summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/partition_search.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/partition_search.c6263
1 files changed, 6263 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/partition_search.c b/third_party/aom/av1/encoder/partition_search.c
new file mode 100644
index 0000000000..1c17b09ee1
--- /dev/null
+++ b/third_party/aom/av1/encoder/partition_search.c
@@ -0,0 +1,6263 @@
+/*
+ * Copyright (c) 2020, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <float.h>
+
+#include "aom_dsp/txfm_common.h"
+
+#include "av1/common/av1_common_int.h"
+#include "av1/common/blockd.h"
+#include "av1/common/enums.h"
+#include "av1/common/reconintra.h"
+
+#include "av1/encoder/aq_complexity.h"
+#include "av1/encoder/aq_variance.h"
+#include "av1/encoder/context_tree.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/encodeframe.h"
+#include "av1/encoder/encodeframe_utils.h"
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/intra_mode_search_utils.h"
+#include "av1/encoder/motion_search_facade.h"
+#include "av1/encoder/nonrd_opt.h"
+#include "av1/encoder/partition_search.h"
+#include "av1/encoder/partition_strategy.h"
+#include "av1/encoder/reconinter_enc.h"
+#include "av1/encoder/tokenize.h"
+#include "av1/encoder/var_based_part.h"
+#include "av1/encoder/av1_ml_partition_models.h"
+
+#if CONFIG_TUNE_VMAF
+#include "av1/encoder/tune_vmaf.h"
+#endif
+
+#define COLLECT_MOTION_SEARCH_FEATURE_SB 0
+
+void av1_reset_part_sf(PARTITION_SPEED_FEATURES *part_sf) {
+ part_sf->partition_search_type = SEARCH_PARTITION;
+ part_sf->less_rectangular_check_level = 0;
+ part_sf->use_square_partition_only_threshold = BLOCK_128X128;
+ part_sf->auto_max_partition_based_on_simple_motion = NOT_IN_USE;
+ part_sf->default_max_partition_size = BLOCK_LARGEST;
+ part_sf->default_min_partition_size = BLOCK_4X4;
+ part_sf->adjust_var_based_rd_partitioning = 0;
+ part_sf->max_intra_bsize = BLOCK_LARGEST;
+ // This setting only takes effect when partition_search_type is set
+ // to FIXED_PARTITION.
+ part_sf->fixed_partition_size = BLOCK_16X16;
+ // Recode loop tolerance %.
+ part_sf->partition_search_breakout_dist_thr = 0;
+ part_sf->partition_search_breakout_rate_thr = 0;
+ part_sf->prune_ext_partition_types_search_level = 0;
+ part_sf->prune_part4_search = 0;
+ part_sf->ml_prune_partition = 0;
+ part_sf->ml_early_term_after_part_split_level = 0;
+ for (int i = 0; i < PARTITION_BLOCK_SIZES; ++i) {
+ part_sf->ml_partition_search_breakout_thresh[i] =
+ -1; // -1 means not enabled.
+ }
+ part_sf->simple_motion_search_prune_agg = SIMPLE_AGG_LVL0;
+ part_sf->simple_motion_search_split = 0;
+ part_sf->simple_motion_search_prune_rect = 0;
+ part_sf->simple_motion_search_early_term_none = 0;
+ part_sf->simple_motion_search_reduce_search_steps = 0;
+ part_sf->intra_cnn_based_part_prune_level = 0;
+ part_sf->ext_partition_eval_thresh = BLOCK_8X8;
+ part_sf->rect_partition_eval_thresh = BLOCK_128X128;
+ part_sf->ext_part_eval_based_on_cur_best = 0;
+ part_sf->prune_ext_part_using_split_info = 0;
+ part_sf->prune_rectangular_split_based_on_qidx = 0;
+ part_sf->early_term_after_none_split = 0;
+ part_sf->ml_predict_breakout_level = 0;
+ part_sf->prune_sub_8x8_partition_level = 0;
+ part_sf->simple_motion_search_rect_split = 0;
+ part_sf->reuse_prev_rd_results_for_part_ab = 0;
+ part_sf->reuse_best_prediction_for_part_ab = 0;
+ part_sf->use_best_rd_for_pruning = 0;
+ part_sf->skip_non_sq_part_based_on_none = 0;
+}
+
+// Reset speed features that works for the baseline encoding, but
+// blocks the external partition search.
+void av1_reset_sf_for_ext_part(AV1_COMP *const cpi) {
+ cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions = 0;
+}
+
+#if !CONFIG_REALTIME_ONLY
+// If input |features| is NULL, write tpl stats to file for each super block.
+// Otherwise, store tpl stats to |features|.
+// The tpl stats is computed in the unit of tpl_bsize_1d (16x16).
+// When writing to text file:
+// The first row contains super block position, super block size,
+// tpl unit length, number of units in the super block.
+// The second row contains the intra prediction cost for each unit.
+// The third row contains the inter prediction cost for each unit.
+// The forth row contains the motion compensated dependency cost for each unit.
+static void collect_tpl_stats_sb(const AV1_COMP *const cpi,
+ const BLOCK_SIZE bsize, const int mi_row,
+ const int mi_col,
+ aom_partition_features_t *features) {
+ const AV1_COMMON *const cm = &cpi->common;
+ GF_GROUP *gf_group = &cpi->ppi->gf_group;
+ if (gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE ||
+ gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) {
+ return;
+ }
+
+ TplParams *const tpl_data = &cpi->ppi->tpl_data;
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[cpi->gf_frame_index];
+ TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+ // If tpl stats is not established, early return
+ if (!tpl_data->ready || gf_group->max_layer_depth_allowed == 0) {
+ if (features != NULL) features->sb_features.tpl_features.available = 0;
+ return;
+ }
+
+ const int tpl_stride = tpl_frame->stride;
+ const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
+ const int mi_width =
+ AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
+ const int mi_height =
+ AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
+ const int col_steps = (mi_width / step) + ((mi_width % step) > 0);
+ const int row_steps = (mi_height / step) + ((mi_height % step) > 0);
+ const int num_blocks = col_steps * row_steps;
+
+ if (features == NULL) {
+ char filename[256];
+ snprintf(filename, sizeof(filename), "%s/tpl_feature_sb%d",
+ cpi->oxcf.partition_info_path, cpi->sb_counter);
+ FILE *pfile = fopen(filename, "w");
+ fprintf(pfile, "%d,%d,%d,%d,%d\n", mi_row, mi_col, bsize,
+ tpl_data->tpl_bsize_1d, num_blocks);
+ int count = 0;
+ for (int row = 0; row < mi_height; row += step) {
+ for (int col = 0; col < mi_width; col += step) {
+ TplDepStats *this_stats =
+ &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
+ tpl_data->tpl_stats_block_mis_log2)];
+ fprintf(pfile, "%.0f", (double)this_stats->intra_cost);
+ if (count < num_blocks - 1) fprintf(pfile, ",");
+ ++count;
+ }
+ }
+ fprintf(pfile, "\n");
+ count = 0;
+ for (int row = 0; row < mi_height; row += step) {
+ for (int col = 0; col < mi_width; col += step) {
+ TplDepStats *this_stats =
+ &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
+ tpl_data->tpl_stats_block_mis_log2)];
+ fprintf(pfile, "%.0f", (double)this_stats->inter_cost);
+ if (count < num_blocks - 1) fprintf(pfile, ",");
+ ++count;
+ }
+ }
+ fprintf(pfile, "\n");
+ count = 0;
+ for (int row = 0; row < mi_height; row += step) {
+ for (int col = 0; col < mi_width; col += step) {
+ TplDepStats *this_stats =
+ &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
+ tpl_data->tpl_stats_block_mis_log2)];
+ const int64_t mc_dep_delta =
+ RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
+ this_stats->mc_dep_dist);
+ fprintf(pfile, "%.0f", (double)mc_dep_delta);
+ if (count < num_blocks - 1) fprintf(pfile, ",");
+ ++count;
+ }
+ }
+ fclose(pfile);
+ } else {
+ features->sb_features.tpl_features.available = 1;
+ features->sb_features.tpl_features.tpl_unit_length = tpl_data->tpl_bsize_1d;
+ features->sb_features.tpl_features.num_units = num_blocks;
+ int count = 0;
+ for (int row = 0; row < mi_height; row += step) {
+ for (int col = 0; col < mi_width; col += step) {
+ TplDepStats *this_stats =
+ &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
+ tpl_data->tpl_stats_block_mis_log2)];
+ const int64_t mc_dep_delta =
+ RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
+ this_stats->mc_dep_dist);
+ features->sb_features.tpl_features.intra_cost[count] =
+ this_stats->intra_cost;
+ features->sb_features.tpl_features.inter_cost[count] =
+ this_stats->inter_cost;
+ features->sb_features.tpl_features.mc_dep_cost[count] = mc_dep_delta;
+ ++count;
+ }
+ }
+ }
+}
+#endif // !CONFIG_REALTIME_ONLY
+
+static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd,
+ FRAME_COUNTS *counts, TX_SIZE tx_size, int depth,
+ int blk_row, int blk_col,
+ uint8_t allow_update_cdf) {
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const BLOCK_SIZE bsize = mbmi->bsize;
+ const int max_blocks_high = max_block_high(xd, bsize, 0);
+ const int max_blocks_wide = max_block_wide(xd, bsize, 0);
+ int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row, mbmi->bsize,
+ tx_size);
+ const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
+ const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];
+
+ if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
+ assert(tx_size > TX_4X4);
+
+ if (depth == MAX_VARTX_DEPTH) {
+ // Don't add to counts in this case
+ mbmi->tx_size = tx_size;
+ txfm_partition_update(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row, tx_size, tx_size);
+ return;
+ }
+
+ if (tx_size == plane_tx_size) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->txfm_partition[ctx][0];
+#endif
+ if (allow_update_cdf)
+ update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2);
+ mbmi->tx_size = tx_size;
+ txfm_partition_update(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row, tx_size, tx_size);
+ } else {
+ const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
+ const int bsw = tx_size_wide_unit[sub_txs];
+ const int bsh = tx_size_high_unit[sub_txs];
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->txfm_partition[ctx][1];
+#endif
+ if (allow_update_cdf)
+ update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2);
+ ++x->txfm_search_info.txb_split_count;
+
+ if (sub_txs == TX_4X4) {
+ mbmi->inter_tx_size[txb_size_index] = TX_4X4;
+ mbmi->tx_size = TX_4X4;
+ txfm_partition_update(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row, TX_4X4, tx_size);
+ return;
+ }
+
+ for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
+ for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
+ int offsetr = row;
+ int offsetc = col;
+
+ update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr,
+ blk_col + offsetc, allow_update_cdf);
+ }
+ }
+ }
+}
+
+static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x,
+ BLOCK_SIZE plane_bsize,
+ FRAME_COUNTS *td_counts,
+ uint8_t allow_update_cdf) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ const int mi_width = mi_size_wide[plane_bsize];
+ const int mi_height = mi_size_high[plane_bsize];
+ const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
+ const int bh = tx_size_high_unit[max_tx_size];
+ const int bw = tx_size_wide_unit[max_tx_size];
+
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);
+
+ for (int idy = 0; idy < mi_height; idy += bh) {
+ for (int idx = 0; idx < mi_width; idx += bw) {
+ update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx,
+ allow_update_cdf);
+ }
+ }
+}
+
+static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row,
+ int blk_col) {
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const BLOCK_SIZE bsize = mbmi->bsize;
+ const int max_blocks_high = max_block_high(xd, bsize, 0);
+ const int max_blocks_wide = max_block_wide(xd, bsize, 0);
+ const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
+ const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];
+
+ if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
+
+ if (tx_size == plane_tx_size) {
+ mbmi->tx_size = tx_size;
+ txfm_partition_update(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row, tx_size, tx_size);
+
+ } else {
+ if (tx_size == TX_8X8) {
+ mbmi->inter_tx_size[txb_size_index] = TX_4X4;
+ mbmi->tx_size = TX_4X4;
+ txfm_partition_update(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row, TX_4X4, tx_size);
+ return;
+ }
+ const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
+ const int bsw = tx_size_wide_unit[sub_txs];
+ const int bsh = tx_size_high_unit[sub_txs];
+ const int row_end =
+ AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
+ const int col_end =
+ AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
+ for (int row = 0; row < row_end; row += bsh) {
+ const int offsetr = blk_row + row;
+ for (int col = 0; col < col_end; col += bsw) {
+ const int offsetc = blk_col + col;
+ set_txfm_context(xd, sub_txs, offsetr, offsetc);
+ }
+ }
+ }
+}
+
+static void tx_partition_set_contexts(const AV1_COMMON *const cm,
+ MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) {
+ const int mi_width = mi_size_wide[plane_bsize];
+ const int mi_height = mi_size_high[plane_bsize];
+ const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
+ const int bh = tx_size_high_unit[max_tx_size];
+ const int bw = tx_size_wide_unit[max_tx_size];
+
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);
+
+ for (int idy = 0; idy < mi_height; idy += bh) {
+ for (int idx = 0; idx < mi_width; idx += bw) {
+ set_txfm_context(xd, max_tx_size, idy, idx);
+ }
+ }
+}
+
+static void update_zeromv_cnt(const AV1_COMP *const cpi,
+ const MB_MODE_INFO *const mi, int mi_row,
+ int mi_col, BLOCK_SIZE bsize) {
+ if (mi->ref_frame[0] != LAST_FRAME || !is_inter_block(mi) ||
+ mi->segment_id > CR_SEGMENT_ID_BOOST2) {
+ return;
+ }
+ const AV1_COMMON *const cm = &cpi->common;
+ const MV mv = mi->mv[0].as_mv;
+ const int bw = mi_size_wide[bsize] >> 1;
+ const int bh = mi_size_high[bsize] >> 1;
+ const int xmis = AOMMIN((cm->mi_params.mi_cols - mi_col) >> 1, bw);
+ const int ymis = AOMMIN((cm->mi_params.mi_rows - mi_row) >> 1, bh);
+ const int block_index =
+ (mi_row >> 1) * (cm->mi_params.mi_cols >> 1) + (mi_col >> 1);
+ for (int y = 0; y < ymis; y++) {
+ for (int x = 0; x < xmis; x++) {
+ // consec_zero_mv is in the scale of 8x8 blocks
+ const int map_offset = block_index + y * (cm->mi_params.mi_cols >> 1) + x;
+ if (abs(mv.row) < 10 && abs(mv.col) < 10) {
+ if (cpi->consec_zero_mv[map_offset] < 255)
+ cpi->consec_zero_mv[map_offset]++;
+ } else {
+ cpi->consec_zero_mv[map_offset] = 0;
+ }
+ }
+ }
+}
+
+static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data,
+ ThreadData *td, TokenExtra **t, RUN_TYPE dry_run,
+ BLOCK_SIZE bsize, int *rate) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO **mi_4x4 = xd->mi;
+ MB_MODE_INFO *mbmi = mi_4x4[0];
+ const int seg_skip =
+ segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
+ const int mis = cm->mi_params.mi_stride;
+ const int mi_width = mi_size_wide[bsize];
+ const int mi_height = mi_size_high[bsize];
+ const int is_inter = is_inter_block(mbmi);
+
+ // Initialize tx_mode and tx_size_search_method
+ TxfmSearchParams *txfm_params = &x->txfm_search_params;
+ set_tx_size_search_method(
+ cm, &cpi->winner_mode_params, txfm_params,
+ cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch, 1);
+
+ const int mi_row = xd->mi_row;
+ const int mi_col = xd->mi_col;
+ if (!is_inter) {
+ xd->cfl.store_y = store_cfl_required(cm, xd);
+ mbmi->skip_txfm = 1;
+ for (int plane = 0; plane < num_planes; ++plane) {
+ av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run,
+ cpi->optimize_seg_arr[mbmi->segment_id]);
+ }
+
+ // If there is at least one lossless segment, force the skip for intra
+ // block to be 0, in order to avoid the segment_id to be changed by in
+ // write_segment_id().
