of every tile from waiting indefinitely.
+ for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
+ for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
+ TileDataEnc *const this_tile =
+ &cpi->tile_data[tile_row * tile_cols + tile_col];
+ const TileInfo *const tile_info = &this_tile->tile_info;
+ AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
+ const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
+ for (int mi_row = tile_info->mi_row_start, sb_row_in_tile = 0;
+ mi_row < tile_info->mi_row_end;
+ mi_row += mib_size, sb_row_in_tile++) {
+ enc_row_mt->sync_write_ptr(row_mt_sync, sb_row_in_tile,
+ sb_cols_in_tile - 1, sb_cols_in_tile);
+ }
+ }
+ }
+}
+
+static bool lpf_mt_with_enc_enabled(int pipeline_lpf_mt_with_enc,
+ const int filter_level[2]) {
+ return pipeline_lpf_mt_with_enc && (filter_level[0] || filter_level[1]);
+}
+
+static int enc_row_mt_worker_hook(void *arg1, void *unused) {
+ EncWorkerData *const thread_data = (EncWorkerData *)arg1;
+ AV1_COMP *const cpi = thread_data->cpi;
+ int thread_id = thread_data->thread_id;
+ AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
+#endif
+ (void)unused;
+
+ struct aom_internal_error_info *const error_info = &thread_data->error_info;
+ AV1LfSync *const lf_sync = thread_data->lf_sync;
+ MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
+ xd->error_info = error_info;
+ AV1_COMMON *volatile const cm = &cpi->common;
+ volatile const bool do_pipelined_lpf_mt_with_enc = lpf_mt_with_enc_enabled(
+ cpi->mt_info.pipeline_lpf_mt_with_enc, cm->lf.filter_level);
+
+ // The jmp_buf is valid only for the duration of the function that calls
+ // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
+ // before it returns.
+ if (setjmp(error_info->jmp)) {
+ error_info->setjmp = 0;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(enc_row_mt_mutex_);
+ enc_row_mt->row_mt_exit = true;
+ // Wake up all the workers waiting in launch_loop_filter_rows() to exit in
+ // case of an error.
+ pthread_cond_broadcast(enc_row_mt->cond_);
+ pthread_mutex_unlock(enc_row_mt_mutex_);
+#endif
+ set_encoding_done(cpi);
+
+ if (do_pipelined_lpf_mt_with_enc) {
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(lf_sync->job_mutex);
+ lf_sync->lf_mt_exit = true;
+ pthread_mutex_unlock(lf_sync->job_mutex);
+#endif
+ av1_set_vert_loop_filter_done(&cpi->common, lf_sync,
+ cpi->common.seq_params->mib_size_log2);
+ }
+ return 0;
+ }
+ error_info->setjmp = 1;
+
+ const int mib_size_log2 = cm->seq_params->mib_size_log2;
+ int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
+
+ // Preallocate the pc_tree for realtime coding to reduce the cost of memory
+ // allocation.
+ if (cpi->sf.rt_sf.use_nonrd_pick_mode) {
+ thread_data->td->pc_root = av1_alloc_pc_tree_node(cm->seq_params->sb_size);
+ if (!thread_data->td->pc_root)
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PC_TREE");
+ } else {
+ thread_data->td->pc_root = NULL;
+ }
+
+ assert(cur_tile_id != -1);
+
+ const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
+ int end_of_frame = 0;
+ bool row_mt_exit = false;
+
+ // When master thread does not have a valid job to process, xd->tile_ctx
+ // is not set and it contains NULL pointer. This can result in NULL pointer
+ // access violation if accessed beyond the encode stage. Hence, updating
+ // thread_data->td->mb.e_mbd.tile_ctx is initialized with common frame
+ // context to avoid NULL pointer access in subsequent stages.
+ thread_data->td->mb.e_mbd.tile_ctx = cm->fc;
+ while (1) {
+ int current_mi_row = -1;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(enc_row_mt_mutex_);
+#endif
+ row_mt_exit = enc_row_mt->row_mt_exit;
+ // row_mt_exit check here can be avoided as it is checked after
+ // sync_read_ptr() in encode_sb_row(). However, checking row_mt_exit here,
+ // tries to return before calling the function get_next_job().
+ if (!row_mt_exit &&
+ !get_next_job(&cpi->tile_data[cur_tile_id], &current_mi_row,
+ cm->seq_params->mib_size)) {
+ // No jobs are available for the current tile. Query for the status of
+ // other tiles and get the next job if available
+ switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
+ &current_mi_row, &end_of_frame, 0,
+ fp_block_size);
+ }
+#if CONFIG_MULTITHREAD
+ pthread_mutex_unlock(enc_row_mt_mutex_);
+#endif
+ // When row_mt_exit is set to true, other workers need not pursue any
+ // further jobs.
+ if (row_mt_exit) {
+ error_info->setjmp = 0;
+ return 1;
+ }
+
+ if (end_of_frame) break;
+
+ TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
+ AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
+ const TileInfo *const tile_info = &this_tile->tile_info;
+ const int tile_row = tile_info->tile_row;
+ const int tile_col = tile_info->tile_col;
+ ThreadData *td = thread_data->td;
+ const int sb_row = current_mi_row >> mib_size_log2;
+
+ assert(current_mi_row != -1 && current_mi_row <= tile_info->mi_row_end);
+
+ td->mb.e_mbd.tile_ctx = td->tctx;
+ td->mb.tile_pb_ctx = &this_tile->tctx;
+ td->abs_sum_level = 0;
+
+ if (this_tile->allow_update_cdf) {
+ td->mb.row_ctx = this_tile->row_ctx;
+ if (current_mi_row == tile_info->mi_row_start)
+ memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
+ } else {
+ memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
+ }
+
+ av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row,
+ &td->mb.e_mbd);
+
+ cfl_init(&td->mb.e_mbd.cfl, cm->seq_params);
+ if (td->mb.txfm_search_info.mb_rd_record != NULL) {
+ av1_crc32c_calculator_init(
+ &td->mb.txfm_search_info.mb_rd_record->crc_calculator);
+ }
+
+ av1_encode_sb_row(cpi, td, tile_row, tile_col, current_mi_row);
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(enc_row_mt_mutex_);
+#endif
+ this_tile->abs_sum_level += td->abs_sum_level;
+ row_mt_sync->num_threads_working--;
+ enc_row_mt->num_tile_cols_done[sb_row]++;
+#if CONFIG_MULTITHREAD
+ pthread_cond_broadcast(enc_row_mt->cond_);
+ pthread_mutex_unlock(enc_row_mt_mutex_);
+#endif
+ }
+ if (do_pipelined_lpf_mt_with_enc) {
+ // Loop-filter a superblock row if encoding of the current and next
+ // superblock row is complete.
+ // TODO(deepa.kg @ittiam.com) Evaluate encoder speed by interleaving
+ // encoding and loop filter stage.
+ launch_loop_filter_rows(cm, thread_data, enc_row_mt, mib_size_log2);
+ }
+ av1_free_pc_tree_recursive(thread_data->td->pc_root, av1_num_planes(cm), 0, 0,
+ cpi->sf.part_sf.partition_search_type);
+ thread_data->td->pc_root = NULL;
+ error_info->setjmp = 0;
+ return 1;
+}
+
+static int enc_worker_hook(void *arg1, void *unused) {
+ EncWorkerData *const thread_data = (EncWorkerData *)arg1;
+ AV1_COMP *const cpi = thread_data->cpi;
+ MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
+ struct aom_internal_error_info *const error_info = &thread_data->error_info;
+ const AV1_COMMON *const cm = &cpi->common;
+ const int tile_cols = cm->tiles.cols;
+ const int tile_rows = cm->tiles.rows;
+ int t;
+
+ (void)unused;
+
+ xd->error_info = error_info;
+
+ // The jmp_buf is valid only for the duration of the function that calls
+ // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
+ // before it returns.
+ if (setjmp(error_info->jmp)) {
+ error_info->setjmp = 0;
+ return 0;
+ }
+ error_info->setjmp = 1;
+
+ // Preallocate the pc_tree for realtime coding to reduce the cost of memory
+ // allocation.
+ if (cpi->sf.rt_sf.use_nonrd_pick_mode) {
+ thread_data->td->pc_root = av1_alloc_pc_tree_node(cm->seq_params->sb_size);
+ if (!thread_data->td->pc_root)
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PC_TREE");
+ } else {
+ thread_data->td->pc_root = NULL;
+ }
+
+ for (t = thread_data->start; t < tile_rows * tile_cols;
+ t += cpi->mt_info.num_workers) {
+ int tile_row = t / tile_cols;
+ int tile_col = t % tile_cols;
+
+ TileDataEnc *const this_tile =
+ &cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
+ thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
+ thread_data->td->mb.tile_pb_ctx = &this_tile->tctx;
+ av1_encode_tile(cpi, thread_data->td, tile_row, tile_col);
+ }
+
+ av1_free_pc_tree_recursive(thread_data->td->pc_root, av1_num_planes(cm), 0, 0,
+ cpi->sf.part_sf.partition_search_type);
+ thread_data->td->pc_root = NULL;
+ error_info->setjmp = 0;
+ return 1;
+}
+
+void av1_init_frame_mt(AV1_PRIMARY *ppi, AV1_COMP *cpi) {
+ cpi->mt_info.workers = ppi->p_mt_info.workers;
+ cpi->mt_info.num_workers = ppi->p_mt_info.num_workers;
+ cpi->mt_info.tile_thr_data = ppi->p_mt_info.tile_thr_data;
+ int i;
+ for (i = MOD_FP; i < NUM_MT_MODULES; i++) {
+ cpi->mt_info.num_mod_workers[i] =
+ AOMMIN(cpi->mt_info.num_workers, ppi->p_mt_info.num_mod_workers[i]);
+ }
+}
+
+void av1_init_cdef_worker(AV1_COMP *cpi) {
+ // The allocation is done only for level 0 parallel frames. No change
+ // in config is supported in the middle of a parallel encode set, since the
+ // rest of the MT modules also do not support dynamic change of config.
+ if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) return;
+ PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info;
+ int num_cdef_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_CDEF);
+
+ av1_alloc_cdef_buffers(&cpi->common, &p_mt_info->cdef_worker,
+ &cpi->mt_info.cdef_sync, num_cdef_workers, 1);
+ cpi->mt_info.cdef_worker = p_mt_info->cdef_worker;
+}
+
+#if !CONFIG_REALTIME_ONLY
+void av1_init_lr_mt_buffers(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ AV1LrSync *lr_sync = &cpi->mt_info.lr_row_sync;
+ if (lr_sync->sync_range) {
+ if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
+ return;
+ int num_lr_workers =
+ av1_get_num_mod_workers_for_alloc(&cpi->ppi->p_mt_info, MOD_LR);
+ assert(num_lr_workers <= lr_sync->num_workers);
+ lr_sync->lrworkerdata[num_lr_workers - 1].rst_tmpbuf = cm->rst_tmpbuf;
+ lr_sync->lrworkerdata[num_lr_workers - 1].rlbs = cm->rlbs;
+ }
+}
+#endif
+
+#if CONFIG_MULTITHREAD
+void av1_init_mt_sync(AV1_COMP *cpi, int is_first_pass) {
+ AV1_COMMON *const cm = &cpi->common;
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+
+ if (setjmp(cm->error->jmp)) {
+ cm->error->setjmp = 0;
+ aom_internal_error_copy(&cpi->ppi->error, cm->error);
+ }
+ cm->error->setjmp = 1;
+ // Initialize enc row MT object.
+ if (is_first_pass || cpi->oxcf.row_mt == 1) {
+ AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt;
+ if (enc_row_mt->mutex_ == NULL) {
+ CHECK_MEM_ERROR(cm, enc_row_mt->mutex_,
+ aom_malloc(sizeof(*(enc_row_mt->mutex_))));
+ if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL);
+ }
+ if (enc_row_mt->cond_ == NULL) {
+ CHECK_MEM_ERROR(cm, enc_row_mt->cond_,
+ aom_malloc(sizeof(*(enc_row_mt->cond_))));
+ if (enc_row_mt->cond_) pthread_cond_init(enc_row_mt->cond_, NULL);
+ }
+ }
+
+ if (!is_first_pass) {
+ // Initialize global motion MT object.
+ AV1GlobalMotionSync *gm_sync = &mt_info->gm_sync;
+ if (gm_sync->mutex_ == NULL) {
+ CHECK_MEM_ERROR(cm, gm_sync->mutex_,
+ aom_malloc(sizeof(*(gm_sync->mutex_))));
+ if (gm_sync->mutex_) pthread_mutex_init(gm_sync->mutex_, NULL);
+ }
+#if !CONFIG_REALTIME_ONLY
+ // Initialize temporal filtering MT object.
+ AV1TemporalFilterSync *tf_sync = &mt_info->tf_sync;
+ if (tf_sync->mutex_ == NULL) {
+ CHECK_MEM_ERROR(cm, tf_sync->mutex_,
+ aom_malloc(sizeof(*tf_sync->mutex_)));
+ if (tf_sync->mutex_) pthread_mutex_init(tf_sync->mutex_, NULL);
+ }
+#endif // !CONFIG_REALTIME_ONLY
+ // Initialize CDEF MT object.
+ AV1CdefSync *cdef_sync = &mt_info->cdef_sync;
+ if (cdef_sync->mutex_ == NULL) {
+ CHECK_MEM_ERROR(cm, cdef_sync->mutex_,
+ aom_malloc(sizeof(*(cdef_sync->mutex_))));
+ if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
+ }
+
+ // Initialize loop filter MT object.
+ AV1LfSync *lf_sync = &mt_info->lf_row_sync;
+ // Number of superblock rows
+ const int sb_rows =
+ CEIL_POWER_OF_TWO(cm->height >> MI_SIZE_LOG2, MAX_MIB_SIZE_LOG2);
+ PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info;
+ int num_lf_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LPF);
+
+ if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
+ num_lf_workers > lf_sync->num_workers) {
+ av1_loop_filter_dealloc(lf_sync);
+ av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_lf_workers);
+ }
+
+ // Initialize tpl MT object.
+ AV1TplRowMultiThreadInfo *tpl_row_mt = &mt_info->tpl_row_mt;
+ if (tpl_row_mt->mutex_ == NULL) {
+ CHECK_MEM_ERROR(cm, tpl_row_mt->mutex_,
+ aom_malloc(sizeof(*(tpl_row_mt->mutex_))));
+ if (tpl_row_mt->mutex_) pthread_mutex_init(tpl_row_mt->mutex_, NULL);
+ }
+
+#if !CONFIG_REALTIME_ONLY
+ if (is_restoration_used(cm)) {
+ // Initialize loop restoration MT object.
+ AV1LrSync *lr_sync = &mt_info->lr_row_sync;
+ int rst_unit_size = cpi->sf.lpf_sf.min_lr_unit_size;
+ int num_rows_lr = av1_lr_count_units(rst_unit_size, cm->height);
+ int num_lr_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LR);
+ if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows ||
+ num_lr_workers > lr_sync->num_workers ||
+ MAX_MB_PLANE > lr_sync->num_planes) {
+ av1_loop_restoration_dealloc(lr_sync);
+ av1_loop_restoration_alloc(lr_sync, cm, num_lr_workers, num_rows_lr,
+ MAX_MB_PLANE, cm->width);
+ }
+ }
+#endif
+
+ // Initialization of pack bitstream MT object.
