summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/nonrd_opt.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/nonrd_opt.c933
1 files changed, 933 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/nonrd_opt.c b/third_party/aom/av1/encoder/nonrd_opt.c
new file mode 100644
index 0000000000..651ca43a2e
--- /dev/null
+++ b/third_party/aom/av1/encoder/nonrd_opt.c
@@ -0,0 +1,933 @@
+/*
+ * Copyright (c) 2023, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include "config/aom_dsp_rtcd.h"
+
+#include "av1/common/reconinter.h"
+
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/nonrd_opt.h"
+#include "av1/encoder/rdopt.h"
+
+static const SCAN_ORDER av1_fast_idtx_scan_order_16x16 = {
+ av1_fast_idtx_scan_16x16, av1_fast_idtx_iscan_16x16
+};
+
+#define DECLARE_BLOCK_YRD_BUFFERS() \
+ DECLARE_ALIGNED(64, tran_low_t, dqcoeff_buf[16 * 16]); \
+ DECLARE_ALIGNED(64, tran_low_t, qcoeff_buf[16 * 16]); \
+ DECLARE_ALIGNED(64, tran_low_t, coeff_buf[16 * 16]); \
+ uint16_t eob[1];
+
+#define DECLARE_BLOCK_YRD_VARS() \
+ /* When is_tx_8x8_dual_applicable is true, we compute the txfm for the \
+ * entire bsize and write macroblock_plane::coeff. So low_coeff is kept \
+ * as a non-const so we can reassign it to macroblock_plane::coeff. */ \
+ int16_t *low_coeff = (int16_t *)coeff_buf; \
+ int16_t *const low_qcoeff = (int16_t *)qcoeff_buf; \
+ int16_t *const low_dqcoeff = (int16_t *)dqcoeff_buf; \
+ const int diff_stride = bw;
+
+#define DECLARE_LOOP_VARS_BLOCK_YRD() \
+ const int16_t *src_diff = &p->src_diff[(r * diff_stride + c) << 2];
+
+static AOM_FORCE_INLINE void update_yrd_loop_vars(
+ MACROBLOCK *x, int *skippable, int step, int ncoeffs,
+ int16_t *const low_coeff, int16_t *const low_qcoeff,
+ int16_t *const low_dqcoeff, RD_STATS *this_rdc, int *eob_cost,
+ int tx_blk_id) {
+ const int is_txfm_skip = (ncoeffs == 0);
+ *skippable &= is_txfm_skip;
+ x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip;
+ *eob_cost += get_msb(ncoeffs + 1);
+ if (ncoeffs == 1)
+ this_rdc->rate += (int)abs(low_qcoeff[0]);
+ else if (ncoeffs > 1)
+ this_rdc->rate += aom_satd_lp(low_qcoeff, step << 4);
+
+ this_rdc->dist += av1_block_error_lp(low_coeff, low_dqcoeff, step << 4) >> 2;
+}
+
+static INLINE void aom_process_hadamard_lp_8x16(MACROBLOCK *x,
+ int max_blocks_high,
+ int max_blocks_wide,
+ int num_4x4_w, int step,
+ int block_step) {
+ struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
+ const int bw = 4 * num_4x4_w;
+ const int num_4x4 = AOMMIN(num_4x4_w, max_blocks_wide);
+ int block = 0;
+
+ for (int r = 0; r < max_blocks_high; r += block_step) {
+ for (int c = 0; c < num_4x4; c += 2 * block_step) {
+ const int16_t *src_diff = &p->src_diff[(r * bw + c) << 2];
+ int16_t *low_coeff = (int16_t *)p->coeff + BLOCK_OFFSET(block);
+ aom_hadamard_lp_8x8_dual(src_diff, (ptrdiff_t)bw, low_coeff);
+ block += 2 * step;
+ }
+ }
+}
+
+#if CONFIG_AV1_HIGHBITDEPTH
+#define DECLARE_BLOCK_YRD_HBD_VARS() \
+ tran_low_t *const coeff = coeff_buf; \
+ tran_low_t *const qcoeff = qcoeff_buf; \
+ tran_low_t *const dqcoeff = dqcoeff_buf;
+
+static AOM_FORCE_INLINE void update_yrd_loop_vars_hbd(
+ MACROBLOCK *x, int *skippable, int step, int ncoeffs,
+ tran_low_t *const coeff, tran_low_t *const qcoeff,
+ tran_low_t *const dqcoeff, RD_STATS *this_rdc, int *eob_cost,
+ int tx_blk_id) {
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const int is_txfm_skip = (ncoeffs == 0);
+ *skippable &= is_txfm_skip;
+ x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip;
+ *eob_cost += get_msb(ncoeffs + 1);
+
+ int64_t dummy;
+ if (ncoeffs == 1)
+ this_rdc->rate += (int)abs(qcoeff[0]);
+ else if (ncoeffs > 1)
+ this_rdc->rate += aom_satd(qcoeff, step << 4);
+ this_rdc->dist +=
+ av1_highbd_block_error(coeff, dqcoeff, step << 4, &dummy, xd->bd) >> 2;
+}
+#endif
+
+/*!\brief Calculates RD Cost using Hadamard transform.