+ if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map &&
+ cpi->enc_seg.has_lossless_segment)
+ mbmi->skip_txfm = 0;
+
+ xd->cfl.store_y = 0;
+ if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
+ for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) {
+ if (mbmi->palette_mode_info.palette_size[plane] > 0) {
+ if (!dry_run) {
+ av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size,
+ PALETTE_MAP, tile_data->allow_update_cdf,
+ td->counts);
+ } else if (dry_run == DRY_RUN_COSTCOEFFS) {
+ *rate +=
+ av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP);
+ }
+ }
+ }
+ }
+
+ av1_update_intra_mb_txb_context(cpi, td, dry_run, bsize,
+ tile_data->allow_update_cdf);
+ } else {
+ int ref;
+ const int is_compound = has_second_ref(mbmi);
+
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ for (ref = 0; ref < 1 + is_compound; ++ref) {
+ const YV12_BUFFER_CONFIG *cfg =
+ get_ref_frame_yv12_buf(cm, mbmi->ref_frame[ref]);
+ assert(IMPLIES(!is_intrabc_block(mbmi), cfg));
+ av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
+ xd->block_ref_scale_factors[ref], num_planes);
+ }
+ // Predicted sample of inter mode (for Luma plane) cannot be reused if
+ // nonrd_check_partition_split speed feature is enabled, Since in such cases
+ // the buffer may not contain the predicted sample of best mode.
+ const int start_plane =
+ (x->reuse_inter_pred && (!cpi->sf.rt_sf.nonrd_check_partition_split) &&
+ cm->seq_params->bit_depth == AOM_BITS_8)
+ ? 1
+ : 0;
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
+ start_plane, av1_num_planes(cm) - 1);
+ if (mbmi->motion_mode == OBMC_CAUSAL) {
+ assert(cpi->oxcf.motion_mode_cfg.enable_obmc);
+ av1_build_obmc_inter_predictors_sb(cm, xd);
+ }
+
+#if CONFIG_MISMATCH_DEBUG
+ if (dry_run == OUTPUT_ENABLED) {
+ for (int plane = 0; plane < num_planes; ++plane) {
+ const struct macroblockd_plane *pd = &xd->plane[plane];
+ int pixel_c, pixel_r;
+ mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
+ pd->subsampling_x, pd->subsampling_y);
+ if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
+ pd->subsampling_y))
+ continue;
+ mismatch_record_block_pre(pd->dst.buf, pd->dst.stride,
+ cm->current_frame.order_hint, plane, pixel_c,
+ pixel_r, pd->width, pd->height,
+ xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
+ }
+ }
+#else
+ (void)num_planes;
+#endif
+
+ av1_encode_sb(cpi, x, bsize, dry_run);
+ av1_tokenize_sb_vartx(cpi, td, dry_run, bsize, rate,
+ tile_data->allow_update_cdf);
+ }
+
+ if (!dry_run) {
+ if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi)) td->intrabc_used = 1;
+ if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
+ !xd->lossless[mbmi->segment_id] && mbmi->bsize > BLOCK_4X4 &&
+ !(is_inter && (mbmi->skip_txfm || seg_skip))) {
+ if (is_inter) {
+ tx_partition_count_update(cm, x, bsize, td->counts,
+ tile_data->allow_update_cdf);
+ } else {
+ if (mbmi->tx_size != max_txsize_rect_lookup[bsize])
+ ++x->txfm_search_info.txb_split_count;
+ if (block_signals_txsize(bsize)) {
+ const int tx_size_ctx = get_tx_size_context(xd);
+ const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
+ const int depth = tx_size_to_depth(mbmi->tx_size, bsize);
+ const int max_depths = bsize_to_max_depth(bsize);
+
+ if (tile_data->allow_update_cdf)
+ update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
+ depth, max_depths + 1);
+#if CONFIG_ENTROPY_STATS
+ ++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth];
+#endif
+ }
+ }
+ assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi)));
+ } else {
+ int i, j;
+ TX_SIZE intra_tx_size;
+ // The new intra coding scheme requires no change of transform size
+ if (is_inter) {
+ if (xd->lossless[mbmi->segment_id]) {
+ intra_tx_size = TX_4X4;
+ } else {
+ intra_tx_size =
+ tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type);
+ }
+ } else {
+ intra_tx_size = mbmi->tx_size;
+ }
+
+ const int cols = AOMMIN(cm->mi_params.mi_cols - mi_col, mi_width);
+ const int rows = AOMMIN(cm->mi_params.mi_rows - mi_row, mi_height);
+ for (j = 0; j < rows; j++) {
+ for (i = 0; i < cols; i++) mi_4x4[mis * j + i]->tx_size = intra_tx_size;
+ }
+
+ if (intra_tx_size != max_txsize_rect_lookup[bsize])
+ ++x->txfm_search_info.txb_split_count;
+ }
+ }
+
+ if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
+ block_signals_txsize(mbmi->bsize) && is_inter &&
+ !(mbmi->skip_txfm || seg_skip) && !xd->lossless[mbmi->segment_id]) {
+ if (dry_run) tx_partition_set_contexts(cm, xd, bsize);
+ } else {
+ TX_SIZE tx_size = mbmi->tx_size;
+ // The new intra coding scheme requires no change of transform size
+ if (is_inter) {
+ if (xd->lossless[mbmi->segment_id]) {
+ tx_size = TX_4X4;
+ } else {
+ tx_size = tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type);
+ }
+ } else {
+ tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4;
+ }
+ mbmi->tx_size = tx_size;
+ set_txfm_ctxs(tx_size, xd->width, xd->height,
+ (mbmi->skip_txfm || seg_skip) && is_inter_block(mbmi), xd);
+ }
+
+ if (is_inter_block(mbmi) && !xd->is_chroma_ref && is_cfl_allowed(xd)) {
+ cfl_store_block(xd, mbmi->bsize, mbmi->tx_size);
+ }
+ if (!dry_run) {
+ if (cpi->oxcf.pass == AOM_RC_ONE_PASS && cpi->svc.temporal_layer_id == 0 &&
+ cpi->sf.rt_sf.use_temporal_noise_estimate &&
+ (!cpi->ppi->use_svc ||
+ (cpi->ppi->use_svc &&
+ !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame &&
+ cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)))
+ update_zeromv_cnt(cpi, mbmi, mi_row, mi_col, bsize);
+ }
+}
+
+static void setup_block_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ AQ_MODE aq_mode, MB_MODE_INFO *mbmi) {
+ x->rdmult = cpi->rd.RDMULT;
+
+ if (aq_mode != NO_AQ) {
+ assert(mbmi != NULL);
+ if (aq_mode == VARIANCE_AQ) {
+ if (cpi->vaq_refresh) {
+ const int energy = bsize <= BLOCK_16X16
+ ? x->mb_energy
+ : av1_log_block_var(cpi, x, bsize);
+ mbmi->segment_id = energy;
+ }
+ x->rdmult = set_rdmult(cpi, x, mbmi->segment_id);
+ } else if (aq_mode == COMPLEXITY_AQ) {
+ x->rdmult = set_rdmult(cpi, x, mbmi->segment_id);
+ } else if (aq_mode == CYCLIC_REFRESH_AQ) {
+ // If segment is boosted, use rdmult for that segment.
+ if (cyclic_refresh_segment_id_boosted(mbmi->segment_id))
+ x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
+ }
+ }
+
+#if !CONFIG_REALTIME_ONLY
+ if (cpi->common.delta_q_info.delta_q_present_flag &&
+ !cpi->sf.rt_sf.use_nonrd_pick_mode) {
+ x->rdmult = av1_get_cb_rdmult(cpi, x, bsize, mi_row, mi_col);
+ }
+#endif // !CONFIG_REALTIME_ONLY
+
+ if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM) {
+ av1_set_ssim_rdmult(cpi, &x->errorperbit, bsize, mi_row, mi_col,
+ &x->rdmult);
+ }
+#if CONFIG_SALIENCY_MAP
+ else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_SALIENCY_MAP) {
+ av1_set_saliency_map_vmaf_rdmult(cpi, &x->errorperbit,
+ cpi->common.seq_params->sb_size, mi_row,
+ mi_col, &x->rdmult);
+ }
+#endif
+#if CONFIG_TUNE_VMAF
+ else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING ||
+ cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN ||
+ cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) {
+ av1_set_vmaf_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
+ }
+#endif
+#if CONFIG_TUNE_BUTTERAUGLI
+ else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) {
+ av1_set_butteraugli_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
+ }
+#endif
+ if (cpi->oxcf.mode == ALLINTRA) {
+ x->rdmult = (int)(((int64_t)x->rdmult * x->intra_sb_rdmult_modifier) >> 7);
+ }
+
+ // Check to make sure that the adjustments above have not caused the
+ // rd multiplier to be truncated to 0.
+ x->rdmult = (x->rdmult > 0) ? x->rdmult : 1;
+}
+
+void av1_set_offsets_without_segment_id(const AV1_COMP *const cpi,
+ const TileInfo *const tile,
+ MACROBLOCK *const x, int mi_row,
+ int mi_col, BLOCK_SIZE bsize) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ assert(bsize < BLOCK_SIZES_ALL);
+ const int mi_width = mi_size_wide[bsize];
+ const int mi_height = mi_size_high[bsize];
+
+ set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
+ mi_row, mi_col);
+
+ set_entropy_context(xd, mi_row, mi_col, num_planes);
+ xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+
+ // Set up destination pointers.
+ av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0,
+ num_planes);
+
+ // Set up limit values for MV components.
+ // Mv beyond the range do not produce new/different prediction block.
+ av1_set_mv_limits(&cm->mi_params, &x->mv_limits, mi_row, mi_col, mi_height,
+ mi_width, cpi->oxcf.border_in_pixels);
+
+ set_plane_n4(xd, mi_width, mi_height, num_planes);
+
+ // Set up distance of MB to edge of frame in 1/8th pel units.
+ assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
+ set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
+ cm->mi_params.mi_rows, cm->mi_params.mi_cols);
+
+ // Set up source buffers.
+ av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
+
+ // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs()
+ xd->tile = *tile;
+}
+
+void av1_set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile,
+ MACROBLOCK *const x, int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const struct segmentation *const seg = &cm->seg;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi;
+
+ av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
+
+ // Setup segment ID.
+ mbmi = xd->mi[0];
+ mbmi->segment_id = 0;
+ if (seg->enabled) {
+ if (seg->enabled && !cpi->vaq_refresh) {
+ const uint8_t *const map =
+ seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
+ mbmi->segment_id =
+ map ? get_segment_id(&cm->mi_params, map, bsize, mi_row, mi_col) : 0;
+ }
+ av1_init_plane_quantizers(cpi, x, mbmi->segment_id, 0);
+ }
+#ifndef NDEBUG
+ x->last_set_offsets_loc.mi_row = mi_row;
+ x->last_set_offsets_loc.mi_col = mi_col;
+ x->last_set_offsets_loc.bsize = bsize;
+#endif // NDEBUG
+}
+
+/*!\brief Hybrid intra mode search.
+ *
+ * \ingroup intra_mode_search
+ * \callgraph
+ * \callergraph
+ * This is top level function for mode search for intra frames in non-RD
+ * optimized case. Depending on speed feature and block size it calls
+ * either non-RD or RD optimized intra mode search.
+ *
+ * \param[in] cpi Top-level encoder structure
+ * \param[in] x Pointer to structure holding all the data for
+ the current macroblock
+ * \param[in] rd_cost Struct to keep track of the RD information
+ * \param[in] bsize Current block size
+ * \param[in] ctx Structure to hold snapshot of coding context
+ during the mode picking process
+ *
+ * \remark Nothing is returned. Instead, the MB_MODE_INFO struct inside x
+ * is modified to store information about the best mode computed
+ * in this function. The rd_cost struct is also updated with the RD stats
+ * corresponding to the best mode found.