+ AV1EncPackBSSync *pack_bs_sync = &mt_info->pack_bs_sync;
+ if (pack_bs_sync->mutex_ == NULL) {
+ CHECK_MEM_ERROR(cm, pack_bs_sync->mutex_,
+ aom_malloc(sizeof(*pack_bs_sync->mutex_)));
+ if (pack_bs_sync->mutex_) pthread_mutex_init(pack_bs_sync->mutex_, NULL);
+ }
+ }
+ cm->error->setjmp = 0;
+}
+#endif // CONFIG_MULTITHREAD
+
+// Computes the number of workers to be considered while allocating memory for a
+// multi-threaded module under FPMT.
+int av1_get_num_mod_workers_for_alloc(const PrimaryMultiThreadInfo *p_mt_info,
+ MULTI_THREADED_MODULES mod_name) {
+ int num_mod_workers = p_mt_info->num_mod_workers[mod_name];
+ if (p_mt_info->num_mod_workers[MOD_FRAME_ENC] > 1) {
+ // TODO(anyone): Change num_mod_workers to num_mod_workers[MOD_FRAME_ENC].
+ // As frame parallel jobs will only perform multi-threading for the encode
+ // stage, we can limit the allocations according to num_enc_workers per
+ // frame parallel encode(a.k.a num_mod_workers[MOD_FRAME_ENC]).
+ num_mod_workers = p_mt_info->num_workers;
+ }
+ return num_mod_workers;
+}
+
+void av1_init_tile_thread_data(AV1_PRIMARY *ppi, int is_first_pass) {
+ PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
+
+ assert(p_mt_info->workers != NULL);
+ assert(p_mt_info->tile_thr_data != NULL);
+
+ int num_workers = p_mt_info->num_workers;
+ int num_enc_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_ENC);
+ assert(num_enc_workers <= num_workers);
+ for (int i = num_workers - 1; i >= 0; i--) {
+ EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i];
+
+ if (i > 0) {
+ // Allocate thread data.
+ ThreadData *td;
+ AOM_CHECK_MEM_ERROR(&ppi->error, td, aom_memalign(32, sizeof(*td)));
+ av1_zero(*td);
+ thread_data->original_td = thread_data->td = td;
+
+ // Set up shared coeff buffers.
+ av1_setup_shared_coeff_buffer(&ppi->seq_params, &td->shared_coeff_buf,
+ &ppi->error);
+ AOM_CHECK_MEM_ERROR(&ppi->error, td->tmp_conv_dst,
+ aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
+ sizeof(*td->tmp_conv_dst)));
+
+ if (i < p_mt_info->num_mod_workers[MOD_FP]) {
+ // Set up firstpass PICK_MODE_CONTEXT.
+ td->firstpass_ctx =
+ av1_alloc_pmc(ppi->cpi, BLOCK_16X16, &td->shared_coeff_buf);
+ if (!td->firstpass_ctx)
+ aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ }
+
+ if (!is_first_pass && i < num_enc_workers) {
+ // Set up sms_tree.
+ if (av1_setup_sms_tree(ppi->cpi, td)) {
+ aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate SMS tree");
+ }
+
+ for (int x = 0; x < 2; x++)
+ for (int y = 0; y < 2; y++)
+ AOM_CHECK_MEM_ERROR(
+ &ppi->error, td->hash_value_buffer[x][y],
+ (uint32_t *)aom_malloc(AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
+ sizeof(*td->hash_value_buffer[0][0])));
+
+ // Allocate frame counters in thread data.
+ AOM_CHECK_MEM_ERROR(&ppi->error, td->counts,
+ aom_calloc(1, sizeof(*td->counts)));
+
+ // Allocate buffers used by palette coding mode.
+ AOM_CHECK_MEM_ERROR(&ppi->error, td->palette_buffer,
+ aom_memalign(16, sizeof(*td->palette_buffer)));
+
+ // The buffers 'tmp_pred_bufs[]', 'comp_rd_buffer' and 'obmc_buffer' are
+ // used in inter frames to store intermediate inter mode prediction
+ // results and are not required for allintra encoding mode. Hence, the
+ // memory allocations for these buffers are avoided for allintra
+ // encoding mode.
+ if (ppi->cpi->oxcf.kf_cfg.key_freq_max != 0) {
+ alloc_obmc_buffers(&td->obmc_buffer, &ppi->error);
+
+ alloc_compound_type_rd_buffers(&ppi->error, &td->comp_rd_buffer);
+
+ for (int j = 0; j < 2; ++j) {
+ AOM_CHECK_MEM_ERROR(
+ &ppi->error, td->tmp_pred_bufs[j],
+ aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
+ sizeof(*td->tmp_pred_bufs[j])));
+ }
+ }
+
+ if (is_gradient_caching_for_hog_enabled(ppi->cpi)) {
+ const int plane_types = PLANE_TYPES >> ppi->seq_params.monochrome;
+ AOM_CHECK_MEM_ERROR(&ppi->error, td->pixel_gradient_info,
+ aom_malloc(sizeof(*td->pixel_gradient_info) *
+ plane_types * MAX_SB_SQUARE));
+ }
+
+ if (is_src_var_for_4x4_sub_blocks_caching_enabled(ppi->cpi)) {
+ const BLOCK_SIZE sb_size = ppi->cpi->common.seq_params->sb_size;
+ const int mi_count_in_sb =
+ mi_size_wide[sb_size] * mi_size_high[sb_size];
+
+ AOM_CHECK_MEM_ERROR(
+ &ppi->error, td->src_var_info_of_4x4_sub_blocks,
+ aom_malloc(sizeof(*td->src_var_info_of_4x4_sub_blocks) *
+ mi_count_in_sb));
+ }
+
+ if (ppi->cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION) {
+ const int num_64x64_blocks =
+ (ppi->seq_params.sb_size == BLOCK_64X64) ? 1 : 4;
+ AOM_CHECK_MEM_ERROR(
+ &ppi->error, td->vt64x64,
+ aom_malloc(sizeof(*td->vt64x64) * num_64x64_blocks));
+ }
+ }
+ }
+
+ if (!is_first_pass && ppi->cpi->oxcf.row_mt == 1 && i < num_enc_workers) {
+ if (i == 0) {
+ for (int j = 0; j < ppi->num_fp_contexts; j++) {
+ AOM_CHECK_MEM_ERROR(&ppi->error, ppi->parallel_cpi[j]->td.tctx,
+ (FRAME_CONTEXT *)aom_memalign(
+ 16, sizeof(*ppi->parallel_cpi[j]->td.tctx)));
+ }
+ } else {
+ AOM_CHECK_MEM_ERROR(
+ &ppi->error, thread_data->td->tctx,
+ (FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx)));
+ }
+ }
+ }
+
+ // Record the number of workers in encode stage multi-threading for which
+ // allocation is done.
+ p_mt_info->prev_num_enc_workers = num_enc_workers;
+}
+
+void av1_create_workers(AV1_PRIMARY *ppi, int num_workers) {
+ PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
+ const AVxWorkerInterface *const winterface = aom_get_worker_interface();
+ assert(p_mt_info->num_workers == 0);
+
+ AOM_CHECK_MEM_ERROR(&ppi->error, p_mt_info->workers,
+ aom_malloc(num_workers * sizeof(*p_mt_info->workers)));
+
+ AOM_CHECK_MEM_ERROR(
+ &ppi->error, p_mt_info->tile_thr_data,
+ aom_calloc(num_workers, sizeof(*p_mt_info->tile_thr_data)));
+
+ for (int i = 0; i < num_workers; ++i) {
+ AVxWorker *const worker = &p_mt_info->workers[i];
+ EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i];
+
+ winterface->init(worker);
+ worker->thread_name = "aom enc worker";
+
+ thread_data->thread_id = i;
+ // Set the starting tile for each thread.
+ thread_data->start = i;
+
+ if (i > 0) {
+ // Create threads
+ if (!winterface->reset(worker))
+ aom_internal_error(&ppi->error, AOM_CODEC_ERROR,
+ "Tile encoder thread creation failed");
+ }
+ winterface->sync(worker);
+
+ ++p_mt_info->num_workers;
+ }
+}
+
+// This function will change the state and free the mutex of corresponding
+// workers and terminate the object. The object can not be re-used unless a call
+// to reset() is made.
+void av1_terminate_workers(AV1_PRIMARY *ppi) {
+ PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
+ for (int t = 0; t < p_mt_info->num_workers; ++t) {
+ AVxWorker *const worker = &p_mt_info->workers[t];
+ aom_get_worker_interface()->end(worker);
+ }
+}
+
+// This function returns 1 if frame parallel encode is supported for
+// the current configuration. Returns 0 otherwise.
+static AOM_INLINE int is_fpmt_config(AV1_PRIMARY *ppi, AV1EncoderConfig *oxcf) {
+ // FPMT is enabled for AOM_Q and AOM_VBR.
+ // TODO(Tarun): Test and enable resize config.
+ if (oxcf->rc_cfg.mode == AOM_CBR || oxcf->rc_cfg.mode == AOM_CQ) {
+ return 0;
+ }
+ if (ppi->use_svc) {
+ return 0;
+ }
+ if (oxcf->tile_cfg.enable_large_scale_tile) {
+ return 0;
+ }
+ if (oxcf->dec_model_cfg.timing_info_present) {
+ return 0;
+ }
+ if (oxcf->mode != GOOD) {
+ return 0;
+ }
+ if (oxcf->tool_cfg.error_resilient_mode) {
+ return 0;
+ }
+ if (oxcf->resize_cfg.resize_mode) {
+ return 0;
+ }
+ if (oxcf->pass != AOM_RC_SECOND_PASS) {
+ return 0;
+ }
+ if (oxcf->max_threads < 2) {
+ return 0;
+ }
+ if (!oxcf->fp_mt) {
+ return 0;
+ }
+
+ return 1;
+}
+
+int av1_check_fpmt_config(AV1_PRIMARY *const ppi,
+ AV1EncoderConfig *const oxcf) {
+ if (is_fpmt_config(ppi, oxcf)) return 1;
+ // Reset frame parallel configuration for unsupported config
+ if (ppi->num_fp_contexts > 1) {
+ for (int i = 1; i < ppi->num_fp_contexts; i++) {
+ // Release the previously-used frame-buffer
+ if (ppi->parallel_cpi[i]->common.cur_frame != NULL) {
+ --ppi->parallel_cpi[i]->common.cur_frame->ref_count;
+ ppi->parallel_cpi[i]->common.cur_frame = NULL;
+ }
+ }
+
+ int cur_gf_index = ppi->cpi->gf_frame_index;
+ int reset_size = AOMMAX(0, ppi->gf_group.size - cur_gf_index);
+ av1_zero_array(&ppi->gf_group.frame_parallel_level[cur_gf_index],
+ reset_size);
+ av1_zero_array(&ppi->gf_group.is_frame_non_ref[cur_gf_index], reset_size);
+ av1_zero_array(&ppi->gf_group.src_offset[cur_gf_index], reset_size);
+ memset(&ppi->gf_group.skip_frame_refresh[cur_gf_index][0], INVALID_IDX,
+ sizeof(ppi->gf_group.skip_frame_refresh[cur_gf_index][0]) *
+ reset_size * REF_FRAMES);
+ memset(&ppi->gf_group.skip_frame_as_ref[cur_gf_index], INVALID_IDX,
+ sizeof(ppi->gf_group.skip_frame_as_ref[cur_gf_index]) * reset_size);
+ ppi->num_fp_contexts = 1;
+ }
+ return 0;
+}
+
+// A large value for threads used to compute the max num_enc_workers
+// possible for each resolution.
+#define MAX_THREADS 100
+
+// Computes the max number of enc workers possible for each resolution.
+static AOM_INLINE int compute_max_num_enc_workers(
+ CommonModeInfoParams *const mi_params, int mib_size_log2) {
+ int num_sb_rows = CEIL_POWER_OF_TWO(mi_params->mi_rows, mib_size_log2);
+ int num_sb_cols = CEIL_POWER_OF_TWO(mi_params->mi_cols, mib_size_log2);
+
+ return AOMMIN((num_sb_cols + 1) >> 1, num_sb_rows);
+}
+
+// Computes the number of frame parallel(fp) contexts to be created
+// based on the number of max_enc_workers.
+int av1_compute_num_fp_contexts(AV1_PRIMARY *ppi, AV1EncoderConfig *oxcf) {
+ ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] = 0;
+ if (!av1_check_fpmt_config(ppi, oxcf)) {
+ return 1;
+ }
+ int max_num_enc_workers = compute_max_num_enc_workers(
+ &ppi->cpi->common.mi_params, ppi->cpi->common.seq_params->mib_size_log2);
+ // Scaling factors and rounding factors used to tune worker_per_frame
+ // computation.
+ int rounding_factor[2] = { 2, 4 };
+ int scaling_factor[2] = { 4, 8 };
+ int is_480p_or_lesser =
+ AOMMIN(oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height) <= 480;
+ int is_sb_64 = 0;
+ if (ppi->cpi != NULL)
+ is_sb_64 = ppi->cpi->common.seq_params->sb_size == BLOCK_64X64;
+ // A parallel frame encode has at least 1/4th the
+ // theoretical limit of max enc workers in default case. For resolutions
+ // larger than 480p, if SB size is 64x64, optimal performance is obtained with
+ // limit of 1/8.
+ int index = (!is_480p_or_lesser && is_sb_64) ? 1 : 0;
+ int workers_per_frame =
+ AOMMAX(1, (max_num_enc_workers + rounding_factor[index]) /
+ scaling_factor[index]);
+ int max_threads = oxcf->max_threads;
+ int num_fp_contexts = max_threads / workers_per_frame;
+ // Based on empirical results, FPMT gains with multi-tile are significant when
+ // more parallel frames are available. Use FPMT with multi-tile encode only
+ // when sufficient threads are available for parallel encode of
+ // MAX_PARALLEL_FRAMES frames.
+ if (oxcf->tile_cfg.tile_columns > 0 || oxcf->tile_cfg.tile_rows > 0) {
+ if (num_fp_contexts < MAX_PARALLEL_FRAMES) num_fp_contexts = 1;
+ }
+
+ num_fp_contexts = AOMMAX(1, AOMMIN(num_fp_contexts, MAX_PARALLEL_FRAMES));
+ // Limit recalculated num_fp_contexts to ppi->num_fp_contexts.
+ num_fp_contexts = (ppi->num_fp_contexts == 1)
+ ? num_fp_contexts
+ : AOMMIN(num_fp_contexts, ppi->num_fp_contexts);
+ if (num_fp_contexts > 1) {
+ ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] =
+ AOMMIN(max_num_enc_workers * num_fp_contexts, oxcf->max_threads);
+ }
+ return num_fp_contexts;
+}
+
+// Computes the number of workers to process each of the parallel frames.
+static AOM_INLINE int compute_num_workers_per_frame(
+ const int num_workers, const int parallel_frame_count) {
+ // Number of level 2 workers per frame context (floor division).
+ int workers_per_frame = (num_workers / parallel_frame_count);
+ return workers_per_frame;
+}
+
+static AOM_INLINE void restore_workers_after_fpmt(
+ AV1_PRIMARY *ppi, int parallel_frame_count, int num_fpmt_workers_prepared);
+
+// Prepare level 1 workers. This function is only called for
+// parallel_frame_count > 1. This function populates the mt_info structure of
+// frame level contexts appropriately by dividing the total number of available
+// workers amongst the frames as level 2 workers. It also populates the hook and
+// data members of level 1 workers.