+ *
+ * \ingroup nonrd_mode_search
+ * \callgraph
+ * \callergraph
+ * Calculates RD Cost using Hadamard transform. For low bit depth this function
+ * uses low-precision set of functions (16-bit) and 32 bit for high bit depth
+ * \param[in] x Pointer to structure holding all the data for
+ the current macroblock
+ * \param[in] this_rdc Pointer to calculated RD Cost
+ * \param[in] skippable Pointer to a flag indicating possible tx skip
+ * \param[in] bsize Current block size
+ * \param[in] tx_size Transform size
+ * \param[in] is_inter_mode Flag to indicate inter mode
+ *
+ * \remark Nothing is returned. Instead, calculated RD cost is placed to
+ * \c this_rdc. \c skippable flag is set if there is no non-zero quantized
+ * coefficients for Hadamard transform
+ */
+void av1_block_yrd(MACROBLOCK *x, RD_STATS *this_rdc, int *skippable,
+ BLOCK_SIZE bsize, TX_SIZE tx_size) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ const struct macroblockd_plane *pd = &xd->plane[AOM_PLANE_Y];
+ struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
+ assert(bsize < BLOCK_SIZES_ALL);
+ const int num_4x4_w = mi_size_wide[bsize];
+ const int num_4x4_h = mi_size_high[bsize];
+ const int step = 1 << (tx_size << 1);
+ const int block_step = (1 << tx_size);
+ const int row_step = step * num_4x4_w >> tx_size;
+ int block = 0;
+ const int max_blocks_wide =
+ num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
+ const int max_blocks_high =
+ num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
+ int eob_cost = 0;
+ const int bw = 4 * num_4x4_w;
+ const int bh = 4 * num_4x4_h;
+ const int use_hbd = is_cur_buf_hbd(xd);
+ int num_blk_skip_w = num_4x4_w;
+
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (use_hbd) {
+ aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
+ p->src.stride, pd->dst.buf, pd->dst.stride);
+ } else {
+ aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
+ pd->dst.buf, pd->dst.stride);
+ }
+#else
+ aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
+ pd->dst.buf, pd->dst.stride);
+#endif
+
+ // Keep the intermediate value on the stack here. Writing directly to
+ // skippable causes speed regression due to load-and-store issues in
+ // update_yrd_loop_vars.
+ int temp_skippable = 1;
+ this_rdc->dist = 0;
+ this_rdc->rate = 0;
+ // For block sizes 8x16 or above, Hadamard txfm of two adjacent 8x8 blocks
+ // can be done per function call. Hence the call of Hadamard txfm is
+ // abstracted here for the specified cases.
+ int is_tx_8x8_dual_applicable =
+ (tx_size == TX_8X8 && block_size_wide[bsize] >= 16 &&
+ block_size_high[bsize] >= 8);
+
+#if CONFIG_AV1_HIGHBITDEPTH
+ // As of now, dual implementation of hadamard txfm is available for low
+ // bitdepth.
+ if (use_hbd) is_tx_8x8_dual_applicable = 0;
+#endif
+
+ if (is_tx_8x8_dual_applicable) {
+ aom_process_hadamard_lp_8x16(x, max_blocks_high, max_blocks_wide, num_4x4_w,
+ step, block_step);
+ }
+
+ const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
+ DECLARE_BLOCK_YRD_BUFFERS()
+ DECLARE_BLOCK_YRD_VARS()
+#if CONFIG_AV1_HIGHBITDEPTH
+ DECLARE_BLOCK_YRD_HBD_VARS()
+#else
+ (void)use_hbd;
+#endif
+
+ // Keep track of the row and column of the blocks we use so that we know
+ // if we are in the unrestricted motion border.
+ for (int r = 0; r < max_blocks_high; r += block_step) {
+ for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) {
+ DECLARE_LOOP_VARS_BLOCK_YRD()
+
+ switch (tx_size) {
+#if CONFIG_AV1_HIGHBITDEPTH
+ case TX_16X16:
+ if (use_hbd) {
+ aom_hadamard_16x16(src_diff, diff_stride, coeff);
+ av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX,
+ p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
+ dqcoeff, p->dequant_QTX, eob,
+ // default_scan_fp_16x16_transpose and
+ // av1_default_iscan_fp_16x16_transpose have to be
+ // used together.
+ default_scan_fp_16x16_transpose,
+ av1_default_iscan_fp_16x16_transpose);
+ } else {
+ aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff);
+ av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX,
+ p->quant_fp_QTX, low_qcoeff, low_dqcoeff,
+ p->dequant_QTX, eob,
+ // default_scan_lp_16x16_transpose and
+ // av1_default_iscan_lp_16x16_transpose have to be
+ // used together.
