summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/intra_mode_search.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/intra_mode_search.c1739
1 files changed, 1739 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/intra_mode_search.c b/third_party/aom/av1/encoder/intra_mode_search.c
new file mode 100644
index 0000000000..99b0af2f8e
--- /dev/null
+++ b/third_party/aom/av1/encoder/intra_mode_search.c
@@ -0,0 +1,1739 @@
+/*
+ * Copyright (c) 2020, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include "av1/common/av1_common_int.h"
+#include "av1/common/cfl.h"
+#include "av1/common/reconintra.h"
+
+#include "av1/encoder/intra_mode_search.h"
+#include "av1/encoder/intra_mode_search_utils.h"
+#include "av1/encoder/palette.h"
+#include "av1/encoder/speed_features.h"
+#include "av1/encoder/tx_search.h"
+
+// Even though there are 7 delta angles, this macro is set to 9 to facilitate
+// the rd threshold check to prune -3 and 3 delta angles.
+#define SIZE_OF_ANGLE_DELTA_RD_COST_ARRAY (2 * MAX_ANGLE_DELTA + 3)
+
+// The order for evaluating delta angles while processing the luma directional
+// intra modes. Currently, this order of evaluation is applicable only when
+// speed feature prune_luma_odd_delta_angles_in_intra is enabled. In this case,
+// even angles are evaluated first in order to facilitate the pruning of odd
+// delta angles based on the rd costs of the neighboring delta angles.
+static const int8_t luma_delta_angles_order[2 * MAX_ANGLE_DELTA] = {
+ -2, 2, -3, -1, 1, 3,
+};
+
+/*!\cond */
+static const PREDICTION_MODE intra_rd_search_mode_order[INTRA_MODES] = {
+ DC_PRED, H_PRED, V_PRED, SMOOTH_PRED, PAETH_PRED,
+ SMOOTH_V_PRED, SMOOTH_H_PRED, D135_PRED, D203_PRED, D157_PRED,
+ D67_PRED, D113_PRED, D45_PRED,
+};
+
+static const UV_PREDICTION_MODE uv_rd_search_mode_order[UV_INTRA_MODES] = {
+ UV_DC_PRED, UV_CFL_PRED, UV_H_PRED, UV_V_PRED,
+ UV_SMOOTH_PRED, UV_PAETH_PRED, UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED,
+ UV_D135_PRED, UV_D203_PRED, UV_D157_PRED, UV_D67_PRED,
+ UV_D113_PRED, UV_D45_PRED,
+};
+
+// The bitmask corresponds to the filter intra modes as defined in enums.h
+// FILTER_INTRA_MODE enumeration type. Setting a bit to 0 in the mask means to
+// disable the evaluation of corresponding filter intra mode. The table
+// av1_derived_filter_intra_mode_used_flag is used when speed feature
+// prune_filter_intra_level is 1. The evaluated filter intra modes are union
+// of the following:
+// 1) FILTER_DC_PRED
+// 2) mode that corresponds to best mode so far of DC_PRED, V_PRED, H_PRED,
+// D157_PRED and PAETH_PRED. (Eg: FILTER_V_PRED if best mode so far is V_PRED).
+static const uint8_t av1_derived_filter_intra_mode_used_flag[INTRA_MODES] = {
+ 0x01, // DC_PRED: 0000 0001
+ 0x03, // V_PRED: 0000 0011
+ 0x05, // H_PRED: 0000 0101
+ 0x01, // D45_PRED: 0000 0001
+ 0x01, // D135_PRED: 0000 0001
+ 0x01, // D113_PRED: 0000 0001
+ 0x09, // D157_PRED: 0000 1001
+ 0x01, // D203_PRED: 0000 0001
+ 0x01, // D67_PRED: 0000 0001
+ 0x01, // SMOOTH_PRED: 0000 0001
+ 0x01, // SMOOTH_V_PRED: 0000 0001
+ 0x01, // SMOOTH_H_PRED: 0000 0001
+ 0x11 // PAETH_PRED: 0001 0001
+};
+
+// The bitmask corresponds to the chroma intra modes as defined in enums.h
+// UV_PREDICTION_MODE enumeration type. Setting a bit to 0 in the mask means to
+// disable the evaluation of corresponding chroma intra mode. The table
+// av1_derived_chroma_intra_mode_used_flag is used when speed feature
+// prune_chroma_modes_using_luma_winner is enabled. The evaluated chroma
+// intra modes are union of the following:
+// 1) UV_DC_PRED
+// 2) UV_SMOOTH_PRED
+// 3) UV_CFL_PRED
+// 4) mode that corresponds to luma intra mode winner (Eg : UV_V_PRED if luma
+// intra mode winner is V_PRED).
+static const uint16_t av1_derived_chroma_intra_mode_used_flag[INTRA_MODES] = {
+ 0x2201, // DC_PRED: 0010 0010 0000 0001
+ 0x2203, // V_PRED: 0010 0010 0000 0011
+ 0x2205, // H_PRED: 0010 0010 0000 0101
+ 0x2209, // D45_PRED: 0010 0010 0000 1001
+ 0x2211, // D135_PRED: 0010 0010 0001 0001
+ 0x2221, // D113_PRED: 0010 0010 0010 0001
+ 0x2241, // D157_PRED: 0010 0010 0100 0001
+ 0x2281, // D203_PRED: 0010 0010 1000 0001
+ 0x2301, // D67_PRED: 0010 0011 0000 0001
+ 0x2201, // SMOOTH_PRED: 0010 0010 0000 0001
+ 0x2601, // SMOOTH_V_PRED: 0010 0110 0000 0001
+ 0x2a01, // SMOOTH_H_PRED: 0010 1010 0000 0001
+ 0x3201 // PAETH_PRED: 0011 0010 0000 0001
+};
+
+DECLARE_ALIGNED(16, static const uint8_t, all_zeros[MAX_SB_SIZE]) = { 0 };
+DECLARE_ALIGNED(16, static const uint16_t,
+ highbd_all_zeros[MAX_SB_SIZE]) = { 0 };
+
+int av1_calc_normalized_variance(aom_variance_fn_t vf, const uint8_t *const buf,
+ const int stride, const int is_hbd) {
+ unsigned int sse;
+
+ if (is_hbd)
+ return vf(buf, stride, CONVERT_TO_BYTEPTR(highbd_all_zeros), 0, &sse);
+ else
+ return vf(buf, stride, all_zeros, 0, &sse);
+}
+
+// Computes average of log(1 + variance) across 4x4 sub-blocks for source and
+// reconstructed blocks.
+static void compute_avg_log_variance(const AV1_COMP *const cpi, MACROBLOCK *x,
+ const BLOCK_SIZE bs,
+ double *avg_log_src_variance,
+ double *avg_log_recon_variance) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size;
+ const int mi_row_in_sb = x->e_mbd.mi_row & (mi_size_high[sb_size] - 1);
+ const int mi_col_in_sb = x->e_mbd.mi_col & (mi_size_wide[sb_size] - 1);
+ const int right_overflow =
+ (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0;
+ const int bottom_overflow =
+ (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0;
+ const int bw = (MI_SIZE * mi_size_wide[bs] - right_overflow);
+ const int bh = (MI_SIZE * mi_size_high[bs] - bottom_overflow);
+ const int is_hbd = is_cur_buf_hbd(xd);
+
+ for (int i = 0; i < bh; i += MI_SIZE) {
+ const int r = mi_row_in_sb + (i >> MI_SIZE_LOG2);
+ for (int j = 0; j < bw; j += MI_SIZE) {
+ const int c = mi_col_in_sb + (j >> MI_SIZE_LOG2);
+ const int mi_offset = r * mi_size_wide[sb_size] + c;
+ Block4x4VarInfo *block_4x4_var_info =
+ &x->src_var_info_of_4x4_sub_blocks[mi_offset];
+ int src_var = block_4x4_var_info->var;
+ double log_src_var = block_4x4_var_info->log_var;
+ // Compute average of log(1 + variance) for the source block from 4x4
+ // sub-block variance values. Calculate and store 4x4 sub-block variance
+ // and log(1 + variance), if the values present in
+ // src_var_of_4x4_sub_blocks are invalid. Reuse the same if it is readily
+ // available with valid values.
+ if (src_var < 0) {
+ src_var = av1_calc_normalized_variance(
+ cpi->ppi->fn_ptr[BLOCK_4X4].vf,
+ x->plane[0].src.buf + i * x->plane[0].src.stride + j,
+ x->plane[0].src.stride, is_hbd);
+ block_4x4_var_info->var = src_var;
+ log_src_var = log1p(src_var / 16.0);
+ block_4x4_var_info->log_var = log_src_var;
+ } else {
+ // When source variance is already calculated and available for
+ // retrieval, check if log(1 + variance) is also available. If it is
+ // available, then retrieve from buffer. Else, calculate the same and
+ // store to the buffer.
+ if (log_src_var < 0) {
+ log_src_var = log1p(src_var / 16.0);
+ block_4x4_var_info->log_var = log_src_var;
+ }
+ }
+ *avg_log_src_variance += log_src_var;
+
+ const int recon_var = av1_calc_normalized_variance(
+ cpi->ppi->fn_ptr[BLOCK_4X4].vf,
+ xd->plane[0].dst.buf + i * xd->plane[0].dst.stride + j,
+ xd->plane[0].dst.stride, is_hbd);
+ *avg_log_recon_variance += log1p(recon_var / 16.0);
+ }
+ }
+
+ const int blocks = (bw * bh) / 16;
+ *avg_log_src_variance /= (double)blocks;
+ *avg_log_recon_variance /= (double)blocks;
+}
+
+// Returns a factor to be applied to the RD value based on how well the
+// reconstructed block variance matches the source variance.
+static double intra_rd_variance_factor(const AV1_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bs) {
+ double threshold = INTRA_RD_VAR_THRESH(cpi->oxcf.speed);
+ // For non-positive threshold values, the comparison of source and
+ // reconstructed variances with threshold evaluates to false
+ // (src_var < threshold/rec_var < threshold) as these metrics are greater than
+ // than 0. Hence further calculations are skipped.
+ if (threshold <= 0) return 1.0;
+
+ double variance_rd_factor = 1.0;
+ double avg_log_src_variance = 0.0;
+ double avg_log_recon_variance = 0.0;
+ double var_diff = 0.0;
+
+ compute_avg_log_variance(cpi, x, bs, &avg_log_src_variance,
+ &avg_log_recon_variance);
+
+ // Dont allow 0 to prevent / 0 below.