+static AOM_INLINE void prepare_fpmt_workers(AV1_PRIMARY *ppi,
+ AV1_COMP_DATA *first_cpi_data,
+ AVxWorkerHook hook,
+ int parallel_frame_count) {
+ assert(parallel_frame_count <= ppi->num_fp_contexts &&
+ parallel_frame_count > 1);
+
+ PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
+ int num_workers = p_mt_info->num_workers;
+
+ volatile int frame_idx = 0;
+ volatile int i = 0;
+ while (i < num_workers) {
+ // Assign level 1 worker
+ AVxWorker *frame_worker = p_mt_info->p_workers[frame_idx] =
+ &p_mt_info->workers[i];
+ AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx];
+ MultiThreadInfo *mt_info = &cur_cpi->mt_info;
+ // This 'aom_internal_error_info' pointer is not derived from the local
+ // pointer ('AV1_COMMON *const cm') to silence the compiler warning
+ // "variable 'cm' might be clobbered by 'longjmp' or 'vfork' [-Wclobbered]".
+ struct aom_internal_error_info *const error = cur_cpi->common.error;
+
+ // The jmp_buf is valid only within the scope of the function that calls
+ // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
+ // before it returns.
+ if (setjmp(error->jmp)) {
+ error->setjmp = 0;
+ restore_workers_after_fpmt(ppi, parallel_frame_count, i);
+ aom_internal_error_copy(&ppi->error, error);
+ }
+ error->setjmp = 1;
+
+ AV1_COMMON *const cm = &cur_cpi->common;
+ // Assign start of level 2 worker pool
+ mt_info->workers = &p_mt_info->workers[i];
+ mt_info->tile_thr_data = &p_mt_info->tile_thr_data[i];
+ // Assign number of workers for each frame in the parallel encode set.
+ mt_info->num_workers = compute_num_workers_per_frame(
+ num_workers - i, parallel_frame_count - frame_idx);
+ for (int j = MOD_FP; j < NUM_MT_MODULES; j++) {
+ mt_info->num_mod_workers[j] =
+ AOMMIN(mt_info->num_workers, p_mt_info->num_mod_workers[j]);
+ }
+ if (p_mt_info->cdef_worker != NULL) {
+ mt_info->cdef_worker = &p_mt_info->cdef_worker[i];
+
+ // Back up the original cdef_worker pointers.
+ mt_info->restore_state_buf.cdef_srcbuf = mt_info->cdef_worker->srcbuf;
+ const int num_planes = av1_num_planes(cm);
+ for (int plane = 0; plane < num_planes; plane++)
+ mt_info->restore_state_buf.cdef_colbuf[plane] =
+ mt_info->cdef_worker->colbuf[plane];
+ }
+#if !CONFIG_REALTIME_ONLY
+ if (is_restoration_used(cm)) {
+ // Back up the original LR buffers before update.
+ int idx = i + mt_info->num_workers - 1;
+ assert(idx < mt_info->lr_row_sync.num_workers);
+ mt_info->restore_state_buf.rst_tmpbuf =
+ mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf;
+ mt_info->restore_state_buf.rlbs =
+ mt_info->lr_row_sync.lrworkerdata[idx].rlbs;
+
+ // Update LR buffers.
+ mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf = cm->rst_tmpbuf;
+ mt_info->lr_row_sync.lrworkerdata[idx].rlbs = cm->rlbs;
+ }
+#endif
+
+ i += mt_info->num_workers;
+
+ // At this stage, the thread specific CDEF buffers for the current frame's
+ // 'common' and 'cdef_sync' only need to be allocated. 'cdef_worker' has
+ // already been allocated across parallel frames.
+ av1_alloc_cdef_buffers(cm, &p_mt_info->cdef_worker, &mt_info->cdef_sync,
+ p_mt_info->num_workers, 0);
+
+ frame_worker->hook = hook;
+ frame_worker->data1 = cur_cpi;
+ frame_worker->data2 = (frame_idx == 0)
+ ? first_cpi_data
+ : &ppi->parallel_frames_data[frame_idx - 1];
+ frame_idx++;
+ error->setjmp = 0;
+ }
+ p_mt_info->p_num_workers = parallel_frame_count;
+}
+
+// Launch level 1 workers to perform frame parallel encode.
+static AOM_INLINE void launch_fpmt_workers(AV1_PRIMARY *ppi) {
+ const AVxWorkerInterface *const winterface = aom_get_worker_interface();
+ int num_workers = ppi->p_mt_info.p_num_workers;
+
+ for (int i = num_workers - 1; i >= 0; i--) {
+ AVxWorker *const worker = ppi->p_mt_info.p_workers[i];
+ if (i == 0)
+ winterface->execute(worker);
+ else
+ winterface->launch(worker);
+ }
+}
+
+// Restore worker states after parallel encode.
+static AOM_INLINE void restore_workers_after_fpmt(
+ AV1_PRIMARY *ppi, int parallel_frame_count, int num_fpmt_workers_prepared) {
+ assert(parallel_frame_count <= ppi->num_fp_contexts &&
+ parallel_frame_count > 1);
+ (void)parallel_frame_count;
+
+ PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
+
+ int frame_idx = 0;
+ int i = 0;
+ while (i < num_fpmt_workers_prepared) {
+ AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx];
+ MultiThreadInfo *mt_info = &cur_cpi->mt_info;
+ const AV1_COMMON *const cm = &cur_cpi->common;
+ const int num_planes = av1_num_planes(cm);
+
+ // Restore the original cdef_worker pointers.
+ if (p_mt_info->cdef_worker != NULL) {
+ mt_info->cdef_worker->srcbuf = mt_info->restore_state_buf.cdef_srcbuf;
+ for (int plane = 0; plane < num_planes; plane++)
+ mt_info->cdef_worker->colbuf[plane] =
+ mt_info->restore_state_buf.cdef_colbuf[plane];
+ }
+#if !CONFIG_REALTIME_ONLY
+ if (is_restoration_used(cm)) {
+ // Restore the original LR buffers.
+ int idx = i + mt_info->num_workers - 1;
+ assert(idx < mt_info->lr_row_sync.num_workers);
+ mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf =
+ mt_info->restore_state_buf.rst_tmpbuf;
+ mt_info->lr_row_sync.lrworkerdata[idx].rlbs =
+ mt_info->restore_state_buf.rlbs;
+ }
+#endif
+
+ frame_idx++;
+ i += mt_info->num_workers;
+ }
+}
+
+// Synchronize level 1 workers.
+static AOM_INLINE void sync_fpmt_workers(AV1_PRIMARY *ppi,
+ int frames_in_parallel_set) {
+ const AVxWorkerInterface *const winterface = aom_get_worker_interface();
+ int num_workers = ppi->p_mt_info.p_num_workers;
+ int had_error = 0;
+ // Points to error in the earliest display order frame in the parallel set.
+ const struct aom_internal_error_info *error;
+
+ // Encoding ends.
+ for (int i = num_workers - 1; i >= 0; --i) {
+ AVxWorker *const worker = ppi->p_mt_info.p_workers[i];
+ if (!winterface->sync(worker)) {
+ had_error = 1;
+ error = ppi->parallel_cpi[i]->common.error;
+ }
+ }
+
+ restore_workers_after_fpmt(ppi, frames_in_parallel_set,
+ ppi->p_mt_info.num_workers);
+
+ if (had_error) aom_internal_error_copy(&ppi->error, error);
+}
+
+static int get_compressed_data_hook(void *arg1, void *arg2) {
+ AV1_COMP *cpi = (AV1_COMP *)arg1;
+ AV1_COMP_DATA *cpi_data = (AV1_COMP_DATA *)arg2;
+ int status = av1_get_compressed_data(cpi, cpi_data);
+
+ // AOM_CODEC_OK(0) means no error.
+ return !status;
+}
+
+// This function encodes the raw frame data for each frame in parallel encode
+// set, and outputs the frame bit stream to the designated buffers.
+void av1_compress_parallel_frames(AV1_PRIMARY *const ppi,
+ AV1_COMP_DATA *const first_cpi_data) {
+ // Bitmask for the frame buffers referenced by cpi->scaled_ref_buf
+ // corresponding to frames in the current parallel encode set.
+ int ref_buffers_used_map = 0;
+ int frames_in_parallel_set = av1_init_parallel_frame_context(
+ first_cpi_data, ppi, &ref_buffers_used_map);
+ prepare_fpmt_workers(ppi, first_cpi_data, get_compressed_data_hook,
+ frames_in_parallel_set);
+ launch_fpmt_workers(ppi);
+ sync_fpmt_workers(ppi, frames_in_parallel_set);
+
+ // Release cpi->scaled_ref_buf corresponding to frames in the current parallel
+ // encode set.
+ for (int i = 0; i < frames_in_parallel_set; ++i) {
+ av1_release_scaled_references_fpmt(ppi->parallel_cpi[i]);
+ }
+ av1_decrement_ref_counts_fpmt(ppi->cpi->common.buffer_pool,
+ ref_buffers_used_map);
+}
+
+static AOM_INLINE void launch_workers(MultiThreadInfo *const mt_info,
+ int num_workers) {
+ const AVxWorkerInterface *const winterface = aom_get_worker_interface();
+ for (int i = num_workers - 1; i >= 0; i--) {
+ AVxWorker *const worker = &mt_info->workers[i];
+ worker->had_error = 0;
+ if (i == 0)
+ winterface->execute(worker);
+ else
+ winterface->launch(worker);
+ }
+}
+
+static AOM_INLINE void sync_enc_workers(MultiThreadInfo *const mt_info,
+ AV1_COMMON *const cm, int num_workers) {
+ const AVxWorkerInterface *const winterface = aom_get_worker_interface();
+ const AVxWorker *const worker_main = &mt_info->workers[0];
+ int had_error = worker_main->had_error;
+ struct aom_internal_error_info error_info;
+
+ // Read the error_info of main thread.
+ if (had_error) {
+ error_info = ((EncWorkerData *)worker_main->data1)->error_info;
+ }
+
+ // Encoding ends.
+ for (int i = num_workers - 1; i > 0; i--) {
+ AVxWorker *const worker = &mt_info->workers[i];
+ if (!winterface->sync(worker)) {
+ had_error = 1;
+ error_info = ((EncWorkerData *)worker->data1)->error_info;
+ }
+ }
+
+ if (had_error) aom_internal_error_copy(cm->error, &error_info);
+
+ // Restore xd->error_info of the main thread back to cm->error so that the
+ // multithreaded code, when executed using a single thread, has a valid
+ // xd->error_info.
+ MACROBLOCKD *const xd = &((EncWorkerData *)worker_main->data1)->td->mb.e_mbd;
+ xd->error_info = cm->error;
+}
+
+static AOM_INLINE void accumulate_counters_enc_workers(AV1_COMP *cpi,
+ int num_workers) {
+ for (int i = num_workers - 1; i >= 0; i--) {
+ AVxWorker *const worker = &cpi->mt_info.workers[i];
+ EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
+ cpi->intrabc_used |= thread_data->td->intrabc_used;
+ cpi->deltaq_used |= thread_data->td->deltaq_used;
+ // Accumulate rtc counters.
+ if (!frame_is_intra_only(&cpi->common))
+ av1_accumulate_rtc_counters(cpi, &thread_data->td->mb);
+ cpi->palette_pixel_num += thread_data->td->mb.palette_pixels;
+ if (thread_data->td != &cpi->td) {
+ // Keep these conditional expressions in sync with the corresponding ones
+ // in prepare_enc_workers().
+ if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
+ aom_free(thread_data->td->mv_costs_alloc);
+ thread_data->td->mv_costs_alloc = NULL;
+ }
+ if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
+ aom_free(thread_data->td->dv_costs_alloc);
+ thread_data->td->dv_costs_alloc = NULL;
+ }
+ }
+ av1_dealloc_mb_data(&thread_data->td->mb, av1_num_planes(&cpi->common));
+
+ // Accumulate counters.
+ if (i > 0) {
+ av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts);
+ accumulate_rd_opt(&cpi->td, thread_data->td);
+ cpi->td.mb.txfm_search_info.txb_split_count +=
+ thread_data->td->mb.txfm_search_info.txb_split_count;
+#if CONFIG_SPEED_STATS
+ cpi->td.mb.txfm_search_info.tx_search_count +=
+ thread_data->td->mb.txfm_search_info.tx_search_count;
+#endif // CONFIG_SPEED_STATS
+ }
+ }
+}
+
+static AOM_INLINE void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
+ int num_workers) {
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+ AV1_COMMON *const cm = &cpi->common;
+ for (int i = num_workers - 1; i >= 0; i--) {
+ AVxWorker *const worker = &mt_info->workers[i];
+ EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
+
+ worker->hook = hook;
+ worker->data1 = thread_data;
+ worker->data2 = NULL;
+
+ thread_data->thread_id = i;
+ // Set the starting tile for each thread.
+ thread_data->start = i;
+
+ thread_data->cpi = cpi;
+ if (i == 0) {
+ thread_data->td = &cpi->td;
+ } else {
+ thread_data->td = thread_data->original_td;
+ }
+
+ thread_data->td->intrabc_used = 0;
+ thread_data->td->deltaq_used = 0;
+ thread_data->td->abs_sum_level = 0;
+ thread_data->td->rd_counts.seg_tmp_pred_cost[0] = 0;
+ thread_data->td->rd_counts.seg_tmp_pred_cost[1] = 0;
+
+ // Before encoding a frame, copy the thread data from cpi.
+ if (thread_data->td != &cpi->td) {
+ thread_data->td->mb = cpi->td.mb;
+ thread_data->td->rd_counts = cpi->td.rd_counts;
+ thread_data->td->mb.obmc_buffer = thread_data->td->obmc_buffer;
+
+ for (int x = 0; x < 2; x++) {
+ for (int y = 0; y < 2; y++) {
+ memcpy(thread_data->td->hash_value_buffer[x][y],
+ cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y],
+ AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
+ sizeof(*thread_data->td->hash_value_buffer[0][0]));
+ thread_data->td->mb.intrabc_hash_info.hash_value_buffer[x][y] =
+ thread_data->td->hash_value_buffer[x][y];
+ }
+ }
+ // Keep these conditional expressions in sync with the corresponding ones
+ // in accumulate_counters_enc_workers().
+ if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
+ CHECK_MEM_ERROR(
+ cm, thread_data->td->mv_costs_alloc,
+ (MvCosts *)aom_malloc(sizeof(*thread_data->td->mv_costs_alloc)));
+ thread_data->td->mb.mv_costs = thread_data->td->mv_costs_alloc;
+ memcpy(thread_data->td->mb.mv_costs, cpi->td.mb.mv_costs,
+ sizeof(MvCosts));
+ }
+ if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
+ // Reset dv_costs to NULL for worker threads when dv cost update is
+ // enabled so that only dv_cost_upd_level needs to be checked before the
+ // aom_free() call for the same.
+ thread_data->td->mb.dv_costs = NULL;
+ if (av1_need_dv_costs(cpi)) {
+ CHECK_MEM_ERROR(cm, thread_data->td->dv_costs_alloc,
+ (IntraBCMVCosts *)aom_malloc(
+ sizeof(*thread_data->td->dv_costs_alloc)));
+ thread_data->td->mb.dv_costs = thread_data->td->dv_costs_alloc;
+ memcpy(thread_data->td->mb.dv_costs, cpi->td.mb.dv_costs,
+ sizeof(IntraBCMVCosts));
+ }
+ }
+ }
+ av1_alloc_mb_data(cpi, &thread_data->td->mb);
+
+ // Reset rtc counters.