+ default_scan_lp_16x16_transpose,
+ av1_default_iscan_lp_16x16_transpose);
+ }
+ break;
+ case TX_8X8:
+ if (use_hbd) {
+ aom_hadamard_8x8(src_diff, diff_stride, coeff);
+ av1_quantize_fp(
+ coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX,
+ p->quant_shift_QTX, qcoeff, dqcoeff, p->dequant_QTX, eob,
+ default_scan_8x8_transpose, av1_default_iscan_8x8_transpose);
+ } else {
+ if (is_tx_8x8_dual_applicable) {
+ // The coeffs are pre-computed for the whole block, so re-assign
+ // low_coeff to the appropriate location.
+ const int block_offset = BLOCK_OFFSET(block + s);
+ low_coeff = (int16_t *)p->coeff + block_offset;
+ } else {
+ aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff);
+ }
+ av1_quantize_lp(
+ low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff,
+ low_dqcoeff, p->dequant_QTX, eob,
+ // default_scan_8x8_transpose and
+ // av1_default_iscan_8x8_transpose have to be used together.
+ default_scan_8x8_transpose, av1_default_iscan_8x8_transpose);
+ }
+ break;
+ default:
+ assert(tx_size == TX_4X4);
+ // In tx_size=4x4 case, aom_fdct4x4 and aom_fdct4x4_lp generate
+ // normal coefficients order, so we don't need to change the scan
+ // order here.
+ if (use_hbd) {
+ aom_fdct4x4(src_diff, coeff, diff_stride);
+ av1_quantize_fp(coeff, 4 * 4, p->zbin_QTX, p->round_fp_QTX,
+ p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
+ dqcoeff, p->dequant_QTX, eob, scan_order->scan,
+ scan_order->iscan);
+ } else {
+ aom_fdct4x4_lp(src_diff, low_coeff, diff_stride);
+ av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX,
+ low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
+ scan_order->scan, scan_order->iscan);
+ }
+ break;
+#else
+ case TX_16X16:
+ aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff);
+ av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX, p->quant_fp_QTX,
+ low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
+ default_scan_lp_16x16_transpose,
+ av1_default_iscan_lp_16x16_transpose);
+ break;
+ case TX_8X8:
+ if (is_tx_8x8_dual_applicable) {
+ // The coeffs are pre-computed for the whole block, so re-assign
+ // low_coeff to the appropriate location.
+ const int block_offset = BLOCK_OFFSET(block + s);
+ low_coeff = (int16_t *)p->coeff + block_offset;
+ } else {
+ aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff);
+ }
+ av1_quantize_lp(low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX,
+ low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
+ default_scan_8x8_transpose,
+ av1_default_iscan_8x8_transpose);
+ break;
+ default:
+ aom_fdct4x4_lp(src_diff, low_coeff, diff_stride);
+ av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX,
+ low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+#endif
+ }
+ assert(*eob <= 1024);
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (use_hbd)
+ update_yrd_loop_vars_hbd(x, &temp_skippable, step, *eob, coeff, qcoeff,
+ dqcoeff, this_rdc, &eob_cost,
+ r * num_blk_skip_w + c);
+ else
+#endif
+ update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff,
+ low_qcoeff, low_dqcoeff, this_rdc, &eob_cost,
+ r * num_blk_skip_w + c);
+ }
+ block += row_step;
+ }
+
+ this_rdc->skip_txfm = *skippable = temp_skippable;
+ if (this_rdc->sse < INT64_MAX) {
+ this_rdc->sse = (this_rdc->sse << 6) >> 2;
+ if (temp_skippable) {
+ this_rdc->dist = 0;
+ this_rdc->dist = this_rdc->sse;
+ return;
+ }
+ }
+
+ // If skippable is set, rate gets clobbered later.
+ this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT);
+ this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT);
+}
+
+// Explicitly enumerate the cases so the compiler can generate SIMD for the
+// function. According to the disassembler, gcc generates SSE codes for each of
+// the possible block sizes. The hottest case is tx_width 16, which takes up
+// about 8% of the self cycle of av1_nonrd_pick_inter_mode_sb. Since
+// av1_nonrd_pick_inter_mode_sb takes up about 3% of total encoding time, the
+// potential room of improvement for writing AVX2 optimization is only 3% * 8% =
+// 0.24% of total encoding time.
+static AOM_INLINE void scale_square_buf_vals(int16_t *dst, int tx_width,
+ const int16_t *src,
+ int src_stride) {
+#define DO_SCALING \
+ do { \
+ for (int idy = 0; idy < tx_width; ++idy) { \
+ for (int idx = 0; idx < tx_width; ++idx) { \
+ dst[idy * tx_width + idx] = src[idy * src_stride + idx] * 8; \
+ } \
+ } \
+ } while (0)
+
+ if (tx_width == 4) {
+ DO_SCALING;
+ } else if (tx_width == 8) {
+ DO_SCALING;
+ } else if (tx_width == 16) {
+ DO_SCALING;
+ } else {
+ assert(0);
+ }
+
+#undef DO_SCALING
+}
+
+/*!\brief Calculates RD Cost when the block uses Identity transform.