+ */
+
+static AOM_INLINE void hybrid_intra_mode_search(AV1_COMP *cpi,
+ MACROBLOCK *const x,
+ RD_STATS *rd_cost,
+ BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx) {
+ int use_rdopt = 0;
+ const int hybrid_intra_pickmode = cpi->sf.rt_sf.hybrid_intra_pickmode;
+ // Use rd pick for intra mode search based on block size and variance.
+ if (hybrid_intra_pickmode && bsize < BLOCK_16X16) {
+ unsigned int var_thresh[3] = { 0, 101, 201 };
+ assert(hybrid_intra_pickmode <= 3);
+ if (x->source_variance >= var_thresh[hybrid_intra_pickmode - 1])
+ use_rdopt = 1;
+ }
+
+ if (use_rdopt)
+ av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
+ else
+ av1_nonrd_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
+}
+
+// For real time/allintra row-mt enabled multi-threaded encoding with cost
+// update frequency set to COST_UPD_TILE/COST_UPD_OFF, tile ctxt is not updated
+// at superblock level. Thus, it is not required for the encoding of top-right
+// superblock be complete for updating tile ctxt. However, when encoding a block
+// whose right edge is also the superblock edge, intra and inter mode evaluation
+// (ref mv list population) require the encoding of the top-right superblock to
+// be complete. So, here, we delay the waiting of threads until the need for the
+// data from the top-right superblock region.
+static AOM_INLINE void wait_for_top_right_sb(
+ AV1EncRowMultiThreadInfo *enc_row_mt, AV1EncRowMultiThreadSync *row_mt_sync,
+ TileInfo *tile_info, BLOCK_SIZE sb_size, int sb_mi_size_log2,
+ BLOCK_SIZE bsize, int mi_row, int mi_col) {
+ const int sb_size_in_mi = mi_size_wide[sb_size];
+ const int bw_in_mi = mi_size_wide[bsize];
+ const int blk_row_in_sb = mi_row & (sb_size_in_mi - 1);
+ const int blk_col_in_sb = mi_col & (sb_size_in_mi - 1);
+ const int top_right_block_in_sb =
+ (blk_row_in_sb == 0) && (blk_col_in_sb + bw_in_mi >= sb_size_in_mi);
+
+ // Don't wait if the block is the not the top-right block in the superblock.
+ if (!top_right_block_in_sb) return;
+
+ // Wait for the top-right superblock to finish encoding.
+ const int sb_row_in_tile =
+ (mi_row - tile_info->mi_row_start) >> sb_mi_size_log2;
+ const int sb_col_in_tile =
+ (mi_col - tile_info->mi_col_start) >> sb_mi_size_log2;
+
+ enc_row_mt->sync_read_ptr(row_mt_sync, sb_row_in_tile, sb_col_in_tile);
+}
+
+/*!\brief Interface for AV1 mode search for an individual coding block
+ *
+ * \ingroup partition_search
+ * \callgraph
+ * \callergraph
+ * Searches prediction modes, transform, and coefficient coding modes for an
+ * individual coding block. This function is the top-level interface that
+ * directs the encoder to the proper mode search function, among these
+ * implemented for inter/intra + rd/non-rd + non-skip segment/skip segment.
+ *
+ * \param[in] cpi Top-level encoder structure
+ * \param[in] tile_data Pointer to struct holding adaptive
+ * data/contexts/models for the tile during
+ * encoding
+ * \param[in] x Pointer to structure holding all the data for
+ * the current macroblock
+ * \param[in] mi_row Row coordinate of the block in a step size of
+ * MI_SIZE
+ * \param[in] mi_col Column coordinate of the block in a step size of
+ * MI_SIZE
+ * \param[in] rd_cost Pointer to structure holding rate and distortion
+ * stats for the current block
+ * \param[in] partition Partition mode of the parent block
+ * \param[in] bsize Current block size
+ * \param[in] ctx Pointer to structure holding coding contexts and
+ * chosen modes for the current block
+ * \param[in] best_rd Upper bound of rd cost of a valid partition
+ *
+ * \remark Nothing is returned. Instead, the chosen modes and contexts necessary
+ * for reconstruction are stored in ctx, the rate-distortion stats are stored in
+ * rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be
+ * signalled by an INT64_MAX rd_cost->rdcost.
+ */
+static void pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data,
+ MACROBLOCK *const x, int mi_row, int mi_col,
+ RD_STATS *rd_cost, PARTITION_TYPE partition,
+ BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
+ RD_STATS best_rd) {
+ if (cpi->sf.part_sf.use_best_rd_for_pruning && best_rd.rdcost < 0) {
+ ctx->rd_stats.rdcost = INT64_MAX;
+ ctx->rd_stats.skip_txfm = 0;
+ av1_invalid_rd_stats(rd_cost);
+ return;
+ }
+
+ av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize);
+
+ if (cpi->sf.part_sf.reuse_prev_rd_results_for_part_ab &&
+ ctx->rd_mode_is_ready) {
+ assert(ctx->mic.bsize == bsize);
+ assert(ctx->mic.partition == partition);
+ rd_cost->rate = ctx->rd_stats.rate;
+ rd_cost->dist = ctx->rd_stats.dist;
+ rd_cost->rdcost = ctx->rd_stats.rdcost;
+ return;
+ }
+
+ AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode;
+ TxfmSearchInfo *txfm_info = &x->txfm_search_info;
+
+ int i;
+
+ // This is only needed for real time/allintra row-mt enabled multi-threaded
+ // encoding with cost update frequency set to COST_UPD_TILE/COST_UPD_OFF.
+ wait_for_top_right_sb(&cpi->mt_info.enc_row_mt, &tile_data->row_mt_sync,
+ &tile_data->tile_info, cm->seq_params->sb_size,
+ cm->seq_params->mib_size_log2, bsize, mi_row, mi_col);
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, rd_pick_sb_modes_time);
+#endif
+
+ mbmi = xd->mi[0];
+ mbmi->bsize = bsize;
+ mbmi->partition = partition;
+
+#if CONFIG_RD_DEBUG
+ mbmi->mi_row = mi_row;
+ mbmi->mi_col = mi_col;
+#endif
+
+ // Sets up the tx_type_map buffer in MACROBLOCKD.
+ xd->tx_type_map = txfm_info->tx_type_map_;
+ xd->tx_type_map_stride = mi_size_wide[bsize];
+
+ for (i = 0; i < num_planes; ++i) {
+ p[i].coeff = ctx->coeff[i];
+ p[i].qcoeff = ctx->qcoeff[i];
+ p[i].dqcoeff = ctx->dqcoeff[i];
+ p[i].eobs = ctx->eobs[i];
+ p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
+ }
+
+ for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
+
+ ctx->skippable = 0;
+ // Set to zero to make sure we do not use the previous encoded frame stats
+ mbmi->skip_txfm = 0;
+ // Reset skip mode flag.
+ mbmi->skip_mode = 0;
+
+ x->source_variance = av1_get_perpixel_variance_facade(
+ cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y);
+
+ // Initialize default mode evaluation params
+ set_mode_eval_params(cpi, x, DEFAULT_EVAL);
+
+ // Save rdmult before it might be changed, so it can be restored later.
+ const int orig_rdmult = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi);
+ // Set error per bit for current rdmult
+ av1_set_error_per_bit(&x->errorperbit, x->rdmult);
+ av1_rd_cost_update(x->rdmult, &best_rd);
+
+ // If set best_rd.rdcost to INT64_MAX, the encoder will not use any previous
+ // rdcost information for the following mode search.
+ // Disabling the feature could get some coding gain, with encoder slowdown.
+ if (!cpi->sf.part_sf.use_best_rd_for_pruning) {
+ av1_invalid_rd_stats(&best_rd);
+ }
+
+ // Find best coding mode & reconstruct the MB so it is available
+ // as a predictor for MBs that follow in the SB
+ if (frame_is_intra_only(cm)) {
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, av1_rd_pick_intra_mode_sb_time);
+#endif
+ av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd.rdcost);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, av1_rd_pick_intra_mode_sb_time);
+#endif
+ } else {
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, av1_rd_pick_inter_mode_sb_time);
+#endif
+ if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
+ av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col,
+ rd_cost, bsize, ctx, best_rd.rdcost);
+ } else {
+ av1_rd_pick_inter_mode(cpi, tile_data, x, rd_cost, bsize, ctx,
+ best_rd.rdcost);
+ }
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, av1_rd_pick_inter_mode_sb_time);
+#endif
+ }
+
+ // Examine the resulting rate and for AQ mode 2 make a segment choice.
+ if (rd_cost->rate != INT_MAX && aq_mode == COMPLEXITY_AQ &&
+ bsize >= BLOCK_16X16) {
+ av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
+ }
+
+ x->rdmult = orig_rdmult;
+
+ // TODO(jingning) The rate-distortion optimization flow needs to be
+ // refactored to provide proper exit/return handle.
+ if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
+
+ ctx->rd_stats.rate = rd_cost->rate;
+ ctx->rd_stats.dist = rd_cost->dist;
+ ctx->rd_stats.rdcost = rd_cost->rdcost;
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, rd_pick_sb_modes_time);
+#endif
+}
+
+static void update_stats(const AV1_COMMON *const cm, ThreadData *td) {
+ MACROBLOCK *x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
+ const CurrentFrame *const current_frame = &cm->current_frame;
+ const BLOCK_SIZE bsize = mbmi->bsize;
+ FRAME_CONTEXT *fc = xd->tile_ctx;
+ const int seg_ref_active =
+ segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
+
+ if (current_frame->skip_mode_info.skip_mode_flag && !seg_ref_active &&
+ is_comp_ref_allowed(bsize)) {
+ const int skip_mode_ctx = av1_get_skip_mode_context(xd);
+#if CONFIG_ENTROPY_STATS
+ td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++;
+#endif
+ update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2);
+ }
+
+ if (!mbmi->skip_mode && !seg_ref_active) {
+ const int skip_ctx = av1_get_skip_txfm_context(xd);
+#if CONFIG_ENTROPY_STATS
+ td->counts->skip_txfm[skip_ctx][mbmi->skip_txfm]++;
+#endif
+ update_cdf(fc->skip_txfm_cdfs[skip_ctx], mbmi->skip_txfm, 2);
+ }
+
+#if CONFIG_ENTROPY_STATS
+ // delta quant applies to both intra and inter
+ const int super_block_upper_left =
+ ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
+ ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0);
+ const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
+ if (delta_q_info->delta_q_present_flag &&
+ (bsize != cm->seq_params->sb_size || !mbmi->skip_txfm) &&
+ super_block_upper_left) {
+ const int dq = (mbmi->current_qindex - xd->current_base_qindex) /
+ delta_q_info->delta_q_res;
+ const int absdq = abs(dq);
+ for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) {
+ td->counts->delta_q[i][1]++;
+ }
+ if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++;
+ if (delta_q_info->delta_lf_present_flag) {
+ if (delta_q_info->delta_lf_multi) {
+ const int frame_lf_count =
+ av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
+ for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
+ const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
+ delta_q_info->delta_lf_res;
+ const int abs_delta_lf = abs(delta_lf);
+ for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
+ td->counts->delta_lf_multi[lf_id][i][1]++;
+ }
+ if (abs_delta_lf < DELTA_LF_SMALL)
+ td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++;
+ }
+ } else {
+ const int delta_lf =
+ (mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
+ delta_q_info->delta_lf_res;
+ const int abs_delta_lf = abs(delta_lf);
+ for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
+ td->counts->delta_lf[i][1]++;
+ }
+ if (abs_delta_lf < DELTA_LF_SMALL)
+ td->counts->delta_lf[abs_delta_lf][0]++;
+ }
+ }
+ }
+#endif
+
+ if (!is_inter_block(mbmi)) {
+ av1_sum_intra_stats(cm, td->counts, xd, mbmi, xd->above_mbmi, xd->left_mbmi,
+ frame_is_intra_only(cm));
+ }
+
+ if (av1_allow_intrabc(cm)) {
+ const int is_intrabc = is_intrabc_block(mbmi);
+ update_cdf(fc->intrabc_cdf, is_intrabc, 2);
+#if CONFIG_ENTROPY_STATS
+ ++td->counts->intrabc[is_intrabc];
+#endif // CONFIG_ENTROPY_STATS
+ if (is_intrabc) {
+ const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
+ const int_mv dv_ref = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv;
+ av1_update_mv_stats(&mbmi->mv[0].as_mv, &dv_ref.as_mv, &fc->ndvc,
+ MV_SUBPEL_NONE);
+ }
+ }
+
+ if (frame_is_intra_only(cm) || mbmi->skip_mode) return;
+
+ FRAME_COUNTS *const counts = td->counts;
+ const int inter_block = is_inter_block(mbmi);
+
+ if (!seg_ref_active) {
+#if CONFIG_ENTROPY_STATS
+ counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++;
+#endif
+ update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)],
+ inter_block, 2);
+ // If the segment reference feature is enabled we have only a single
+ // reference frame allowed for the segment so exclude it from
+ // the reference frame counts used to work out probabilities.