+ av1_init_rtc_counters(&thread_data->td->mb);
+
+ thread_data->td->mb.palette_pixels = 0;
+
+ if (thread_data->td->counts != &cpi->counts) {
+ memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts));
+ }
+
+ if (i > 0) {
+ thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer;
+ thread_data->td->mb.comp_rd_buffer = thread_data->td->comp_rd_buffer;
+ thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
+ for (int j = 0; j < 2; ++j) {
+ thread_data->td->mb.tmp_pred_bufs[j] =
+ thread_data->td->tmp_pred_bufs[j];
+ }
+ thread_data->td->mb.pixel_gradient_info =
+ thread_data->td->pixel_gradient_info;
+
+ thread_data->td->mb.src_var_info_of_4x4_sub_blocks =
+ thread_data->td->src_var_info_of_4x4_sub_blocks;
+
+ thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
+ for (int j = 0; j < 2; ++j) {
+ thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] =
+ thread_data->td->mb.tmp_pred_bufs[j];
+ }
+ }
+ }
+}
+
+#if !CONFIG_REALTIME_ONLY
+static AOM_INLINE void fp_prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
+ int num_workers) {
+ AV1_COMMON *const cm = &cpi->common;
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+ for (int i = num_workers - 1; i >= 0; i--) {
+ AVxWorker *const worker = &mt_info->workers[i];
+ EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
+
+ worker->hook = hook;
+ worker->data1 = thread_data;
+ worker->data2 = NULL;
+
+ thread_data->thread_id = i;
+ // Set the starting tile for each thread.
+ thread_data->start = i;
+
+ thread_data->cpi = cpi;
+ if (i == 0) {
+ thread_data->td = &cpi->td;
+ } else {
+ thread_data->td = thread_data->original_td;
+ // Before encoding a frame, copy the thread data from cpi.
+ thread_data->td->mb = cpi->td.mb;
+ }
+ av1_alloc_src_diff_buf(cm, &thread_data->td->mb);
+ }
+}
+#endif
+
+// Computes the number of workers for row multi-threading of encoding stage
+static AOM_INLINE int compute_num_enc_row_mt_workers(const AV1_COMMON *cm,
+ int max_threads) {
+ TileInfo tile_info;
+ const int tile_cols = cm->tiles.cols;
+ const int tile_rows = cm->tiles.rows;
+ int total_num_threads_row_mt = 0;
+ for (int row = 0; row < tile_rows; row++) {
+ for (int col = 0; col < tile_cols; col++) {
+ av1_tile_init(&tile_info, cm, row, col);
+ const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, &tile_info);
+ const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, &tile_info);
+ total_num_threads_row_mt +=
+ AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile);
+ }
+ }
+ return AOMMIN(max_threads, total_num_threads_row_mt);
+}
+
+// Computes the number of workers for tile multi-threading of encoding stage
+static AOM_INLINE int compute_num_enc_tile_mt_workers(const AV1_COMMON *cm,
+ int max_threads) {
+ const int tile_cols = cm->tiles.cols;
+ const int tile_rows = cm->tiles.rows;
+ return AOMMIN(max_threads, tile_cols * tile_rows);
+}
+
+// Find max worker of all MT stages
+int av1_get_max_num_workers(const AV1_COMP *cpi) {
+ int max_num_workers = 0;
+ for (int i = MOD_FP; i < NUM_MT_MODULES; i++)
+ max_num_workers =
+ AOMMAX(cpi->ppi->p_mt_info.num_mod_workers[i], max_num_workers);
+ assert(max_num_workers >= 1);
+ return AOMMIN(max_num_workers, cpi->oxcf.max_threads);
+}
+
+// Computes the number of workers for encoding stage (row/tile multi-threading)
+int av1_compute_num_enc_workers(const AV1_COMP *cpi, int max_workers) {
+ if (max_workers <= 1) return 1;
+ if (cpi->oxcf.row_mt)
+ return compute_num_enc_row_mt_workers(&cpi->common, max_workers);
+ else
+ return compute_num_enc_tile_mt_workers(&cpi->common, max_workers);
+}
+
+void av1_encode_tiles_mt(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+ const int tile_cols = cm->tiles.cols;
+ const int tile_rows = cm->tiles.rows;
+ int num_workers = mt_info->num_mod_workers[MOD_ENC];
+
+ assert(IMPLIES(cpi->tile_data == NULL,
+ cpi->allocated_tiles < tile_cols * tile_rows));
+ if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi);
+
+ av1_init_tile_data(cpi);
+ num_workers = AOMMIN(num_workers, mt_info->num_workers);
+
+ prepare_enc_workers(cpi, enc_worker_hook, num_workers);
+ launch_workers(&cpi->mt_info, num_workers);
+ sync_enc_workers(&cpi->mt_info, cm, num_workers);
+ accumulate_counters_enc_workers(cpi, num_workers);
+}
+
+// Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int'
+// members, so we treat it as an array, and sum over the whole length.
+void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts,
+ const FRAME_COUNTS *counts) {
+ unsigned int *const acc = (unsigned int *)acc_counts;
+ const unsigned int *const cnt = (const unsigned int *)counts;
+
+ const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int);
+
+ for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i];
+}
+
+// Computes the maximum number of sb rows and sb_cols across tiles which are
+// used to allocate memory for multi-threaded encoding with row-mt=1.
+static AOM_INLINE void compute_max_sb_rows_cols(const AV1_COMMON *cm,
+ int *max_sb_rows_in_tile,
+ int *max_sb_cols_in_tile) {
+ const int tile_rows = cm->tiles.rows;
+ const int mib_size_log2 = cm->seq_params->mib_size_log2;
+ const int num_mi_rows = cm->mi_params.mi_rows;
+ const int *const row_start_sb = cm->tiles.row_start_sb;
+ for (int row = 0; row < tile_rows; row++) {
+ const int mi_row_start = row_start_sb[row] << mib_size_log2;
+ const int mi_row_end =
+ AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows);
+ const int num_sb_rows_in_tile =
+ CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, mib_size_log2);
+ *max_sb_rows_in_tile = AOMMAX(*max_sb_rows_in_tile, num_sb_rows_in_tile);
+ }
+
+ const int tile_cols = cm->tiles.cols;
+ const int num_mi_cols = cm->mi_params.mi_cols;
+ const int *const col_start_sb = cm->tiles.col_start_sb;
+ for (int col = 0; col < tile_cols; col++) {
+ const int mi_col_start = col_start_sb[col] << mib_size_log2;
+ const int mi_col_end =
+ AOMMIN(col_start_sb[col + 1] << mib_size_log2, num_mi_cols);
+ const int num_sb_cols_in_tile =
+ CEIL_POWER_OF_TWO(mi_col_end - mi_col_start, mib_size_log2);
+ *max_sb_cols_in_tile = AOMMAX(*max_sb_cols_in_tile, num_sb_cols_in_tile);
+ }
+}
+
+#if !CONFIG_REALTIME_ONLY
+// Computes the number of workers for firstpass stage (row/tile multi-threading)
+int av1_fp_compute_num_enc_workers(AV1_COMP *cpi) {
+ AV1_COMMON *cm = &cpi->common;
+ const int tile_cols = cm->tiles.cols;
+ const int tile_rows = cm->tiles.rows;
+ int total_num_threads_row_mt = 0;
+ TileInfo tile_info;
+
+ if (cpi->oxcf.max_threads <= 1) return 1;
+
+ for (int row = 0; row < tile_rows; row++) {
+ for (int col = 0; col < tile_cols; col++) {
+ av1_tile_init(&tile_info, cm, row, col);
+ const int num_mb_rows_in_tile =
+ av1_get_unit_rows_in_tile(&tile_info, cpi->fp_block_size);
+ const int num_mb_cols_in_tile =
+ av1_get_unit_cols_in_tile(&tile_info, cpi->fp_block_size);
+ total_num_threads_row_mt +=
+ AOMMIN((num_mb_cols_in_tile + 1) >> 1, num_mb_rows_in_tile);
+ }
+ }
+ return AOMMIN(cpi->oxcf.max_threads, total_num_threads_row_mt);
+}
+
+// Computes the maximum number of mb_rows for row multi-threading of firstpass
+// stage
+static AOM_INLINE int fp_compute_max_mb_rows(const AV1_COMMON *cm,
+ BLOCK_SIZE fp_block_size) {
+ const int tile_rows = cm->tiles.rows;
+ const int unit_height_log2 = mi_size_high_log2[fp_block_size];
+ const int mib_size_log2 = cm->seq_params->mib_size_log2;
+ const int num_mi_rows = cm->mi_params.mi_rows;
+ const int *const row_start_sb = cm->tiles.row_start_sb;
+ int max_mb_rows = 0;
+
+ for (int row = 0; row < tile_rows; row++) {
+ const int mi_row_start = row_start_sb[row] << mib_size_log2;
+ const int mi_row_end =
+ AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows);
+ const int num_mb_rows_in_tile =
+ CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, unit_height_log2);
+ max_mb_rows = AOMMAX(max_mb_rows, num_mb_rows_in_tile);
+ }
+ return max_mb_rows;
+}
+#endif
+
+static void lpf_pipeline_mt_init(AV1_COMP *cpi, int num_workers) {
+ // Pipelining of loop-filtering after encoding is enabled when loop-filter
+ // level is chosen based on quantizer and frame type. It is disabled in case
+ // of 'LOOPFILTER_SELECTIVELY' as the stats collected during encoding stage
+ // decides the filter level. Loop-filtering is disabled in case
+ // of non-reference frames and for frames with intra block copy tool enabled.
+ AV1_COMMON *cm = &cpi->common;
+ const int use_loopfilter = is_loopfilter_used(cm);
+ const int use_superres = av1_superres_scaled(cm);
+ const int use_cdef = is_cdef_used(cm);
+ const int use_restoration = is_restoration_used(cm);
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+ MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
+
+ const unsigned int skip_apply_postproc_filters =
+ derive_skip_apply_postproc_filters(cpi, use_loopfilter, use_cdef,
+ use_superres, use_restoration);
+ mt_info->pipeline_lpf_mt_with_enc =
+ (cpi->oxcf.mode == REALTIME) && (cpi->oxcf.speed >= 5) &&
+ (cpi->sf.lpf_sf.lpf_pick == LPF_PICK_FROM_Q) &&
+ (cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY) &&
+ !cpi->ppi->rtc_ref.non_reference_frame && !cm->features.allow_intrabc &&
+ ((skip_apply_postproc_filters & SKIP_APPLY_LOOPFILTER) == 0);
+
+ if (!mt_info->pipeline_lpf_mt_with_enc) return;
+
+ set_postproc_filter_default_params(cm);
+
+ if (!use_loopfilter) return;
+
+ const LPF_PICK_METHOD method = cpi->sf.lpf_sf.lpf_pick;
+ assert(method == LPF_PICK_FROM_Q);
+ assert(cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY);
+
+ av1_pick_filter_level(cpi->source, cpi, method);
+
+ struct loopfilter *lf = &cm->lf;
+ const int plane_start = 0;
+ const int plane_end = av1_num_planes(cm);
+ int planes_to_lf[MAX_MB_PLANE];
+ if (lpf_mt_with_enc_enabled(cpi->mt_info.pipeline_lpf_mt_with_enc,
+ lf->filter_level)) {
+ set_planes_to_loop_filter(lf, planes_to_lf, plane_start, plane_end);
+ int lpf_opt_level = get_lpf_opt_level(&cpi->sf);
+ assert(lpf_opt_level == 2);
+
+ const int start_mi_row = 0;
+ const int end_mi_row = start_mi_row + cm->mi_params.mi_rows;
+
+ av1_loop_filter_frame_init(cm, plane_start, plane_end);
+
+ assert(mt_info->num_mod_workers[MOD_ENC] ==
+ mt_info->num_mod_workers[MOD_LPF]);
+ loop_filter_frame_mt_init(cm, start_mi_row, end_mi_row, planes_to_lf,
+ mt_info->num_mod_workers[MOD_LPF],
+ &mt_info->lf_row_sync, lpf_opt_level,
+ cm->seq_params->mib_size_log2);
+
+ for (int i = num_workers - 1; i >= 0; i--) {
+ EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
+ // Initialize loopfilter data
+ thread_data->lf_sync = &mt_info->lf_row_sync;
+ thread_data->lf_data = &thread_data->lf_sync->lfdata[i];
+ loop_filter_data_reset(thread_data->lf_data, &cm->cur_frame->buf, cm, xd);
+ }
+ }
+}
+
+void av1_encode_tiles_row_mt(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+ AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
+ const int tile_cols = cm->tiles.cols;
+ const int tile_rows = cm->tiles.rows;
+ const int sb_rows_in_frame = get_sb_rows_in_frame(cm);
+ int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
+ int max_sb_rows_in_tile = 0, max_sb_cols_in_tile = 0;
+ int num_workers = mt_info->num_mod_workers[MOD_ENC];
+
+ compute_max_sb_rows_cols(cm, &max_sb_rows_in_tile, &max_sb_cols_in_tile);
+ const bool alloc_row_mt_mem =
+ (enc_row_mt->allocated_tile_cols != tile_cols ||
+ enc_row_mt->allocated_tile_rows != tile_rows ||
+ enc_row_mt->allocated_rows != max_sb_rows_in_tile ||
+ enc_row_mt->allocated_cols != (max_sb_cols_in_tile - 1) ||
+ enc_row_mt->allocated_sb_rows != sb_rows_in_frame);
+ const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows;
+
+ assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data));
+ if (alloc_tile_data) {
+ av1_alloc_tile_data(cpi);
+ }
+
+ assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem));
+ if (alloc_row_mt_mem) {
+ row_mt_mem_alloc(cpi, max_sb_rows_in_tile, max_sb_cols_in_tile,
+ cpi->oxcf.algo_cfg.cdf_update_mode);
+ }
+
+ num_workers = AOMMIN(num_workers, mt_info->num_workers);
+ lpf_pipeline_mt_init(cpi, num_workers);
+
+ av1_init_tile_data(cpi);
+
+ memset(thread_id_to_tile_id, -1,
+ sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
+ memset(enc_row_mt->num_tile_cols_done, 0,
+ sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows_in_frame);
+ enc_row_mt->row_mt_exit = false;
+
+ for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
+ for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
+ int tile_index = tile_row * tile_cols + tile_col;
+ TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
+ AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
+
+ // Initialize num_finished_cols to -1 for all rows.
+ memset(row_mt_sync->num_finished_cols, -1,
+ sizeof(*row_mt_sync->num_finished_cols) * max_sb_rows_in_tile);
+ row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
+ row_mt_sync->num_threads_working = 0;
+ row_mt_sync->intrabc_extra_top_right_sb_delay =
+ av1_get_intrabc_extra_top_right_sb_delay(cm);
+
+ av1_inter_mode_data_init(this_tile);
+ av1_zero_above_context(cm, &cpi->td.mb.e_mbd,
+ this_tile->tile_info.mi_col_start,
+ this_tile->tile_info.mi_col_end, tile_row);
+ }
+ }
+
+ assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
+ num_workers);
+ prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers);
+ launch_workers(&cpi->mt_info, num_workers);
+ sync_enc_workers(&cpi->mt_info, cm, num_workers);
+ if (cm->delta_q_info.delta_lf_present_flag) update_delta_lf_for_row_mt(cpi);
+ accumulate_counters_enc_workers(cpi, num_workers);
+}
+
+#if !CONFIG_REALTIME_ONLY
+static void dealloc_thread_data_src_diff_buf(AV1_COMP *cpi, int num_workers) {
+ for (int i = num_workers - 1; i >= 0; --i) {
+ EncWorkerData *const thread_data = &cpi->mt_info.tile_thr_data[i];
+ if (thread_data->td != &cpi->td)
+ av1_dealloc_src_diff_buf(&thread_data->td->mb,
+ av1_num_planes(&cpi->common));
+ }
+}
+
+void av1_fp_encode_tiles_row_mt(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+ AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
+ const int tile_cols = cm->tiles.cols;
+ const int tile_rows = cm->tiles.rows;
+ int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
+ int num_workers = 0;
+ int max_mb_rows = 0;
+
+ max_mb_rows = fp_compute_max_mb_rows(cm, cpi->fp_block_size);
+ const bool alloc_row_mt_mem = enc_row_mt->allocated_tile_cols != tile_cols ||
+ enc_row_mt->allocated_tile_rows != tile_rows ||
+ enc_row_mt->allocated_rows != max_mb_rows;
+ const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows;
+
+ assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data));
+ if (alloc_tile_data) {
+ av1_alloc_tile_data(cpi);
+ }
+
+ assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem));
+ if (alloc_row_mt_mem) {
+ row_mt_mem_alloc(cpi, max_mb_rows, -1, 0);
+ }
+
+ av1_init_tile_data(cpi);
+
+ // For pass = 1, compute the no. of workers needed. For single-pass encode
+ // (pass = 0), no. of workers are already computed.