+ * Note that this function is only for low bit depth encoding, since it
+ * is called in real-time mode for now, which sets high bit depth to 0:
+ * -DCONFIG_AV1_HIGHBITDEPTH=0
+ *
+ * \ingroup nonrd_mode_search
+ * \callgraph
+ * \callergraph
+ * Calculates RD Cost. For low bit depth this function
+ * uses low-precision set of functions (16-bit) and 32 bit for high bit depth
+ * \param[in] x Pointer to structure holding all the data for
+ the current macroblock
+ * \param[in] pred_buf Pointer to the prediction buffer
+ * \param[in] pred_stride Stride for the prediction buffer
+ * \param[in] this_rdc Pointer to calculated RD Cost
+ * \param[in] skippable Pointer to a flag indicating possible tx skip
+ * \param[in] bsize Current block size
+ * \param[in] tx_size Transform size
+ *
+ * \remark Nothing is returned. Instead, calculated RD cost is placed to
+ * \c this_rdc. \c skippable flag is set if all coefficients are zero.
+ */
+void av1_block_yrd_idtx(MACROBLOCK *x, const uint8_t *const pred_buf,
+ int pred_stride, RD_STATS *this_rdc, int *skippable,
+ BLOCK_SIZE bsize, TX_SIZE tx_size) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
+ assert(bsize < BLOCK_SIZES_ALL);
+ const int num_4x4_w = mi_size_wide[bsize];
+ const int num_4x4_h = mi_size_high[bsize];
+ const int step = 1 << (tx_size << 1);
+ const int block_step = (1 << tx_size);
+ const int max_blocks_wide =
+ num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
+ const int max_blocks_high =
+ num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
+ int eob_cost = 0;
+ const int bw = 4 * num_4x4_w;
+ const int bh = 4 * num_4x4_h;
+ const int num_blk_skip_w = num_4x4_w;
+ // Keep the intermediate value on the stack here. Writing directly to
+ // skippable causes speed regression due to load-and-store issues in
+ // update_yrd_loop_vars.
+ int temp_skippable = 1;
+ int tx_wd = 0;
+ const SCAN_ORDER *scan_order = NULL;
+ switch (tx_size) {
+ case TX_64X64:
+ assert(0); // Not implemented
+ break;
+ case TX_32X32:
+ assert(0); // Not used
+ break;
+ case TX_16X16:
+ scan_order = &av1_fast_idtx_scan_order_16x16;
+ tx_wd = 16;
+ break;
+ case TX_8X8:
+ scan_order = &av1_fast_idtx_scan_order_8x8;
+ tx_wd = 8;
+ break;
+ default:
+ assert(tx_size == TX_4X4);
+ scan_order = &av1_fast_idtx_scan_order_4x4;
+ tx_wd = 4;
+ break;
+ }
+ assert(scan_order != NULL);
+
+ this_rdc->dist = 0;
+ this_rdc->rate = 0;
+ aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
+ pred_buf, pred_stride);
+ // Keep track of the row and column of the blocks we use so that we know
+ // if we are in the unrestricted motion border.
+ DECLARE_BLOCK_YRD_BUFFERS()
+ DECLARE_BLOCK_YRD_VARS()
+ for (int r = 0; r < max_blocks_high; r += block_step) {
+ for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) {
+ DECLARE_LOOP_VARS_BLOCK_YRD()
+ scale_square_buf_vals(low_coeff, tx_wd, src_diff, diff_stride);
+ av1_quantize_lp(low_coeff, tx_wd * tx_wd, p->round_fp_QTX,
+ p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX,
+ eob, scan_order->scan, scan_order->iscan);
+ assert(*eob <= 1024);
+ update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff,
+ low_qcoeff, low_dqcoeff, this_rdc, &eob_cost,
+ r * num_blk_skip_w + c);
+ }
+ }
+ this_rdc->skip_txfm = *skippable = temp_skippable;
+ if (this_rdc->sse < INT64_MAX) {
+ this_rdc->sse = (this_rdc->sse << 6) >> 2;
+ if (temp_skippable) {
+ this_rdc->dist = 0;
+ this_rdc->dist = this_rdc->sse;
+ return;
+ }
+ }
+ // If skippable is set, rate gets clobbered later.
+ this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT);
+ this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT);
+}
+
+int64_t av1_model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize,
+ MACROBLOCK *x, MACROBLOCKD *xd,
+ RD_STATS *this_rdc, int start_plane,
+ int stop_plane) {
+ // Note our transform coeffs are 8 times an orthogonal transform.
+ // Hence quantizer step is also 8 times. To get effective quantizer
+ // we need to divide by 8 before sending to modeling function.