+ avg_log_src_variance += 0.000001;
+ avg_log_recon_variance += 0.000001;
+
+ if (avg_log_src_variance >= avg_log_recon_variance) {
+ var_diff = (avg_log_src_variance - avg_log_recon_variance);
+ if ((var_diff > 0.5) && (avg_log_recon_variance < threshold)) {
+ variance_rd_factor = 1.0 + ((var_diff * 2) / avg_log_src_variance);
+ }
+ } else {
+ var_diff = (avg_log_recon_variance - avg_log_src_variance);
+ if ((var_diff > 0.5) && (avg_log_src_variance < threshold)) {
+ variance_rd_factor = 1.0 + (var_diff / (2 * avg_log_src_variance));
+ }
+ }
+
+ // Limit adjustment;
+ variance_rd_factor = AOMMIN(3.0, variance_rd_factor);
+
+ return variance_rd_factor;
+}
+/*!\endcond */
+
+/*!\brief Search for the best filter_intra mode when coding intra frame.
+ *
+ * \ingroup intra_mode_search
+ * \callergraph
+ * This function loops through all filter_intra modes to find the best one.
+ *
+ * \return Returns 1 if a new filter_intra mode is selected; 0 otherwise.
+ */
+static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x,
+ int *rate, int *rate_tokenonly,
+ int64_t *distortion, uint8_t *skippable,
+ BLOCK_SIZE bsize, int mode_cost,
+ PREDICTION_MODE best_mode_so_far,
+ int64_t *best_rd, int64_t *best_model_rd,
+ PICK_MODE_CONTEXT *ctx) {
+ // Skip the evaluation of filter intra modes.
+ if (cpi->sf.intra_sf.prune_filter_intra_level == 2) return 0;
+
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ int filter_intra_selected_flag = 0;
+ FILTER_INTRA_MODE mode;
+ TX_SIZE best_tx_size = TX_8X8;
+ FILTER_INTRA_MODE_INFO filter_intra_mode_info;
+ uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ av1_zero(filter_intra_mode_info);
+ mbmi->filter_intra_mode_info.use_filter_intra = 1;
+ mbmi->mode = DC_PRED;
+ mbmi->palette_mode_info.palette_size[0] = 0;
+
+ // Skip the evaluation of filter-intra if cached MB_MODE_INFO does not have
+ // filter-intra as winner.
+ if (x->use_mb_mode_cache &&
+ !x->mb_mode_cache->filter_intra_mode_info.use_filter_intra)
+ return 0;
+
+ for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) {
+ int64_t this_rd;
+ RD_STATS tokenonly_rd_stats;
+ mbmi->filter_intra_mode_info.filter_intra_mode = mode;
+
+ if ((cpi->sf.intra_sf.prune_filter_intra_level == 1) &&
+ !(av1_derived_filter_intra_mode_used_flag[best_mode_so_far] &
+ (1 << mode)))
+ continue;
+
+ // Skip the evaluation of modes that do not match with the winner mode in
+ // x->mb_mode_cache.
+ if (x->use_mb_mode_cache &&
+ mode != x->mb_mode_cache->filter_intra_mode_info.filter_intra_mode)
+ continue;
+
+ if (model_intra_yrd_and_prune(cpi, x, bsize, best_model_rd)) {
+ continue;
+ }
+ av1_pick_uniform_tx_size_type_yrd(cpi, x, &tokenonly_rd_stats, bsize,
+ *best_rd);
+ if (tokenonly_rd_stats.rate == INT_MAX) continue;
+ const int this_rate =
+ tokenonly_rd_stats.rate +
+ intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0);
+ this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
+
+ // Visual quality adjustment based on recon vs source variance.
+ if ((cpi->oxcf.mode == ALLINTRA) && (this_rd != INT64_MAX)) {
+ this_rd = (int64_t)(this_rd * intra_rd_variance_factor(cpi, x, bsize));
+ }
+
+ // Collect mode stats for multiwinner mode processing
+ const int txfm_search_done = 1;
+ store_winner_mode_stats(
+ &cpi->common, x, mbmi, NULL, NULL, NULL, 0, NULL, bsize, this_rd,
+ cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done);
+ if (this_rd < *best_rd) {
+ *best_rd = this_rd;
+ best_tx_size = mbmi->tx_size;
+ filter_intra_mode_info = mbmi->filter_intra_mode_info;
+ av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
+ memcpy(ctx->blk_skip, x->txfm_search_info.blk_skip,
+ sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk);
+ *rate = this_rate;
+ *rate_tokenonly = tokenonly_rd_stats.rate;
+ *distortion = tokenonly_rd_stats.dist;
+ *skippable = tokenonly_rd_stats.skip_txfm;
+ filter_intra_selected_flag = 1;
+ }
+ }
+
+ if (filter_intra_selected_flag) {
+ mbmi->mode = DC_PRED;
+ mbmi->tx_size = best_tx_size;
+ mbmi->filter_intra_mode_info = filter_intra_mode_info;
+ av1_copy_array(ctx->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
+ return 1;
+ } else {
+ return 0;
+ }
+}
+
+void av1_count_colors(const uint8_t *src, int stride, int rows, int cols,
+ int *val_count, int *num_colors) {
+ const int max_pix_val = 1 << 8;
+ memset(val_count, 0, max_pix_val * sizeof(val_count[0]));
+ for (int r = 0; r < rows; ++r) {
+ for (int c = 0; c < cols; ++c) {
+ const int this_val = src[r * stride + c];
+ assert(this_val < max_pix_val);
+ ++val_count[this_val];
+ }
+ }
+ int n = 0;
+ for (int i = 0; i < max_pix_val; ++i) {
+ if (val_count[i]) ++n;
+ }
+ *num_colors = n;
+}
+
+void av1_count_colors_highbd(const uint8_t *src8, int stride, int rows,
+ int cols, int bit_depth, int *val_count,
+ int *bin_val_count, int *num_color_bins,
+ int *num_colors) {
+ assert(bit_depth <= 12);
+ const int max_bin_val = 1 << 8;
+ const int max_pix_val = 1 << bit_depth;
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ memset(bin_val_count, 0, max_bin_val * sizeof(val_count[0]));
+ if (val_count != NULL)
+ memset(val_count, 0, max_pix_val * sizeof(val_count[0]));
+ for (int r = 0; r < rows; ++r) {
+ for (int c = 0; c < cols; ++c) {
+ /*
+ * Down-convert the pixels to 8-bit domain before counting.
+ * This provides consistency of behavior for palette search
+ * between lbd and hbd encodes. This down-converted pixels
+ * are only used for calculating the threshold (n).
+ */
+ const int this_val = ((src[r * stride + c]) >> (bit_depth - 8));
+ assert(this_val < max_bin_val);
+ if (this_val >= max_bin_val) continue;
+ ++bin_val_count[this_val];
+ if (val_count != NULL) ++val_count[(src[r * stride + c])];
+ }
+ }
+ int n = 0;
+ // Count the colors based on 8-bit domain used to gate the palette path
+ for (int i = 0; i < max_bin_val; ++i) {
+ if (bin_val_count[i]) ++n;
+ }
+ *num_color_bins = n;
+
+ // Count the actual hbd colors used to create top_colors
+ n = 0;
+ if (val_count != NULL) {
+ for (int i = 0; i < max_pix_val; ++i) {
+ if (val_count[i]) ++n;
+ }
+ *num_colors = n;
+ }
+}
+
+void set_y_mode_and_delta_angle(const int mode_idx, MB_MODE_INFO *const mbmi,
+ int reorder_delta_angle_eval) {
+ if (mode_idx < INTRA_MODE_END) {
+ mbmi->mode = intra_rd_search_mode_order[mode_idx];
+ mbmi->angle_delta[PLANE_TYPE_Y] = 0;
+ } else {
+ mbmi->mode = (mode_idx - INTRA_MODE_END) / (MAX_ANGLE_DELTA * 2) + V_PRED;
+ int delta_angle_eval_idx =
+ (mode_idx - INTRA_MODE_END) % (MAX_ANGLE_DELTA * 2);
+ if (reorder_delta_angle_eval) {
+ mbmi->angle_delta[PLANE_TYPE_Y] =
+ luma_delta_angles_order[delta_angle_eval_idx];
+ } else {
+ mbmi->angle_delta[PLANE_TYPE_Y] =
+ (delta_angle_eval_idx < 3 ? (delta_angle_eval_idx - 3)
+ : (delta_angle_eval_idx - 2));
+ }
+ }
+}
+
+static AOM_INLINE int get_model_rd_index_for_pruning(
+ const MACROBLOCK *const x,
+ const INTRA_MODE_SPEED_FEATURES *const intra_sf) {
+ const int top_intra_model_count_allowed =
+ intra_sf->top_intra_model_count_allowed;
+ if (!intra_sf->adapt_top_model_rd_count_using_neighbors)
+ return top_intra_model_count_allowed - 1;
+
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const PREDICTION_MODE mode = xd->mi[0]->mode;
+ int model_rd_index_for_pruning = top_intra_model_count_allowed - 1;
+ int is_left_mode_neq_cur_mode = 0, is_above_mode_neq_cur_mode = 0;
+ if (xd->left_available)
+ is_left_mode_neq_cur_mode = xd->left_mbmi->mode != mode;
+ if (xd->up_available)
+ is_above_mode_neq_cur_mode = xd->above_mbmi->mode != mode;
+ // The pruning of luma intra modes is made more aggressive at lower quantizers
+ // and vice versa. The value for model_rd_index_for_pruning is derived as
+ // follows.
+ // qidx 0 to 127: Reduce the index of a candidate used for comparison only if
+ // the current mode does not match either of the available neighboring modes.
+ // qidx 128 to 255: Reduce the index of a candidate used for comparison only
+ // if the current mode does not match both the available neighboring modes.
