summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/intra_mode_search_utils.h
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/intra_mode_search_utils.h690
1 files changed, 690 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/intra_mode_search_utils.h b/third_party/aom/av1/encoder/intra_mode_search_utils.h
new file mode 100644
index 0000000000..107c2236f8
--- /dev/null
+++ b/third_party/aom/av1/encoder/intra_mode_search_utils.h
@@ -0,0 +1,690 @@
+/*
+ * Copyright (c) 2020, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+/*!\file
+ * \brief Defines utility functions used in intra mode search.
+ *
+ * This includes rdcost estimations, histogram based pruning, etc.
+ */
+#ifndef AOM_AV1_ENCODER_INTRA_MODE_SEARCH_UTILS_H_
+#define AOM_AV1_ENCODER_INTRA_MODE_SEARCH_UTILS_H_
+
+#include "av1/common/enums.h"
+#include "av1/common/pred_common.h"
+#include "av1/common/reconintra.h"
+
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/encodeframe.h"
+#include "av1/encoder/model_rd.h"
+#include "av1/encoder/palette.h"
+#include "av1/encoder/hybrid_fwd_txfm.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*!\cond */
+// Macro for computing the speed-preset dependent threshold which is used for
+// deciding whether to enable/disable variance calculations in
+// intra_rd_variance_factor().
+#define INTRA_RD_VAR_THRESH(X) (1.0 - (0.25 * (X)))
+
+#define BINS 32
+static const float av1_intra_hog_model_bias[DIRECTIONAL_MODES] = {
+ 0.450578f, 0.695518f, -0.717944f, -0.639894f,
+ -0.602019f, -0.453454f, 0.055857f, -0.465480f,
+};
+
+static const float av1_intra_hog_model_weights[BINS * DIRECTIONAL_MODES] = {
+ -3.076402f, -3.757063f, -3.275266f, -3.180665f, -3.452105f, -3.216593f,
+ -2.871212f, -3.134296f, -1.822324f, -2.401411f, -1.541016f, -1.195322f,
+ -0.434156f, 0.322868f, 2.260546f, 3.368715f, 3.989290f, 3.308487f,
+ 2.277893f, 0.923793f, 0.026412f, -0.385174f, -0.718622f, -1.408867f,
+ -1.050558f, -2.323941f, -2.225827f, -2.585453f, -3.054283f, -2.875087f,
+ -2.985709f, -3.447155f, 3.758139f, 3.204353f, 2.170998f, 0.826587f,
+ -0.269665f, -0.702068f, -1.085776f, -2.175249f, -1.623180f, -2.975142f,
+ -2.779629f, -3.190799f, -3.521900f, -3.375480f, -3.319355f, -3.897389f,
+ -3.172334f, -3.594528f, -2.879132f, -2.547777f, -2.921023f, -2.281844f,
+ -1.818988f, -2.041771f, -0.618268f, -1.396458f, -0.567153f, -0.285868f,
+ -0.088058f, 0.753494f, 2.092413f, 3.215266f, -3.300277f, -2.748658f,
+ -2.315784f, -2.423671f, -2.257283f, -2.269583f, -2.196660f, -2.301076f,
+ -2.646516f, -2.271319f, -2.254366f, -2.300102f, -2.217960f, -2.473300f,
+ -2.116866f, -2.528246f, -3.314712f, -1.701010f, -0.589040f, -0.088077f,
+ 0.813112f, 1.702213f, 2.653045f, 3.351749f, 3.243554f, 3.199409f,
+ 2.437856f, 1.468854f, 0.533039f, -0.099065f, -0.622643f, -2.200732f,
+ -4.228861f, -2.875263f, -1.273956f, -0.433280f, 0.803771f, 1.975043f,
+ 3.179528f, 3.939064f, 3.454379f, 3.689386f, 3.116411f, 1.970991f,
+ 0.798406f, -0.628514f, -1.252546f, -2.825176f, -4.090178f, -3.777448f,