+ unsigned int sse;
+ int rate;
+ int64_t dist;
+ int plane;
+ int64_t tot_sse = 0;
+
+ this_rdc->rate = 0;
+ this_rdc->dist = 0;
+ this_rdc->skip_txfm = 0;
+
+ for (plane = start_plane; plane <= stop_plane; ++plane) {
+ struct macroblock_plane *const p = &x->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ const uint32_t dc_quant = p->dequant_QTX[0];
+ const uint32_t ac_quant = p->dequant_QTX[1];
+ const BLOCK_SIZE bs = plane_bsize;
+ unsigned int var;
+ if (!x->color_sensitivity[COLOR_SENS_IDX(plane)]) continue;
+
+ var = cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
+ pd->dst.stride, &sse);
+ assert(sse >= var);
+ tot_sse += sse;
+
+ av1_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
+ dc_quant >> 3, &rate, &dist);
+
+ this_rdc->rate += rate >> 1;
+ this_rdc->dist += dist << 3;
+
+ av1_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3,
+ &rate, &dist);
+
+ this_rdc->rate += rate;
+ this_rdc->dist += dist << 4;
+ }
+
+ if (this_rdc->rate == 0) {
+ this_rdc->skip_txfm = 1;
+ }
+
+ if (RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist) >=
+ RDCOST(x->rdmult, 0, tot_sse << 4)) {
+ this_rdc->rate = 0;
+ this_rdc->dist = tot_sse << 4;
+ this_rdc->skip_txfm = 1;
+ }
+
+ return tot_sse;
+}
+
+static void compute_intra_yprediction(const AV1_COMMON *cm,
+ PREDICTION_MODE mode, BLOCK_SIZE bsize,
+ MACROBLOCK *x, MACROBLOCKD *xd) {
+ const SequenceHeader *seq_params = cm->seq_params;
+ struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
+ struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
+ uint8_t *const src_buf_base = p->src.buf;
+ uint8_t *const dst_buf_base = pd->dst.buf;
+ const int src_stride = p->src.stride;
+ const int dst_stride = pd->dst.stride;
+ int plane = 0;
+ int row, col;
+ // block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
+ // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
+ // transform size varies per plane, look it up in a common way.
+ const TX_SIZE tx_size = max_txsize_lookup[bsize];
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+ // If mb_to_right_edge is < 0 we are in a situation in which
+ // the current block size extends into the UMV and we won't
+ // visit the sub blocks that are wholly within the UMV.
+ const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
+ const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
+ // Keep track of the row and column of the blocks we use so that we know
+ // if we are in the unrestricted motion border.
+ for (row = 0; row < max_blocks_high; row += (1 << tx_size)) {
+ // Skip visiting the sub blocks that are wholly within the UMV.
+ for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) {
+ p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)];
+ pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)];
+ av1_predict_intra_block(
+ xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
+ block_size_wide[bsize], block_size_high[bsize], tx_size, mode, 0, 0,
+ FILTER_INTRA_MODES, pd->dst.buf, dst_stride, pd->dst.buf, dst_stride,
+ 0, 0, plane);
+ }
+ }
+ p->src.buf = src_buf_base;
+ pd->dst.buf = dst_buf_base;
+}
+
+// Checks whether Intra mode needs to be pruned based on
+// 'intra_y_mode_bsize_mask_nrd' and 'prune_hv_pred_modes_using_blksad'
+// speed features.
+static INLINE bool is_prune_intra_mode(
+ AV1_COMP *cpi, int mode_index, int force_intra_check, BLOCK_SIZE bsize,
+ uint8_t segment_id, SOURCE_SAD source_sad_nonrd,
+ uint8_t color_sensitivity[MAX_MB_PLANE - 1]) {
+ const PREDICTION_MODE this_mode = intra_mode_list[mode_index];
+ if (mode_index > 2 || force_intra_check == 0) {
+ if (!((1 << this_mode) & cpi->sf.rt_sf.intra_y_mode_bsize_mask_nrd[bsize]))
+ return true;
+
+ if (this_mode == DC_PRED) return false;
+
+ if (!cpi->sf.rt_sf.prune_hv_pred_modes_using_src_sad) return false;
+
+ const bool has_color_sensitivity =
+ color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] &&
+ color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)];
+ if (has_color_sensitivity &&
+ (cpi->rc.frame_source_sad > 1.1 * cpi->rc.avg_source_sad ||
+ cyclic_refresh_segment_id_boosted(segment_id) ||
+ source_sad_nonrd > kMedSad))
+ return false;
+
+ return true;
+ }
+ return false;
+}
+
+/*!\brief Estimation of RD cost of an intra mode for Non-RD optimized case.
+ *
+ * \ingroup nonrd_mode_search
+ * \callgraph
+ * \callergraph
+ * Calculates RD Cost for an intra mode for a single TX block using Hadamard
+ * transform.