+ if (x->qindex <= 127) {
+ if (is_left_mode_neq_cur_mode || is_above_mode_neq_cur_mode)
+ model_rd_index_for_pruning = AOMMAX(model_rd_index_for_pruning - 1, 0);
+ } else {
+ if (is_left_mode_neq_cur_mode && is_above_mode_neq_cur_mode)
+ model_rd_index_for_pruning = AOMMAX(model_rd_index_for_pruning - 1, 0);
+ }
+ return model_rd_index_for_pruning;
+}
+
+int prune_intra_y_mode(int64_t this_model_rd, int64_t *best_model_rd,
+ int64_t top_intra_model_rd[], int max_model_cnt_allowed,
+ int model_rd_index_for_pruning) {
+ const double thresh_best = 1.50;
+ const double thresh_top = 1.00;
+ for (int i = 0; i < max_model_cnt_allowed; i++) {
+ if (this_model_rd < top_intra_model_rd[i]) {
+ for (int j = max_model_cnt_allowed - 1; j > i; j--) {
+ top_intra_model_rd[j] = top_intra_model_rd[j - 1];
+ }
+ top_intra_model_rd[i] = this_model_rd;
+ break;
+ }
+ }
+ if (top_intra_model_rd[model_rd_index_for_pruning] != INT64_MAX &&
+ this_model_rd >
+ thresh_top * top_intra_model_rd[model_rd_index_for_pruning])
+ return 1;
+
+ if (this_model_rd != INT64_MAX &&
+ this_model_rd > thresh_best * (*best_model_rd))
+ return 1;
+ if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd;
+ return 0;
+}
+
+// Run RD calculation with given chroma intra prediction angle., and return
+// the RD cost. Update the best mode info. if the RD cost is the best so far.
+static int64_t pick_intra_angle_routine_sbuv(
+ const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
+ int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats,
+ int *best_angle_delta, int64_t *best_rd) {
+ MB_MODE_INFO *mbmi = x->e_mbd.mi[0];
+ assert(!is_inter_block(mbmi));
+ int this_rate;
+ int64_t this_rd;
+ RD_STATS tokenonly_rd_stats;
+
+ if (!av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in))
+ return INT64_MAX;
+ this_rate = tokenonly_rd_stats.rate +
+ intra_mode_info_cost_uv(cpi, x, mbmi, bsize, rate_overhead);
+ this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
+ if (this_rd < *best_rd) {
+ *best_rd = this_rd;
+ *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV];
+ *rate = this_rate;
+ rd_stats->rate = tokenonly_rd_stats.rate;
+ rd_stats->dist = tokenonly_rd_stats.dist;
+ rd_stats->skip_txfm = tokenonly_rd_stats.skip_txfm;
+ }
+ return this_rd;
+}
+
+/*!\brief Search for the best angle delta for chroma prediction
+ *
+ * \ingroup intra_mode_search
+ * \callergraph
+ * Given a chroma directional intra prediction mode, this function will try to
+ * estimate the best delta_angle.
+ *
+ * \returns Return if there is a new mode with smaller rdcost than best_rd.
+ */
+static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, int rate_overhead,
+ int64_t best_rd, int *rate,
+ RD_STATS *rd_stats) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ assert(!is_inter_block(mbmi));
+ int i, angle_delta, best_angle_delta = 0;
+ int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)];
+
+ rd_stats->rate = INT_MAX;
+ rd_stats->skip_txfm = 0;
+ rd_stats->dist = INT64_MAX;
+ for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX;
+
+ for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
+ for (i = 0; i < 2; ++i) {
+ best_rd_in = (best_rd == INT64_MAX)
+ ? INT64_MAX
+ : (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5)));
+ mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta;
+ this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead,
+ best_rd_in, rate, rd_stats,
+ &best_angle_delta, &best_rd);
+ rd_cost[2 * angle_delta + i] = this_rd;
+ if (angle_delta == 0) {
+ if (this_rd == INT64_MAX) return 0;
+ rd_cost[1] = this_rd;
+ break;
+ }
+ }
+ }
+
+ assert(best_rd != INT64_MAX);
+ for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
+ int64_t rd_thresh;
+ for (i = 0; i < 2; ++i) {
+ int skip_search = 0;
+ rd_thresh = best_rd + (best_rd >> 5);
+ if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh &&
+ rd_cost[2 * (angle_delta - 1) + i] > rd_thresh)
+ skip_search = 1;
+ if (!skip_search) {
+ mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta;
+ pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, best_rd,
+ rate, rd_stats, &best_angle_delta,
+ &best_rd);
+ }
+ }
+ }
+
+ mbmi->angle_delta[PLANE_TYPE_UV] = best_angle_delta;
+ return rd_stats->rate != INT_MAX;
+}
+
+#define PLANE_SIGN_TO_JOINT_SIGN(plane, a, b) \
+ (plane == CFL_PRED_U ? a * CFL_SIGNS + b - 1 : b * CFL_SIGNS + a - 1)
+
+static void cfl_idx_to_sign_and_alpha(int cfl_idx, CFL_SIGN_TYPE *cfl_sign,
+ int *cfl_alpha) {
+ int cfl_linear_idx = cfl_idx - CFL_INDEX_ZERO;
+ if (cfl_linear_idx == 0) {
+ *cfl_sign = CFL_SIGN_ZERO;
+ *cfl_alpha = 0;
+ } else {
+ *cfl_sign = cfl_linear_idx > 0 ? CFL_SIGN_POS : CFL_SIGN_NEG;
+ *cfl_alpha = abs(cfl_linear_idx) - 1;
+ }
+}
+
+static int64_t cfl_compute_rd(const AV1_COMP *const cpi, MACROBLOCK *x,
+ int plane, TX_SIZE tx_size,
+ BLOCK_SIZE plane_bsize, int cfl_idx,
+ int fast_mode, RD_STATS *rd_stats) {
+ assert(IMPLIES(fast_mode, rd_stats == NULL));
+ const AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ int cfl_plane = get_cfl_pred_type(plane);
+ CFL_SIGN_TYPE cfl_sign;
+ int cfl_alpha;
+ cfl_idx_to_sign_and_alpha(cfl_idx, &cfl_sign, &cfl_alpha);
+ // We conly build CFL for a given plane, the other plane's sign is dummy
+ int dummy_sign = CFL_SIGN_NEG;
+ const int8_t orig_cfl_alpha_signs = mbmi->cfl_alpha_signs;
+ const uint8_t orig_cfl_alpha_idx = mbmi->cfl_alpha_idx;
+ mbmi->cfl_alpha_signs =
+ PLANE_SIGN_TO_JOINT_SIGN(cfl_plane, cfl_sign, dummy_sign);
+ mbmi->cfl_alpha_idx = (cfl_alpha << CFL_ALPHABET_SIZE_LOG2) + cfl_alpha;
+ int64_t cfl_cost;
+ if (fast_mode) {
+ cfl_cost =
+ intra_model_rd(cm, x, plane, plane_bsize, tx_size, /*use_hadamard=*/0);
+ } else {
+ av1_init_rd_stats(rd_stats);
+ av1_txfm_rd_in_plane(x, cpi, rd_stats, INT64_MAX, 0, plane, plane_bsize,
+ tx_size, FTXS_NONE, 0);
+ av1_rd_cost_update(x->rdmult, rd_stats);
+ cfl_cost = rd_stats->rdcost;
+ }
+ mbmi->cfl_alpha_signs = orig_cfl_alpha_signs;
+ mbmi->cfl_alpha_idx = orig_cfl_alpha_idx;
+ return cfl_cost;
+}
+
+static const int cfl_dir_ls[2] = { 1, -1 };
+
+// If cfl_search_range is CFL_MAGS_SIZE, return zero. Otherwise return the index
+// of the best alpha found using intra_model_rd().
+static int cfl_pick_plane_parameter(const AV1_COMP *const cpi, MACROBLOCK *x,
+ int plane, TX_SIZE tx_size,
+ int cfl_search_range) {
+ assert(cfl_search_range >= 1 && cfl_search_range <= CFL_MAGS_SIZE);
+
+ if (cfl_search_range == CFL_MAGS_SIZE) return CFL_INDEX_ZERO;
+
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ assert(mbmi->uv_mode == UV_CFL_PRED);
+ const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
+
+ int est_best_cfl_idx = CFL_INDEX_ZERO;
+ int fast_mode = 1;
+ int start_cfl_idx = CFL_INDEX_ZERO;
+ int64_t best_cfl_cost = cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize,
+ start_cfl_idx, fast_mode, NULL);
+ for (int si = 0; si < 2; ++si) {
+ const int dir = cfl_dir_ls[si];
+ for (int i = 1; i < CFL_MAGS_SIZE; ++i) {
+ int cfl_idx = start_cfl_idx + dir * i;
+ if (cfl_idx < 0 || cfl_idx >= CFL_MAGS_SIZE) break;
+ int64_t cfl_cost = cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize,
+ cfl_idx, fast_mode, NULL);
+ if (cfl_cost < best_cfl_cost) {
+ best_cfl_cost = cfl_cost;
+ est_best_cfl_idx = cfl_idx;
+ } else {
+ break;
+ }
+ }
+ }
+ return est_best_cfl_idx;
+}
+
+static AOM_INLINE void set_invalid_cfl_parameters(
+ uint8_t *best_cfl_alpha_idx, int8_t *best_cfl_alpha_signs) {
+ *best_cfl_alpha_idx = 0;
+ *best_cfl_alpha_signs = 0;
+}
+
+static void cfl_pick_plane_rd(const AV1_COMP *const cpi, MACROBLOCK *x,
+ int plane, TX_SIZE tx_size, int cfl_search_range,
+ RD_STATS cfl_rd_arr[CFL_MAGS_SIZE],
+ int est_best_cfl_idx) {
+ assert(cfl_search_range >= 1 && cfl_search_range <= CFL_MAGS_SIZE);
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ assert(mbmi->uv_mode == UV_CFL_PRED);
+ const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
+
+ for (int cfl_idx = 0; cfl_idx < CFL_MAGS_SIZE; ++cfl_idx) {
+ av1_invalid_rd_stats(&cfl_rd_arr[cfl_idx]);
+ }
+
+ int fast_mode = 0;
+ int start_cfl_idx = est_best_cfl_idx;
+ cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, start_cfl_idx, fast_mode,
+ &cfl_rd_arr[start_cfl_idx]);
+
+ if (cfl_search_range == 1) return;
+
+ for (int si = 0; si < 2; ++si) {
+ const int dir = cfl_dir_ls[si];
+ for (int i = 1; i < cfl_search_range; ++i) {
+ int cfl_idx = start_cfl_idx + dir * i;
+ if (cfl_idx < 0 || cfl_idx >= CFL_MAGS_SIZE) break;
+ cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, cfl_idx, fast_mode,
+ &cfl_rd_arr[cfl_idx]);
+ }
+ }
+}
+
+/*!\brief Pick the optimal parameters for Chroma to Luma (CFL) component
+ *
+ * \ingroup intra_mode_search
+ * \callergraph
+ *
+ * This function will use DCT_DCT followed by computing SATD (sum of absolute
+ * transformed differences) to estimate the RD score and find the best possible
+ * CFL parameter.