+ -3.227314f, -3.479403f, -3.320569f, -3.159372f, -2.729202f, -2.722341f,
+ -3.054913f, -2.742923f, -2.612703f, -2.662632f, -2.907314f, -3.117794f,
+ -3.102660f, -3.970972f, -4.891357f, -3.935582f, -3.347758f, -2.721924f,
+ -2.219011f, -1.702391f, -0.866529f, -0.153743f, 0.107733f, 1.416882f,
+ 2.572884f, 3.607755f, 3.974820f, 3.997783f, 2.970459f, 0.791687f,
+ -1.478921f, -1.228154f, -1.216955f, -1.765932f, -1.951003f, -1.985301f,
+ -1.975881f, -1.985593f, -2.422371f, -2.419978f, -2.531288f, -2.951853f,
+ -3.071380f, -3.277027f, -3.373539f, -4.462010f, -0.967888f, 0.805524f,
+ 2.794130f, 3.685984f, 3.745195f, 3.252444f, 2.316108f, 1.399146f,
+ -0.136519f, -0.162811f, -1.004357f, -1.667911f, -1.964662f, -2.937579f,
+ -3.019533f, -3.942766f, -5.102767f, -3.882073f, -3.532027f, -3.451956f,
+ -2.944015f, -2.643064f, -2.529872f, -2.077290f, -2.809965f, -1.803734f,
+ -1.783593f, -1.662585f, -1.415484f, -1.392673f, -0.788794f, -1.204819f,
+ -1.998864f, -1.182102f, -0.892110f, -1.317415f, -1.359112f, -1.522867f,
+ -1.468552f, -1.779072f, -2.332959f, -2.160346f, -2.329387f, -2.631259f,
+ -2.744936f, -3.052494f, -2.787363f, -3.442548f, -4.245075f, -3.032172f,
+ -2.061609f, -1.768116f, -1.286072f, -0.706587f, -0.192413f, 0.386938f,
+ 0.716997f, 1.481393f, 2.216702f, 2.737986f, 3.109809f, 3.226084f,
+ 2.490098f, -0.095827f, -3.864816f, -3.507248f, -3.128925f, -2.908251f,
+ -2.883836f, -2.881411f, -2.524377f, -2.624478f, -2.399573f, -2.367718f,
+ -1.918255f, -1.926277f, -1.694584f, -1.723790f, -0.966491f, -1.183115f,
+ -1.430687f, 0.872896f, 2.766550f, 3.610080f, 3.578041f, 3.334928f,
+ 2.586680f, 1.895721f, 1.122195f, 0.488519f, -0.140689f, -0.799076f,
+ -1.222860f, -1.502437f, -1.900969f, -3.206816f,
+};
+
+static const NN_CONFIG av1_intra_hog_model_nnconfig = {
+ BINS, // num_inputs
+ DIRECTIONAL_MODES, // num_outputs
+ 0, // num_hidden_layers
+ { 0 },
+ {
+ av1_intra_hog_model_weights,
+ },
+ {
+ av1_intra_hog_model_bias,
+ },
+};
+
+#define FIX_PREC_BITS (16)
+static AOM_INLINE int get_hist_bin_idx(int dx, int dy) {
+ const int32_t ratio = (dy * (1 << FIX_PREC_BITS)) / dx;
+
+ // Find index by bisection
+ static const int thresholds[BINS] = {
+ -1334015, -441798, -261605, -183158, -138560, -109331, -88359, -72303,
+ -59392, -48579, -39272, -30982, -23445, -16400, -9715, -3194,
+ 3227, 9748, 16433, 23478, 31015, 39305, 48611, 59425,
+ 72336, 88392, 109364, 138593, 183191, 261638, 441831, INT32_MAX
+ };
+
+ int lo_idx = 0, hi_idx = BINS - 1;
+ // Divide into segments of size 8 gives better performance than binary search
+ // here.
+ if (ratio <= thresholds[7]) {
+ lo_idx = 0;
+ hi_idx = 7;
+ } else if (ratio <= thresholds[15]) {
+ lo_idx = 8;
+ hi_idx = 15;
+ } else if (ratio <= thresholds[23]) {
+ lo_idx = 16;
+ hi_idx = 23;
+ } else {
+ lo_idx = 24;
+ hi_idx = 31;
+ }
+
+ for (int idx = lo_idx; idx <= hi_idx; idx++) {
+ if (ratio <= thresholds[idx]) {
+ return idx;
+ }
+ }
+ assert(0 && "No valid histogram bin found!");
+ return BINS - 1;
+}
+#undef FIX_PREC_BITS
+
+// Normalizes the hog data.
