summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/ml.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/ml.c171
1 files changed, 171 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/ml.c b/third_party/aom/av1/encoder/ml.c
new file mode 100644
index 0000000000..94cd56c5d1
--- /dev/null
+++ b/third_party/aom/av1/encoder/ml.c
@@ -0,0 +1,171 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <math.h>
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/mathutils.h"
+#include "av1/encoder/ml.h"
+
+void av1_nn_output_prec_reduce(float *const output, int num_output) {
+ const int prec_bits = 9;
+ const int prec = 1 << prec_bits;
+ const float inv_prec = (float)(1.0 / prec);
+ for (int i = 0; i < num_output; i++) {
+ output[i] = ((int)(output[i] * prec + 0.5)) * inv_prec;
+ }
+}
+
+// Calculate prediction based on the given input features and neural net config.
+// Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden
+// layer.
+void av1_nn_predict_c(const float *input_nodes,
+ const NN_CONFIG *const nn_config, int reduce_prec,
+ float *const output) {
+ int num_input_nodes = nn_config->num_inputs;
+ int buf_index = 0;
+ float buf[2][NN_MAX_NODES_PER_LAYER];
+
+ // Propagate hidden layers.
+ const int num_layers = nn_config->num_hidden_layers;
+ assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
+ for (int layer = 0; layer < num_layers; ++layer) {
+ const float *layer_weights = nn_config->weights[layer];
+ const float *layer_bias = nn_config->bias[layer];
+ float *output_nodes = buf[buf_index];
+ const int num_output_nodes = nn_config->num_hidden_nodes[layer];
+ assert(num_output_nodes < NN_MAX_NODES_PER_LAYER);
+ for (int node = 0; node < num_output_nodes; ++node) {
+ float val = layer_bias[node];
+ for (int i = 0; i < num_input_nodes; ++i)
+ val += layer_weights[node * num_input_nodes + i] * input_nodes[i];
+ // ReLU as activation function.
+ val = val > 0.0f ? val : 0.0f; // Could use AOMMAX().
+ output_nodes[node] = val;
+ }
+ num_input_nodes = num_output_nodes;
+ input_nodes = output_nodes;
+ buf_index = 1 - buf_index;
+ }
+
+ // Final output layer.
+ const float *layer_weights = nn_config->weights[num_layers];
+ const float *layer_bias = nn_config->bias[num_layers];
+ for (int node = 0; node < nn_config->num_outputs; ++node) {
+ float val = layer_bias[node];
+ for (int i = 0; i < num_input_nodes; ++i)
+ val += layer_weights[node * num_input_nodes + i] * input_nodes[i];
+ output[node] = val;
+ }
+ if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs);
+}
+
+#if CONFIG_NN_V2
+// Applies the ReLu activation to one fc layer
+// output[i] = Max(input[i],0.0f)
+static float *nn_relu(const float *input, FC_LAYER *layer) {
+ for (int i = 0; i < layer->num_outputs; ++i) {
+ layer->output[i] = AOMMAX(input[i], 0.0f);
+ }
+
+ return layer->output;
+}
+
+// Applies the Sigmoid activation to one fc layer
+// output[i] = 1/(1+exp(input[i]))
+static float *nn_sigmoid(const float *input, FC_LAYER *layer) {
+ for (int i = 0; i < layer->num_outputs; ++i) {
+ const float tmp = AOMMIN(AOMMAX(input[i], -10.0f), 10.0f);
+ layer->output[i] = 1.0f / (1.0f + expf(-tmp));
+ }
+
+ return layer->output;
+}
+
+// Forward prediction in one fc layer, used in function av1_nn_predict_V2
+static float *nn_fc_forward(const float *input, FC_LAYER *layer) {
+ const float *weights = layer->weights;
+ const float *bias = layer->bias;
+ assert(layer->num_outputs < NN_MAX_NODES_PER_LAYER);
+ // fc
+ for (int node = 0; node < layer->num_outputs; ++node) {
+ float val = bias[node];
+ for (int i = 0; i < layer->num_inputs; ++i) val += weights[i] * input[i];
+ layer->output[node] = val;
+ weights += layer->num_inputs;
+ }
+
+ // activation
+ switch (layer->activation) {
+ case NONE: return layer->output;
+ case RELU: return nn_relu(layer->output, layer);
+ case SIGMOID: return nn_sigmoid(layer->output, layer);
+ case SOFTSIGN:
+ assert(0 && "Softsign has not been supported in NN."); // TO DO
+ return NULL;
+ default:
+ assert(0 && "Unknown activation"); // Unknown activation
+ return NULL;
+ }
+}
+
+void av1_nn_predict_v2(const float *feature, NN_CONFIG_V2 *nn_config,
+ int reduce_prec, float *output) {
+ const float *input_nodes = feature;
+
+ // Propagate the layers.
+ const int num_layers = nn_config->num_hidden_layers;
+ assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
+ for (int i = 0; i < num_layers; ++i) {
+ input_nodes = nn_fc_forward(input_nodes, nn_config->layer + i);
+ assert(nn_config->layer[i + 1].num_inputs ==
+ nn_config->layer[i].num_outputs);
+ }
+
+ // Final layer
+ input_nodes = nn_fc_forward(input_nodes, nn_config->layer + num_layers);
+ assert(nn_config->layer[num_layers].num_outputs == nn_config->num_logits);
+ // Copy the final layer output
+ memcpy(output, input_nodes, sizeof(*input_nodes) * nn_config->num_logits);
+ if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_logits);
+}
+#endif // CONFIG_NN_V2
+
+void av1_nn_softmax(const float *input, float *output, int n) {
+ // Softmax function is invariant to adding the same constant
+ // to all input values, so we subtract the maximum input to avoid
+ // possible overflow.
+ float max_input = input[0];
+ for (int i = 1; i < n; i++) max_input = AOMMAX(max_input, input[i]);
+ float sum_out = 0.0f;
+ for (int i = 0; i < n; i++) {
+ // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors.
+ const float normalized_input = AOMMAX(input[i] - max_input, -10.0f);
+ output[i] = expf(normalized_input);
+ sum_out += output[i];
+ }
+ for (int i = 0; i < n; i++) output[i] /= sum_out;
+}
+
+void av1_nn_fast_softmax_16_c(const float *input, float *output) {
+ const int kNumClasses = 16;
+ float max_input = input[0];
+ for (int i = 1; i < kNumClasses; i++) max_input = AOMMAX(max_input, input[i]);
+ float sum_out = 0.0f;
+ for (int i = 0; i < kNumClasses; i++) {
+ // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors.
+ const float normalized_input = AOMMAX(input[i] - max_input, -10.0f);
+ output[i] = approx_exp(normalized_input);
+ sum_out += output[i];
+ }
+ for (int i = 0; i < kNumClasses; i++) output[i] /= sum_out;
+}