+ *
+ * Then the function will apply a full RD search near the best possible CFL
+ * parameter to find the best actual CFL parameter.
+ *
+ * Side effect:
+ * We use ths buffers in x->plane[] and xd->plane[] as throw-away buffers for RD
+ * search.
+ *
+ * \param[in] x Encoder prediction block structure.
+ * \param[in] cpi Top-level encoder instance structure.
+ * \param[in] tx_size Transform size.
+ * \param[in] ref_best_rd Reference best RD.
+ * \param[in] cfl_search_range The search range of full RD search near the
+ * estimated best CFL parameter.
+ *
+ * \param[out] best_rd_stats RD stats of the best CFL parameter
+ * \param[out] best_cfl_alpha_idx Best CFL alpha index
+ * \param[out] best_cfl_alpha_signs Best CFL joint signs
+ *
+ */
+static int cfl_rd_pick_alpha(MACROBLOCK *const x, const AV1_COMP *const cpi,
+ TX_SIZE tx_size, int64_t ref_best_rd,
+ int cfl_search_range, RD_STATS *best_rd_stats,
+ uint8_t *best_cfl_alpha_idx,
+ int8_t *best_cfl_alpha_signs) {
+ assert(cfl_search_range >= 1 && cfl_search_range <= CFL_MAGS_SIZE);
+ const ModeCosts *mode_costs = &x->mode_costs;
+ RD_STATS cfl_rd_arr_u[CFL_MAGS_SIZE];
+ RD_STATS cfl_rd_arr_v[CFL_MAGS_SIZE];
+ MACROBLOCKD *const xd = &x->e_mbd;
+ int est_best_cfl_idx_u, est_best_cfl_idx_v;
+
+ av1_invalid_rd_stats(best_rd_stats);
+
+ // As the dc pred data is same for different values of alpha, enable the
+ // caching of dc pred data. Call clear_cfl_dc_pred_cache_flags() before
+ // returning to avoid the unintentional usage of cached dc pred data.
+ xd->cfl.use_dc_pred_cache = true;
+ // Evaluate alpha parameter of each chroma plane.
+ est_best_cfl_idx_u =
+ cfl_pick_plane_parameter(cpi, x, 1, tx_size, cfl_search_range);
+ est_best_cfl_idx_v =
+ cfl_pick_plane_parameter(cpi, x, 2, tx_size, cfl_search_range);
+
+ if (cfl_search_range == 1) {
+ // For cfl_search_range=1, further refinement of alpha is not enabled. Hence
+ // CfL index=0 for both the chroma planes implies invalid CfL mode.
+ if (est_best_cfl_idx_u == CFL_INDEX_ZERO &&
+ est_best_cfl_idx_v == CFL_INDEX_ZERO) {
+ set_invalid_cfl_parameters(best_cfl_alpha_idx, best_cfl_alpha_signs);
+ clear_cfl_dc_pred_cache_flags(&xd->cfl);
+ return 0;
+ }
+
+ int cfl_alpha_u, cfl_alpha_v;
+ CFL_SIGN_TYPE cfl_sign_u, cfl_sign_v;
+ const MB_MODE_INFO *mbmi = xd->mi[0];
+ cfl_idx_to_sign_and_alpha(est_best_cfl_idx_u, &cfl_sign_u, &cfl_alpha_u);
+ cfl_idx_to_sign_and_alpha(est_best_cfl_idx_v, &cfl_sign_v, &cfl_alpha_v);
+ const int joint_sign = cfl_sign_u * CFL_SIGNS + cfl_sign_v - 1;
+ // Compute alpha and mode signaling rate.
+ const int rate_overhead =
+ mode_costs->cfl_cost[joint_sign][CFL_PRED_U][cfl_alpha_u] +
+ mode_costs->cfl_cost[joint_sign][CFL_PRED_V][cfl_alpha_v] +
+ mode_costs
+ ->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][UV_CFL_PRED];
+ // Skip the CfL mode evaluation if the RD cost derived using the rate needed
+ // to signal the CfL mode and alpha parameter exceeds the ref_best_rd.
+ if (RDCOST(x->rdmult, rate_overhead, 0) > ref_best_rd) {
+ set_invalid_cfl_parameters(best_cfl_alpha_idx, best_cfl_alpha_signs);
+ clear_cfl_dc_pred_cache_flags(&xd->cfl);
+ return 0;
+ }
+ }
+
+ // Compute the rd cost of each chroma plane using the alpha parameters which
+ // were already evaluated.
+ cfl_pick_plane_rd(cpi, x, 1, tx_size, cfl_search_range, cfl_rd_arr_u,
+ est_best_cfl_idx_u);
+ cfl_pick_plane_rd(cpi, x, 2, tx_size, cfl_search_range, cfl_rd_arr_v,
+ est_best_cfl_idx_v);
+
+ clear_cfl_dc_pred_cache_flags(&xd->cfl);
+
+ for (int ui = 0; ui < CFL_MAGS_SIZE; ++ui) {
+ if (cfl_rd_arr_u[ui].rate == INT_MAX) continue;
+ int cfl_alpha_u;
+ CFL_SIGN_TYPE cfl_sign_u;
+ cfl_idx_to_sign_and_alpha(ui, &cfl_sign_u, &cfl_alpha_u);
+ for (int vi = 0; vi < CFL_MAGS_SIZE; ++vi) {
+ if (cfl_rd_arr_v[vi].rate == INT_MAX) continue;
+ int cfl_alpha_v;
+ CFL_SIGN_TYPE cfl_sign_v;
+ cfl_idx_to_sign_and_alpha(vi, &cfl_sign_v, &cfl_alpha_v);
+ // cfl_sign_u == CFL_SIGN_ZERO && cfl_sign_v == CFL_SIGN_ZERO is not a
+ // valid parameter for CFL
+ if (cfl_sign_u == CFL_SIGN_ZERO && cfl_sign_v == CFL_SIGN_ZERO) continue;
+ int joint_sign = cfl_sign_u * CFL_SIGNS + cfl_sign_v - 1;
+ RD_STATS rd_stats = cfl_rd_arr_u[ui];
+ av1_merge_rd_stats(&rd_stats, &cfl_rd_arr_v[vi]);
+ if (rd_stats.rate != INT_MAX) {
+ rd_stats.rate +=
+ mode_costs->cfl_cost[joint_sign][CFL_PRED_U][cfl_alpha_u];
+ rd_stats.rate +=
+ mode_costs->cfl_cost[joint_sign][CFL_PRED_V][cfl_alpha_v];
+ }
+ av1_rd_cost_update(x->rdmult, &rd_stats);
+ if (rd_stats.rdcost < best_rd_stats->rdcost) {
+ *best_rd_stats = rd_stats;
+ *best_cfl_alpha_idx =
+ (cfl_alpha_u << CFL_ALPHABET_SIZE_LOG2) + cfl_alpha_v;
+ *best_cfl_alpha_signs = joint_sign;
+ }
+ }
+ }
+ if (best_rd_stats->rdcost >= ref_best_rd) {
+ av1_invalid_rd_stats(best_rd_stats);
+ // Set invalid CFL parameters here since the rdcost is not better than
+ // ref_best_rd.
+ set_invalid_cfl_parameters(best_cfl_alpha_idx, best_cfl_alpha_signs);
+ return 0;
+ }
+ return 1;
+}
+
+static bool should_prune_chroma_smooth_pred_based_on_source_variance(
+ const AV1_COMP *cpi, const MACROBLOCK *x, BLOCK_SIZE bsize) {
+ if (!cpi->sf.intra_sf.prune_smooth_intra_mode_for_chroma) return false;
+
+ // If the source variance of both chroma planes is less than 20 (empirically
+ // derived), prune UV_SMOOTH_PRED.
+ for (int i = AOM_PLANE_U; i < av1_num_planes(&cpi->common); i++) {
+ const unsigned int variance = av1_get_perpixel_variance_facade(
+ cpi, &x->e_mbd, &x->plane[i].src, bsize, i);
+ if (variance >= 20) return false;
+ }
+ return true;
+}
+
+int64_t av1_rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
+ int *rate, int *rate_tokenonly,
+ int64_t *distortion, uint8_t *skippable,
+ BLOCK_SIZE bsize, TX_SIZE max_tx_size) {
+ const AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ assert(!is_inter_block(mbmi));
+ MB_MODE_INFO best_mbmi = *mbmi;
+ int64_t best_rd = INT64_MAX, this_rd;
+ const ModeCosts *mode_costs = &x->mode_costs;
+ const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg;
+
+ init_sbuv_mode(mbmi);
+
+ // Return if the current block does not correspond to a chroma block.
+ if (!xd->is_chroma_ref) {
+ *rate = 0;
+ *rate_tokenonly = 0;
+ *distortion = 0;
+ *skippable = 1;
+ return INT64_MAX;
+ }
+
+ // Only store reconstructed luma when there's chroma RDO. When there's no
+ // chroma RDO, the reconstructed luma will be stored in encode_superblock().
+ xd->cfl.store_y = store_cfl_required_rdo(cm, x);
+ if (xd->cfl.store_y) {
+ // Restore reconstructed luma values.
+ // TODO(chiyotsai@google.com): right now we are re-computing the txfm in
+ // this function everytime we search through uv modes. There is some
+ // potential speed up here if we cache the result to avoid redundant
+ // computation.
+ av1_encode_intra_block_plane(cpi, x, mbmi->bsize, AOM_PLANE_Y,
+ DRY_RUN_NORMAL,
+ cpi->optimize_seg_arr[mbmi->segment_id]);
+ xd->cfl.store_y = 0;
+ }
+ IntraModeSearchState intra_search_state;
+ init_intra_mode_search_state(&intra_search_state);
+ const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd);
+
+ // Search through all non-palette modes.