+static AOM_INLINE void normalize_hog(float total, float *hist) {
+ for (int i = 0; i < BINS; ++i) hist[i] /= total;
+}
+
+static AOM_INLINE void lowbd_generate_hog(const uint8_t *src, int stride,
+ int rows, int cols, float *hist) {
+ float total = 0.1f;
+ src += stride;
+ for (int r = 1; r < rows - 1; ++r) {
+ for (int c = 1; c < cols - 1; ++c) {
+ const uint8_t *above = &src[c - stride];
+ const uint8_t *below = &src[c + stride];
+ const uint8_t *left = &src[c - 1];
+ const uint8_t *right = &src[c + 1];
+ // Calculate gradient using Sobel filters.
+ const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
+ (left[-stride] + 2 * left[0] + left[stride]);
+ const int dy = (below[-1] + 2 * below[0] + below[1]) -
+ (above[-1] + 2 * above[0] + above[1]);
+ if (dx == 0 && dy == 0) continue;
+ const int temp = abs(dx) + abs(dy);
+ if (!temp) continue;
+ total += temp;
+ if (dx == 0) {
+ hist[0] += temp / 2;
+ hist[BINS - 1] += temp / 2;
+ } else {
+ const int idx = get_hist_bin_idx(dx, dy);
+ assert(idx >= 0 && idx < BINS);
+ hist[idx] += temp;
+ }
+ }
+ src += stride;
+ }
+
+ normalize_hog(total, hist);
+}
+
+// Computes and stores pixel level gradient information of a given superblock
+// for LBD encode.
+static AOM_INLINE void lowbd_compute_gradient_info_sb(MACROBLOCK *const x,
+ BLOCK_SIZE sb_size,
+ PLANE_TYPE plane) {
+ PixelLevelGradientInfo *const grad_info_sb =
+ x->pixel_gradient_info + plane * MAX_SB_SQUARE;
+ const uint8_t *src = x->plane[plane].src.buf;
+ const int stride = x->plane[plane].src.stride;
+ const int ss_x = x->e_mbd.plane[plane].subsampling_x;
+ const int ss_y = x->e_mbd.plane[plane].subsampling_y;
+ const int sb_height = block_size_high[sb_size] >> ss_y;
+ const int sb_width = block_size_wide[sb_size] >> ss_x;
+ src += stride;
+ for (int r = 1; r < sb_height - 1; ++r) {
+ for (int c = 1; c < sb_width - 1; ++c) {
+ const uint8_t *above = &src[c - stride];
+ const uint8_t *below = &src[c + stride];
+ const uint8_t *left = &src[c - 1];
+ const uint8_t *right = &src[c + 1];
+ // Calculate gradient using Sobel filters.
+ const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
+ (left[-stride] + 2 * left[0] + left[stride]);
+ const int dy = (below[-1] + 2 * below[0] + below[1]) -
+ (above[-1] + 2 * above[0] + above[1]);
+ grad_info_sb[r * sb_width + c].is_dx_zero = (dx == 0);
+ grad_info_sb[r * sb_width + c].abs_dx_abs_dy_sum =
+ (uint16_t)(abs(dx) + abs(dy));
+ grad_info_sb[r * sb_width + c].hist_bin_idx =
+ (dx != 0) ? get_hist_bin_idx(dx, dy) : -1;
+ }
+ src += stride;
+ }
+}
+
+#if CONFIG_AV1_HIGHBITDEPTH
+static AOM_INLINE void highbd_generate_hog(const uint8_t *src8, int stride,
+ int rows, int cols, float *hist) {
+ float total = 0.1f;
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ src += stride;
+ for (int r = 1; r < rows - 1; ++r) {
+ for (int c = 1; c < cols - 1; ++c) {
+ const uint16_t *above = &src[c - stride];
+ const uint16_t *below = &src[c + stride];
+ const uint16_t *left = &src[c - 1];
+ const uint16_t *right = &src[c + 1];
+ // Calculate gradient using Sobel filters.