+ if (mt_info->num_mod_workers[MOD_FP] == 0)
+ num_workers = av1_fp_compute_num_enc_workers(cpi);
+ else
+ num_workers = mt_info->num_mod_workers[MOD_FP];
+
+ memset(thread_id_to_tile_id, -1,
+ sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
+ enc_row_mt->firstpass_mt_exit = false;
+
+ for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
+ for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
+ int tile_index = tile_row * tile_cols + tile_col;
+ TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
+ AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
+
+ // Initialize num_finished_cols to -1 for all rows.
+ memset(row_mt_sync->num_finished_cols, -1,
+ sizeof(*row_mt_sync->num_finished_cols) * max_mb_rows);
+ row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
+ row_mt_sync->num_threads_working = 0;
+
+ // intraBC mode is not evaluated during first-pass encoding. Hence, no
+ // additional top-right delay is required.
+ row_mt_sync->intrabc_extra_top_right_sb_delay = 0;
+ }
+ }
+
+ num_workers = AOMMIN(num_workers, mt_info->num_workers);
+ assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
+ num_workers);
+ fp_prepare_enc_workers(cpi, fp_enc_row_mt_worker_hook, num_workers);
+ launch_workers(&cpi->mt_info, num_workers);
+ sync_enc_workers(&cpi->mt_info, cm, num_workers);
+ dealloc_thread_data_src_diff_buf(cpi, num_workers);
+}
+
+void av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
+ int r, int c) {
+ (void)tpl_mt_sync;
+ (void)r;
+ (void)c;
+}
+
+void av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
+ int r, int c, int cols) {
+ (void)tpl_mt_sync;
+ (void)r;
+ (void)c;
+ (void)cols;
+}
+
+void av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
+ int c) {
+#if CONFIG_MULTITHREAD
+ int nsync = tpl_row_mt_sync->sync_range;
+
+ if (r) {
+ pthread_mutex_t *const mutex = &tpl_row_mt_sync->mutex_[r - 1];
+ pthread_mutex_lock(mutex);
+
+ while (c > tpl_row_mt_sync->num_finished_cols[r - 1] - nsync)
+ pthread_cond_wait(&tpl_row_mt_sync->cond_[r - 1], mutex);
+ pthread_mutex_unlock(mutex);
+ }
+#else
+ (void)tpl_row_mt_sync;
+ (void)r;
+ (void)c;
+#endif // CONFIG_MULTITHREAD
+}
+
+void av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
+ int c, int cols) {
+#if CONFIG_MULTITHREAD
+ int nsync = tpl_row_mt_sync->sync_range;
+ int cur;
+ // Only signal when there are enough encoded blocks for next row to run.
+ int sig = 1;
+
+ if (c < cols - 1) {
+ cur = c;
+ if (c % nsync) sig = 0;
+ } else {
+ cur = cols + nsync;
+ }
+
+ if (sig) {
+ pthread_mutex_lock(&tpl_row_mt_sync->mutex_[r]);
+
+ // When a thread encounters an error, num_finished_cols[r] is set to maximum
+ // column number. In this case, the AOMMAX operation here ensures that
+ // num_finished_cols[r] is not overwritten with a smaller value thus
+ // preventing the infinite waiting of threads in the relevant sync_read()
+ // function.
+ tpl_row_mt_sync->num_finished_cols[r] =
+ AOMMAX(tpl_row_mt_sync->num_finished_cols[r], cur);
+
+ pthread_cond_signal(&tpl_row_mt_sync->cond_[r]);
+ pthread_mutex_unlock(&tpl_row_mt_sync->mutex_[r]);
+ }
+#else
+ (void)tpl_row_mt_sync;
+ (void)r;
+ (void)c;
+ (void)cols;
+#endif // CONFIG_MULTITHREAD
+}
+
+static AOM_INLINE void set_mode_estimation_done(AV1_COMP *cpi) {
+ const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
+ TplParams *const tpl_data = &cpi->ppi->tpl_data;
+ const BLOCK_SIZE bsize =
+ convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
+ const int mi_height = mi_size_high[bsize];
+ AV1TplRowMultiThreadInfo *const tpl_row_mt = &cpi->mt_info.tpl_row_mt;
+ const int tplb_cols_in_tile =
+ ROUND_POWER_OF_TWO(mi_params->mi_cols, mi_size_wide_log2[bsize]);
+ // In case of tpl row-multithreading, due to top-right dependency, the worker
+ // on an mb_row waits for the completion of the tpl processing of the top and
+ // top-right blocks. Hence, in case a thread (main/worker) encounters an
+ // error, update that the tpl processing of every mb_row in the frame is
+ // complete in order to avoid dependent workers waiting indefinitely.
+ for (int mi_row = 0, tplb_row = 0; mi_row < mi_params->mi_rows;
+ mi_row += mi_height, tplb_row++) {
+ (*tpl_row_mt->sync_write_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
+ tplb_cols_in_tile - 1, tplb_cols_in_tile);
+ }
+}
+
+// Each worker calls tpl_worker_hook() and computes the tpl data.
+static int tpl_worker_hook(void *arg1, void *unused) {
+ (void)unused;
+ EncWorkerData *thread_data = (EncWorkerData *)arg1;
+ AV1_COMP *cpi = thread_data->cpi;
+ AV1_COMMON *cm = &cpi->common;
+ MACROBLOCK *x = &thread_data->td->mb;
+ MACROBLOCKD *xd = &x->e_mbd;
+ TplTxfmStats *tpl_txfm_stats = &thread_data->td->tpl_txfm_stats;
+ TplBuffers *tpl_tmp_buffers = &thread_data->td->tpl_tmp_buffers;
+ CommonModeInfoParams *mi_params = &cm->mi_params;
+ int num_active_workers = cpi->ppi->tpl_data.tpl_mt_sync.num_threads_working;
+
+ struct aom_internal_error_info *const error_info = &thread_data->error_info;
+ xd->error_info = error_info;
+ AV1TplRowMultiThreadInfo *const tpl_row_mt = &cpi->mt_info.tpl_row_mt;
+ (void)tpl_row_mt;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_t *tpl_error_mutex_ = tpl_row_mt->mutex_;
+#endif
+
+ // The jmp_buf is valid only for the duration of the function that calls
+ // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
+ // before it returns.
+ if (setjmp(error_info->jmp)) {
+ error_info->setjmp = 0;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(tpl_error_mutex_);
+ tpl_row_mt->tpl_mt_exit = true;
+ pthread_mutex_unlock(tpl_error_mutex_);
+#endif
+ set_mode_estimation_done(cpi);
+ return 0;
+ }
+ error_info->setjmp = 1;
+
+ BLOCK_SIZE bsize = convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
+ TX_SIZE tx_size = max_txsize_lookup[bsize];
+ int mi_height = mi_size_high[bsize];
+
+ av1_init_tpl_txfm_stats(tpl_txfm_stats);
+
+ for (int mi_row = thread_data->start * mi_height; mi_row < mi_params->mi_rows;
+ mi_row += num_active_workers * mi_height) {
+ // Motion estimation row boundary
+ av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
+ cpi->oxcf.border_in_pixels);
+ xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
+ xd->mb_to_bottom_edge =
+ GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
+ av1_mc_flow_dispenser_row(cpi, tpl_txfm_stats, tpl_tmp_buffers, x, mi_row,
+ bsize, tx_size);
+ }
+ error_info->setjmp = 0;
+ return 1;
+}
+
+// Deallocate tpl synchronization related mutex and data.
+void av1_tpl_dealloc(AV1TplRowMultiThreadSync *tpl_sync) {
+ assert(tpl_sync != NULL);
+
+#if CONFIG_MULTITHREAD
+ if (tpl_sync->mutex_ != NULL) {
+ for (int i = 0; i < tpl_sync->rows; ++i)
+ pthread_mutex_destroy(&tpl_sync->mutex_[i]);
+ aom_free(tpl_sync->mutex_);
+ }
+ if (tpl_sync->cond_ != NULL) {
+ for (int i = 0; i < tpl_sync->rows; ++i)
+ pthread_cond_destroy(&tpl_sync->cond_[i]);
+ aom_free(tpl_sync->cond_);
+ }
+#endif // CONFIG_MULTITHREAD
+
+ aom_free(tpl_sync->num_finished_cols);
+ // clear the structure as the source of this call may be a resize in which
+ // case this call will be followed by an _alloc() which may fail.
+ av1_zero(*tpl_sync);
+}
+
+// Allocate memory for tpl row synchronization.
+void av1_tpl_alloc(AV1TplRowMultiThreadSync *tpl_sync, AV1_COMMON *cm,
+ int mb_rows) {
+ tpl_sync->rows = mb_rows;
+#if CONFIG_MULTITHREAD
+ {
+ CHECK_MEM_ERROR(cm, tpl_sync->mutex_,
+ aom_malloc(sizeof(*tpl_sync->mutex_) * mb_rows));
+ if (tpl_sync->mutex_) {
+ for (int i = 0; i < mb_rows; ++i)
+ pthread_mutex_init(&tpl_sync->mutex_[i], NULL);
+ }
+
+ CHECK_MEM_ERROR(cm, tpl_sync->cond_,
+ aom_malloc(sizeof(*tpl_sync->cond_) * mb_rows));
+ if (tpl_sync->cond_) {
+ for (int i = 0; i < mb_rows; ++i)
+ pthread_cond_init(&tpl_sync->cond_[i], NULL);
+ }
+ }
+#endif // CONFIG_MULTITHREAD
+ CHECK_MEM_ERROR(cm, tpl_sync->num_finished_cols,
+ aom_malloc(sizeof(*tpl_sync->num_finished_cols) * mb_rows));
+
+ // Set up nsync.
+ tpl_sync->sync_range = 1;
+}
+
+// Each worker is prepared by assigning the hook function and individual thread
+// data.
+static AOM_INLINE void prepare_tpl_workers(AV1_COMP *cpi, AVxWorkerHook hook,
+ int num_workers) {
+ MultiThreadInfo *mt_info = &cpi->mt_info;
+ for (int i = num_workers - 1; i >= 0; i--) {
+ AVxWorker *worker = &mt_info->workers[i];
+ EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
+
+ worker->hook = hook;
+ worker->data1 = thread_data;
+ worker->data2 = NULL;
+
+ thread_data->thread_id = i;
+ // Set the starting tile for each thread.
+ thread_data->start = i;
+
+ thread_data->cpi = cpi;
+ if (i == 0) {
+ thread_data->td = &cpi->td;
+ } else {
+ thread_data->td = thread_data->original_td;
+ }
+
+ // Before encoding a frame, copy the thread data from cpi.
+ if (thread_data->td != &cpi->td) {
+ thread_data->td->mb = cpi->td.mb;
+ // OBMC buffers are used only to init MS params and remain unused when
+ // called from tpl, hence set the buffers to defaults.
+ av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer);
+ if (!tpl_alloc_temp_buffers(&thread_data->td->tpl_tmp_buffers,
+ cpi->ppi->tpl_data.tpl_bsize_1d)) {
+ aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
+ "Error allocating tpl data");
+ }
+ thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
+ thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
+ }
+ }
+}
+
+#if CONFIG_BITRATE_ACCURACY
+// Accumulate transform stats after tpl.
+static void tpl_accumulate_txfm_stats(ThreadData *main_td,
+ const MultiThreadInfo *mt_info,
+ int num_workers) {
+ TplTxfmStats *accumulated_stats = &main_td->tpl_txfm_stats;
+ for (int i = num_workers - 1; i >= 0; i--) {
+ AVxWorker *const worker = &mt_info->workers[i];
+ EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
+ ThreadData *td = thread_data->td;
+ if (td != main_td) {
+ const TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats;
+ av1_accumulate_tpl_txfm_stats(tpl_txfm_stats, accumulated_stats);
+ }
+ }
+}
+#endif // CONFIG_BITRATE_ACCURACY
+
+// Implements multi-threading for tpl.
+void av1_mc_flow_dispenser_mt(AV1_COMP *cpi) {
+ AV1_COMMON *cm = &cpi->common;
+ CommonModeInfoParams *mi_params = &cm->mi_params;
+ MultiThreadInfo *mt_info = &cpi->mt_info;
+ TplParams *tpl_data = &cpi->ppi->tpl_data;
+ AV1TplRowMultiThreadSync *tpl_sync = &tpl_data->tpl_mt_sync;
+ int mb_rows = mi_params->mb_rows;
+ int num_workers =
+ AOMMIN(mt_info->num_mod_workers[MOD_TPL], mt_info->num_workers);
+
+ if (mb_rows != tpl_sync->rows) {
+ av1_tpl_dealloc(tpl_sync);
+ av1_tpl_alloc(tpl_sync, cm, mb_rows);
+ }
+ tpl_sync->num_threads_working = num_workers;
+ mt_info->tpl_row_mt.tpl_mt_exit = false;
+
+ // Initialize cur_mb_col to -1 for all MB rows.
+ memset(tpl_sync->num_finished_cols, -1,
+ sizeof(*tpl_sync->num_finished_cols) * mb_rows);
+
+ prepare_tpl_workers(cpi, tpl_worker_hook, num_workers);
+ launch_workers(&cpi->mt_info, num_workers);
+ sync_enc_workers(&cpi->mt_info, cm, num_workers);
+#if CONFIG_BITRATE_ACCURACY
+ tpl_accumulate_txfm_stats(&cpi->td, &cpi->mt_info, num_workers);
+#endif // CONFIG_BITRATE_ACCURACY
+ for (int i = num_workers - 1; i >= 0; i--) {
+ EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
+ ThreadData *td = thread_data->td;
+ if (td != &cpi->td) tpl_dealloc_temp_buffers(&td->tpl_tmp_buffers);
+ }
+}
+
+// Deallocate memory for temporal filter multi-thread synchronization.
+void av1_tf_mt_dealloc(AV1TemporalFilterSync *tf_sync) {
+ assert(tf_sync != NULL);
+#if CONFIG_MULTITHREAD
+ if (tf_sync->mutex_ != NULL) {
+ pthread_mutex_destroy(tf_sync->mutex_);
+ aom_free(tf_sync->mutex_);
+ }
+#endif // CONFIG_MULTITHREAD
+ tf_sync->next_tf_row = 0;
+}
+
+// Checks if a job is available. If job is available,
+// populates next_tf_row and returns 1, else returns 0.