+ if (inter_block) {
+ const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
+ const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
+ if (current_frame->reference_mode == REFERENCE_MODE_SELECT) {
+ if (is_comp_ref_allowed(bsize)) {
+#if CONFIG_ENTROPY_STATS
+ counts->comp_inter[av1_get_reference_mode_context(xd)]
+ [has_second_ref(mbmi)]++;
+#endif // CONFIG_ENTROPY_STATS
+ update_cdf(av1_get_reference_mode_cdf(xd), has_second_ref(mbmi), 2);
+ }
+ }
+
+ if (has_second_ref(mbmi)) {
+ const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
+ ? UNIDIR_COMP_REFERENCE
+ : BIDIR_COMP_REFERENCE;
+ update_cdf(av1_get_comp_reference_type_cdf(xd), comp_ref_type,
+ COMP_REFERENCE_TYPES);
+#if CONFIG_ENTROPY_STATS
+ counts->comp_ref_type[av1_get_comp_reference_type_context(xd)]
+ [comp_ref_type]++;
+#endif // CONFIG_ENTROPY_STATS
+
+ if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
+ const int bit = (ref0 == BWDREF_FRAME);
+ update_cdf(av1_get_pred_cdf_uni_comp_ref_p(xd), bit, 2);
+#if CONFIG_ENTROPY_STATS
+ counts
+ ->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0][bit]++;
+#endif // CONFIG_ENTROPY_STATS
+ if (!bit) {
+ const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME);
+ update_cdf(av1_get_pred_cdf_uni_comp_ref_p1(xd), bit1, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1]
+ [bit1]++;
+#endif // CONFIG_ENTROPY_STATS
+ if (bit1) {
+ update_cdf(av1_get_pred_cdf_uni_comp_ref_p2(xd),
+ ref1 == GOLDEN_FRAME, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)][2]
+ [ref1 == GOLDEN_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ }
+ }
+ } else {
+ const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME);
+ update_cdf(av1_get_pred_cdf_comp_ref_p(xd), bit, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->comp_ref[av1_get_pred_context_comp_ref_p(xd)][0][bit]++;
+#endif // CONFIG_ENTROPY_STATS
+ if (!bit) {
+ update_cdf(av1_get_pred_cdf_comp_ref_p1(xd), ref0 == LAST2_FRAME,
+ 2);
+#if CONFIG_ENTROPY_STATS
+ counts->comp_ref[av1_get_pred_context_comp_ref_p1(xd)][1]
+ [ref0 == LAST2_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ } else {
+ update_cdf(av1_get_pred_cdf_comp_ref_p2(xd), ref0 == GOLDEN_FRAME,
+ 2);
+#if CONFIG_ENTROPY_STATS
+ counts->comp_ref[av1_get_pred_context_comp_ref_p2(xd)][2]
+ [ref0 == GOLDEN_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ }
+ update_cdf(av1_get_pred_cdf_comp_bwdref_p(xd), ref1 == ALTREF_FRAME,
+ 2);
+#if CONFIG_ENTROPY_STATS
+ counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(xd)][0]
+ [ref1 == ALTREF_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ if (ref1 != ALTREF_FRAME) {
+ update_cdf(av1_get_pred_cdf_comp_bwdref_p1(xd),
+ ref1 == ALTREF2_FRAME, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(xd)][1]
+ [ref1 == ALTREF2_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ }
+ }
+ } else {
+ const int bit = (ref0 >= BWDREF_FRAME);
+ update_cdf(av1_get_pred_cdf_single_ref_p1(xd), bit, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++;
+#endif // CONFIG_ENTROPY_STATS
+ if (bit) {
+ assert(ref0 <= ALTREF_FRAME);
+ update_cdf(av1_get_pred_cdf_single_ref_p2(xd), ref0 == ALTREF_FRAME,
+ 2);
+#if CONFIG_ENTROPY_STATS
+ counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
+ [ref0 == ALTREF_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ if (ref0 != ALTREF_FRAME) {
+ update_cdf(av1_get_pred_cdf_single_ref_p6(xd),
+ ref0 == ALTREF2_FRAME, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5]
+ [ref0 == ALTREF2_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ }
+ } else {
+ const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME);
+ update_cdf(av1_get_pred_cdf_single_ref_p3(xd), bit1, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++;
+#endif // CONFIG_ENTROPY_STATS
+ if (!bit1) {
+ update_cdf(av1_get_pred_cdf_single_ref_p4(xd), ref0 != LAST_FRAME,
+ 2);
+#if CONFIG_ENTROPY_STATS
+ counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3]
+ [ref0 != LAST_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ } else {
+ update_cdf(av1_get_pred_cdf_single_ref_p5(xd), ref0 != LAST3_FRAME,
+ 2);
+#if CONFIG_ENTROPY_STATS
+ counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4]
+ [ref0 != LAST3_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ }
+ }
+ }
+
+ if (cm->seq_params->enable_interintra_compound &&
+ is_interintra_allowed(mbmi)) {
+ const int bsize_group = size_group_lookup[bsize];
+ if (mbmi->ref_frame[1] == INTRA_FRAME) {
+#if CONFIG_ENTROPY_STATS
+ counts->interintra[bsize_group][1]++;
+#endif
+ update_cdf(fc->interintra_cdf[bsize_group], 1, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
+#endif
+ update_cdf(fc->interintra_mode_cdf[bsize_group],
+ mbmi->interintra_mode, INTERINTRA_MODES);
+ if (av1_is_wedge_used(bsize)) {
+#if CONFIG_ENTROPY_STATS
+ counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
+#endif
+ update_cdf(fc->wedge_interintra_cdf[bsize],
+ mbmi->use_wedge_interintra, 2);
+ if (mbmi->use_wedge_interintra) {
+#if CONFIG_ENTROPY_STATS
+ counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++;
+#endif
+ update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index,
+ 16);
+ }
+ }
+ } else {
+#if CONFIG_ENTROPY_STATS
+ counts->interintra[bsize_group][0]++;
+#endif
+ update_cdf(fc->interintra_cdf[bsize_group], 0, 2);
+ }
+ }
+
+ const MOTION_MODE motion_allowed =
+ cm->features.switchable_motion_mode
+ ? motion_mode_allowed(xd->global_motion, xd, mbmi,
+ cm->features.allow_warped_motion)
+ : SIMPLE_TRANSLATION;
+ if (mbmi->ref_frame[1] != INTRA_FRAME) {
+ if (motion_allowed == WARPED_CAUSAL) {
+#if CONFIG_ENTROPY_STATS
+ counts->motion_mode[bsize][mbmi->motion_mode]++;
+#endif
+ update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode,
+ MOTION_MODES);
+ } else if (motion_allowed == OBMC_CAUSAL) {
+#if CONFIG_ENTROPY_STATS
+ counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
+#endif
+ update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, 2);
+ }
+ }
+
+ if (has_second_ref(mbmi)) {
+ assert(current_frame->reference_mode != SINGLE_REFERENCE &&
+ is_inter_compound_mode(mbmi->mode) &&
+ mbmi->motion_mode == SIMPLE_TRANSLATION);
+
+ const int masked_compound_used = is_any_masked_compound_used(bsize) &&
+ cm->seq_params->enable_masked_compound;
+ if (masked_compound_used) {
+ const int comp_group_idx_ctx = get_comp_group_idx_context(xd);
+#if CONFIG_ENTROPY_STATS
+ ++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx];
+#endif
+ update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx],
+ mbmi->comp_group_idx, 2);
+ }
+
+ if (mbmi->comp_group_idx == 0) {
+ const int comp_index_ctx = get_comp_index_context(cm, xd);
+#if CONFIG_ENTROPY_STATS
+ ++counts->compound_index[comp_index_ctx][mbmi->compound_idx];
+#endif
+ update_cdf(fc->compound_index_cdf[comp_index_ctx], mbmi->compound_idx,
+ 2);
+ } else {
+ assert(masked_compound_used);
+ if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->compound_type[bsize][mbmi->interinter_comp.type -
+ COMPOUND_WEDGE];
+#endif
+ update_cdf(fc->compound_type_cdf[bsize],
+ mbmi->interinter_comp.type - COMPOUND_WEDGE,
+ MASKED_COMPOUND_TYPES);
+ }
+ }
+ }
+ if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
+ if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
+#if CONFIG_ENTROPY_STATS
+ counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++;
+#endif
+ update_cdf(fc->wedge_idx_cdf[bsize],
+ mbmi->interinter_comp.wedge_index, 16);
+ }
+ }
+ }
+ }
+
+ if (inter_block && cm->features.interp_filter == SWITCHABLE &&
+ av1_is_interp_needed(xd)) {
+ update_filter_type_cdf(xd, mbmi, cm->seq_params->enable_dual_filter);
+ }
+ if (inter_block &&
+ !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
+ const PREDICTION_MODE mode = mbmi->mode;
+ const int16_t mode_ctx =
+ av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
+ if (has_second_ref(mbmi)) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
+#endif
+ update_cdf(fc->inter_compound_mode_cdf[mode_ctx],
+ INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES);
+ } else {
+ av1_update_inter_mode_stats(fc, counts, mode, mode_ctx);
+ }
+
+ const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
+ if (new_mv) {
+ const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
+ for (int idx = 0; idx < 2; ++idx) {
+ if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
+ const uint8_t drl_ctx =
+ av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
+ update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx, 2);
+#if CONFIG_ENTROPY_STATS
+ ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx];
+#endif
+ if (mbmi->ref_mv_idx == idx) break;
+ }
+ }
+ }
+
+ if (have_nearmv_in_inter_mode(mbmi->mode)) {
+ const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
+ for (int idx = 1; idx < 3; ++idx) {
+ if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
+ const uint8_t drl_ctx =
+ av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
+ update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx - 1, 2);
+#if CONFIG_ENTROPY_STATS
+ ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1];
+#endif
+ if (mbmi->ref_mv_idx == idx - 1) break;
+ }
+ }
+ }
+ if (have_newmv_in_inter_mode(mbmi->mode)) {
+ const int allow_hp = cm->features.cur_frame_force_integer_mv
+ ? MV_SUBPEL_NONE
+ : cm->features.allow_high_precision_mv;
+ if (new_mv) {
+ for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
+ const int_mv ref_mv = av1_get_ref_mv(x, ref);
+ av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
+ allow_hp);
+ }
+ } else if (mbmi->mode == NEAREST_NEWMV || mbmi->mode == NEAR_NEWMV) {
+ const int ref = 1;
+ const int_mv ref_mv = av1_get_ref_mv(x, ref);
+ av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
+ allow_hp);
+ } else if (mbmi->mode == NEW_NEARESTMV || mbmi->mode == NEW_NEARMV) {
+ const int ref = 0;
+ const int_mv ref_mv = av1_get_ref_mv(x, ref);
+ av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
+ allow_hp);
+ }
+ }
+ }
+}
+
+/*!\brief Reconstructs an individual coding block
+ *
+ * \ingroup partition_search
+ * Reconstructs an individual coding block by applying the chosen modes stored
+ * in ctx, also updates mode counts and entropy models.
+ *
+ * \param[in] cpi Top-level encoder structure
+ * \param[in] tile_data Pointer to struct holding adaptive
+ * data/contexts/models for the tile during encoding
+ * \param[in] td Pointer to thread data
+ * \param[in] tp Pointer to the starting token
+ * \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE
+ * \param[in] mi_col Column coordinate of the block in a step size of
+ * MI_SIZE
+ * \param[in] dry_run A code indicating whether it is part of the final
+ * pass for reconstructing the superblock
+ * \param[in] bsize Current block size
+ * \param[in] partition Partition mode of the parent block
+ * \param[in] ctx Pointer to structure holding coding contexts and the
+ * chosen modes for the current block
+ * \param[in] rate Pointer to the total rate for the current block
+ *
+ * \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters)
+ * will be updated in the pixel buffers in td->mb.e_mbd. Also, the chosen modes
+ * will be stored in the MB_MODE_INFO buffer td->mb.e_mbd.mi[0].
+ */
+static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data,
+ ThreadData *td, TokenExtra **tp, int mi_row, int mi_col,
+ RUN_TYPE dry_run, BLOCK_SIZE bsize,
+ PARTITION_TYPE partition, PICK_MODE_CONTEXT *const ctx,
+ int *rate) {
+ const AV1_COMMON *const cm = &cpi->common;
+ TileInfo *const tile = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *xd = &x->e_mbd;
+ const int subsampling_x = cm->seq_params->subsampling_x;
+ const int subsampling_y = cm->seq_params->subsampling_y;
+
+ av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
+ const int origin_mult = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ mbmi->partition = partition;
+ av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run);
+
+ if (!dry_run) {
+ set_cb_offsets(x->mbmi_ext_frame->cb_offset, x->cb_offset[PLANE_TYPE_Y],
+ x->cb_offset[PLANE_TYPE_UV]);
+ assert(x->cb_offset[PLANE_TYPE_Y] <
+ (1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]));
+ assert(x->cb_offset[PLANE_TYPE_UV] <
+ ((1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]) >>
+ (subsampling_x + subsampling_y)));
+ }
+
+ encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate);
+
+ if (!dry_run) {
+ update_cb_offsets(x, bsize, subsampling_x, subsampling_y);
+ if (bsize == cpi->common.seq_params->sb_size && mbmi->skip_txfm == 1 &&
+ cm->delta_q_info.delta_lf_present_flag) {
+ const int frame_lf_count =
+ av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
+ for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
+ mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
+ mbmi->delta_lf_from_base = xd->delta_lf_from_base;
+ }
+ if (has_second_ref(mbmi)) {
+ if (mbmi->compound_idx == 0 ||
+ mbmi->interinter_comp.type == COMPOUND_AVERAGE)
+ mbmi->comp_group_idx = 0;
+ else
+ mbmi->comp_group_idx = 1;
+ }
+
+ // delta quant applies to both intra and inter
+ const int super_block_upper_left =
+ ((mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
+ ((mi_col & (cm->seq_params->mib_size - 1)) == 0);
+ const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
+ if (delta_q_info->delta_q_present_flag &&
+ (bsize != cm->seq_params->sb_size || !mbmi->skip_txfm) &&
+ super_block_upper_left) {
+ xd->current_base_qindex = mbmi->current_qindex;
+ if (delta_q_info->delta_lf_present_flag) {
+ if (delta_q_info->delta_lf_multi) {
+ const int frame_lf_count =
+ av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
+ for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
+ xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
+ }
+ } else {
+ xd->delta_lf_from_base = mbmi->delta_lf_from_base;
+ }
+ }
+ }
+
+ RD_COUNTS *rdc = &td->rd_counts;
+ if (mbmi->skip_mode) {
+ assert(!frame_is_intra_only(cm));
+ rdc->skip_mode_used_flag = 1;
+ if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
+ assert(has_second_ref(mbmi));
+ rdc->compound_ref_used_flag = 1;
+ }
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ } else {
+ const int seg_ref_active =
+ segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
+ if (!seg_ref_active) {
+ // If the segment reference feature is enabled we have only a single
+ // reference frame allowed for the segment so exclude it from
+ // the reference frame counts used to work out probabilities.