+ const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
+ (left[-stride] + 2 * left[0] + left[stride]);
+ const int dy = (below[-1] + 2 * below[0] + below[1]) -
+ (above[-1] + 2 * above[0] + above[1]);
+ if (dx == 0 && dy == 0) continue;
+ const int temp = abs(dx) + abs(dy);
+ if (!temp) continue;
+ total += temp;
+ if (dx == 0) {
+ hist[0] += temp / 2;
+ hist[BINS - 1] += temp / 2;
+ } else {
+ const int idx = get_hist_bin_idx(dx, dy);
+ assert(idx >= 0 && idx < BINS);
+ hist[idx] += temp;
+ }
+ }
+ src += stride;
+ }
+
+ normalize_hog(total, hist);
+}
+
+// Computes and stores pixel level gradient information of a given superblock
+// for HBD encode.
+static AOM_INLINE void highbd_compute_gradient_info_sb(MACROBLOCK *const x,
+ BLOCK_SIZE sb_size,
+ PLANE_TYPE plane) {
+ PixelLevelGradientInfo *const grad_info_sb =
+ x->pixel_gradient_info + plane * MAX_SB_SQUARE;
+ const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[plane].src.buf);
+ const int stride = x->plane[plane].src.stride;
+ const int ss_x = x->e_mbd.plane[plane].subsampling_x;
+ const int ss_y = x->e_mbd.plane[plane].subsampling_y;
+ const int sb_height = block_size_high[sb_size] >> ss_y;
+ const int sb_width = block_size_wide[sb_size] >> ss_x;
+ src += stride;
+ for (int r = 1; r < sb_height - 1; ++r) {
+ for (int c = 1; c < sb_width - 1; ++c) {
+ const uint16_t *above = &src[c - stride];
+ const uint16_t *below = &src[c + stride];
+ const uint16_t *left = &src[c - 1];
+ const uint16_t *right = &src[c + 1];
+ // Calculate gradient using Sobel filters.
+ const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
+ (left[-stride] + 2 * left[0] + left[stride]);
+ const int dy = (below[-1] + 2 * below[0] + below[1]) -
+ (above[-1] + 2 * above[0] + above[1]);
+ grad_info_sb[r * sb_width + c].is_dx_zero = (dx == 0);
+ grad_info_sb[r * sb_width + c].abs_dx_abs_dy_sum =
+ (uint16_t)(abs(dx) + abs(dy));
+ grad_info_sb[r * sb_width + c].hist_bin_idx =
+ (dx != 0) ? get_hist_bin_idx(dx, dy) : -1;
+ }
+ src += stride;
+ }
+}
+#endif // CONFIG_AV1_HIGHBITDEPTH
+
+static AOM_INLINE void generate_hog(const uint8_t *src8, int stride, int rows,
+ int cols, float *hist, int highbd) {
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (highbd) {
+ highbd_generate_hog(src8, stride, rows, cols, hist);
+ return;
+ }
+#else
+ (void)highbd;
+#endif // CONFIG_AV1_HIGHBITDEPTH
+ lowbd_generate_hog(src8, stride, rows, cols, hist);
+}
+
+static AOM_INLINE void compute_gradient_info_sb(MACROBLOCK *const x,
+ BLOCK_SIZE sb_size,
+ PLANE_TYPE plane) {
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (is_cur_buf_hbd(&x->e_mbd)) {
+ highbd_compute_gradient_info_sb(x, sb_size, plane);
+ return;
+ }
+#endif // CONFIG_AV1_HIGHBITDEPTH
+ lowbd_compute_gradient_info_sb(x, sb_size, plane);
+}
+
+// Gradient caching at superblock level is allowed only if all of the following
+// conditions are satisfied:
+// (1) The current frame is an intra only frame
+// (2) Non-RD mode decisions are not enabled
+// (3) The sf partition_search_type is set to SEARCH_PARTITION
+// (4) Either intra_pruning_with_hog or chroma_intra_pruning_with_hog is enabled
+//
+// SB level caching of gradient data may not help in speedup for the following
+// cases:
+// (1) Inter frames (due to early intra gating)
+// (2) When partition_search_type is not SEARCH_PARTITION
+// Hence, gradient data is computed at block level in such cases.
+static AOM_INLINE bool is_gradient_caching_for_hog_enabled(
+ const AV1_COMP *const cpi) {
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ return frame_is_intra_only(&cpi->common) && !sf->rt_sf.use_nonrd_pick_mode &&
+ (sf->part_sf.partition_search_type == SEARCH_PARTITION) &&
+ (sf->intra_sf.intra_pruning_with_hog ||
+ sf->intra_sf.chroma_intra_pruning_with_hog);
+}
+
+// Function to generate pixel level gradient information for a given superblock.