+static AOM_INLINE int tf_get_next_job(AV1TemporalFilterSync *tf_mt_sync,
+ int *current_mb_row, int mb_rows) {
+ int do_next_row = 0;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_t *tf_mutex_ = tf_mt_sync->mutex_;
+ pthread_mutex_lock(tf_mutex_);
+#endif
+ if (!tf_mt_sync->tf_mt_exit && tf_mt_sync->next_tf_row < mb_rows) {
+ *current_mb_row = tf_mt_sync->next_tf_row;
+ tf_mt_sync->next_tf_row++;
+ do_next_row = 1;
+ }
+#if CONFIG_MULTITHREAD
+ pthread_mutex_unlock(tf_mutex_);
+#endif
+ return do_next_row;
+}
+
+// Hook function for each thread in temporal filter multi-threading.
+static int tf_worker_hook(void *arg1, void *unused) {
+ (void)unused;
+ EncWorkerData *thread_data = (EncWorkerData *)arg1;
+ AV1_COMP *cpi = thread_data->cpi;
+ ThreadData *td = thread_data->td;
+ TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
+ AV1TemporalFilterSync *tf_sync = &cpi->mt_info.tf_sync;
+ const struct scale_factors *scale = &cpi->tf_ctx.sf;
+
+#if CONFIG_MULTITHREAD
+ pthread_mutex_t *tf_mutex_ = tf_sync->mutex_;
+#endif
+ MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
+ struct aom_internal_error_info *const error_info = &thread_data->error_info;
+ xd->error_info = error_info;
+
+ // The jmp_buf is valid only for the duration of the function that calls
+ // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
+ // before it returns.
+ if (setjmp(error_info->jmp)) {
+ error_info->setjmp = 0;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(tf_mutex_);
+ tf_sync->tf_mt_exit = true;
+ pthread_mutex_unlock(tf_mutex_);
+#endif
+ return 0;
+ }
+ error_info->setjmp = 1;
+
+ const int num_planes = av1_num_planes(&cpi->common);
+ assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
+
+ MACROBLOCKD *mbd = &td->mb.e_mbd;
+ uint8_t *input_buffer[MAX_MB_PLANE];
+ MB_MODE_INFO **input_mb_mode_info;
+ tf_save_state(mbd, &input_mb_mode_info, input_buffer, num_planes);
+ tf_setup_macroblockd(mbd, &td->tf_data, scale);
+
+ int current_mb_row = -1;
+
+ while (tf_get_next_job(tf_sync, &current_mb_row, tf_ctx->mb_rows))
+ av1_tf_do_filtering_row(cpi, td, current_mb_row);
+
+ tf_restore_state(mbd, input_mb_mode_info, input_buffer, num_planes);
+
+ error_info->setjmp = 0;
+ return 1;
+}
+
+// Assigns temporal filter hook function and thread data to each worker.
+static void prepare_tf_workers(AV1_COMP *cpi, AVxWorkerHook hook,
+ int num_workers, int is_highbitdepth) {
+ MultiThreadInfo *mt_info = &cpi->mt_info;
+ mt_info->tf_sync.next_tf_row = 0;
+ mt_info->tf_sync.tf_mt_exit = false;
+ for (int i = num_workers - 1; i >= 0; i--) {
+ AVxWorker *worker = &mt_info->workers[i];
+ EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
+
+ worker->hook = hook;
+ worker->data1 = thread_data;
+ worker->data2 = NULL;
+
+ thread_data->thread_id = i;
+ // Set the starting tile for each thread.
+ thread_data->start = i;
+
+ thread_data->cpi = cpi;
+ if (i == 0) {
+ thread_data->td = &cpi->td;
+ } else {
+ thread_data->td = thread_data->original_td;
+ }
+
+ // Before encoding a frame, copy the thread data from cpi.
+ if (thread_data->td != &cpi->td) {
+ thread_data->td->mb = cpi->td.mb;
+ // OBMC buffers are used only to init MS params and remain unused when
+ // called from tf, hence set the buffers to defaults.
+ av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer);
+ if (!tf_alloc_and_reset_data(&thread_data->td->tf_data,
+ cpi->tf_ctx.num_pels, is_highbitdepth)) {
+ aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
+ "Error allocating temporal filter data");
+ }
+ }
+ }
+}
+
+// Deallocate thread specific data for temporal filter.
+static void tf_dealloc_thread_data(AV1_COMP *cpi, int num_workers,
+ int is_highbitdepth) {
+ MultiThreadInfo *mt_info = &cpi->mt_info;
+ for (int i = num_workers - 1; i >= 0; i--) {
+ EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
+ ThreadData *td = thread_data->td;
+ if (td != &cpi->td) tf_dealloc_data(&td->tf_data, is_highbitdepth);
+ }
+}
+
+// Accumulate sse and sum after temporal filtering.
+static void tf_accumulate_frame_diff(AV1_COMP *cpi, int num_workers) {
+ FRAME_DIFF *total_diff = &cpi->td.tf_data.diff;
+ for (int i = num_workers - 1; i >= 0; i--) {
+ AVxWorker *const worker = &cpi->mt_info.workers[i];
+ EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
+ ThreadData *td = thread_data->td;
+ FRAME_DIFF *diff = &td->tf_data.diff;
+ if (td != &cpi->td) {
+ total_diff->sse += diff->sse;
+ total_diff->sum += diff->sum;
+ }
+ }
+}
+
+// Implements multi-threading for temporal filter.
+void av1_tf_do_filtering_mt(AV1_COMP *cpi) {
+ AV1_COMMON *cm = &cpi->common;
+ MultiThreadInfo *mt_info = &cpi->mt_info;
+ const int is_highbitdepth = cpi->tf_ctx.is_highbitdepth;
+
+ int num_workers =
+ AOMMIN(mt_info->num_mod_workers[MOD_TF], mt_info->num_workers);
+
+ prepare_tf_workers(cpi, tf_worker_hook, num_workers, is_highbitdepth);
+ launch_workers(mt_info, num_workers);
+ sync_enc_workers(mt_info, cm, num_workers);
+ tf_accumulate_frame_diff(cpi, num_workers);
+ tf_dealloc_thread_data(cpi, num_workers, is_highbitdepth);
+}
+
+// Checks if a job is available in the current direction. If a job is available,
+// frame_idx will be populated and returns 1, else returns 0.
+static AOM_INLINE int get_next_gm_job(AV1_COMP *cpi, int *frame_idx,
+ int cur_dir) {
+ GlobalMotionInfo *gm_info = &cpi->gm_info;
+ JobInfo *job_info = &cpi->mt_info.gm_sync.job_info;
+
+ int total_refs = gm_info->num_ref_frames[cur_dir];
+ int8_t cur_frame_to_process = job_info->next_frame_to_process[cur_dir];
+
+ if (cur_frame_to_process < total_refs && !job_info->early_exit[cur_dir]) {
+ *frame_idx = gm_info->reference_frames[cur_dir][cur_frame_to_process].frame;
+ job_info->next_frame_to_process[cur_dir] += 1;
+ return 1;
+ }
+ return 0;
+}
+
+// Switches the current direction and calls the function get_next_gm_job() if
+// the speed feature 'prune_ref_frame_for_gm_search' is not set.
+static AOM_INLINE void switch_direction(AV1_COMP *cpi, int *frame_idx,
+ int *cur_dir) {
+ if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search) return;
+ // Switch the direction and get next job
+ *cur_dir = !(*cur_dir);
+ get_next_gm_job(cpi, frame_idx, *(cur_dir));
+}
+
+// Hook function for each thread in global motion multi-threading.
+static int gm_mt_worker_hook(void *arg1, void *unused) {
+ (void)unused;
+
+ EncWorkerData *thread_data = (EncWorkerData *)arg1;
+ AV1_COMP *cpi = thread_data->cpi;
+ GlobalMotionInfo *gm_info = &cpi->gm_info;
+ AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync;
+ JobInfo *job_info = &gm_sync->job_info;
+ int thread_id = thread_data->thread_id;
+ GlobalMotionData *gm_thread_data = &thread_data->td->gm_data;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_t *gm_mt_mutex_ = gm_sync->mutex_;
+#endif
+
+ MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
+ struct aom_internal_error_info *const error_info = &thread_data->error_info;
+ xd->error_info = error_info;
+
+ // The jmp_buf is valid only for the duration of the function that calls
+ // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
+ // before it returns.
+ if (setjmp(error_info->jmp)) {
+ error_info->setjmp = 0;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(gm_mt_mutex_);
+ gm_sync->gm_mt_exit = true;
+ pthread_mutex_unlock(gm_mt_mutex_);
+#endif
+ return 0;
+ }
+ error_info->setjmp = 1;
+
+ int cur_dir = job_info->thread_id_to_dir[thread_id];
+ bool gm_mt_exit = false;
+ while (1) {
+ int ref_buf_idx = -1;
+
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(gm_mt_mutex_);
+#endif
+
+ gm_mt_exit = gm_sync->gm_mt_exit;
+ // Populates ref_buf_idx(the reference frame type) for which global motion
+ // estimation will be done.
+ if (!gm_mt_exit && !get_next_gm_job(cpi, &ref_buf_idx, cur_dir)) {
+ // No jobs are available for the current direction. Switch
+ // to other direction and get the next job, if available.
+ switch_direction(cpi, &ref_buf_idx, &cur_dir);
+ }
+
+#if CONFIG_MULTITHREAD
+ pthread_mutex_unlock(gm_mt_mutex_);
+#endif
+
+ // When gm_mt_exit is set to true, other workers need not pursue any
+ // further jobs.
+ if (gm_mt_exit || ref_buf_idx == -1) break;
+
+ // Compute global motion for the given ref_buf_idx.
+ av1_compute_gm_for_valid_ref_frames(
+ cpi, error_info, gm_info->ref_buf, ref_buf_idx,
+ gm_thread_data->motion_models, gm_thread_data->segment_map,
+ gm_info->segment_map_w, gm_info->segment_map_h);
+
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(gm_mt_mutex_);
+#endif
+ // If global motion w.r.t. current ref frame is
+ // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t
+ // the remaining ref frames in that direction.
+ if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search &&
+ cpi->common.global_motion[ref_buf_idx].wmtype <= TRANSLATION)
+ job_info->early_exit[cur_dir] = 1;
+
+#if CONFIG_MULTITHREAD
+ pthread_mutex_unlock(gm_mt_mutex_);
+#endif
+ }
+ error_info->setjmp = 0;
+ return 1;
+}
+
+// Assigns global motion hook function and thread data to each worker.
+static AOM_INLINE void prepare_gm_workers(AV1_COMP *cpi, AVxWorkerHook hook,
+ int num_workers) {
+ MultiThreadInfo *mt_info = &cpi->mt_info;
+ mt_info->gm_sync.gm_mt_exit = false;
+ for (int i = num_workers - 1; i >= 0; i--) {
+ AVxWorker *worker = &mt_info->workers[i];
+ EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
+
+ worker->hook = hook;
+ worker->data1 = thread_data;
+ worker->data2 = NULL;
+
+ thread_data->thread_id = i;
+ // Set the starting tile for each thread.
+ thread_data->start = i;
+
+ thread_data->cpi = cpi;
+ if (i == 0) {
+ thread_data->td = &cpi->td;
+ } else {
+ thread_data->td = thread_data->original_td;
+ }
+
+ if (thread_data->td != &cpi->td)
+ gm_alloc_data(cpi, &thread_data->td->gm_data);
+ }
+}
+
+// Assigns available threads to past/future direction.
+static AOM_INLINE void assign_thread_to_dir(int8_t *thread_id_to_dir,
+ int num_workers) {
+ int8_t frame_dir_idx = 0;
+
+ for (int i = 0; i < num_workers; i++) {
+ thread_id_to_dir[i] = frame_dir_idx++;
+ if (frame_dir_idx == MAX_DIRECTIONS) frame_dir_idx = 0;
+ }
+}
+
+// Computes number of workers for global motion multi-threading.
+static AOM_INLINE int compute_gm_workers(const AV1_COMP *cpi) {
+ int total_refs =
+ cpi->gm_info.num_ref_frames[0] + cpi->gm_info.num_ref_frames[1];
+ int num_gm_workers = cpi->sf.gm_sf.prune_ref_frame_for_gm_search
+ ? AOMMIN(MAX_DIRECTIONS, total_refs)
+ : total_refs;
+ num_gm_workers = AOMMIN(num_gm_workers, cpi->mt_info.num_workers);
+ return (num_gm_workers);
+}
+
+// Frees the memory allocated for each worker in global motion multi-threading.
+static AOM_INLINE void gm_dealloc_thread_data(AV1_COMP *cpi, int num_workers) {
+ MultiThreadInfo *mt_info = &cpi->mt_info;
+ for (int j = 0; j < num_workers; j++) {
+ EncWorkerData *thread_data = &mt_info->tile_thr_data[j];
+ ThreadData *td = thread_data->td;
+ if (td != &cpi->td) gm_dealloc_data(&td->gm_data);
+ }
+}
+
+// Implements multi-threading for global motion.
+void av1_global_motion_estimation_mt(AV1_COMP *cpi) {
+ JobInfo *job_info = &cpi->mt_info.gm_sync.job_info;
+
+ av1_zero(*job_info);
+
+ int num_workers = compute_gm_workers(cpi);
+
+ assign_thread_to_dir(job_info->thread_id_to_dir, num_workers);
+ prepare_gm_workers(cpi, gm_mt_worker_hook, num_workers);
+ launch_workers(&cpi->mt_info, num_workers);
+ sync_enc_workers(&cpi->mt_info, &cpi->common, num_workers);
+ gm_dealloc_thread_data(cpi, num_workers);
+}
+#endif // !CONFIG_REALTIME_ONLY
+
+static AOM_INLINE int get_next_job_allintra(
+ AV1EncRowMultiThreadSync *const row_mt_sync, const int mi_row_end,
+ int *current_mi_row, int mib_size) {
+ if (row_mt_sync->next_mi_row < mi_row_end) {
+ *current_mi_row = row_mt_sync->next_mi_row;
+ row_mt_sync->num_threads_working++;
+ row_mt_sync->next_mi_row += mib_size;
+ return 1;
+ }
+ return 0;
+}
+
+static AOM_INLINE void prepare_wiener_var_workers(AV1_COMP *const cpi,
+ AVxWorkerHook hook,
+ const int num_workers) {
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+ for (int i = num_workers - 1; i >= 0; i--) {
+ AVxWorker *const worker = &mt_info->workers[i];
+ EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
+
+ worker->hook = hook;
+ worker->data1 = thread_data;
+ worker->data2 = NULL;
+
+ thread_data->thread_id = i;
+ // Set the starting tile for each thread, in this case the preprocessing
+ // stage does not need tiles. So we set it to 0.
+ thread_data->start = 0;
+
+ thread_data->cpi = cpi;
+ if (i == 0) {
+ thread_data->td = &cpi->td;
+ } else {
+ thread_data->td = thread_data->original_td;
+ }
+
+ if (thread_data->td != &cpi->td) {
+ thread_data->td->mb = cpi->td.mb;
+ av1_alloc_mb_wiener_var_pred_buf(&cpi->common, thread_data->td);
+ }
+ }
+}
+
+static void set_mb_wiener_var_calc_done(AV1_COMP *const cpi) {
+ const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
+ const BLOCK_SIZE bsize = cpi->weber_bsize;
+ const int mb_step = mi_size_wide[bsize];
+ assert(MB_WIENER_MT_UNIT_SIZE < BLOCK_SIZES_ALL);
+ const int mt_unit_step = mi_size_wide[MB_WIENER_MT_UNIT_SIZE];
+ const int mt_unit_cols =
+ (mi_params->mi_cols + (mt_unit_step >> 1)) / mt_unit_step;
+ const AV1EncAllIntraMultiThreadInfo *const intra_mt = &cpi->mt_info.intra_mt;
+ AV1EncRowMultiThreadSync *const intra_row_mt_sync =
+ &cpi->ppi->intra_row_mt_sync;
+
+ // Update the wiener variance computation of every row in the frame to
+ // indicate that it is complete in order to avoid dependent workers waiting
+ // indefinitely.