+ if (is_inter_block(mbmi)) {
+ av1_collect_neighbors_ref_counts(xd);
+ if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
+ if (has_second_ref(mbmi)) {
+ // This flag is also updated for 4x4 blocks
+ rdc->compound_ref_used_flag = 1;
+ }
+ }
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ }
+ }
+ }
+
+ if (tile_data->allow_update_cdf) update_stats(&cpi->common, td);
+
+ // Gather obmc and warped motion count to update the probability.
+ if ((cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 &&
+ cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX) ||
+ (cm->features.allow_warped_motion &&
+ cpi->sf.inter_sf.prune_warped_prob_thresh > 0)) {
+ const int inter_block = is_inter_block(mbmi);
+ const int seg_ref_active =
+ segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
+ if (!seg_ref_active && inter_block) {
+ const MOTION_MODE motion_allowed =
+ cm->features.switchable_motion_mode
+ ? motion_mode_allowed(xd->global_motion, xd, mbmi,
+ cm->features.allow_warped_motion)
+ : SIMPLE_TRANSLATION;
+
+ if (mbmi->ref_frame[1] != INTRA_FRAME) {
+ if (motion_allowed >= OBMC_CAUSAL) {
+ td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
+ }
+ if (motion_allowed == WARPED_CAUSAL) {
+ td->rd_counts.warped_used[mbmi->motion_mode == WARPED_CAUSAL]++;
+ }
+ }
+ }
+ }
+ }
+ // TODO(Ravi/Remya): Move this copy function to a better logical place
+ // This function will copy the best mode information from block
+ // level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This
+ // frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during
+ // bitstream preparation.
+ av1_copy_mbmi_ext_to_mbmi_ext_frame(x->mbmi_ext_frame, &x->mbmi_ext,
+ av1_ref_frame_type(xd->mi[0]->ref_frame));
+ x->rdmult = origin_mult;
+}
+
+/*!\brief Reconstructs a partition (may contain multiple coding blocks)
+ *
+ * \ingroup partition_search
+ * Reconstructs a sub-partition of the superblock by applying the chosen modes
+ * and partition trees stored in pc_tree.
+ *
+ * \param[in] cpi Top-level encoder structure
+ * \param[in] td Pointer to thread data
+ * \param[in] tile_data Pointer to struct holding adaptive
+ * data/contexts/models for the tile during encoding
+ * \param[in] tp Pointer to the starting token
+ * \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE
+ * \param[in] mi_col Column coordinate of the block in a step size of
+ * MI_SIZE
+ * \param[in] dry_run A code indicating whether it is part of the final
+ * pass for reconstructing the superblock
+ * \param[in] bsize Current block size
+ * \param[in] pc_tree Pointer to the PC_TREE node storing the picked
+ * partitions and mode info for the current block
+ * \param[in] rate Pointer to the total rate for the current block
+ *
+ * \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters)
+ * will be updated in the pixel buffers in td->mb.e_mbd.
+ */
+static void encode_sb(const AV1_COMP *const cpi, ThreadData *td,
+ TileDataEnc *tile_data, TokenExtra **tp, int mi_row,
+ int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize,
+ PC_TREE *pc_tree, int *rate) {
+ assert(bsize < BLOCK_SIZES_ALL);
+ const AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ assert(bsize < BLOCK_SIZES_ALL);
+ const int hbs = mi_size_wide[bsize] / 2;
+ const int is_partition_root = bsize >= BLOCK_8X8;
+ const int ctx = is_partition_root
+ ? partition_plane_context(xd, mi_row, mi_col, bsize)
+ : -1;
+ const PARTITION_TYPE partition = pc_tree->partitioning;
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
+#if !CONFIG_REALTIME_ONLY
+ int quarter_step = mi_size_wide[bsize] / 4;
+ int i;
+ BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
+#endif
+
+ if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
+ if (subsize == BLOCK_INVALID) return;
+
+ if (!dry_run && ctx >= 0) {
+ const int has_rows = (mi_row + hbs) < mi_params->mi_rows;
+ const int has_cols = (mi_col + hbs) < mi_params->mi_cols;
+
+ if (has_rows && has_cols) {
+#if CONFIG_ENTROPY_STATS
+ td->counts->partition[ctx][partition]++;
+#endif
+
+ if (tile_data->allow_update_cdf) {
+ FRAME_CONTEXT *fc = xd->tile_ctx;
+ update_cdf(fc->partition_cdf[ctx], partition,
+ partition_cdf_length(bsize));
+ }
+ }
+ }
+
+ switch (partition) {
+ case PARTITION_NONE:
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
+ partition, pc_tree->none, rate);
+ break;
+ case PARTITION_VERT:
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
+ partition, pc_tree->vertical[0], rate);
+ if (mi_col + hbs < mi_params->mi_cols) {
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
+ partition, pc_tree->vertical[1], rate);
+ }
+ break;
+ case PARTITION_HORZ:
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
+ partition, pc_tree->horizontal[0], rate);
+ if (mi_row + hbs < mi_params->mi_rows) {
+ encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
+ partition, pc_tree->horizontal[1], rate);
+ }
+ break;
+ case PARTITION_SPLIT:
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize,
+ pc_tree->split[0], rate);
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize,
+ pc_tree->split[1], rate);
+ encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize,
+ pc_tree->split[2], rate);
+ encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run,
+ subsize, pc_tree->split[3], rate);
+ break;
+
+#if !CONFIG_REALTIME_ONLY
+ case PARTITION_HORZ_A:
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
+ partition, pc_tree->horizontala[0], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
+ partition, pc_tree->horizontala[1], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
+ partition, pc_tree->horizontala[2], rate);
+ break;
+ case PARTITION_HORZ_B:
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
+ partition, pc_tree->horizontalb[0], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
+ partition, pc_tree->horizontalb[1], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run,
+ bsize2, partition, pc_tree->horizontalb[2], rate);
+ break;
+ case PARTITION_VERT_A:
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
+ partition, pc_tree->verticala[0], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
+ partition, pc_tree->verticala[1], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
+ partition, pc_tree->verticala[2], rate);
+
+ break;
+ case PARTITION_VERT_B:
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
+ partition, pc_tree->verticalb[0], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
+ partition, pc_tree->verticalb[1], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run,
+ bsize2, partition, pc_tree->verticalb[2], rate);
+ break;
+ case PARTITION_HORZ_4:
+ for (i = 0; i < SUB_PARTITIONS_PART4; ++i) {
+ int this_mi_row = mi_row + i * quarter_step;
+ if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
+
+ encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize,
+ partition, pc_tree->horizontal4[i], rate);
+ }
+ break;
+ case PARTITION_VERT_4:
+ for (i = 0; i < SUB_PARTITIONS_PART4; ++i) {
+ int this_mi_col = mi_col + i * quarter_step;
+ if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
+ encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize,
+ partition, pc_tree->vertical4[i], rate);
+ }
+ break;
+#endif
+ default: assert(0 && "Invalid partition type."); break;
+ }
+
+ update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
+}
+
+static AOM_INLINE int is_adjust_var_based_part_enabled(
+ AV1_COMMON *const cm, const PARTITION_SPEED_FEATURES *const part_sf,
+ BLOCK_SIZE bsize) {
+ if (part_sf->partition_search_type != VAR_BASED_PARTITION) return 0;
+ if (part_sf->adjust_var_based_rd_partitioning == 0 ||
+ part_sf->adjust_var_based_rd_partitioning > 2)
+ return 0;
+
+ if (bsize <= BLOCK_32X32) return 1;
+ if (part_sf->adjust_var_based_rd_partitioning == 2) {
+ const int is_larger_qindex = cm->quant_params.base_qindex > 190;
+ const int is_360p_or_larger = AOMMIN(cm->width, cm->height) >= 360;
+ return is_360p_or_larger && is_larger_qindex && bsize == BLOCK_64X64;
+ }
+ return 0;
+}
+
+/*!\brief AV1 block partition search (partition estimation and partial search).
+*
+* \ingroup partition_search
+* Encode the block by applying pre-calculated partition patterns that are
+* represented by coding block sizes stored in the mbmi array. Minor partition
+* adjustments are tested and applied if they lead to lower rd costs. The
+* partition types are limited to a basic set: none, horz, vert, and split.
+*
+* \param[in] cpi Top-level encoder structure
+* \param[in] td Pointer to thread data
+* \param[in] tile_data Pointer to struct holding adaptive
+data/contexts/models for the tile during encoding
+* \param[in] mib Array representing MB_MODE_INFO pointers for mi
+blocks starting from the first pixel of the current
+block
+* \param[in] tp Pointer to the starting token
+* \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE
+* \param[in] mi_col Column coordinate of the block in a step size of
+MI_SIZE
+* \param[in] bsize Current block size
+* \param[in] rate Pointer to the final rate for encoding the current
+block
+* \param[in] dist Pointer to the final distortion of the current block
+* \param[in] do_recon Whether the reconstruction function needs to be run,
+either for finalizing a superblock or providing
+reference for future sub-partitions
+* \param[in] pc_tree Pointer to the PC_TREE node holding the picked
+partitions and mode info for the current block
+*
+* \remark Nothing is returned. The pc_tree struct is modified to store the
+* picked partition and modes. The rate and dist are also updated with those
+* corresponding to the best partition found.
+*/
+void av1_rd_use_partition(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data,
+ MB_MODE_INFO **mib, TokenExtra **tp, int mi_row,
+ int mi_col, BLOCK_SIZE bsize, int *rate,
+ int64_t *dist, int do_recon, PC_TREE *pc_tree) {
+ AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ const int num_planes = av1_num_planes(cm);
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const ModeCosts *mode_costs = &x->mode_costs;
+ const int bs = mi_size_wide[bsize];
+ const int hbs = bs / 2;
+ const int pl = (bsize >= BLOCK_8X8)
+ ? partition_plane_context(xd, mi_row, mi_col, bsize)
+ : 0;
+ const PARTITION_TYPE partition =
+ (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize)
+ : PARTITION_NONE;
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
+ RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
+ RD_STATS last_part_rdc, none_rdc, chosen_rdc, invalid_rdc;
+ BLOCK_SIZE bs_type = mib[0]->bsize;
+ int use_partition_none = 0;
+ x->try_merge_partition = 0;
+
+ if (pc_tree->none == NULL) {
+ pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
+ if (!pc_tree->none)
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ }
+ PICK_MODE_CONTEXT *ctx_none = pc_tree->none;
+
+ if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
+
+ assert(mi_size_wide[bsize] == mi_size_high[bsize]);
+ // In rt mode, currently the min partition size is BLOCK_8X8.
+ assert(bsize >= cpi->sf.part_sf.default_min_partition_size);
+
+ av1_invalid_rd_stats(&last_part_rdc);
+ av1_invalid_rd_stats(&none_rdc);
+ av1_invalid_rd_stats(&chosen_rdc);
+ av1_invalid_rd_stats(&invalid_rdc);
+
+ pc_tree->partitioning = partition;
+
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+ av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+
+ if (bsize == BLOCK_16X16 && cpi->vaq_refresh) {
+ av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+ x->mb_energy = av1_log_block_var(cpi, x, bsize);
+ }
+
+ // Save rdmult before it might be changed, so it can be restored later.
+ const int orig_rdmult = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
+
+ if (partition != PARTITION_NONE &&
+ is_adjust_var_based_part_enabled(cm, &cpi->sf.part_sf, bsize) &&
+ (mi_row + hbs < mi_params->mi_rows &&
+ mi_col + hbs < mi_params->mi_cols)) {
+ assert(bsize > cpi->sf.part_sf.default_min_partition_size);
+ mib[0]->bsize = bsize;
+ pc_tree->partitioning = PARTITION_NONE;
+ x->try_merge_partition = 1;
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, PARTITION_NONE,
+ bsize, ctx_none, invalid_rdc);
+
+ if (none_rdc.rate < INT_MAX) {
+ none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
+ none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
+ }
+
+ // Try to skip split partition evaluation based on none partition
+ // characteristics.