+// Sets the flags 'is_sb_gradient_cached' for the specific plane-type if
+// gradient info is generated for the same.
+static AOM_INLINE void produce_gradients_for_sb(AV1_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE sb_size, int mi_row,
+ int mi_col) {
+ // Initialise flags related to hog data caching.
+ x->is_sb_gradient_cached[PLANE_TYPE_Y] = false;
+ x->is_sb_gradient_cached[PLANE_TYPE_UV] = false;
+ if (!is_gradient_caching_for_hog_enabled(cpi)) return;
+
+ const SPEED_FEATURES *sf = &cpi->sf;
+ const int num_planes = av1_num_planes(&cpi->common);
+
+ av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, sb_size);
+
+ if (sf->intra_sf.intra_pruning_with_hog) {
+ compute_gradient_info_sb(x, sb_size, PLANE_TYPE_Y);
+ x->is_sb_gradient_cached[PLANE_TYPE_Y] = true;
+ }
+ if (sf->intra_sf.chroma_intra_pruning_with_hog && num_planes > 1) {
+ compute_gradient_info_sb(x, sb_size, PLANE_TYPE_UV);
+ x->is_sb_gradient_cached[PLANE_TYPE_UV] = true;
+ }
+}
+
+// Reuses the pixel level gradient data generated at superblock level for block
+// level histogram computation.
+static AOM_INLINE void generate_hog_using_gradient_cache(const MACROBLOCK *x,
+ int rows, int cols,
+ BLOCK_SIZE sb_size,
+ PLANE_TYPE plane,
+ float *hist) {
+ float total = 0.1f;
+ const int ss_x = x->e_mbd.plane[plane].subsampling_x;
+ const int ss_y = x->e_mbd.plane[plane].subsampling_y;
+ const int sb_width = block_size_wide[sb_size] >> ss_x;
+
+ // Derive the offset from the starting of the superblock in order to locate
+ // the block level gradient data in the cache.
+ const int mi_row_in_sb = x->e_mbd.mi_row & (mi_size_high[sb_size] - 1);
+ const int mi_col_in_sb = x->e_mbd.mi_col & (mi_size_wide[sb_size] - 1);
+ const int block_offset_in_grad_cache =
+ sb_width * (mi_row_in_sb << (MI_SIZE_LOG2 - ss_y)) +
+ (mi_col_in_sb << (MI_SIZE_LOG2 - ss_x));
+ const PixelLevelGradientInfo *grad_info_blk = x->pixel_gradient_info +
+ plane * MAX_SB_SQUARE +
+ block_offset_in_grad_cache;
+
+ // Retrieve the cached gradient information and generate the histogram.
+ for (int r = 1; r < rows - 1; ++r) {
+ for (int c = 1; c < cols - 1; ++c) {
+ const uint16_t abs_dx_abs_dy_sum =
+ grad_info_blk[r * sb_width + c].abs_dx_abs_dy_sum;
+ if (!abs_dx_abs_dy_sum) continue;
+ total += abs_dx_abs_dy_sum;
+ const bool is_dx_zero = grad_info_blk[r * sb_width + c].is_dx_zero;
+ if (is_dx_zero) {
+ hist[0] += abs_dx_abs_dy_sum >> 1;
+ hist[BINS - 1] += abs_dx_abs_dy_sum >> 1;
+ } else {
+ const int8_t idx = grad_info_blk[r * sb_width + c].hist_bin_idx;
+ assert(idx >= 0 && idx < BINS);
+ hist[idx] += abs_dx_abs_dy_sum;
+ }
+ }
+ }
+ normalize_hog(total, hist);
+}
+
+static INLINE void collect_hog_data(const MACROBLOCK *x, BLOCK_SIZE bsize,
+ BLOCK_SIZE sb_size, int plane, float *hog) {
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const int ss_x = pd->subsampling_x;
+ const int ss_y = pd->subsampling_y;
+ const int bh = block_size_high[bsize];
+ const int bw = block_size_wide[bsize];
+ const int rows =
+ ((xd->mb_to_bottom_edge >= 0) ? bh : (xd->mb_to_bottom_edge >> 3) + bh) >>
+ ss_y;
+ const int cols =
+ ((xd->mb_to_right_edge >= 0) ? bw : (xd->mb_to_right_edge >> 3) + bw) >>
+ ss_x;
+
+ // If gradient data is already generated at SB level, reuse the cached data.