+ * \param[in] plane Color plane
+ * \param[in] block Index of a TX block in a prediction block
+ * \param[in] row Row of a current TX block
+ * \param[in] col Column of a current TX block
+ * \param[in] plane_bsize Block size of a current prediction block
+ * \param[in] tx_size Transform size
+ * \param[in] arg Pointer to a structure that holds parameters
+ * for intra mode search
+ *
+ * \remark Nothing is returned. Instead, best mode and RD Cost of the best mode
+ * are set in \c args->rdc and \c args->mode
+ */
+void av1_estimate_block_intra(int plane, int block, int row, int col,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+ void *arg) {
+ struct estimate_block_intra_args *const args = arg;
+ AV1_COMP *const cpi = args->cpi;
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = args->x;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblock_plane *const p = &x->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
+ uint8_t *const src_buf_base = p->src.buf;
+ uint8_t *const dst_buf_base = pd->dst.buf;
+ const int64_t src_stride = p->src.stride;
+ const int64_t dst_stride = pd->dst.stride;
+
+ (void)block;
+
+ av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
+
+ if (args->prune_mode_based_on_sad) {
+ unsigned int this_sad = cpi->ppi->fn_ptr[plane_bsize].sdf(
+ p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride);
+ const unsigned int sad_threshold =
+ args->best_sad != UINT_MAX ? args->best_sad + (args->best_sad >> 4)
+ : UINT_MAX;
+ // Skip the evaluation of current mode if its SAD is more than a threshold.
+ if (this_sad > sad_threshold) {
+ // For the current mode, set rate and distortion to maximum possible
+ // values and return.
+ // Note: args->rdc->rate is checked in av1_nonrd_pick_intra_mode() to skip
+ // the evaluation of the current mode.
+ args->rdc->rate = INT_MAX;
+ args->rdc->dist = INT64_MAX;
+ return;
+ }
+ if (this_sad < args->best_sad) {
+ args->best_sad = this_sad;
+ }
+ }
+
+ RD_STATS this_rdc;
+ av1_invalid_rd_stats(&this_rdc);
+
+ p->src.buf = &src_buf_base[4 * (row * src_stride + col)];
+ pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)];
+
+ if (plane == 0) {
+ av1_block_yrd(x, &this_rdc, &args->skippable, bsize_tx,
+ AOMMIN(tx_size, TX_16X16));
+ } else {
+ av1_model_rd_for_sb_uv(cpi, bsize_tx, x, xd, &this_rdc, plane, plane);
+ }
+
+ p->src.buf = src_buf_base;
+ pd->dst.buf = dst_buf_base;
+ assert(args->rdc->rate != INT_MAX && args->rdc->dist != INT64_MAX);
+ args->rdc->rate += this_rdc.rate;
+ args->rdc->dist += this_rdc.dist;
+}
+
+/*!\brief Estimates best intra mode for inter mode search
+ *
+ * \ingroup nonrd_mode_search
+ * \callgraph
+ * \callergraph
+ *
+ * Using heuristics based on best inter mode, block size, and other decides
+ * whether to check intra modes. If so, estimates and selects best intra mode
+ * from the reduced set of intra modes (max 4 intra modes checked)
+ *
+ * \param[in] cpi Top-level encoder structure
+ * \param[in] x Pointer to structure holding all the
+ * data for the current macroblock
+ * \param[in] bsize Current block size
+ * \param[in] best_early_term Flag, indicating that TX for the
+ * best inter mode was skipped
+ * \param[in] ref_cost_intra Cost of signalling intra mode
+ * \param[in] reuse_prediction Flag, indicating prediction re-use
+ * \param[in] orig_dst Original destination buffer
+ * \param[in] tmp_buffers Pointer to a temporary buffers for
+ * prediction re-use
+ * \param[out] this_mode_pred Pointer to store prediction buffer
+ * for prediction re-use
+ * \param[in] best_rdc Pointer to RD cost for the best
+ * selected intra mode
+ * \param[in] best_pickmode Pointer to a structure containing
+ * best mode picked so far
+ * \param[in] ctx Pointer to structure holding coding
+ * contexts and modes for the block
+ *
+ * \remark Nothing is returned. Instead, calculated RD cost is placed to
+ * \c best_rdc and best selected mode is placed to \c best_pickmode
+ *
+ */
+void av1_estimate_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
+ int best_early_term, unsigned int ref_cost_intra,
+ int reuse_prediction, struct buf_2d *orig_dst,
+ PRED_BUFFER *tmp_buffers,
+ PRED_BUFFER **this_mode_pred, RD_STATS *best_rdc,
+ BEST_PICKMODE *best_pickmode,
+ PICK_MODE_CONTEXT *ctx) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mi = xd->mi[0];
+ const TxfmSearchParams *txfm_params = &x->txfm_search_params;
+ const unsigned char segment_id = mi->segment_id;
+ const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
+ const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize];
+ const bool is_screen_content =
+ cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN;
+ struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
+ const REAL_TIME_SPEED_FEATURES *const rt_sf = &cpi->sf.rt_sf;
+
+ const CommonQuantParams *quant_params = &cm->quant_params;
+
+ RD_STATS this_rdc;
+
+ int intra_cost_penalty = av1_get_intra_cost_penalty(
+ quant_params->base_qindex, quant_params->y_dc_delta_q,
+ cm->seq_params->bit_depth);
+ int64_t inter_mode_thresh =
+ RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0);
+ int perform_intra_pred = rt_sf->check_intra_pred_nonrd;
+ int force_intra_check = 0;
+ // For spatial enhancement layer: turn off intra prediction if the
+ // previous spatial layer as golden ref is not chosen as best reference.