+ if (none_rdc.rate < INT_MAX && none_rdc.skip_txfm == 1) {
+ use_partition_none = 1;
+ }
+
+ av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ mib[0]->bsize = bs_type;
+ pc_tree->partitioning = partition;
+ }
+
+ for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
+ pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
+ if (!pc_tree->split[i])
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PC_TREE");
+ pc_tree->split[i]->index = i;
+ }
+ switch (partition) {
+ case PARTITION_NONE:
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
+ PARTITION_NONE, bsize, ctx_none, invalid_rdc);
+ break;
+ case PARTITION_HORZ:
+ if (use_partition_none) {
+ av1_invalid_rd_stats(&last_part_rdc);
+ break;
+ }
+
+ for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
+ pc_tree->horizontal[i] =
+ av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
+ if (!pc_tree->horizontal[i])
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ }
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
+ PARTITION_HORZ, subsize, pc_tree->horizontal[0],
+ invalid_rdc);
+ if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
+ mi_row + hbs < mi_params->mi_rows) {
+ RD_STATS tmp_rdc;
+ const PICK_MODE_CONTEXT *const ctx_h = pc_tree->horizontal[0];
+ av1_init_rd_stats(&tmp_rdc);
+ av1_update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1);
+ encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
+ NULL);
+ pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc,
+ PARTITION_HORZ, subsize, pc_tree->horizontal[1],
+ invalid_rdc);
+ if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+ av1_invalid_rd_stats(&last_part_rdc);
+ break;
+ }
+ last_part_rdc.rate += tmp_rdc.rate;
+ last_part_rdc.dist += tmp_rdc.dist;
+ last_part_rdc.rdcost += tmp_rdc.rdcost;
+ }
+ break;
+ case PARTITION_VERT:
+ if (use_partition_none) {
+ av1_invalid_rd_stats(&last_part_rdc);
+ break;
+ }
+
+ for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
+ pc_tree->vertical[i] =
+ av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
+ if (!pc_tree->vertical[i])
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ }
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
+ PARTITION_VERT, subsize, pc_tree->vertical[0], invalid_rdc);
+ if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
+ mi_col + hbs < mi_params->mi_cols) {
+ RD_STATS tmp_rdc;
+ const PICK_MODE_CONTEXT *const ctx_v = pc_tree->vertical[0];
+ av1_init_rd_stats(&tmp_rdc);
+ av1_update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1);
+ encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
+ NULL);
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc,
+ PARTITION_VERT, subsize,
+ pc_tree->vertical[bsize > BLOCK_8X8], invalid_rdc);
+ if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+ av1_invalid_rd_stats(&last_part_rdc);
+ break;
+ }
+ last_part_rdc.rate += tmp_rdc.rate;
+ last_part_rdc.dist += tmp_rdc.dist;
+ last_part_rdc.rdcost += tmp_rdc.rdcost;
+ }
+ break;
+ case PARTITION_SPLIT:
+ if (use_partition_none) {
+ av1_invalid_rd_stats(&last_part_rdc);
+ break;
+ }
+
+ last_part_rdc.rate = 0;
+ last_part_rdc.dist = 0;
+ last_part_rdc.rdcost = 0;
+ for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
+ int x_idx = (i & 1) * hbs;
+ int y_idx = (i >> 1) * hbs;
+ int jj = i >> 1, ii = i & 0x01;
+ RD_STATS tmp_rdc;
+ if ((mi_row + y_idx >= mi_params->mi_rows) ||
+ (mi_col + x_idx >= mi_params->mi_cols))
+ continue;
+
+ av1_init_rd_stats(&tmp_rdc);
+ av1_rd_use_partition(
+ cpi, td, tile_data,
+ mib + jj * hbs * mi_params->mi_stride + ii * hbs, tp,
+ mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate,
+ &tmp_rdc.dist, i != (SUB_PARTITIONS_SPLIT - 1), pc_tree->split[i]);
+ if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+ av1_invalid_rd_stats(&last_part_rdc);
+ break;
+ }
+ last_part_rdc.rate += tmp_rdc.rate;
+ last_part_rdc.dist += tmp_rdc.dist;
+ }
+ break;
+ case PARTITION_VERT_A:
+ case PARTITION_VERT_B:
+ case PARTITION_HORZ_A:
+ case PARTITION_HORZ_B:
+ case PARTITION_HORZ_4:
+ case PARTITION_VERT_4:
+ assert(0 && "Cannot handle extended partition types");
+ default: assert(0); break;
+ }
+
+ if (last_part_rdc.rate < INT_MAX) {
+ last_part_rdc.rate += mode_costs->partition_cost[pl][partition];
+ last_part_rdc.rdcost =
+ RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist);
+ }
+
+ if ((cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION &&
+ cpi->sf.part_sf.adjust_var_based_rd_partitioning > 2) &&
+ partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
+ (mi_row + bs < mi_params->mi_rows ||
+ mi_row + hbs == mi_params->mi_rows) &&
+ (mi_col + bs < mi_params->mi_cols ||
+ mi_col + hbs == mi_params->mi_cols)) {
+ BLOCK_SIZE split_subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ chosen_rdc.rate = 0;
+ chosen_rdc.dist = 0;
+
+ av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ pc_tree->partitioning = PARTITION_SPLIT;
+
+ // Split partition.
+ for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
+ int x_idx = (i & 1) * hbs;
+ int y_idx = (i >> 1) * hbs;
+ RD_STATS tmp_rdc;
+
+ if ((mi_row + y_idx >= mi_params->mi_rows) ||
+ (mi_col + x_idx >= mi_params->mi_cols))
+ continue;
+
+ av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ pc_tree->split[i]->partitioning = PARTITION_NONE;
+ if (pc_tree->split[i]->none == NULL)
+ pc_tree->split[i]->none =
+ av1_alloc_pmc(cpi, split_subsize, &td->shared_coeff_buf);
+ if (!pc_tree->split[i]->none)
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &tmp_rdc,
+ PARTITION_SPLIT, split_subsize, pc_tree->split[i]->none,
+ invalid_rdc);
+
+ av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+ av1_invalid_rd_stats(&chosen_rdc);
+ break;
+ }
+
+ chosen_rdc.rate += tmp_rdc.rate;
+ chosen_rdc.dist += tmp_rdc.dist;
+
+ if (i != SUB_PARTITIONS_SPLIT - 1)
+ encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx,
+ OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL);
+
+ chosen_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
+ }
+ if (chosen_rdc.rate < INT_MAX) {
+ chosen_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT];
+ chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist);
+ }
+ }
+
+ // If last_part is better set the partitioning to that.
+ if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
+ mib[0]->bsize = bs_type;
+ if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
+
+ chosen_rdc = last_part_rdc;
+ }
+ // If none was better set the partitioning to that.
+ if (none_rdc.rdcost < INT64_MAX &&
+ none_rdc.rdcost - (none_rdc.rdcost >> 9) < chosen_rdc.rdcost) {
+ mib[0]->bsize = bsize;
+ if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
+ chosen_rdc = none_rdc;
+ }
+
+ av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+
+ // We must have chosen a partitioning and encoding or we'll fail later on.
+ // No other opportunities for success.
+ if (bsize == cm->seq_params->sb_size)
+ assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, encode_sb_time);
+#endif
+ if (do_recon) {
+ if (bsize == cm->seq_params->sb_size) {
+ // NOTE: To get estimate for rate due to the tokens, use:
+ // int rate_coeffs = 0;
+ // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
+ // bsize, pc_tree, &rate_coeffs);
+ set_cb_offsets(x->cb_offset, 0, 0);
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
+ pc_tree, NULL);
+ } else {
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
+ pc_tree, NULL);
+ }
+ }
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, encode_sb_time);
+#endif
+
+ *rate = chosen_rdc.rate;
+ *dist = chosen_rdc.dist;
+ x->rdmult = orig_rdmult;
+}
+
+static void encode_b_nonrd(const AV1_COMP *const cpi, TileDataEnc *tile_data,
+ ThreadData *td, TokenExtra **tp, int mi_row,
+ int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize,
+ PARTITION_TYPE partition,
+ PICK_MODE_CONTEXT *const ctx, int *rate) {
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing((AV1_COMP *)cpi, encode_b_nonrd_time);
+#endif
+ const AV1_COMMON *const cm = &cpi->common;
+ TileInfo *const tile = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *xd = &x->e_mbd;
+ av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
+ const int origin_mult = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ mbmi->partition = partition;
+ av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run);
+ const int subsampling_x = cpi->common.seq_params->subsampling_x;
+ const int subsampling_y = cpi->common.seq_params->subsampling_y;
+ if (!dry_run) {
+ set_cb_offsets(x->mbmi_ext_frame->cb_offset, x->cb_offset[PLANE_TYPE_Y],
+ x->cb_offset[PLANE_TYPE_UV]);
+ assert(x->cb_offset[PLANE_TYPE_Y] <
+ (1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]));
+ assert(x->cb_offset[PLANE_TYPE_UV] <
+ ((1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]) >>
+ (subsampling_x + subsampling_y)));
+ }
+
+ encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate);
+ if (!dry_run) {
+ update_cb_offsets(x, bsize, subsampling_x, subsampling_y);
+ if (has_second_ref(mbmi)) {
+ if (mbmi->compound_idx == 0 ||
+ mbmi->interinter_comp.type == COMPOUND_AVERAGE)
+ mbmi->comp_group_idx = 0;
+ else
+ mbmi->comp_group_idx = 1;
+ mbmi->compound_idx = 1;
+ }
+ RD_COUNTS *const rdc = &td->rd_counts;
+ if (mbmi->skip_mode) {
+ assert(!frame_is_intra_only(cm));
+ rdc->skip_mode_used_flag = 1;
+ if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT &&
+ has_second_ref(mbmi)) {
+ rdc->compound_ref_used_flag = 1;
+ }
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ } else {
+ const int seg_ref_active =
+ segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
+ if (!seg_ref_active) {
+ // If the segment reference feature is enabled we have only a single
+ // reference frame allowed for the segment so exclude it from
+ // the reference frame counts used to work out probabilities.
+ if (is_inter_block(mbmi)) {
+ av1_collect_neighbors_ref_counts(xd);
+ if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT &&
+ has_second_ref(mbmi)) {
+ // This flag is also updated for 4x4 blocks
+ rdc->compound_ref_used_flag = 1;
+ }
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ }
+ }
+ }
+ if (cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_SELECTIVELY &&
+ (mbmi->mode == NEWMV || mbmi->mode < INTRA_MODE_END)) {
+ int32_t blocks = mi_size_high[bsize] * mi_size_wide[bsize];
+ rdc->newmv_or_intra_blocks += blocks;
+ }
+ if (tile_data->allow_update_cdf) update_stats(&cpi->common, td);
+ }
+ if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && mbmi->skip_txfm &&
+ !cpi->rc.rtc_external_ratectrl && cm->seg.enabled)
+ av1_cyclic_reset_segment_skip(cpi, x, mi_row, mi_col, bsize, dry_run);
+ // TODO(Ravi/Remya): Move this copy function to a better logical place
+ // This function will copy the best mode information from block
+ // level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This
+ // frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during
+ // bitstream preparation.
+ av1_copy_mbmi_ext_to_mbmi_ext_frame(x->mbmi_ext_frame, &x->mbmi_ext,
+ av1_ref_frame_type(xd->mi[0]->ref_frame));
+ x->rdmult = origin_mult;
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing((AV1_COMP *)cpi, encode_b_nonrd_time);
+#endif
+}
+
+static int get_force_zeromv_skip_flag_for_blk(const AV1_COMP *cpi,
+ const MACROBLOCK *x,
+ BLOCK_SIZE bsize) {
+ // Force zero MV skip based on SB level decision
+ if (x->force_zeromv_skip_for_sb < 2) return x->force_zeromv_skip_for_sb;
+
+ // For blocks of size equal to superblock size, the decision would have been
+ // already done at superblock level. Hence zeromv-skip decision is skipped.
+ const AV1_COMMON *const cm = &cpi->common;
+ if (bsize == cm->seq_params->sb_size) return 0;
+
+ const int num_planes = av1_num_planes(cm);
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const unsigned int thresh_exit_part_y =
+ cpi->zeromv_skip_thresh_exit_part[bsize];
+ const unsigned int thresh_exit_part_uv =
+ CALC_CHROMA_THRESH_FOR_ZEROMV_SKIP(thresh_exit_part_y);
+ const unsigned int thresh_exit_part[MAX_MB_PLANE] = { thresh_exit_part_y,
+ thresh_exit_part_uv,
+ thresh_exit_part_uv };
+ const YV12_BUFFER_CONFIG *const yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME);
+ const struct scale_factors *const sf =
+ get_ref_scale_factors_const(cm, LAST_FRAME);
+
+ struct buf_2d yv12_mb[MAX_MB_PLANE];
+ av1_setup_pred_block(xd, yv12_mb, yv12, sf, sf, num_planes);
+
+ for (int plane = 0; plane < num_planes; ++plane) {
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE bs =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+ const unsigned int plane_sad = cpi->ppi->fn_ptr[bs].sdf(
+ p->src.buf, p->src.stride, yv12_mb[plane].buf, yv12_mb[plane].stride);
+ assert(plane < MAX_MB_PLANE);
+ if (plane_sad >= thresh_exit_part[plane]) return 0;
+ }
+ return 1;
+}
+
+/*!\brief Top level function to pick block mode for non-RD optimized case
+ *
+ * \ingroup partition_search
+ * \callgraph
+ * \callergraph
+ * Searches prediction modes, transform, and coefficient coding modes for an
+ * individual coding block. This function is the top-level function that is
+ * used for non-RD optimized mode search (controlled by
+ * \c cpi->sf.rt_sf.use_nonrd_pick_mode). Depending on frame type it calls
+ * inter/skip/hybrid-intra mode search functions
+ *
+ * \param[in] cpi Top-level encoder structure
+ * \param[in] tile_data Pointer to struct holding adaptive
+ * data/contexts/models for the tile during
+ * encoding
+ * \param[in] x Pointer to structure holding all the data for
+ * the current macroblock
+ * \param[in] mi_row Row coordinate of the block in a step size of
+ * MI_SIZE
+ * \param[in] mi_col Column coordinate of the block in a step size of
+ * MI_SIZE
+ * \param[in] rd_cost Pointer to structure holding rate and distortion
+ * stats for the current block
+ * \param[in] bsize Current block size
+ * \param[in] ctx Pointer to structure holding coding contexts and
+ * chosen modes for the current block
+ *
+ * \remark Nothing is returned. Instead, the chosen modes and contexts necessary
+ * for reconstruction are stored in ctx, the rate-distortion stats are stored in
+ * rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be
+ * signalled by an INT64_MAX rd_cost->rdcost.
+ */
+static void pick_sb_modes_nonrd(AV1_COMP *const cpi, TileDataEnc *tile_data,
+ MACROBLOCK *const x, int mi_row, int mi_col,
+ RD_STATS *rd_cost, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx) {
+ // For nonrd mode, av1_set_offsets is already called at the superblock level
+ // in encode_nonrd_sb when we determine the partitioning.
+ if (bsize != cpi->common.seq_params->sb_size ||
+ cpi->sf.rt_sf.nonrd_check_partition_split == 1) {
+ av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize);
+ }
+ assert(x->last_set_offsets_loc.mi_row == mi_row &&
+ x->last_set_offsets_loc.mi_col == mi_col &&
+ x->last_set_offsets_loc.bsize == bsize);
+ AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode;
+ TxfmSearchInfo *txfm_info = &x->txfm_search_info;
+ int i;
+
+ // This is only needed for real time/allintra row-mt enabled multi-threaded
+ // encoding with cost update frequency set to COST_UPD_TILE/COST_UPD_OFF.