+ // Otherwise, compute the data.
+ if (x->is_sb_gradient_cached[plane]) {
+ generate_hog_using_gradient_cache(x, rows, cols, sb_size, plane, hog);
+ } else {
+ const uint8_t *src = x->plane[plane].src.buf;
+ const int src_stride = x->plane[plane].src.stride;
+ generate_hog(src, src_stride, rows, cols, hog, is_cur_buf_hbd(xd));
+ }
+
+ // Scale the hog so the luma and chroma are on the same scale
+ for (int b = 0; b < BINS; ++b) {
+ hog[b] *= (1 + ss_x) * (1 + ss_y);
+ }
+}
+
+static AOM_INLINE void prune_intra_mode_with_hog(
+ const MACROBLOCK *x, BLOCK_SIZE bsize, BLOCK_SIZE sb_size, float th,
+ uint8_t *directional_mode_skip_mask, int is_chroma) {
+ const int plane = is_chroma ? AOM_PLANE_U : AOM_PLANE_Y;
+ float hist[BINS] = { 0.0f };
+ collect_hog_data(x, bsize, sb_size, plane, hist);
+
+ // Make prediction for each of the mode
+ float scores[DIRECTIONAL_MODES] = { 0.0f };
+ av1_nn_predict(hist, &av1_intra_hog_model_nnconfig, 1, scores);
+ for (UV_PREDICTION_MODE uv_mode = UV_V_PRED; uv_mode <= UV_D67_PRED;
+ uv_mode++) {
+ if (scores[uv_mode - UV_V_PRED] <= th) {
+ directional_mode_skip_mask[uv_mode] = 1;
+ }
+ }
+}
+#undef BINS
+
+int av1_calc_normalized_variance(aom_variance_fn_t vf, const uint8_t *const buf,
+ const int stride, const int is_hbd);
+
+// Returns whether caching of source variance for 4x4 sub-blocks is allowed.
+static AOM_INLINE bool is_src_var_for_4x4_sub_blocks_caching_enabled(
+ const AV1_COMP *const cpi) {
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ if (cpi->oxcf.mode != ALLINTRA) return false;
+
+ if (sf->part_sf.partition_search_type == SEARCH_PARTITION) return true;
+
+ if (INTRA_RD_VAR_THRESH(cpi->oxcf.speed) <= 0 ||
+ (sf->rt_sf.use_nonrd_pick_mode && !sf->rt_sf.hybrid_intra_pickmode))
+ return false;
+
+ return true;
+}
+
+// Initialize the members of Block4x4VarInfo structure to -1 at the start
+// of every superblock.
+static AOM_INLINE void init_src_var_info_of_4x4_sub_blocks(
+ const AV1_COMP *const cpi, Block4x4VarInfo *src_var_info_of_4x4_sub_blocks,
+ const BLOCK_SIZE sb_size) {
+ if (!is_src_var_for_4x4_sub_blocks_caching_enabled(cpi)) return;
+
+ const int mi_count_in_sb = mi_size_wide[sb_size] * mi_size_high[sb_size];
+ for (int i = 0; i < mi_count_in_sb; i++) {
+ src_var_info_of_4x4_sub_blocks[i].var = -1;
+ src_var_info_of_4x4_sub_blocks[i].log_var = -1.0;
+ }
+}
+
+// Returns the cost needed to send a uniformly distributed r.v.
+static AOM_INLINE int write_uniform_cost(int n, int v) {
+ const int l = get_unsigned_bits(n);
+ const int m = (1 << l) - n;
+ if (l == 0) return 0;
+ if (v < m)
+ return av1_cost_literal(l - 1);
+ else
+ return av1_cost_literal(l);
+}
+/*!\endcond */
+
+/*!\brief Returns the rate cost for luma prediction mode info of intra blocks.