+ // only do this for temporal enhancement layer and on non-key frames.
+ if (cpi->svc.spatial_layer_id > 0 &&
+ best_pickmode->best_ref_frame != GOLDEN_FRAME &&
+ cpi->svc.temporal_layer_id > 0 &&
+ !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)
+ perform_intra_pred = 0;
+
+ int do_early_exit_rdthresh = 1;
+
+ uint32_t spatial_var_thresh = 50;
+ int motion_thresh = 32;
+ // Adjust thresholds to make intra mode likely tested if the other
+ // references (golden, alt) are skipped/not checked. For now always
+ // adjust for svc mode.
+ if (cpi->ppi->use_svc || (rt_sf->use_nonrd_altref_frame == 0 &&
+ rt_sf->nonrd_prune_ref_frame_search > 0)) {
+ spatial_var_thresh = 150;
+ motion_thresh = 0;
+ }
+
+ // Some adjustments to checking intra mode based on source variance.
+ if (x->source_variance < spatial_var_thresh) {
+ // If the best inter mode is large motion or non-LAST ref reduce intra cost
+ // penalty, so intra mode is more likely tested.
+ if (best_rdc->rdcost != INT64_MAX &&
+ (best_pickmode->best_ref_frame != LAST_FRAME ||
+ abs(mi->mv[0].as_mv.row) >= motion_thresh ||
+ abs(mi->mv[0].as_mv.col) >= motion_thresh)) {
+ intra_cost_penalty = intra_cost_penalty >> 2;
+ inter_mode_thresh =
+ RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0);
+ do_early_exit_rdthresh = 0;
+ }
+ if ((x->source_variance < AOMMAX(50, (spatial_var_thresh >> 1)) &&
+ x->content_state_sb.source_sad_nonrd >= kHighSad) ||
+ (is_screen_content && x->source_variance < 50 &&
+ ((bsize >= BLOCK_32X32 &&
+ x->content_state_sb.source_sad_nonrd != kZeroSad) ||
+ x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 ||
+ x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 1)))
+ force_intra_check = 1;
+ // For big blocks worth checking intra (since only DC will be checked),
+ // even if best_early_term is set.
+ if (bsize >= BLOCK_32X32) best_early_term = 0;
+ } else if (rt_sf->source_metrics_sb_nonrd &&
+ x->content_state_sb.source_sad_nonrd <= kLowSad) {
+ perform_intra_pred = 0;
+ }
+
+ if (best_rdc->skip_txfm && best_pickmode->best_mode_initial_skip_flag) {
+ if (rt_sf->skip_intra_pred == 1 && best_pickmode->best_mode != NEWMV)
+ perform_intra_pred = 0;
+ else if (rt_sf->skip_intra_pred == 2)
+ perform_intra_pred = 0;
+ }
+
+ if (!(best_rdc->rdcost == INT64_MAX || force_intra_check ||
+ (perform_intra_pred && !best_early_term &&
+ bsize <= cpi->sf.part_sf.max_intra_bsize))) {
+ return;
+ }
+
+ // Early exit based on RD cost calculated using known rate. When
+ // is_screen_content is true, more bias is given to intra modes. Hence,
+ // considered conservative threshold in early exit for the same.
+ const int64_t known_rd = is_screen_content
+ ? CALC_BIASED_RDCOST(inter_mode_thresh)
+ : inter_mode_thresh;
+ if (known_rd > best_rdc->rdcost) return;
+
+ struct estimate_block_intra_args args;
+ init_estimate_block_intra_args(&args, cpi, x);
+ TX_SIZE intra_tx_size = AOMMIN(
+ AOMMIN(max_txsize_lookup[bsize],
+ tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]),
+ TX_16X16);
+ if (is_screen_content && cpi->rc.high_source_sad &&
+ x->source_variance > spatial_var_thresh && bsize <= BLOCK_16X16)
+ intra_tx_size = TX_4X4;
+
+ PRED_BUFFER *const best_pred = best_pickmode->best_pred;
+ if (reuse_prediction && best_pred != NULL) {
+ const int bh = block_size_high[bsize];
+ const int bw = block_size_wide[bsize];
+ if (best_pred->data == orig_dst->buf) {
+ *this_mode_pred = &tmp_buffers[get_pred_buffer(tmp_buffers, 3)];
+ aom_convolve_copy(best_pred->data, best_pred->stride,
+ (*this_mode_pred)->data, (*this_mode_pred)->stride, bw,
+ bh);
+ best_pickmode->best_pred = *this_mode_pred;
+ }
+ }
+ pd->dst = *orig_dst;
+
+ for (int midx = 0; midx < RTC_INTRA_MODES; ++midx) {
+ const PREDICTION_MODE this_mode = intra_mode_list[midx];
+ const THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)];
+ const int64_t mode_rd_thresh = rd_threshes[mode_index];
+
+ if (is_prune_intra_mode(cpi, midx, force_intra_check, bsize, segment_id,
+ x->content_state_sb.source_sad_nonrd,
+ x->color_sensitivity))
+ continue;
+
+ if (is_screen_content && rt_sf->source_metrics_sb_nonrd) {
+ // For spatially flat blocks with zero motion only check
+ // DC mode.