+ for (int mode_idx = 0; mode_idx < UV_INTRA_MODES; ++mode_idx) {
+ int this_rate;
+ RD_STATS tokenonly_rd_stats;
+ UV_PREDICTION_MODE uv_mode = uv_rd_search_mode_order[mode_idx];
+
+ // Skip the current mode evaluation if the RD cost derived using the mode
+ // signaling rate exceeds the best_rd so far.
+ const int mode_rate =
+ mode_costs->intra_uv_mode_cost[cfl_allowed][mbmi->mode][uv_mode];
+ if (RDCOST(x->rdmult, mode_rate, 0) > best_rd) continue;
+
+ PREDICTION_MODE intra_mode = get_uv_mode(uv_mode);
+ const int is_diagonal_mode = av1_is_diagonal_mode(intra_mode);
+ const int is_directional_mode = av1_is_directional_mode(intra_mode);
+
+ if (is_diagonal_mode && !cpi->oxcf.intra_mode_cfg.enable_diagonal_intra)
+ continue;
+ if (is_directional_mode &&
+ !cpi->oxcf.intra_mode_cfg.enable_directional_intra)
+ continue;
+
+ if (!(cpi->sf.intra_sf.intra_uv_mode_mask[txsize_sqr_up_map[max_tx_size]] &
+ (1 << uv_mode)))
+ continue;
+ if (!intra_mode_cfg->enable_smooth_intra && uv_mode >= UV_SMOOTH_PRED &&
+ uv_mode <= UV_SMOOTH_H_PRED)
+ continue;
+
+ if (!intra_mode_cfg->enable_paeth_intra && uv_mode == UV_PAETH_PRED)
+ continue;
+
+ assert(mbmi->mode < INTRA_MODES);
+ if (cpi->sf.intra_sf.prune_chroma_modes_using_luma_winner &&
+ !(av1_derived_chroma_intra_mode_used_flag[mbmi->mode] & (1 << uv_mode)))
+ continue;
+
+ mbmi->uv_mode = uv_mode;
+
+ // Init variables for cfl and angle delta
+ const SPEED_FEATURES *sf = &cpi->sf;
+ mbmi->angle_delta[PLANE_TYPE_UV] = 0;
+ if (uv_mode == UV_CFL_PRED) {
+ if (!cfl_allowed || !intra_mode_cfg->enable_cfl_intra) continue;
+ assert(!is_directional_mode);
+ const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
+ if (!cfl_rd_pick_alpha(x, cpi, uv_tx_size, best_rd,
+ sf->intra_sf.cfl_search_range, &tokenonly_rd_stats,
+ &mbmi->cfl_alpha_idx, &mbmi->cfl_alpha_signs)) {
+ continue;
+ }
+ } else if (is_directional_mode && av1_use_angle_delta(mbmi->bsize) &&
+ intra_mode_cfg->enable_angle_delta) {
+ if (sf->intra_sf.chroma_intra_pruning_with_hog &&
+ !intra_search_state.dir_mode_skip_mask_ready) {
+ static const float thresh[2][4] = {
+ { -1.2f, 0.0f, 0.0f, 1.2f }, // Interframe
+ { -1.2f, -1.2f, -0.6f, 0.4f }, // Intraframe
+ };
+ const int is_chroma = 1;
+ const int is_intra_frame = frame_is_intra_only(cm);
+ prune_intra_mode_with_hog(
+ x, bsize, cm->seq_params->sb_size,
+ thresh[is_intra_frame]
+ [sf->intra_sf.chroma_intra_pruning_with_hog - 1],
+ intra_search_state.directional_mode_skip_mask, is_chroma);
+ intra_search_state.dir_mode_skip_mask_ready = 1;
+ }
+ if (intra_search_state.directional_mode_skip_mask[uv_mode]) {
+ continue;
+ }
+
+ // Search through angle delta
+ const int rate_overhead =
+ mode_costs->intra_uv_mode_cost[cfl_allowed][mbmi->mode][uv_mode];
+ if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd,
+ &this_rate, &tokenonly_rd_stats))
+ continue;
+ } else {
+ if (uv_mode == UV_SMOOTH_PRED &&
+ should_prune_chroma_smooth_pred_based_on_source_variance(cpi, x,
+ bsize))
+ continue;
+
+ // Predict directly if we don't need to search for angle delta.
+ if (!av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) {
+ continue;
+ }
+ }
+ const int mode_cost =
+ mode_costs->intra_uv_mode_cost[cfl_allowed][mbmi->mode][uv_mode];
+ this_rate = tokenonly_rd_stats.rate +
+ intra_mode_info_cost_uv(cpi, x, mbmi, bsize, mode_cost);
+ this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
+
+ if (this_rd < best_rd) {
+ best_mbmi = *mbmi;
+ best_rd = this_rd;
+ *rate = this_rate;
+ *rate_tokenonly = tokenonly_rd_stats.rate;
+ *distortion = tokenonly_rd_stats.dist;
+ *skippable = tokenonly_rd_stats.skip_txfm;
+ }
+ }
+
+ // Search palette mode
+ const int try_palette =
+ cpi->oxcf.tool_cfg.enable_palette &&
+ av1_allow_palette(cpi->common.features.allow_screen_content_tools,
+ mbmi->bsize);
+ if (try_palette) {
+ uint8_t *best_palette_color_map = x->palette_buffer->best_palette_color_map;
+ av1_rd_pick_palette_intra_sbuv(
+ cpi, x,
+ mode_costs->intra_uv_mode_cost[cfl_allowed][mbmi->mode][UV_DC_PRED],
+ best_palette_color_map, &best_mbmi, &best_rd, rate, rate_tokenonly,
+ distortion, skippable);
+ }
+
+ *mbmi = best_mbmi;
+ // Make sure we actually chose a mode
+ assert(best_rd < INT64_MAX);
+ return best_rd;
+}
+
+// Searches palette mode for luma channel in inter frame.
+int av1_search_palette_mode(IntraModeSearchState *intra_search_state,
+ const AV1_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, unsigned int ref_frame_cost,
+ PICK_MODE_CONTEXT *ctx, RD_STATS *this_rd_cost,
+ int64_t best_rd) {
+ const AV1_COMMON *const cm = &cpi->common;
+ MB_MODE_INFO *const mbmi = x->e_mbd.mi[0];
+ PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ int rate2 = 0;
+ int64_t distortion2 = 0, best_rd_palette = best_rd, this_rd;
+ int skippable = 0;
+ uint8_t *const best_palette_color_map =
+ x->palette_buffer->best_palette_color_map;
+ uint8_t *const color_map = xd->plane[0].color_index_map;
+ MB_MODE_INFO best_mbmi_palette = *mbmi;
+ uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ const ModeCosts *mode_costs = &x->mode_costs;
+ const int *const intra_mode_cost =
+ mode_costs->mbmode_cost[size_group_lookup[bsize]];
+ const int rows = block_size_high[bsize];
+ const int cols = block_size_wide[bsize];
+
+ mbmi->mode = DC_PRED;
+ mbmi->uv_mode = UV_DC_PRED;
+ mbmi->ref_frame[0] = INTRA_FRAME;
+ mbmi->ref_frame[1] = NONE_FRAME;
+ av1_zero(pmi->palette_size);
+
+ RD_STATS rd_stats_y;
+ av1_invalid_rd_stats(&rd_stats_y);
+ av1_rd_pick_palette_intra_sby(cpi, x, bsize, intra_mode_cost[DC_PRED],
+ &best_mbmi_palette, best_palette_color_map,
+ &best_rd_palette, &rd_stats_y.rate, NULL,
+ &rd_stats_y.dist, &rd_stats_y.skip_txfm, NULL,
+ ctx, best_blk_skip, best_tx_type_map);
+ if (rd_stats_y.rate == INT_MAX || pmi->palette_size[0] == 0) {
+ this_rd_cost->rdcost = INT64_MAX;
+ return skippable;
+ }
+
+ memcpy(x->txfm_search_info.blk_skip, best_blk_skip,
+ sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize));
+ av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
+ memcpy(color_map, best_palette_color_map,
+ rows * cols * sizeof(best_palette_color_map[0]));
+
+ skippable = rd_stats_y.skip_txfm;
+ distortion2 = rd_stats_y.dist;
+ rate2 = rd_stats_y.rate + ref_frame_cost;
+ if (num_planes > 1) {
+ if (intra_search_state->rate_uv_intra == INT_MAX) {
+ // We have not found any good uv mode yet, so we need to search for it.
+ TX_SIZE uv_tx = av1_get_tx_size(AOM_PLANE_U, xd);
+ av1_rd_pick_intra_sbuv_mode(cpi, x, &intra_search_state->rate_uv_intra,
+ &intra_search_state->rate_uv_tokenonly,
+ &intra_search_state->dist_uvs,
+ &intra_search_state->skip_uvs, bsize, uv_tx);
+ intra_search_state->mode_uv = mbmi->uv_mode;
+ intra_search_state->pmi_uv = *pmi;
+ intra_search_state->uv_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV];
+ }
+
+ // We have found at least one good uv mode before, so copy and paste it
+ // over.