+ *
+ * \callergraph
+ */
+static AOM_INLINE int intra_mode_info_cost_y(const AV1_COMP *cpi,
+ const MACROBLOCK *x,
+ const MB_MODE_INFO *mbmi,
+ BLOCK_SIZE bsize, int mode_cost,
+ int discount_color_cost) {
+ int total_rate = mode_cost;
+ const ModeCosts *mode_costs = &x->mode_costs;
+ const int use_palette = mbmi->palette_mode_info.palette_size[0] > 0;
+ const int use_filter_intra = mbmi->filter_intra_mode_info.use_filter_intra;
+ const int use_intrabc = mbmi->use_intrabc;
+ // Can only activate one mode.
+ assert(((mbmi->mode != DC_PRED) + use_palette + use_intrabc +
+ use_filter_intra) <= 1);
+ const int try_palette = av1_allow_palette(
+ cpi->common.features.allow_screen_content_tools, mbmi->bsize);
+ if (try_palette && mbmi->mode == DC_PRED) {
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
+ const int mode_ctx = av1_get_palette_mode_ctx(xd);
+ total_rate +=
+ mode_costs->palette_y_mode_cost[bsize_ctx][mode_ctx][use_palette];
+ if (use_palette) {
+ const uint8_t *const color_map = xd->plane[0].color_index_map;
+ int block_width, block_height, rows, cols;
+ av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
+ &cols);
+ const int plt_size = mbmi->palette_mode_info.palette_size[0];
+ int palette_mode_cost =
+ mode_costs
+ ->palette_y_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] +
+ write_uniform_cost(plt_size, color_map[0]);
+ uint16_t color_cache[2 * PALETTE_MAX_SIZE];
+ const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
+ palette_mode_cost +=
+ av1_palette_color_cost_y(&mbmi->palette_mode_info, color_cache,
+ n_cache, cpi->common.seq_params->bit_depth);
+ if (!discount_color_cost)
+ palette_mode_cost +=
+ av1_cost_color_map(x, 0, bsize, mbmi->tx_size, PALETTE_MAP);
+
+ total_rate += palette_mode_cost;
+ }
+ }
+ if (av1_filter_intra_allowed(&cpi->common, mbmi)) {
+ total_rate += mode_costs->filter_intra_cost[mbmi->bsize][use_filter_intra];
+ if (use_filter_intra) {
+ total_rate +=
+ mode_costs->filter_intra_mode_cost[mbmi->filter_intra_mode_info
+ .filter_intra_mode];
+ }
+ }
+ if (av1_is_directional_mode(mbmi->mode)) {
+ if (av1_use_angle_delta(bsize)) {
+ total_rate +=
+ mode_costs->angle_delta_cost[mbmi->mode - V_PRED]
+ [MAX_ANGLE_DELTA +
+ mbmi->angle_delta[PLANE_TYPE_Y]];
+ }
+ }
+ if (av1_allow_intrabc(&cpi->common))
+ total_rate += mode_costs->intrabc_cost[use_intrabc];
+ return total_rate;
+}
+
+/*!\brief Return the rate cost for chroma prediction mode info of intra blocks.
+ *
+ * \callergraph
+ */
+static AOM_INLINE int intra_mode_info_cost_uv(const AV1_COMP *cpi,
+ const MACROBLOCK *x,
+ const MB_MODE_INFO *mbmi,
+ BLOCK_SIZE bsize, int mode_cost) {
+ int total_rate = mode_cost;
+ const ModeCosts *mode_costs = &x->mode_costs;
+ const int use_palette = mbmi->palette_mode_info.palette_size[1] > 0;
+ const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
+ // Can only activate one mode.