+ for (int mi_row = 0, mt_thread_id = 0; mi_row < mi_params->mi_rows;
+ mi_row += mb_step, ++mt_thread_id) {
+ intra_mt->intra_sync_write_ptr(intra_row_mt_sync, mt_thread_id,
+ mt_unit_cols - 1, mt_unit_cols);
+ }
+}
+
+static int cal_mb_wiener_var_hook(void *arg1, void *unused) {
+ (void)unused;
+ EncWorkerData *const thread_data = (EncWorkerData *)arg1;
+ AV1_COMP *const cpi = thread_data->cpi;
+ MACROBLOCK *x = &thread_data->td->mb;
+ MACROBLOCKD *xd = &x->e_mbd;
+ const BLOCK_SIZE bsize = cpi->weber_bsize;
+ const int mb_step = mi_size_wide[bsize];
+ AV1EncRowMultiThreadSync *const intra_row_mt_sync =
+ &cpi->ppi->intra_row_mt_sync;
+ AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
+ (void)enc_row_mt;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_t *enc_row_mt_mutex = enc_row_mt->mutex_;
+#endif
+
+ struct aom_internal_error_info *const error_info = &thread_data->error_info;
+ xd->error_info = error_info;
+
+ // The jmp_buf is valid only for the duration of the function that calls
+ // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
+ // before it returns.
+ if (setjmp(error_info->jmp)) {
+ error_info->setjmp = 0;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(enc_row_mt_mutex);
+ enc_row_mt->mb_wiener_mt_exit = true;
+ pthread_mutex_unlock(enc_row_mt_mutex);
+#endif
+ set_mb_wiener_var_calc_done(cpi);
+ return 0;
+ }
+ error_info->setjmp = 1;
+ DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]);
+ DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]);
+ DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]);
+ DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]);
+ double sum_rec_distortion = 0;
+ double sum_est_rate = 0;
+ while (1) {
+ int current_mi_row = -1;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(enc_row_mt_mutex);
+#endif
+ int has_jobs = enc_row_mt->mb_wiener_mt_exit
+ ? 0
+ : get_next_job_allintra(intra_row_mt_sync,
+ cpi->common.mi_params.mi_rows,
+ &current_mi_row, mb_step);
+#if CONFIG_MULTITHREAD
+ pthread_mutex_unlock(enc_row_mt_mutex);
+#endif
+ if (!has_jobs) break;
+ // TODO(chengchen): properly accumulate the distortion and rate.
+ av1_calc_mb_wiener_var_row(cpi, x, xd, current_mi_row, src_diff, coeff,
+ qcoeff, dqcoeff, &sum_rec_distortion,
+ &sum_est_rate,
+ thread_data->td->wiener_tmp_pred_buf);
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(enc_row_mt_mutex);
+#endif
+ intra_row_mt_sync->num_threads_working--;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_unlock(enc_row_mt_mutex);
+#endif
+ }
+ error_info->setjmp = 0;
+ return 1;
+}
+
+static void dealloc_mb_wiener_var_mt_data(AV1_COMP *cpi, int num_workers) {
+ av1_row_mt_sync_mem_dealloc(&cpi->ppi->intra_row_mt_sync);
+
+ MultiThreadInfo *mt_info = &cpi->mt_info;
+ for (int j = 0; j < num_workers; ++j) {
+ EncWorkerData *thread_data = &mt_info->tile_thr_data[j];
+ ThreadData *td = thread_data->td;
+ if (td != &cpi->td) av1_dealloc_mb_wiener_var_pred_buf(td);
+ }
+}
+
+// This function is the multi-threading version of computing the wiener
+// variance.
+// Note that the wiener variance is used for allintra mode (1 pass) and its
+// computation is before the frame encoding, so we don't need to consider
+// the number of tiles, instead we allocate all available threads to
+// the computation.
+void av1_calc_mb_wiener_var_mt(AV1_COMP *cpi, int num_workers,
+ double *sum_rec_distortion,
+ double *sum_est_rate) {
+ (void)sum_rec_distortion;
+ (void)sum_est_rate;
+ AV1_COMMON *const cm = &cpi->common;
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+ AV1EncRowMultiThreadSync *const intra_row_mt_sync =
+ &cpi->ppi->intra_row_mt_sync;
+
+ // TODO(chengchen): the memory usage could be improved.
+ const int mi_rows = cm->mi_params.mi_rows;
+ row_mt_sync_mem_alloc(intra_row_mt_sync, cm, mi_rows);
+
+ intra_row_mt_sync->intrabc_extra_top_right_sb_delay = 0;
+ intra_row_mt_sync->num_threads_working = num_workers;
+ intra_row_mt_sync->next_mi_row = 0;
+ memset(intra_row_mt_sync->num_finished_cols, -1,
+ sizeof(*intra_row_mt_sync->num_finished_cols) * mi_rows);
+ mt_info->enc_row_mt.mb_wiener_mt_exit = false;
+
+ prepare_wiener_var_workers(cpi, cal_mb_wiener_var_hook, num_workers);
+ launch_workers(mt_info, num_workers);
+ sync_enc_workers(mt_info, cm, num_workers);
+ dealloc_mb_wiener_var_mt_data(cpi, num_workers);
+}
+
+// Compare and order tiles based on absolute sum of tx coeffs.
+static int compare_tile_order(const void *a, const void *b) {
+ const PackBSTileOrder *const tile_a = (const PackBSTileOrder *)a;
+ const PackBSTileOrder *const tile_b = (const PackBSTileOrder *)b;
+
+ if (tile_a->abs_sum_level > tile_b->abs_sum_level)
+ return -1;
+ else if (tile_a->abs_sum_level == tile_b->abs_sum_level)
+ return (tile_a->tile_idx > tile_b->tile_idx ? 1 : -1);
+ else
+ return 1;
+}
+
+// Get next tile index to be processed for pack bitstream
+static AOM_INLINE int get_next_pack_bs_tile_idx(
+ AV1EncPackBSSync *const pack_bs_sync, const int num_tiles) {
+ assert(pack_bs_sync->next_job_idx <= num_tiles);
+ if (pack_bs_sync->next_job_idx == num_tiles) return -1;
+
+ return pack_bs_sync->pack_bs_tile_order[pack_bs_sync->next_job_idx++]
+ .tile_idx;
+}
+
+// Calculates bitstream chunk size based on total buffer size and tile or tile
+// group size.
+static AOM_INLINE size_t get_bs_chunk_size(int tg_or_tile_size,
+ const int frame_or_tg_size,
+ size_t *remain_buf_size,
+ size_t max_buf_size,
+ int is_last_chunk) {
+ size_t this_chunk_size;
+ assert(*remain_buf_size > 0);
+ if (is_last_chunk) {
+ this_chunk_size = *remain_buf_size;
+ *remain_buf_size = 0;
+ } else {
+ const uint64_t size_scale = (uint64_t)max_buf_size * tg_or_tile_size;
+ this_chunk_size = (size_t)(size_scale / frame_or_tg_size);
+ *remain_buf_size -= this_chunk_size;
+ assert(*remain_buf_size > 0);
+ }
+ assert(this_chunk_size > 0);
+ return this_chunk_size;
+}
+
+// Initializes params required for pack bitstream tile.
+static void init_tile_pack_bs_params(AV1_COMP *const cpi, uint8_t *const dst,
+ struct aom_write_bit_buffer *saved_wb,
+ PackBSParams *const pack_bs_params_arr,
+ uint8_t obu_extn_header) {
+ MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+ AV1_COMMON *const cm = &cpi->common;
+ const CommonTileParams *const tiles = &cm->tiles;
+ const int num_tiles = tiles->cols * tiles->rows;
+ // Fixed size tile groups for the moment
+ const int num_tg_hdrs = cpi->num_tg;
+ // Tile group size in terms of number of tiles.
+ const int tg_size_in_tiles = (num_tiles + num_tg_hdrs - 1) / num_tg_hdrs;
+ uint8_t *tile_dst = dst;
+ uint8_t *tile_data_curr = dst;
+ // Max tile group count can not be more than MAX_TILES.
+ int tg_size_mi[MAX_TILES] = { 0 }; // Size of tile group in mi units
+ int tile_idx;
+ int tg_idx = 0;
+ int tile_count_in_tg = 0;
+ int new_tg = 1;
+
+ // Populate pack bitstream params of all tiles.
+ for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
+ const TileInfo *const tile_info = &cpi->tile_data[tile_idx].tile_info;
+ PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
+ // Calculate tile size in mi units.
+ const int tile_size_mi = (tile_info->mi_col_end - tile_info->mi_col_start) *
+ (tile_info->mi_row_end - tile_info->mi_row_start);
+ int is_last_tile_in_tg = 0;
+ tile_count_in_tg++;
+ if (tile_count_in_tg == tg_size_in_tiles || tile_idx == (num_tiles - 1))
+ is_last_tile_in_tg = 1;
+
+ // Populate pack bitstream params of this tile.
+ pack_bs_params->curr_tg_hdr_size = 0;
+ pack_bs_params->obu_extn_header = obu_extn_header;
+ pack_bs_params->saved_wb = saved_wb;
+ pack_bs_params->obu_header_size = 0;
+ pack_bs_params->is_last_tile_in_tg = is_last_tile_in_tg;
+ pack_bs_params->new_tg = new_tg;
+ pack_bs_params->tile_col = tile_info->tile_col;
+ pack_bs_params->tile_row = tile_info->tile_row;
+ pack_bs_params->tile_size_mi = tile_size_mi;
+ tg_size_mi[tg_idx] += tile_size_mi;
+
+ if (new_tg) new_tg = 0;
+ if (is_last_tile_in_tg) {
+ tile_count_in_tg = 0;
+ new_tg = 1;
+ tg_idx++;
+ }
+ }
+
+ assert(cpi->available_bs_size > 0);
+ size_t tg_buf_size[MAX_TILES] = { 0 };
+ size_t max_buf_size = cpi->available_bs_size;
+ size_t remain_buf_size = max_buf_size;
+ const int frame_size_mi = cm->mi_params.mi_rows * cm->mi_params.mi_cols;
+
+ tile_idx = 0;
+ // Prepare obu, tile group and frame header of each tile group.
+ for (tg_idx = 0; tg_idx < cpi->num_tg; tg_idx++) {
+ PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
+ int is_last_tg = tg_idx == cpi->num_tg - 1;
+ // Prorate bitstream buffer size based on tile group size and available
+ // buffer size. This buffer will be used to store headers and tile data.
+ tg_buf_size[tg_idx] =
+ get_bs_chunk_size(tg_size_mi[tg_idx], frame_size_mi, &remain_buf_size,
+ max_buf_size, is_last_tg);
+
+ pack_bs_params->dst = tile_dst;
+ pack_bs_params->tile_data_curr = tile_dst;
+
+ // Write obu, tile group and frame header at first tile in the tile
+ // group.
+ av1_write_obu_tg_tile_headers(cpi, xd, pack_bs_params, tile_idx);
+ tile_dst += tg_buf_size[tg_idx];
+
+ // Exclude headers from tile group buffer size.
+ tg_buf_size[tg_idx] -= pack_bs_params->curr_tg_hdr_size;
+ tile_idx += tg_size_in_tiles;
+ }
+
+ tg_idx = 0;
+ // Calculate bitstream buffer size of each tile in the tile group.
+ for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
+ PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
+
+ if (pack_bs_params->new_tg) {
+ max_buf_size = tg_buf_size[tg_idx];
+ remain_buf_size = max_buf_size;
+ }
+
+ // Prorate bitstream buffer size of this tile based on tile size and
+ // available buffer size. For this proration, header size is not accounted.
+ const size_t tile_buf_size = get_bs_chunk_size(
+ pack_bs_params->tile_size_mi, tg_size_mi[tg_idx], &remain_buf_size,
+ max_buf_size, pack_bs_params->is_last_tile_in_tg);
+ pack_bs_params->tile_buf_size = tile_buf_size;
+
+ // Update base address of bitstream buffer for tile and tile group.
+ if (pack_bs_params->new_tg) {
+ tile_dst = pack_bs_params->dst;
+ tile_data_curr = pack_bs_params->tile_data_curr;
+ // Account header size in first tile of a tile group.
+ pack_bs_params->tile_buf_size += pack_bs_params->curr_tg_hdr_size;
+ } else {
+ pack_bs_params->dst = tile_dst;
+ pack_bs_params->tile_data_curr = tile_data_curr;
+ }
+
+ if (pack_bs_params->is_last_tile_in_tg) tg_idx++;
+ tile_dst += pack_bs_params->tile_buf_size;
+ }
+}
+
+// Worker hook function of pack bitsteam multithreading.
+static int pack_bs_worker_hook(void *arg1, void *arg2) {
+ EncWorkerData *const thread_data = (EncWorkerData *)arg1;
+ PackBSParams *const pack_bs_params = (PackBSParams *)arg2;
+ AV1_COMP *const cpi = thread_data->cpi;
+ AV1_COMMON *const cm = &cpi->common;
+ AV1EncPackBSSync *const pack_bs_sync = &cpi->mt_info.pack_bs_sync;
+ const CommonTileParams *const tiles = &cm->tiles;
+ const int num_tiles = tiles->cols * tiles->rows;
+
+#if CONFIG_MULTITHREAD
+ pthread_mutex_t *const pack_bs_mutex = pack_bs_sync->mutex_;
+#endif
+ MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
+ struct aom_internal_error_info *const error_info = &thread_data->error_info;
+ xd->error_info = error_info;
+
+ // The jmp_buf is valid only for the duration of the function that calls
+ // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
+ // before it returns.
+ if (setjmp(error_info->jmp)) {
+ error_info->setjmp = 0;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(pack_bs_mutex);
+ pack_bs_sync->pack_bs_mt_exit = true;
+ pthread_mutex_unlock(pack_bs_mutex);
+#endif
+ return 0;
+ }
+ error_info->setjmp = 1;
+
+ while (1) {
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(pack_bs_mutex);
+#endif
+ const int tile_idx =
+ pack_bs_sync->pack_bs_mt_exit
+ ? -1
+ : get_next_pack_bs_tile_idx(pack_bs_sync, num_tiles);
+#if CONFIG_MULTITHREAD
+ pthread_mutex_unlock(pack_bs_mutex);
+#endif
+ // When pack_bs_mt_exit is set to true, other workers need not pursue any
+ // further jobs.
+ if (tile_idx == -1) break;
+ TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
+ thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
+
+ av1_pack_tile_info(cpi, thread_data->td, &pack_bs_params[tile_idx]);
+ }
+
+ error_info->setjmp = 0;
+ return 1;
+}
+
+// Prepares thread data and workers of pack bitsteam multithreading.