+ mbmi->uv_mode = intra_search_state->mode_uv;
+ pmi->palette_size[1] = intra_search_state->pmi_uv.palette_size[1];
+ if (pmi->palette_size[1] > 0) {
+ memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
+ intra_search_state->pmi_uv.palette_colors + PALETTE_MAX_SIZE,
+ 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
+ }
+ mbmi->angle_delta[PLANE_TYPE_UV] = intra_search_state->uv_angle_delta;
+ skippable = skippable && intra_search_state->skip_uvs;
+ distortion2 += intra_search_state->dist_uvs;
+ rate2 += intra_search_state->rate_uv_intra;
+ }
+
+ if (skippable) {
+ rate2 -= rd_stats_y.rate;
+ if (num_planes > 1) rate2 -= intra_search_state->rate_uv_tokenonly;
+ rate2 += mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][1];
+ } else {
+ rate2 += mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][0];
+ }
+ this_rd = RDCOST(x->rdmult, rate2, distortion2);
+ this_rd_cost->rate = rate2;
+ this_rd_cost->dist = distortion2;
+ this_rd_cost->rdcost = this_rd;
+ return skippable;
+}
+
+void av1_search_palette_mode_luma(const AV1_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, unsigned int ref_frame_cost,
+ PICK_MODE_CONTEXT *ctx,
+ RD_STATS *this_rd_cost, int64_t best_rd) {
+ MB_MODE_INFO *const mbmi = x->e_mbd.mi[0];
+ PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ int64_t best_rd_palette = best_rd, this_rd;
+ uint8_t *const best_palette_color_map =
+ x->palette_buffer->best_palette_color_map;
+ uint8_t *const color_map = xd->plane[0].color_index_map;
+ MB_MODE_INFO best_mbmi_palette = *mbmi;
+ uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ const ModeCosts *mode_costs = &x->mode_costs;
+ const int *const intra_mode_cost =
+ mode_costs->mbmode_cost[size_group_lookup[bsize]];
+ const int rows = block_size_high[bsize];
+ const int cols = block_size_wide[bsize];
+
+ mbmi->mode = DC_PRED;
+ mbmi->uv_mode = UV_DC_PRED;
+ mbmi->ref_frame[0] = INTRA_FRAME;
+ mbmi->ref_frame[1] = NONE_FRAME;
+ av1_zero(pmi->palette_size);
+
+ RD_STATS rd_stats_y;
+ av1_invalid_rd_stats(&rd_stats_y);
+ av1_rd_pick_palette_intra_sby(cpi, x, bsize, intra_mode_cost[DC_PRED],
+ &best_mbmi_palette, best_palette_color_map,
+ &best_rd_palette, &rd_stats_y.rate, NULL,
+ &rd_stats_y.dist, &rd_stats_y.skip_txfm, NULL,
+ ctx, best_blk_skip, best_tx_type_map);
+ if (rd_stats_y.rate == INT_MAX || pmi->palette_size[0] == 0) {
+ this_rd_cost->rdcost = INT64_MAX;
+ return;
+ }
+
+ memcpy(x->txfm_search_info.blk_skip, best_blk_skip,
+ sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize));
+ av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
+ memcpy(color_map, best_palette_color_map,
+ rows * cols * sizeof(best_palette_color_map[0]));
+
+ rd_stats_y.rate += ref_frame_cost;
+
+ if (rd_stats_y.skip_txfm) {
+ rd_stats_y.rate =
+ ref_frame_cost +
+ mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][1];
+ } else {
+ rd_stats_y.rate +=
+ mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][0];
+ }
+ this_rd = RDCOST(x->rdmult, rd_stats_y.rate, rd_stats_y.dist);
+ this_rd_cost->rate = rd_stats_y.rate;
+ this_rd_cost->dist = rd_stats_y.dist;
+ this_rd_cost->rdcost = this_rd;
+ this_rd_cost->skip_txfm = rd_stats_y.skip_txfm;
+}
+
+/*!\brief Get the intra prediction by searching through tx_type and tx_size.
+ *
+ * \ingroup intra_mode_search
+ * \callergraph
+ * Currently this function is only used in the intra frame code path for
+ * winner-mode processing.
+ *
+ * \return Returns whether the current mode is an improvement over best_rd.
+ */
+static AOM_INLINE int intra_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, const int *bmode_costs,
+ int64_t *best_rd, int *rate,
+ int *rate_tokenonly, int64_t *distortion,
+ uint8_t *skippable,
+ MB_MODE_INFO *best_mbmi,
+ PICK_MODE_CONTEXT *ctx) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ RD_STATS rd_stats;
+ // In order to improve txfm search, avoid rd based breakouts during winner
+ // mode evaluation. Hence passing ref_best_rd as INT64_MAX by default when the
+ // speed feature use_rd_based_breakout_for_intra_tx_search is disabled.
+ int64_t ref_best_rd = cpi->sf.tx_sf.use_rd_based_breakout_for_intra_tx_search
+ ? *best_rd
+ : INT64_MAX;
+ av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats, bsize, ref_best_rd);
+ if (rd_stats.rate == INT_MAX) return 0;
+ int this_rate_tokenonly = rd_stats.rate;
+ if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->bsize)) {
+ // av1_pick_uniform_tx_size_type_yrd above includes the cost of the tx_size
+ // in the tokenonly rate, but for intra blocks, tx_size is always coded
+ // (prediction granularity), so we account for it in the full rate,
+ // not the tokenonly rate.
+ this_rate_tokenonly -= tx_size_cost(x, bsize, mbmi->tx_size);
+ }
+ const int this_rate =
+ rd_stats.rate +
+ intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode], 0);
+ const int64_t this_rd = RDCOST(x->rdmult, this_rate, rd_stats.dist);
+ if (this_rd < *best_rd) {
+ *best_mbmi = *mbmi;
+ *best_rd = this_rd;
+ *rate = this_rate;
+ *rate_tokenonly = this_rate_tokenonly;
+ *distortion = rd_stats.dist;
+ *skippable = rd_stats.skip_txfm;
+ av1_copy_array(ctx->blk_skip, x->txfm_search_info.blk_skip,
+ ctx->num_4x4_blk);
+ av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
+ return 1;
+ }
+ return 0;
+}
+
+/*!\brief Search for the best filter_intra mode when coding inter frame.
+ *
+ * \ingroup intra_mode_search
+ * \callergraph
+ * This function loops through all filter_intra modes to find the best one.
+ *
+ * \remark Returns nothing, but updates the mbmi and rd_stats.
+ */
+static INLINE void handle_filter_intra_mode(const AV1_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize,
+ const PICK_MODE_CONTEXT *ctx,
+ RD_STATS *rd_stats_y, int mode_cost,
+ int64_t best_rd,
+ int64_t best_rd_so_far) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ assert(mbmi->mode == DC_PRED &&
+ av1_filter_intra_allowed_bsize(&cpi->common, bsize));
+
+ RD_STATS rd_stats_y_fi;
+ int filter_intra_selected_flag = 0;
+ TX_SIZE best_tx_size = mbmi->tx_size;
+ FILTER_INTRA_MODE best_fi_mode = FILTER_DC_PRED;
+ uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ memcpy(best_blk_skip, x->txfm_search_info.blk_skip,
+ sizeof(best_blk_skip[0]) * ctx->num_4x4_blk);
+ uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
+ mbmi->filter_intra_mode_info.use_filter_intra = 1;
+ for (FILTER_INTRA_MODE fi_mode = FILTER_DC_PRED; fi_mode < FILTER_INTRA_MODES;
+ ++fi_mode) {
+ mbmi->filter_intra_mode_info.filter_intra_mode = fi_mode;
+ av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y_fi, bsize, best_rd);
+ if (rd_stats_y_fi.rate == INT_MAX) continue;
+ const int this_rate_tmp =
+ rd_stats_y_fi.rate +
+ intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0);
+ const int64_t this_rd_tmp =
+ RDCOST(x->rdmult, this_rate_tmp, rd_stats_y_fi.dist);
+
+ if (this_rd_tmp != INT64_MAX && this_rd_tmp / 2 > best_rd) {
+ break;
+ }
+ if (this_rd_tmp < best_rd_so_far) {
+ best_tx_size = mbmi->tx_size;
+ av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
+ memcpy(best_blk_skip, x->txfm_search_info.blk_skip,
+ sizeof(best_blk_skip[0]) * ctx->num_4x4_blk);
+ best_fi_mode = fi_mode;
+ *rd_stats_y = rd_stats_y_fi;
+ filter_intra_selected_flag = 1;
+ best_rd_so_far = this_rd_tmp;
+ }
+ }
+
+ mbmi->tx_size = best_tx_size;
+ av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
+ memcpy(x->txfm_search_info.blk_skip, best_blk_skip,
+ sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk);
+
+ if (filter_intra_selected_flag) {
+ mbmi->filter_intra_mode_info.use_filter_intra = 1;
+ mbmi->filter_intra_mode_info.filter_intra_mode = best_fi_mode;
+ } else {
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ }
+}
+
+// Evaluate a given luma intra-mode in inter frames.
+int av1_handle_intra_y_mode(IntraModeSearchState *intra_search_state,
+ const AV1_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, unsigned int ref_frame_cost,
+ const PICK_MODE_CONTEXT *ctx, RD_STATS *rd_stats_y,
+ int64_t best_rd, int *mode_cost_y, int64_t *rd_y,
+ int64_t *best_model_rd,
+ int64_t top_intra_model_rd[]) {
+ const AV1_COMMON *cm = &cpi->common;
+ const INTRA_MODE_SPEED_FEATURES *const intra_sf = &cpi->sf.intra_sf;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ assert(mbmi->ref_frame[0] == INTRA_FRAME);
+ const PREDICTION_MODE mode = mbmi->mode;
+ const ModeCosts *mode_costs = &x->mode_costs;
+ const int mode_cost =
+ mode_costs->mbmode_cost[size_group_lookup[bsize]][mode] + ref_frame_cost;
+ const int skip_ctx = av1_get_skip_txfm_context(xd);
+
+ int known_rate = mode_cost;
+ const int intra_cost_penalty = av1_get_intra_cost_penalty(
+ cm->quant_params.base_qindex, cm->quant_params.y_dc_delta_q,
+ cm->seq_params->bit_depth);
+
+ if (mode != DC_PRED && mode != PAETH_PRED) known_rate += intra_cost_penalty;
+ known_rate += AOMMIN(mode_costs->skip_txfm_cost[skip_ctx][0],
+ mode_costs->skip_txfm_cost[skip_ctx][1]);
+ const int64_t known_rd = RDCOST(x->rdmult, known_rate, 0);
+ if (known_rd > best_rd) {
+ intra_search_state->skip_intra_modes = 1;
+ return 0;
+ }
+
+ const int is_directional_mode = av1_is_directional_mode(mode);
+ if (is_directional_mode && av1_use_angle_delta(bsize) &&
+ cpi->oxcf.intra_mode_cfg.enable_angle_delta) {
+ if (intra_sf->intra_pruning_with_hog &&
+ !intra_search_state->dir_mode_skip_mask_ready) {
+ const float thresh[4] = { -1.2f, 0.0f, 0.0f, 1.2f };
+ const int is_chroma = 0;
+ prune_intra_mode_with_hog(x, bsize, cm->seq_params->sb_size,
+ thresh[intra_sf->intra_pruning_with_hog - 1],
+ intra_search_state->directional_mode_skip_mask,
+ is_chroma);
+ intra_search_state->dir_mode_skip_mask_ready = 1;
+ }
+ if (intra_search_state->directional_mode_skip_mask[mode]) return 0;
+ }
+ const TX_SIZE tx_size = AOMMIN(TX_32X32, max_txsize_lookup[bsize]);
+ const int64_t this_model_rd =
+ intra_model_rd(&cpi->common, x, 0, bsize, tx_size, /*use_hadamard=*/1);
+
+ const int model_rd_index_for_pruning =
+ get_model_rd_index_for_pruning(x, intra_sf);
+
+ if (prune_intra_y_mode(this_model_rd, best_model_rd, top_intra_model_rd,
+ intra_sf->top_intra_model_count_allowed,
+ model_rd_index_for_pruning))
+ return 0;
+ av1_init_rd_stats(rd_stats_y);
+ av1_pick_uniform_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, best_rd);
+
+ // Pick filter intra modes.