+ assert(((uv_mode != UV_DC_PRED) + use_palette + mbmi->use_intrabc) <= 1);
+
+ const int try_palette = av1_allow_palette(
+ cpi->common.features.allow_screen_content_tools, mbmi->bsize);
+ if (try_palette && uv_mode == UV_DC_PRED) {
+ const PALETTE_MODE_INFO *pmi = &mbmi->palette_mode_info;
+ total_rate +=
+ mode_costs->palette_uv_mode_cost[pmi->palette_size[0] > 0][use_palette];
+ if (use_palette) {
+ const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
+ const int plt_size = pmi->palette_size[1];
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const uint8_t *const color_map = xd->plane[1].color_index_map;
+ int palette_mode_cost =
+ mode_costs
+ ->palette_uv_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] +
+ write_uniform_cost(plt_size, color_map[0]);
+ uint16_t color_cache[2 * PALETTE_MAX_SIZE];
+ const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
+ palette_mode_cost += av1_palette_color_cost_uv(
+ pmi, color_cache, n_cache, cpi->common.seq_params->bit_depth);
+ palette_mode_cost +=
+ av1_cost_color_map(x, 1, bsize, mbmi->tx_size, PALETTE_MAP);
+ total_rate += palette_mode_cost;
+ }
+ }
+ const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode);
+ if (av1_is_directional_mode(intra_mode)) {
+ if (av1_use_angle_delta(bsize)) {
+ total_rate +=
+ mode_costs->angle_delta_cost[intra_mode - V_PRED]
+ [mbmi->angle_delta[PLANE_TYPE_UV] +
+ MAX_ANGLE_DELTA];
+ }
+ }
+ return total_rate;
+}
+
+/*!\cond */
+// Makes a quick intra prediction and estimate the rdcost with a model without
+// going through the whole txfm/quantize/itxfm process.
+static int64_t intra_model_rd(const AV1_COMMON *cm, MACROBLOCK *const x,
+ int plane, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, int use_hadamard) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const BitDepthInfo bd_info = get_bit_depth_info(xd);
+ int row, col;
+ assert(!is_inter_block(xd->mi[0]));
+ const int stepr = tx_size_high_unit[tx_size];
+ const int stepc = tx_size_wide_unit[tx_size];
+ const int txbw = tx_size_wide[tx_size];
+ const int txbh = tx_size_high[tx_size];
+ const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
+ const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
+ int64_t satd_cost = 0;
+ struct macroblock_plane *p = &x->plane[plane];
+ struct macroblockd_plane *pd = &xd->plane[plane];
+ // Prediction.
+ for (row = 0; row < max_blocks_high; row += stepr) {
+ for (col = 0; col < max_blocks_wide; col += stepc) {
+ av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
+ // Here we use p->src_diff and p->coeff as temporary buffers for
+ // prediction residue and transform coefficients. The buffers are only
+ // used in this for loop, therefore we don't need to properly add offset
+ // to the buffers.
+ av1_subtract_block(
+ bd_info, txbh, txbw, p->src_diff, block_size_wide[plane_bsize],
+ p->src.buf + (((row * p->src.stride) + col) << 2), p->src.stride,
+ pd->dst.buf + (((row * pd->dst.stride) + col) << 2), pd->dst.stride);
+ av1_quick_txfm(use_hadamard, tx_size, bd_info, p->src_diff,
+ block_size_wide[plane_bsize], p->coeff);
+ satd_cost += aom_satd(p->coeff, tx_size_2d[tx_size]);
+ }
+ }
+ return satd_cost;
+}
+/*!\endcond */
+
+/*!\brief Estimate the luma rdcost of a given intra mode and try to prune it.
+ *
+ * \ingroup intra_mode_search
+ * \callergraph
+ * This function first makes a quick luma prediction and estimates the rdcost
+ * with a model without going through the txfm, then try to prune the current
+ * mode if the new estimate y_rd > 1.25 * best_model_rd.
+ *
+ * \return Returns 1 if the given mode is prune; 0 otherwise.
+ */
+static AOM_INLINE int model_intra_yrd_and_prune(const AV1_COMP *const cpi,
+ MACROBLOCK *x, BLOCK_SIZE bsize,
+ int64_t *best_model_rd) {
+ const TX_SIZE tx_size = AOMMIN(TX_32X32, max_txsize_lookup[bsize]);
+ const int plane = 0;
+ const AV1_COMMON *cm = &cpi->common;
+ const int64_t this_model_rd =
+ intra_model_rd(cm, x, plane, bsize, tx_size, /*use_hadamard=*/1);
+ if (*best_model_rd != INT64_MAX &&
+ this_model_rd > *best_model_rd + (*best_model_rd >> 2)) {
+ return 1;
+ } else if (this_model_rd < *best_model_rd) {
+ *best_model_rd = this_model_rd;
+ }
+ return 0;
+}
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // AOM_AV1_ENCODER_INTRA_MODE_SEARCH_UTILS_H_