+ wait_for_top_right_sb(&cpi->mt_info.enc_row_mt, &tile_data->row_mt_sync,
+ &tile_data->tile_info, cm->seq_params->sb_size,
+ cm->seq_params->mib_size_log2, bsize, mi_row, mi_col);
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, pick_sb_modes_nonrd_time);
+#endif
+ // Sets up the tx_type_map buffer in MACROBLOCKD.
+ xd->tx_type_map = txfm_info->tx_type_map_;
+ xd->tx_type_map_stride = mi_size_wide[bsize];
+ for (i = 0; i < num_planes; ++i) {
+ p[i].coeff = ctx->coeff[i];
+ p[i].qcoeff = ctx->qcoeff[i];
+ p[i].dqcoeff = ctx->dqcoeff[i];
+ p[i].eobs = ctx->eobs[i];
+ p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
+ }
+ for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
+
+ x->force_zeromv_skip_for_blk =
+ get_force_zeromv_skip_flag_for_blk(cpi, x, bsize);
+
+ // Source variance may be already compute at superblock level, so no need
+ // to recompute, unless bsize < sb_size or source_variance is not yet set.
+ if (!x->force_zeromv_skip_for_blk &&
+ (x->source_variance == UINT_MAX || bsize < cm->seq_params->sb_size))
+ x->source_variance = av1_get_perpixel_variance_facade(
+ cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y);
+
+ // Save rdmult before it might be changed, so it can be restored later.
+ const int orig_rdmult = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi);
+ // Set error per bit for current rdmult
+ av1_set_error_per_bit(&x->errorperbit, x->rdmult);
+ // Find best coding mode & reconstruct the MB so it is available
+ // as a predictor for MBs that follow in the SB
+ if (frame_is_intra_only(cm)) {
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, hybrid_intra_mode_search_time);
+#endif
+ hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, hybrid_intra_mode_search_time);
+#endif
+ } else {
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, nonrd_pick_inter_mode_sb_time);
+#endif
+ if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
+ RD_STATS invalid_rd;
+ av1_invalid_rd_stats(&invalid_rd);
+ // TODO(kyslov): add av1_nonrd_pick_inter_mode_sb_seg_skip
+ av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col,
+ rd_cost, bsize, ctx,
+ invalid_rd.rdcost);
+ } else {
+ av1_nonrd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx);
+ }
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, nonrd_pick_inter_mode_sb_time);
+#endif
+ }
+ if (cpi->sf.rt_sf.skip_cdef_sb) {
+ // cdef_strength is initialized to 1 which means skip_cdef, and is updated
+ // here. Check to see is skipping cdef is allowed.
+ const int allow_cdef_skipping =
+ cpi->rc.frames_since_key > 10 && !cpi->rc.high_source_sad &&
+ !(x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] ||
+ x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]);
+
+ // Find the corresponding 64x64 block. It'll be the 128x128 block if that's
+ // the block size.
+ const int mi_row_sb = mi_row - mi_row % MI_SIZE_64X64;
+ const int mi_col_sb = mi_col - mi_col % MI_SIZE_64X64;
+ MB_MODE_INFO **mi_sb =
+ cm->mi_params.mi_grid_base +
+ get_mi_grid_idx(&cm->mi_params, mi_row_sb, mi_col_sb);
+ // Do not skip if intra or new mv is picked, or color sensitivity is set.
+ // Never skip on slide/scene change.
+ if (cpi->sf.rt_sf.skip_cdef_sb >= 2) {
+ mi_sb[0]->cdef_strength =
+ mi_sb[0]->cdef_strength &&
+ (allow_cdef_skipping || x->source_variance == 0);
+ } else {
+ mi_sb[0]->cdef_strength =
+ mi_sb[0]->cdef_strength && allow_cdef_skipping &&
+ !(mbmi->mode < INTRA_MODES || mbmi->mode == NEWMV);
+ }
+ // Store in the pickmode context.
+ ctx->mic.cdef_strength = mi_sb[0]->cdef_strength;
+ }
+ x->rdmult = orig_rdmult;
+ ctx->rd_stats.rate = rd_cost->rate;
+ ctx->rd_stats.dist = rd_cost->dist;
+ ctx->rd_stats.rdcost = rd_cost->rdcost;
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, pick_sb_modes_nonrd_time);
+#endif
+}
+
+static int try_split_partition(AV1_COMP *const cpi, ThreadData *const td,
+ TileDataEnc *const tile_data,
+ TileInfo *const tile_info, TokenExtra **tp,
+ MACROBLOCK *const x, MACROBLOCKD *const xd,
+ const CommonModeInfoParams *const mi_params,
+ const int mi_row, const int mi_col,
+ const BLOCK_SIZE bsize, const int pl,
+ PC_TREE *pc_tree) {
+ AV1_COMMON *const cm = &cpi->common;
+ const ModeCosts *mode_costs = &x->mode_costs;
+ const int hbs = mi_size_wide[bsize] / 2;
+ if (mi_row + mi_size_high[bsize] >= mi_params->mi_rows ||
+ mi_col + mi_size_wide[bsize] >= mi_params->mi_cols)
+ return 0;
+ if (bsize <= BLOCK_8X8 || frame_is_intra_only(cm)) return 0;
+ if (x->content_state_sb.source_sad_nonrd <= kLowSad) return 0;
+
+ // Do not try split partition when the source sad is small, or
+ // the prediction residual is small.
+ const YV12_BUFFER_CONFIG *const yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME);
+ const struct scale_factors *const sf =
+ get_ref_scale_factors_const(cm, LAST_FRAME);
+ const int num_planes = av1_num_planes(cm);
+ av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
+ av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, sf, num_planes);
+ int block_sad = 0;
+ for (int plane = 0; plane < num_planes; ++plane) {
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE bs =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+ const unsigned int plane_sad = cpi->ppi->fn_ptr[bs].sdf(
+ p->src.buf, p->src.stride, pd->pre[0].buf, pd->pre[0].stride);
+ block_sad += plane_sad;
+ }
+ const int blk_pix = block_size_wide[bsize] * block_size_high[bsize];
+ const int block_avg_sad = block_sad / blk_pix;
+ // TODO(chengchen): find a proper threshold. It might change according to
+ // q as well.
+ const int threshold = 25;
+ if (block_avg_sad < threshold) return 0;
+
+ RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
+ RD_STATS split_rdc, none_rdc;
+ av1_invalid_rd_stats(&split_rdc);
+ av1_invalid_rd_stats(&none_rdc);
+ av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+
+ // Calculate rdcost for none partition
+ pc_tree->partitioning = PARTITION_NONE;
+ av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+ if (!pc_tree->none) {
+ pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
+ if (!pc_tree->none)
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ } else {
+ av1_reset_pmc(pc_tree->none);
+ }
+ pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize,
+ pc_tree->none);
+ none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
+ none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
+ av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
+
+ // Calculate rdcost for split partition
+ pc_tree->partitioning = PARTITION_SPLIT;
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ av1_init_rd_stats(&split_rdc);
+ split_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT];
+ if (subsize >= BLOCK_8X8) {
+ split_rdc.rate += (mode_costs->partition_cost[pl][PARTITION_NONE] * 4);
+ }
+ for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
+ if (!pc_tree->split[i]) {
+ pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
+ if (!pc_tree->split[i])
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PC_TREE");
+ }
+ pc_tree->split[i]->index = i;
+ }
+ for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
+ RD_STATS block_rdc;
+ av1_invalid_rd_stats(&block_rdc);
+ int x_idx = (i & 1) * hbs;
+ int y_idx = (i >> 1) * hbs;
+ if ((mi_row + y_idx >= mi_params->mi_rows) ||
+ (mi_col + x_idx >= mi_params->mi_cols))
+ continue;
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + ((mi_row + y_idx) & MAX_MIB_MASK);
+ if (!pc_tree->split[i]->none) {
+ pc_tree->split[i]->none =
+ av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
+ if (!pc_tree->split[i]->none)
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ } else {
+ av1_reset_pmc(pc_tree->split[i]->none);
+ }
+ pc_tree->split[i]->partitioning = PARTITION_NONE;
+ pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
+ &block_rdc, subsize, pc_tree->split[i]->none);
+ split_rdc.rate += block_rdc.rate;
+ split_rdc.dist += block_rdc.dist;
+ av1_rd_cost_update(x->rdmult, &split_rdc);
+ if (none_rdc.rdcost < split_rdc.rdcost) break;
+ if (i != SUB_PARTITIONS_SPLIT - 1)
+ encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 1,
+ subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL);
+ }
+ av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
+ split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist);
+ const int split = split_rdc.rdcost < none_rdc.rdcost;
+
+ return split;
+}
+
+// Returns if SPLIT partitions should be evaluated
+static bool calc_do_split_flag(const AV1_COMP *cpi, const MACROBLOCK *x,
+ const PC_TREE *pc_tree, const RD_STATS *none_rdc,
+ const CommonModeInfoParams *mi_params,
+ int mi_row, int mi_col, int hbs,
+ BLOCK_SIZE bsize, PARTITION_TYPE partition) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int is_larger_qindex = cm->quant_params.base_qindex > 100;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ bool do_split =
+ (cpi->sf.rt_sf.nonrd_check_partition_merge_mode == 3)
+ ? (bsize <= BLOCK_32X32 || (is_larger_qindex && bsize <= BLOCK_64X64))
+ : true;
+ if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN ||
+ cpi->sf.rt_sf.nonrd_check_partition_merge_mode < 2 ||
+ cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) ||
+ !none_rdc->skip_txfm)
+ return do_split;
+
+ const int use_model_yrd_large = get_model_rd_flag(cpi, xd, bsize);
+
+ // When model based skip is not used (i.e.,use_model_yrd_large = 0), skip_txfm
+ // would have been populated based on Hadamard transform and skip_txfm flag is
+ // more reliable. Hence SPLIT evaluation is disabled at all quantizers for 8x8
+ // and 16x16 blocks.
+ // When model based skip is used (i.e.,use_model_yrd_large = 1), skip_txfm may
+ // not be reliable. Hence SPLIT evaluation is disabled only at lower
+ // quantizers for blocks >= 32x32.
+ if ((!use_model_yrd_large) || (!is_larger_qindex)) return false;
+
+ // Use residual statistics to decide if SPLIT partition should be evaluated
+ // for 32x32 blocks. The pruning logic is avoided for larger block size to
+ // avoid the visual artifacts
+ if (pc_tree->none->mic.mode == NEWMV && bsize == BLOCK_32X32 && do_split) {
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
+ assert(subsize < BLOCK_SIZES_ALL);
+ double min_per_pixel_error = DBL_MAX;
+ double max_per_pixel_error = 0.;
+ int i;
+ for (i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
+ const int x_idx = (i & 1) * hbs;
+ const int y_idx = (i >> 1) * hbs;
+ if ((mi_row + y_idx >= mi_params->mi_rows) ||
+ (mi_col + x_idx >= mi_params->mi_cols)) {
+ break;
+ }
+
+ // Populate the appropriate buffer pointers.
+ // Pass scale factors as NULL as the base pointer of the block would have
+ // been calculated appropriately.
+ struct buf_2d src_split_buf_2d, pred_split_buf_2d;
+ const struct buf_2d *src_none_buf_2d = &x->plane[AOM_PLANE_Y].src;
+ setup_pred_plane(&src_split_buf_2d, subsize, src_none_buf_2d->buf,
+ src_none_buf_2d->width, src_none_buf_2d->height,
+ src_none_buf_2d->stride, y_idx, x_idx, NULL, 0, 0);
+ const struct buf_2d *pred_none_buf_2d = &xd->plane[AOM_PLANE_Y].dst;
+ setup_pred_plane(&pred_split_buf_2d, subsize, pred_none_buf_2d->buf,
+ pred_none_buf_2d->width, pred_none_buf_2d->height,
+ pred_none_buf_2d->stride, y_idx, x_idx, NULL, 0, 0);
+
+ unsigned int curr_uint_mse;
+ const unsigned int curr_uint_var = cpi->ppi->fn_ptr[subsize].vf(
+ src_split_buf_2d.buf, src_split_buf_2d.stride, pred_split_buf_2d.buf,
+ pred_split_buf_2d.stride, &curr_uint_mse);
+ const double curr_per_pixel_error =
+ sqrt((double)curr_uint_var / block_size_wide[subsize] /
+ block_size_high[subsize]);
+ if (curr_per_pixel_error < min_per_pixel_error)
+ min_per_pixel_error = curr_per_pixel_error;
+ if (curr_per_pixel_error > max_per_pixel_error)
+ max_per_pixel_error = curr_per_pixel_error;
+ }
+
+ // Prune based on residual statistics only if all the sub-partitions are
+ // valid.