+ if (x->content_state_sb.source_sad_nonrd == kZeroSad &&
+ x->source_variance == 0 && this_mode != DC_PRED)
+ continue;
+ // Only test Intra for big blocks if spatial_variance is small.
+ else if (bsize > BLOCK_32X32 && x->source_variance > 50)
+ continue;
+ }
+
+ if (rd_less_than_thresh(best_rdc->rdcost, mode_rd_thresh,
+ rd_thresh_freq_fact[mode_index]) &&
+ (do_early_exit_rdthresh || this_mode == SMOOTH_PRED)) {
+ continue;
+ }
+ const BLOCK_SIZE uv_bsize =
+ get_plane_block_size(bsize, xd->plane[AOM_PLANE_U].subsampling_x,
+ xd->plane[AOM_PLANE_U].subsampling_y);
+
+ mi->mode = this_mode;
+ mi->ref_frame[0] = INTRA_FRAME;
+ mi->ref_frame[1] = NONE_FRAME;
+
+ av1_invalid_rd_stats(&this_rdc);
+ args.mode = this_mode;
+ args.skippable = 1;
+ args.rdc = &this_rdc;
+ mi->tx_size = intra_tx_size;
+ compute_intra_yprediction(cm, this_mode, bsize, x, xd);
+ // Look into selecting tx_size here, based on prediction residual.
+ av1_block_yrd(x, &this_rdc, &args.skippable, bsize, mi->tx_size);
+ // TODO(kyslov@) Need to account for skippable
+ if (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)]) {
+ av1_foreach_transformed_block_in_plane(xd, uv_bsize, AOM_PLANE_U,
+ av1_estimate_block_intra, &args);
+ }
+ if (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]) {
+ av1_foreach_transformed_block_in_plane(xd, uv_bsize, AOM_PLANE_V,
+ av1_estimate_block_intra, &args);
+ }
+
+ int mode_cost = 0;
+ if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) {
+ mode_cost +=
+ x->mode_costs.angle_delta_cost[this_mode - V_PRED]
+ [MAX_ANGLE_DELTA +
+ mi->angle_delta[PLANE_TYPE_Y]];
+ }
+ if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) {
+ mode_cost += x->mode_costs.filter_intra_cost[bsize][0];
+ }
+ this_rdc.rate += ref_cost_intra;
+ this_rdc.rate += intra_cost_penalty;
+ this_rdc.rate += mode_cost;
+ this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
+
+ if (is_screen_content && rt_sf->source_metrics_sb_nonrd) {
+ // For blocks with low spatial variance and color sad,
+ // favor the intra-modes, only on scene/slide change.
+ if (cpi->rc.high_source_sad && x->source_variance < 800 &&
+ (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] ||
+ x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]))
+ this_rdc.rdcost = CALC_BIASED_RDCOST(this_rdc.rdcost);
+ // Otherwise bias against intra for blocks with zero
+ // motion and no color, on non-scene/slide changes.
+ else if (!cpi->rc.high_source_sad && x->source_variance > 0 &&
+ x->content_state_sb.source_sad_nonrd == kZeroSad &&
+ x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 0 &&
+ x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 0)
+ this_rdc.rdcost = (3 * this_rdc.rdcost) >> 1;
+ }
+
+ if (this_rdc.rdcost < best_rdc->rdcost) {
+ *best_rdc = this_rdc;
+ best_pickmode->best_mode = this_mode;
+ best_pickmode->best_tx_size = mi->tx_size;
+ best_pickmode->best_ref_frame = INTRA_FRAME;
+ best_pickmode->best_second_ref_frame = NONE;
+ best_pickmode->best_mode_skip_txfm = this_rdc.skip_txfm;
+ mi->uv_mode = this_mode;
+ mi->mv[0].as_int = INVALID_MV;
+ mi->mv[1].as_int = INVALID_MV;
+ if (!this_rdc.skip_txfm)
+ memset(ctx->blk_skip, 0,
+ sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk);
+ }
+ }
+ if (best_pickmode->best_ref_frame == INTRA_FRAME)
+ memset(ctx->blk_skip, 0,
+ sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk);
+ mi->tx_size = best_pickmode->best_tx_size;
+}