+ if (mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) {
+ int try_filter_intra = 1;
+ int64_t best_rd_so_far = INT64_MAX;
+ if (rd_stats_y->rate != INT_MAX) {
+ // best_rd_so_far is the rdcost of DC_PRED without using filter_intra.
+ // Later, in filter intra search, best_rd_so_far is used for comparison.
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ const int tmp_rate =
+ rd_stats_y->rate +
+ intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0);
+ best_rd_so_far = RDCOST(x->rdmult, tmp_rate, rd_stats_y->dist);
+ try_filter_intra = (best_rd_so_far / 2) <= best_rd;
+ } else if (intra_sf->skip_filter_intra_in_inter_frames >= 1) {
+ // As rd cost of luma intra dc mode is more than best_rd (i.e.,
+ // rd_stats_y->rate = INT_MAX), skip the evaluation of filter intra modes.
+ try_filter_intra = 0;
+ }
+
+ if (try_filter_intra) {
+ handle_filter_intra_mode(cpi, x, bsize, ctx, rd_stats_y, mode_cost,
+ best_rd, best_rd_so_far);
+ }
+ }
+
+ if (rd_stats_y->rate == INT_MAX) return 0;
+
+ *mode_cost_y = intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0);
+ const int rate_y = rd_stats_y->skip_txfm
+ ? mode_costs->skip_txfm_cost[skip_ctx][1]
+ : rd_stats_y->rate;
+ *rd_y = RDCOST(x->rdmult, rate_y + *mode_cost_y, rd_stats_y->dist);
+ if (best_rd < (INT64_MAX / 2) && *rd_y > (best_rd + (best_rd >> 2))) {
+ intra_search_state->skip_intra_modes = 1;
+ return 0;
+ }
+
+ return 1;
+}
+
+int av1_search_intra_uv_modes_in_interframe(
+ IntraModeSearchState *intra_search_state, const AV1_COMP *cpi,
+ MACROBLOCK *x, BLOCK_SIZE bsize, RD_STATS *rd_stats,
+ const RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, int64_t best_rd) {
+ const AV1_COMMON *cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ assert(mbmi->ref_frame[0] == INTRA_FRAME);
+
+ // TODO(chiyotsai@google.com): Consolidate the chroma search code here with
+ // the one in av1_search_palette_mode.
+ PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ const int try_palette =
+ cpi->oxcf.tool_cfg.enable_palette &&
+ av1_allow_palette(cm->features.allow_screen_content_tools, mbmi->bsize);
+
+ assert(intra_search_state->rate_uv_intra == INT_MAX);
+ if (intra_search_state->rate_uv_intra == INT_MAX) {
+ // If no good uv-predictor had been found, search for it.
+ const TX_SIZE uv_tx = av1_get_tx_size(AOM_PLANE_U, xd);
+ av1_rd_pick_intra_sbuv_mode(cpi, x, &intra_search_state->rate_uv_intra,
+ &intra_search_state->rate_uv_tokenonly,
+ &intra_search_state->dist_uvs,
+ &intra_search_state->skip_uvs, bsize, uv_tx);
+ intra_search_state->mode_uv = mbmi->uv_mode;
+ if (try_palette) intra_search_state->pmi_uv = *pmi;
+ intra_search_state->uv_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV];
+
+ const int uv_rate = intra_search_state->rate_uv_tokenonly;
+ const int64_t uv_dist = intra_search_state->dist_uvs;
+ const int64_t uv_rd = RDCOST(x->rdmult, uv_rate, uv_dist);
+ if (uv_rd > best_rd) {
+ // If there is no good intra uv-mode available, we can skip all intra
+ // modes.
+ intra_search_state->skip_intra_modes = 1;
+ return 0;
+ }
+ }
+
+ // If we are here, then the encoder has found at least one good intra uv
+ // predictor, so we can directly copy its statistics over.
+ // TODO(any): the stats here is not right if the best uv mode is CFL but the
+ // best y mode is palette.
+ rd_stats_uv->rate = intra_search_state->rate_uv_tokenonly;
+ rd_stats_uv->dist = intra_search_state->dist_uvs;
+ rd_stats_uv->skip_txfm = intra_search_state->skip_uvs;
+ rd_stats->skip_txfm = rd_stats_y->skip_txfm && rd_stats_uv->skip_txfm;
+ mbmi->uv_mode = intra_search_state->mode_uv;
+ if (try_palette) {
+ pmi->palette_size[1] = intra_search_state->pmi_uv.palette_size[1];
+ memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
+ intra_search_state->pmi_uv.palette_colors + PALETTE_MAX_SIZE,
+ 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
+ }
+ mbmi->angle_delta[PLANE_TYPE_UV] = intra_search_state->uv_angle_delta;
+
+ return 1;
+}
+
+// Checks if odd delta angles can be pruned based on rdcosts of even delta
+// angles of the corresponding directional mode.
+static AOM_INLINE int prune_luma_odd_delta_angles_using_rd_cost(
+ const MB_MODE_INFO *const mbmi, const int64_t *const intra_modes_rd_cost,
+ int64_t best_rd, int prune_luma_odd_delta_angles_in_intra) {
+ const int luma_delta_angle = mbmi->angle_delta[PLANE_TYPE_Y];
+ if (!prune_luma_odd_delta_angles_in_intra ||
+ !av1_is_directional_mode(mbmi->mode) || !(abs(luma_delta_angle) & 1) ||
+ best_rd == INT64_MAX)
+ return 0;
+
+ const int64_t rd_thresh = best_rd + (best_rd >> 3);
+
+ // Neighbour rdcosts are considered for pruning of odd delta angles as
+ // mentioned below:
+ // Delta angle Delta angle rdcost
+ // to be pruned to be considered
+ // -3 -2
+ // -1 -2, 0
+ // 1 0, 2
+ // 3 2
+ return intra_modes_rd_cost[luma_delta_angle + MAX_ANGLE_DELTA] > rd_thresh &&
+ intra_modes_rd_cost[luma_delta_angle + MAX_ANGLE_DELTA + 2] >
+ rd_thresh;
+}
+
+// Finds the best non-intrabc mode on an intra frame.
+int64_t av1_rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
+ int *rate, int *rate_tokenonly,
+ int64_t *distortion, uint8_t *skippable,
+ BLOCK_SIZE bsize, int64_t best_rd,
+ PICK_MODE_CONTEXT *ctx) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ assert(!is_inter_block(mbmi));
+ int64_t best_model_rd = INT64_MAX;
+ int is_directional_mode;
+ uint8_t directional_mode_skip_mask[INTRA_MODES] = { 0 };
+ // Flag to check rd of any intra mode is better than best_rd passed to this
+ // function
+ int beat_best_rd = 0;
+ const int *bmode_costs;
+ const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg;
+ PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ const int try_palette =
+ cpi->oxcf.tool_cfg.enable_palette &&
+ av1_allow_palette(cpi->common.features.allow_screen_content_tools,
+ mbmi->bsize);
+ uint8_t *best_palette_color_map =
+ try_palette ? x->palette_buffer->best_palette_color_map : NULL;
+ const MB_MODE_INFO *above_mi = xd->above_mbmi;
+ const MB_MODE_INFO *left_mi = xd->left_mbmi;
+ const PREDICTION_MODE A = av1_above_block_mode(above_mi);
+ const PREDICTION_MODE L = av1_left_block_mode(left_mi);
+ const int above_ctx = intra_mode_context[A];
+ const int left_ctx = intra_mode_context[L];
+ bmode_costs = x->mode_costs.y_mode_costs[above_ctx][left_ctx];
+
+ mbmi->angle_delta[PLANE_TYPE_Y] = 0;
+ const INTRA_MODE_SPEED_FEATURES *const intra_sf = &cpi->sf.intra_sf;
+ if (intra_sf->intra_pruning_with_hog) {
+ // Less aggressive thresholds are used here than those used in inter frame
+ // encoding in av1_handle_intra_y_mode() because we want key frames/intra
+ // frames to have higher quality.
+ const float thresh[4] = { -1.2f, -1.2f, -0.6f, 0.4f };
+ const int is_chroma = 0;
+ prune_intra_mode_with_hog(x, bsize, cpi->common.seq_params->sb_size,
+ thresh[intra_sf->intra_pruning_with_hog - 1],
+ directional_mode_skip_mask, is_chroma);
+ }
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ pmi->palette_size[0] = 0;
+
+ // Set params for mode evaluation
+ set_mode_eval_params(cpi, x, MODE_EVAL);
+
+ MB_MODE_INFO best_mbmi = *mbmi;
+ const int max_winner_mode_count =
+ winner_mode_count_allowed[cpi->sf.winner_mode_sf.multi_winner_mode_type];
+ zero_winner_mode_stats(bsize, max_winner_mode_count, x->winner_mode_stats);
+ x->winner_mode_count = 0;
+
+ // Searches the intra-modes except for intrabc, palette, and filter_intra.
+ int64_t top_intra_model_rd[TOP_INTRA_MODEL_COUNT];
+ for (int i = 0; i < TOP_INTRA_MODEL_COUNT; i++) {
+ top_intra_model_rd[i] = INT64_MAX;
+ }
+
+ // Initialize the rdcost corresponding to all the directional and
+ // non-directional intra modes.
+ // 1. For directional modes, it stores the rdcost values for delta angles -4,
+ // -3, ..., 3, 4.
+ // 2. The rdcost value for luma_delta_angle is stored at index
+ // luma_delta_angle + MAX_ANGLE_DELTA + 1.