+static void prepare_pack_bs_workers(AV1_COMP *const cpi,
+ PackBSParams *const pack_bs_params,
+ AVxWorkerHook hook, const int num_workers) {
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+ for (int i = num_workers - 1; i >= 0; i--) {
+ AVxWorker *worker = &mt_info->workers[i];
+ EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
+ if (i == 0) {
+ thread_data->td = &cpi->td;
+ } else {
+ thread_data->td = thread_data->original_td;
+ }
+
+ if (thread_data->td != &cpi->td) thread_data->td->mb = cpi->td.mb;
+
+ thread_data->cpi = cpi;
+ thread_data->start = i;
+ thread_data->thread_id = i;
+ av1_reset_pack_bs_thread_data(thread_data->td);
+
+ worker->hook = hook;
+ worker->data1 = thread_data;
+ worker->data2 = pack_bs_params;
+ }
+
+ AV1_COMMON *const cm = &cpi->common;
+ AV1EncPackBSSync *const pack_bs_sync = &mt_info->pack_bs_sync;
+ const uint16_t num_tiles = cm->tiles.rows * cm->tiles.cols;
+ pack_bs_sync->next_job_idx = 0;
+ pack_bs_sync->pack_bs_mt_exit = false;
+
+ PackBSTileOrder *const pack_bs_tile_order = pack_bs_sync->pack_bs_tile_order;
+ // Reset tile order data of pack bitstream
+ av1_zero_array(pack_bs_tile_order, num_tiles);
+
+ // Populate pack bitstream tile order structure
+ for (uint16_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
+ pack_bs_tile_order[tile_idx].abs_sum_level =
+ cpi->tile_data[tile_idx].abs_sum_level;
+ pack_bs_tile_order[tile_idx].tile_idx = tile_idx;
+ }
+
+ // Sort tiles in descending order based on tile area.
+ qsort(pack_bs_tile_order, num_tiles, sizeof(*pack_bs_tile_order),
+ compare_tile_order);
+}
+
+// Accumulates data after pack bitsteam processing.
+static void accumulate_pack_bs_data(
+ AV1_COMP *const cpi, const PackBSParams *const pack_bs_params_arr,
+ uint8_t *const dst, uint32_t *total_size, const FrameHeaderInfo *fh_info,
+ int *const largest_tile_id, unsigned int *max_tile_size,
+ uint32_t *const obu_header_size, uint8_t **tile_data_start,
+ const int num_workers) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const CommonTileParams *const tiles = &cm->tiles;
+ const int tile_count = tiles->cols * tiles->rows;
+ // Fixed size tile groups for the moment
+ size_t curr_tg_data_size = 0;
+ int is_first_tg = 1;
+ uint8_t *curr_tg_start = dst;
+ size_t src_offset = 0;
+ size_t dst_offset = 0;
+
+ for (int tile_idx = 0; tile_idx < tile_count; tile_idx++) {
+ // PackBSParams stores all parameters required to pack tile and header
+ // info.
+ const PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
+ uint32_t tile_size = 0;
+
+ if (pack_bs_params->new_tg) {
+ curr_tg_start = dst + *total_size;
+ curr_tg_data_size = pack_bs_params->curr_tg_hdr_size;
+ *tile_data_start += pack_bs_params->curr_tg_hdr_size;
+ *obu_header_size = pack_bs_params->obu_header_size;
+ }
+ curr_tg_data_size +=
+ pack_bs_params->buf.size + (pack_bs_params->is_last_tile_in_tg ? 0 : 4);
+
+ if (pack_bs_params->buf.size > *max_tile_size) {
+ *largest_tile_id = tile_idx;
+ *max_tile_size = (unsigned int)pack_bs_params->buf.size;
+ }
+ tile_size +=
+ (uint32_t)pack_bs_params->buf.size + *pack_bs_params->total_size;
+
+ // Pack all the chunks of tile bitstreams together
+ if (tile_idx != 0) memmove(dst + dst_offset, dst + src_offset, tile_size);
+
+ if (pack_bs_params->is_last_tile_in_tg)
+ av1_write_last_tile_info(
+ cpi, fh_info, pack_bs_params->saved_wb, &curr_tg_data_size,
+ curr_tg_start, &tile_size, tile_data_start, largest_tile_id,
+ &is_first_tg, *obu_header_size, pack_bs_params->obu_extn_header);
+ src_offset += pack_bs_params->tile_buf_size;
+ dst_offset += tile_size;
+ *total_size += tile_size;
+ }
+
+ // Accumulate thread data
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+ for (int idx = num_workers - 1; idx >= 0; idx--) {
+ ThreadData const *td = mt_info->tile_thr_data[idx].td;
+ av1_accumulate_pack_bs_thread_data(cpi, td);
+ }
+}
+
+void av1_write_tile_obu_mt(
+ AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
+ struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
+ const FrameHeaderInfo *fh_info, int *const largest_tile_id,
+ unsigned int *max_tile_size, uint32_t *const obu_header_size,
+ uint8_t **tile_data_start, const int num_workers) {
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+
+ PackBSParams pack_bs_params[MAX_TILES];
+ uint32_t tile_size[MAX_TILES] = { 0 };
+
+ for (int tile_idx = 0; tile_idx < MAX_TILES; tile_idx++)
+ pack_bs_params[tile_idx].total_size = &tile_size[tile_idx];
+
+ init_tile_pack_bs_params(cpi, dst, saved_wb, pack_bs_params, obu_extn_header);
+ prepare_pack_bs_workers(cpi, pack_bs_params, pack_bs_worker_hook,
+ num_workers);
+ launch_workers(mt_info, num_workers);
+ sync_enc_workers(mt_info, &cpi->common, num_workers);
+ accumulate_pack_bs_data(cpi, pack_bs_params, dst, total_size, fh_info,
+ largest_tile_id, max_tile_size, obu_header_size,
+ tile_data_start, num_workers);
+}
+
+// Deallocate memory for CDEF search multi-thread synchronization.
+void av1_cdef_mt_dealloc(AV1CdefSync *cdef_sync) {
+ (void)cdef_sync;
+ assert(cdef_sync != NULL);
+#if CONFIG_MULTITHREAD
+ if (cdef_sync->mutex_ != NULL) {
+ pthread_mutex_destroy(cdef_sync->mutex_);
+ aom_free(cdef_sync->mutex_);
+ }
+#endif // CONFIG_MULTITHREAD
+}
+
+// Updates the row and column indices of the next job to be processed.
+// Also updates end_of_frame flag when the processing of all blocks is complete.
+static void update_next_job_info(AV1CdefSync *cdef_sync, int nvfb, int nhfb) {
+ cdef_sync->fbc++;
+ if (cdef_sync->fbc == nhfb) {
+ cdef_sync->fbr++;
+ if (cdef_sync->fbr == nvfb) {
+ cdef_sync->end_of_frame = 1;
+ } else {
+ cdef_sync->fbc = 0;
+ }
+ }
+}
+
+// Initializes cdef_sync parameters.
+static AOM_INLINE void cdef_reset_job_info(AV1CdefSync *cdef_sync) {
+#if CONFIG_MULTITHREAD
+ if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
+#endif // CONFIG_MULTITHREAD
+ cdef_sync->end_of_frame = 0;
+ cdef_sync->fbr = 0;
+ cdef_sync->fbc = 0;
+ cdef_sync->cdef_mt_exit = false;
+}
+
+// Checks if a job is available. If job is available,
+// populates next job information and returns 1, else returns 0.
+static AOM_INLINE int cdef_get_next_job(AV1CdefSync *cdef_sync,
+ CdefSearchCtx *cdef_search_ctx,
+ volatile int *cur_fbr,
+ volatile int *cur_fbc,
+ volatile int *sb_count) {
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(cdef_sync->mutex_);
+#endif // CONFIG_MULTITHREAD
+ int do_next_block = 0;
+ const int nvfb = cdef_search_ctx->nvfb;
+ const int nhfb = cdef_search_ctx->nhfb;
+
+ // If a block is skip, do not process the block and
+ // check the skip condition for the next block.
+ while (!cdef_sync->cdef_mt_exit && !cdef_sync->end_of_frame &&
+ cdef_sb_skip(cdef_search_ctx->mi_params, cdef_sync->fbr,
+ cdef_sync->fbc)) {
+ update_next_job_info(cdef_sync, nvfb, nhfb);
+ }
+
+ // Populates information needed for current job and update the row,
+ // column indices of the next block to be processed.
+ if (!cdef_sync->cdef_mt_exit && cdef_sync->end_of_frame == 0) {
+ do_next_block = 1;
+ *cur_fbr = cdef_sync->fbr;
+ *cur_fbc = cdef_sync->fbc;
+ *sb_count = cdef_search_ctx->sb_count;
+ cdef_search_ctx->sb_count++;
+ update_next_job_info(cdef_sync, nvfb, nhfb);
+ }
+#if CONFIG_MULTITHREAD
+ pthread_mutex_unlock(cdef_sync->mutex_);
+#endif // CONFIG_MULTITHREAD
+ return do_next_block;
+}
+
+// Hook function for each thread in CDEF search multi-threading.
+static int cdef_filter_block_worker_hook(void *arg1, void *arg2) {
+ EncWorkerData *thread_data = (EncWorkerData *)arg1;
+ AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg2;
+
+#if CONFIG_MULTITHREAD
+ pthread_mutex_t *cdef_mutex_ = cdef_sync->mutex_;
+#endif
+ struct aom_internal_error_info *const error_info = &thread_data->error_info;
+ CdefSearchCtx *cdef_search_ctx = thread_data->cpi->cdef_search_ctx;
+
+ // The jmp_buf is valid only for the duration of the function that calls
+ // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
+ // before it returns.
+ if (setjmp(error_info->jmp)) {
+ error_info->setjmp = 0;
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(cdef_mutex_);
+ cdef_sync->cdef_mt_exit = true;
+ pthread_mutex_unlock(cdef_mutex_);
+#endif
+ return 0;
+ }
+ error_info->setjmp = 1;
+
+ volatile int cur_fbr, cur_fbc, sb_count;
+ while (cdef_get_next_job(cdef_sync, cdef_search_ctx, &cur_fbr, &cur_fbc,
+ &sb_count)) {
+ av1_cdef_mse_calc_block(cdef_search_ctx, error_info, cur_fbr, cur_fbc,
+ sb_count);
+ }
+ error_info->setjmp = 0;
+ return 1;
+}
+
+// Assigns CDEF search hook function and thread data to each worker.
+static void prepare_cdef_workers(AV1_COMP *cpi, AVxWorkerHook hook,
+ int num_workers) {
+ MultiThreadInfo *mt_info = &cpi->mt_info;
+ for (int i = num_workers - 1; i >= 0; i--) {
+ AVxWorker *worker = &mt_info->workers[i];
+ EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
+
+ thread_data->cpi = cpi;
+ worker->hook = hook;
+ worker->data1 = thread_data;
+ worker->data2 = &mt_info->cdef_sync;
+ }
+}
+
+// Implements multi-threading for CDEF search.
+void av1_cdef_mse_calc_frame_mt(AV1_COMP *cpi) {
+ MultiThreadInfo *mt_info = &cpi->mt_info;
+ AV1CdefSync *cdef_sync = &mt_info->cdef_sync;
+ const int num_workers = mt_info->num_mod_workers[MOD_CDEF_SEARCH];
+
+ cdef_reset_job_info(cdef_sync);
+ prepare_cdef_workers(cpi, cdef_filter_block_worker_hook, num_workers);
+ launch_workers(mt_info, num_workers);
+ sync_enc_workers(mt_info, &cpi->common, num_workers);
+}
+
+// Computes num_workers for temporal filter multi-threading.
+static AOM_INLINE int compute_num_tf_workers(const AV1_COMP *cpi) {
+ // For single-pass encode, using no. of workers as per tf block size was not
+ // found to improve speed. Hence the thread assignment for single-pass encode
+ // is kept based on compute_num_enc_workers().
+ if (cpi->oxcf.pass < AOM_RC_SECOND_PASS)
+ return (av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads));
+
+ if (cpi->oxcf.max_threads <= 1) return 1;
+
+ const int frame_height = cpi->common.height;
+ const BLOCK_SIZE block_size = TF_BLOCK_SIZE;
+ const int mb_height = block_size_high[block_size];
+ const int mb_rows = get_num_blocks(frame_height, mb_height);
+ return AOMMIN(cpi->oxcf.max_threads, mb_rows);
+}
+
+// Computes num_workers for tpl multi-threading.
+static AOM_INLINE int compute_num_tpl_workers(AV1_COMP *cpi) {
+ return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
+}
+
+// Computes num_workers for loop filter multi-threading.
+static AOM_INLINE int compute_num_lf_workers(AV1_COMP *cpi) {
+ return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
+}
+
+// Computes num_workers for cdef multi-threading.
+static AOM_INLINE int compute_num_cdef_workers(AV1_COMP *cpi) {
+ return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
+}
+
+// Computes num_workers for loop-restoration multi-threading.
+static AOM_INLINE int compute_num_lr_workers(AV1_COMP *cpi) {
+ return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
+}
+
+// Computes num_workers for pack bitstream multi-threading.
+static AOM_INLINE int compute_num_pack_bs_workers(AV1_COMP *cpi) {
+ if (cpi->oxcf.max_threads <= 1) return 1;
+ return compute_num_enc_tile_mt_workers(&cpi->common, cpi->oxcf.max_threads);
+}
+
+// Computes num_workers for all intra multi-threading.
+static AOM_INLINE int compute_num_ai_workers(AV1_COMP *cpi) {
+ if (cpi->oxcf.max_threads <= 1) return 1;
+ // The multi-threading implementation of deltaq-mode = 3 in allintra
+ // mode is based on row multi threading.
+ if (!cpi->oxcf.row_mt) return 1;
+ cpi->weber_bsize = BLOCK_8X8;
+ const BLOCK_SIZE bsize = cpi->weber_bsize;
+ const int mb_step = mi_size_wide[bsize];
+ const int num_mb_rows = cpi->common.mi_params.mi_rows / mb_step;
+ return AOMMIN(num_mb_rows, cpi->oxcf.max_threads);
+}
+
+static int compute_num_mod_workers(AV1_COMP *cpi,
+ MULTI_THREADED_MODULES mod_name) {
+ int num_mod_workers = 0;
+ switch (mod_name) {
+ case MOD_FP:
+ if (cpi->oxcf.pass >= AOM_RC_SECOND_PASS)
+ num_mod_workers = 0;
+ else
+ num_mod_workers =
+ av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
+ break;
+ case MOD_TF: num_mod_workers = compute_num_tf_workers(cpi); break;
+ case MOD_TPL: num_mod_workers = compute_num_tpl_workers(cpi); break;
+ case MOD_GME: num_mod_workers = 1; break;
+ case MOD_ENC:
+ num_mod_workers = av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
+ break;
+ case MOD_LPF: num_mod_workers = compute_num_lf_workers(cpi); break;
+ case MOD_CDEF_SEARCH:
+ num_mod_workers = compute_num_cdef_workers(cpi);
+ break;
+ case MOD_CDEF: num_mod_workers = compute_num_cdef_workers(cpi); break;
+ case MOD_LR: num_mod_workers = compute_num_lr_workers(cpi); break;
+ case MOD_PACK_BS: num_mod_workers = compute_num_pack_bs_workers(cpi); break;
+ case MOD_FRAME_ENC:
+ num_mod_workers = cpi->ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC];
+ break;
+ case MOD_AI:
+ if (cpi->oxcf.pass == AOM_RC_ONE_PASS) {
+ num_mod_workers = compute_num_ai_workers(cpi);
+ } else {
+ num_mod_workers = 0;
+ }
+ break;
+ default: assert(0); break;
+ }
+ return (num_mod_workers);
+}
+// Computes the number of workers for each MT modules in the encoder
+void av1_compute_num_workers_for_mt(AV1_COMP *cpi) {
+ for (int i = MOD_FP; i < NUM_MT_MODULES; i++) {
+ cpi->ppi->p_mt_info.num_mod_workers[i] =
+ compute_num_mod_workers(cpi, (MULTI_THREADED_MODULES)i);
+ }
+}