+ // 3. The rdcost values for fictitious/nonexistent luma_delta_angle -4 and 4
+ // (array indices 0 and 8) are always set to INT64_MAX (the initial value).
+ int64_t intra_modes_rd_cost[INTRA_MODE_END]
+ [SIZE_OF_ANGLE_DELTA_RD_COST_ARRAY];
+ for (int i = 0; i < INTRA_MODE_END; i++) {
+ for (int j = 0; j < SIZE_OF_ANGLE_DELTA_RD_COST_ARRAY; j++) {
+ intra_modes_rd_cost[i][j] = INT64_MAX;
+ }
+ }
+
+ for (int mode_idx = INTRA_MODE_START; mode_idx < LUMA_MODE_COUNT;
+ ++mode_idx) {
+ set_y_mode_and_delta_angle(mode_idx, mbmi,
+ intra_sf->prune_luma_odd_delta_angles_in_intra);
+ RD_STATS this_rd_stats;
+ int this_rate, this_rate_tokenonly, s;
+ int is_diagonal_mode;
+ int64_t this_distortion, this_rd;
+ const int luma_delta_angle = mbmi->angle_delta[PLANE_TYPE_Y];
+
+ is_diagonal_mode = av1_is_diagonal_mode(mbmi->mode);
+ if (is_diagonal_mode && !intra_mode_cfg->enable_diagonal_intra) continue;
+ if (av1_is_directional_mode(mbmi->mode) &&
+ !intra_mode_cfg->enable_directional_intra)
+ continue;
+
+ // The smooth prediction mode appears to be more frequently picked
+ // than horizontal / vertical smooth prediction modes. Hence treat
+ // them differently in speed features.
+ if ((!intra_mode_cfg->enable_smooth_intra ||
+ intra_sf->disable_smooth_intra) &&
+ (mbmi->mode == SMOOTH_H_PRED || mbmi->mode == SMOOTH_V_PRED))
+ continue;
+ if (!intra_mode_cfg->enable_smooth_intra && mbmi->mode == SMOOTH_PRED)
+ continue;
+
+ // The functionality of filter intra modes and smooth prediction
+ // overlap. Hence smooth prediction is pruned only if all the
+ // filter intra modes are enabled.
+ if (intra_sf->disable_smooth_intra &&
+ intra_sf->prune_filter_intra_level == 0 && mbmi->mode == SMOOTH_PRED)
+ continue;
+ if (!intra_mode_cfg->enable_paeth_intra && mbmi->mode == PAETH_PRED)
+ continue;
+
+ // Skip the evaluation of modes that do not match with the winner mode in
+ // x->mb_mode_cache.
+ if (x->use_mb_mode_cache && mbmi->mode != x->mb_mode_cache->mode) continue;
+
+ is_directional_mode = av1_is_directional_mode(mbmi->mode);
+ if (is_directional_mode && directional_mode_skip_mask[mbmi->mode]) continue;
+ if (is_directional_mode &&
+ !(av1_use_angle_delta(bsize) && intra_mode_cfg->enable_angle_delta) &&
+ luma_delta_angle != 0)
+ continue;
+
+ // Use intra_y_mode_mask speed feature to skip intra mode evaluation.
+ if (!(intra_sf->intra_y_mode_mask[max_txsize_lookup[bsize]] &
+ (1 << mbmi->mode)))
+ continue;
+
+ if (prune_luma_odd_delta_angles_using_rd_cost(
+ mbmi, intra_modes_rd_cost[mbmi->mode], best_rd,
+ intra_sf->prune_luma_odd_delta_angles_in_intra))
+ continue;
+
+ const TX_SIZE tx_size = AOMMIN(TX_32X32, max_txsize_lookup[bsize]);
+ const int64_t this_model_rd =
+ intra_model_rd(&cpi->common, x, 0, bsize, tx_size, /*use_hadamard=*/1);
+
+ const int model_rd_index_for_pruning =
+ get_model_rd_index_for_pruning(x, intra_sf);
+
+ if (prune_intra_y_mode(this_model_rd, &best_model_rd, top_intra_model_rd,
+ intra_sf->top_intra_model_count_allowed,
+ model_rd_index_for_pruning))
+ continue;
+
+ // Builds the actual prediction. The prediction from
+ // model_intra_yrd_and_prune was just an estimation that did not take into
+ // account the effect of txfm pipeline, so we need to redo it for real
+ // here.
+ av1_pick_uniform_tx_size_type_yrd(cpi, x, &this_rd_stats, bsize, best_rd);
+ this_rate_tokenonly = this_rd_stats.rate;
+ this_distortion = this_rd_stats.dist;
+ s = this_rd_stats.skip_txfm;
+
+ if (this_rate_tokenonly == INT_MAX) continue;
+
+ if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->bsize)) {
+ // av1_pick_uniform_tx_size_type_yrd above includes the cost of the
+ // tx_size in the tokenonly rate, but for intra blocks, tx_size is always
+ // coded (prediction granularity), so we account for it in the full rate,
+ // not the tokenonly rate.
+ this_rate_tokenonly -= tx_size_cost(x, bsize, mbmi->tx_size);
+ }
+ this_rate =
+ this_rd_stats.rate +
+ intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode], 0);
+ this_rd = RDCOST(x->rdmult, this_rate, this_distortion);
+
+ // Visual quality adjustment based on recon vs source variance.
+ if ((cpi->oxcf.mode == ALLINTRA) && (this_rd != INT64_MAX)) {
+ this_rd = (int64_t)(this_rd * intra_rd_variance_factor(cpi, x, bsize));
+ }
+
+ intra_modes_rd_cost[mbmi->mode][luma_delta_angle + MAX_ANGLE_DELTA + 1] =
+ this_rd;
+
+ // Collect mode stats for multiwinner mode processing
+ const int txfm_search_done = 1;
+ store_winner_mode_stats(
+ &cpi->common, x, mbmi, NULL, NULL, NULL, 0, NULL, bsize, this_rd,
+ cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done);
+ if (this_rd < best_rd) {
+ best_mbmi = *mbmi;
+ best_rd = this_rd;
+ // Setting beat_best_rd flag because current mode rd is better than
+ // best_rd passed to this function
+ beat_best_rd = 1;
+ *rate = this_rate;
+ *rate_tokenonly = this_rate_tokenonly;
+ *distortion = this_distortion;
+ *skippable = s;
+ memcpy(ctx->blk_skip, x->txfm_search_info.blk_skip,
+ sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk);
+ av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
+ }
+ }
+
+ // Searches palette
+ if (try_palette) {
+ av1_rd_pick_palette_intra_sby(
+ cpi, x, bsize, bmode_costs[DC_PRED], &best_mbmi, best_palette_color_map,
+ &best_rd, rate, rate_tokenonly, distortion, skippable, &beat_best_rd,
+ ctx, ctx->blk_skip, ctx->tx_type_map);
+ }
+
+ // Searches filter_intra
+ if (beat_best_rd && av1_filter_intra_allowed_bsize(&cpi->common, bsize)) {
+ if (rd_pick_filter_intra_sby(cpi, x, rate, rate_tokenonly, distortion,
+ skippable, bsize, bmode_costs[DC_PRED],
+ best_mbmi.mode, &best_rd, &best_model_rd,
+ ctx)) {
+ best_mbmi = *mbmi;
+ }
+ }
+
+ // No mode is identified with less rd value than best_rd passed to this
+ // function. In such cases winner mode processing is not necessary and return
+ // best_rd as INT64_MAX to indicate best mode is not identified
+ if (!beat_best_rd) return INT64_MAX;
+
+ // In multi-winner mode processing, perform tx search for few best modes
+ // identified during mode evaluation. Winner mode processing uses best tx
+ // configuration for tx search.
+ if (cpi->sf.winner_mode_sf.multi_winner_mode_type) {
+ int best_mode_idx = 0;
+ int block_width, block_height;
+ uint8_t *color_map_dst = xd->plane[PLANE_TYPE_Y].color_index_map;
+ av1_get_block_dimensions(bsize, AOM_PLANE_Y, xd, &block_width,
+ &block_height, NULL, NULL);
+
+ for (int mode_idx = 0; mode_idx < x->winner_mode_count; mode_idx++) {
+ *mbmi = x->winner_mode_stats[mode_idx].mbmi;
+ if (is_winner_mode_processing_enabled(cpi, x, mbmi, 0)) {
+ // Restore color_map of palette mode before winner mode processing
+ if (mbmi->palette_mode_info.palette_size[0] > 0) {
+ uint8_t *color_map_src =
+ x->winner_mode_stats[mode_idx].color_index_map;
+ memcpy(color_map_dst, color_map_src,
+ block_width * block_height * sizeof(*color_map_src));
+ }
+ // Set params for winner mode evaluation
+ set_mode_eval_params(cpi, x, WINNER_MODE_EVAL);
+
+ // Winner mode processing
+ // If previous searches use only the default tx type/no R-D optimization
+ // of quantized coeffs, do an extra search for the best tx type/better
+ // R-D optimization of quantized coeffs
+ if (intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate,
+ rate_tokenonly, distortion, skippable, &best_mbmi,
+ ctx))
+ best_mode_idx = mode_idx;
+ }
+ }
+ // Copy color_map of palette mode for final winner mode
+ if (best_mbmi.palette_mode_info.palette_size[0] > 0) {
+ uint8_t *color_map_src =
+ x->winner_mode_stats[best_mode_idx].color_index_map;
+ memcpy(color_map_dst, color_map_src,
+ block_width * block_height * sizeof(*color_map_src));
+ }
+ } else {
+ // If previous searches use only the default tx type/no R-D optimization of
+ // quantized coeffs, do an extra search for the best tx type/better R-D
+ // optimization of quantized coeffs
+ if (is_winner_mode_processing_enabled(cpi, x, mbmi, 0)) {
+ // Set params for winner mode evaluation
+ set_mode_eval_params(cpi, x, WINNER_MODE_EVAL);
+ *mbmi = best_mbmi;
+ intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate,
+ rate_tokenonly, distortion, skippable, &best_mbmi, ctx);
+ }
+ }
+ *mbmi = best_mbmi;
+ av1_copy_array(xd->tx_type_map, ctx->tx_type_map, ctx->num_4x4_blk);
+ return best_rd;
+}