+ if (i == SUB_PARTITIONS_SPLIT) {
+ if (max_per_pixel_error - min_per_pixel_error <= 1.5) do_split = false;
+ }
+ }
+
+ return do_split;
+}
+
+static void try_merge(AV1_COMP *const cpi, ThreadData *td,
+ TileDataEnc *tile_data, MB_MODE_INFO **mib,
+ TokenExtra **tp, const int mi_row, const int mi_col,
+ const BLOCK_SIZE bsize, PC_TREE *const pc_tree,
+ const PARTITION_TYPE partition, const BLOCK_SIZE subsize,
+ const int pl) {
+ AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const ModeCosts *mode_costs = &x->mode_costs;
+ const int num_planes = av1_num_planes(cm);
+ // Only square blocks from 8x8 to 128x128 are supported
+ assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128);
+ const int bs = mi_size_wide[bsize];
+ const int hbs = bs / 2;
+ bool do_split = false;
+ RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
+ RD_STATS split_rdc, none_rdc;
+ av1_invalid_rd_stats(&split_rdc);
+ av1_invalid_rd_stats(&none_rdc);
+ av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+ pc_tree->partitioning = PARTITION_NONE;
+ if (!pc_tree->none) {
+ pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
+ if (!pc_tree->none)
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ } else {
+ av1_reset_pmc(pc_tree->none);
+ }
+ pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize,
+ pc_tree->none);
+ none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
+ none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
+ av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+
+ if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode < 2 ||
+ none_rdc.skip_txfm != 1 || pc_tree->none->mic.mode == NEWMV) {
+ do_split = calc_do_split_flag(cpi, x, pc_tree, &none_rdc, mi_params, mi_row,
+ mi_col, hbs, bsize, partition);
+ if (do_split) {
+ av1_init_rd_stats(&split_rdc);
+ split_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT];
+ for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
+ RD_STATS block_rdc;
+ av1_invalid_rd_stats(&block_rdc);
+ int x_idx = (i & 1) * hbs;
+ int y_idx = (i >> 1) * hbs;
+ if ((mi_row + y_idx >= mi_params->mi_rows) ||
+ (mi_col + x_idx >= mi_params->mi_cols))
+ continue;
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + ((mi_row + y_idx) & MAX_MIB_MASK);
+ if (!pc_tree->split[i]->none) {
+ pc_tree->split[i]->none =
+ av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
+ if (!pc_tree->split[i]->none)
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ } else {
+ av1_reset_pmc(pc_tree->split[i]->none);
+ }
+ pc_tree->split[i]->partitioning = PARTITION_NONE;
+ pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
+ &block_rdc, subsize, pc_tree->split[i]->none);
+ // TODO(yunqingwang): The rate here did not include the cost of
+ // signaling PARTITION_NONE token in the sub-blocks.
+ split_rdc.rate += block_rdc.rate;
+ split_rdc.dist += block_rdc.dist;
+
+ av1_rd_cost_update(x->rdmult, &split_rdc);
+
+ if (none_rdc.rdcost < split_rdc.rdcost) {
+ break;
+ }
+
+ if (i != SUB_PARTITIONS_SPLIT - 1)
+ encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx,
+ 1, subsize, PARTITION_NONE, pc_tree->split[i]->none,
+ NULL);
+ }
+ av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist);
+ }
+ }
+
+ if (none_rdc.rdcost < split_rdc.rdcost) {
+ /* Predicted samples can not be reused for PARTITION_NONE since same
+ * buffer is being used to store the reconstructed samples of
+ * PARTITION_SPLIT block. */
+ if (do_split) x->reuse_inter_pred = false;
+
+ mib[0]->bsize = bsize;
+ pc_tree->partitioning = PARTITION_NONE;
+ encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition,
+ pc_tree->none, NULL);
+ } else {
+ mib[0]->bsize = subsize;
+ pc_tree->partitioning = PARTITION_SPLIT;
+ /* Predicted samples can not be reused for PARTITION_SPLIT since same
+ * buffer is being used to write the reconstructed samples. */
+ // TODO(Cherma): Store and reuse predicted samples generated by
+ // encode_b_nonrd() in DRY_RUN_NORMAL mode.
+ x->reuse_inter_pred = false;
+
+ for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
+ int x_idx = (i & 1) * hbs;
+ int y_idx = (i >> 1) * hbs;
+ if ((mi_row + y_idx >= mi_params->mi_rows) ||
+ (mi_col + x_idx >= mi_params->mi_cols))
+ continue;
+
+ // Note: We don't reset pc_tree->split[i]->none here because it
+ // could contain results from the additional check. Instead, it is
+ // reset before we enter the nonrd_check_partition_merge_mode
+ // condition.
+ if (!pc_tree->split[i]->none) {
+ pc_tree->split[i]->none =
+ av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
+ if (!pc_tree->split[i]->none)
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ }
+ encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 0,
+ subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL);
+ }
+ }
+}
+
+// Evaluate if the sub-partitions can be merged directly into a large partition
+// without calculating the RD cost.
+static void direct_partition_merging(AV1_COMP *cpi, ThreadData *td,
+ TileDataEnc *tile_data, MB_MODE_INFO **mib,
+ int mi_row, int mi_col, BLOCK_SIZE bsize) {
+ AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int bs = mi_size_wide[bsize];
+ const int hbs = bs / 2;
+ const PARTITION_TYPE partition =
+ (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize)
+ : PARTITION_NONE;
+ BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
+
+ MB_MODE_INFO **b0 = mib;
+ MB_MODE_INFO **b1 = mib + hbs;
+ MB_MODE_INFO **b2 = mib + hbs * mi_params->mi_stride;
+ MB_MODE_INFO **b3 = mib + hbs * mi_params->mi_stride + hbs;
+
+ // Check if the following conditions are met. This can be updated
+ // later with more support added.
+ const int further_split = b0[0]->bsize < subsize || b1[0]->bsize < subsize ||
+ b2[0]->bsize < subsize || b3[0]->bsize < subsize;
+ if (further_split) return;
+
+ const int no_skip = !b0[0]->skip_txfm || !b1[0]->skip_txfm ||
+ !b2[0]->skip_txfm || !b3[0]->skip_txfm;
+ if (no_skip) return;
+
+ const int compound = (b0[0]->ref_frame[1] != b1[0]->ref_frame[1] ||
+ b0[0]->ref_frame[1] != b2[0]->ref_frame[1] ||
+ b0[0]->ref_frame[1] != b3[0]->ref_frame[1] ||
+ b0[0]->ref_frame[1] > NONE_FRAME);
+ if (compound) return;
+
+ // Intra modes aren't considered here.
+ const int different_ref = (b0[0]->ref_frame[0] != b1[0]->ref_frame[0] ||
+ b0[0]->ref_frame[0] != b2[0]->ref_frame[0] ||
+ b0[0]->ref_frame[0] != b3[0]->ref_frame[0] ||
+ b0[0]->ref_frame[0] <= INTRA_FRAME);
+ if (different_ref) return;
+
+ const int different_mode =
+ (b0[0]->mode != b1[0]->mode || b0[0]->mode != b2[0]->mode ||
+ b0[0]->mode != b3[0]->mode);
+ if (different_mode) return;
+
+ const int unsupported_mode =
+ (b0[0]->mode != NEARESTMV && b0[0]->mode != GLOBALMV);
+ if (unsupported_mode) return;
+
+ const int different_mv = (b0[0]->mv[0].as_int != b1[0]->mv[0].as_int ||
+ b0[0]->mv[0].as_int != b2[0]->mv[0].as_int ||
+ b0[0]->mv[0].as_int != b3[0]->mv[0].as_int);
+ if (different_mv) return;
+
+ const int unsupported_motion_mode =
+ (b0[0]->motion_mode != b1[0]->motion_mode ||
+ b0[0]->motion_mode != b2[0]->motion_mode ||
+ b0[0]->motion_mode != b3[0]->motion_mode ||
+ b0[0]->motion_mode != SIMPLE_TRANSLATION);
+ if (unsupported_motion_mode) return;
+
+ const int diffent_filter =
+ (b0[0]->interp_filters.as_int != b1[0]->interp_filters.as_int ||
+ b0[0]->interp_filters.as_int != b2[0]->interp_filters.as_int ||
+ b0[0]->interp_filters.as_int != b3[0]->interp_filters.as_int);
+ if (diffent_filter) return;
+
+ const int different_seg = (b0[0]->segment_id != b1[0]->segment_id ||
+ b0[0]->segment_id != b2[0]->segment_id ||
+ b0[0]->segment_id != b3[0]->segment_id);
+ if (different_seg) return;
+
+ // Evaluate the ref_mv.
+ MB_MODE_INFO **this_mi = mib;
+ BLOCK_SIZE orig_bsize = this_mi[0]->bsize;
+ const PARTITION_TYPE orig_partition = this_mi[0]->partition;
+
+ this_mi[0]->bsize = bsize;
+ this_mi[0]->partition = PARTITION_NONE;
+ this_mi[0]->skip_txfm = 1;
+
+ // TODO(yunqing): functions called below can be optimized by
+ // removing unrelated operations.
+ av1_set_offsets_without_segment_id(cpi, &tile_data->tile_info, x, mi_row,
+ mi_col, bsize);
+
+ const MV_REFERENCE_FRAME ref_frame = this_mi[0]->ref_frame[0];
+ int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES];
+ struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE];
+ int force_skip_low_temp_var = 0;
+ int skip_pred_mv = 0;
+ bool use_scaled_ref;
+
+ for (int i = 0; i < MB_MODE_COUNT; ++i) {
+ for (int j = 0; j < REF_FRAMES; ++j) {
+ frame_mv[i][j].as_int = INVALID_MV;
+ }
+ }
+ av1_copy(x->color_sensitivity, x->color_sensitivity_sb);
+ skip_pred_mv = (x->nonrd_prune_ref_frame_search > 2 &&
+ x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] != 2 &&
+ x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] != 2);
+
+ find_predictors(cpi, x, ref_frame, frame_mv, yv12_mb, bsize,
+ force_skip_low_temp_var, skip_pred_mv, &use_scaled_ref);
+
+ int continue_merging = 1;
+ if (frame_mv[NEARESTMV][ref_frame].as_mv.row != b0[0]->mv[0].as_mv.row ||
+ frame_mv[NEARESTMV][ref_frame].as_mv.col != b0[0]->mv[0].as_mv.col)
+ continue_merging = 0;
+
+ if (!continue_merging) {
+ this_mi[0]->bsize = orig_bsize;
+ this_mi[0]->partition = orig_partition;
+
+ // TODO(yunqing): Store the results and restore here instead of
+ // calling find_predictors() again.
+ av1_set_offsets_without_segment_id(cpi, &tile_data->tile_info, x, mi_row,
+ mi_col, this_mi[0]->bsize);
+ find_predictors(cpi, x, ref_frame, frame_mv, yv12_mb, this_mi[0]->bsize,
+ force_skip_low_temp_var, skip_pred_mv, &use_scaled_ref);
+ } else {
+ struct scale_factors *sf = get_ref_scale_factors(cm, ref_frame);
+ const int is_scaled = av1_is_scaled(sf);
+ const int is_y_subpel_mv = (abs(this_mi[0]->mv[0].as_mv.row) % 8) ||
+ (abs(this_mi[0]->mv[0].as_mv.col) % 8);
+ const int is_uv_subpel_mv = (abs(this_mi[0]->mv[0].as_mv.row) % 16) ||
+ (abs(this_mi[0]->mv[0].as_mv.col) % 16);
+
+ if (cpi->ppi->use_svc || is_scaled || is_y_subpel_mv || is_uv_subpel_mv) {
+ const int num_planes = av1_num_planes(cm);
+ set_ref_ptrs(cm, xd, ref_frame, this_mi[0]->ref_frame[1]);
+ const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame);
+ av1_setup_pre_planes(xd, 0, cfg, mi_row, mi_col,
+ xd->block_ref_scale_factors[0], num_planes);
+
+ if (!cpi->ppi->use_svc && !is_scaled && !is_y_subpel_mv) {
+ assert(is_uv_subpel_mv == 1);
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 1,
+ num_planes - 1);
+ } else {
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
+ num_planes - 1);
+ }
+ }
+
+ // Copy out mbmi_ext information.
+ MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
+ MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame = x->mbmi_ext_frame;
+ av1_copy_mbmi_ext_to_mbmi_ext_frame(
+ mbmi_ext_frame, mbmi_ext, av1_ref_frame_type(this_mi[0]->ref_frame));
+
+ const BLOCK_SIZE this_subsize =
+ get_partition_subsize(bsize, this_mi[0]->partition);
+ // Update partition contexts.
+ update_ext_partition_context(xd, mi_row, mi_col, this_subsize, bsize,
+ this_mi[0]->partition);
+
+ const int num_planes = av1_num_planes(cm);
+ av1_reset_entropy_context(xd, bsize, num_planes);
+
+ // Note: use x->txfm_search_params.tx_mode_search_type instead of
+ // cm->features.tx_mode here.
+ TX_SIZE tx_size =
+ tx_size_from_tx_mode(bsize, x->txfm_search_params.tx_mode_search_type);
+ if (xd->lossless[this_mi[0]->segment_id]) tx_size = TX_4X4;
+ this_mi[0]->tx_size = tx_size;
+ memset(this_mi[0]->inter_tx_size, this_mi[0]->tx_size,
+ sizeof(this_mi[0]->inter_tx_size));
+
+ // Update txfm contexts.
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+ set_txfm_ctxs(this_mi[0]->tx_size, xd->width, xd->height,
+ this_mi[0]->skip_txfm && is_inter_block(this_mi[0]), xd);
+
+ // Update mi for this partition block.
+ for (int y = 0; y < bs; y++) {
+ for (int x_idx = 0; x_idx < bs; x_idx++) {
+ this_mi[x_idx + y * mi_params->mi_stride] = this_mi[0];
+ }
+ }
+ }
+}
+
+/*!\brief AV1 block partition application (minimal RD search).
+*
+* \ingroup partition_search
+* \callgraph
+* \callergraph
+* Encode the block by applying pre-calculated partition patterns that are
+* represented by coding block sizes stored in the mbmi array. The only
+* partition adjustment allowed is merging leaf split nodes if it leads to a
+* lower rd cost. The partition types are limited to a basic set: none, horz,
+* vert, and split. This function is only used in the real-time mode.
+*
+* \param[in] cpi Top-level encoder structure
+* \param[in] td Pointer to thread data
+* \param[in] tile_data Pointer to struct holding adaptive
+data/contexts/models for the tile during encoding
+* \param[in] mib Array representing MB_MODE_INFO pointers for mi
+blocks starting from the first pixel of the current
+block
+* \param[in] tp Pointer to the starting token
+* \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE
+* \param[in] mi_col Column coordinate of the block in a step size of
+MI_SIZE
+* \param[in] bsize Current block size
+* \param[in] pc_tree Pointer to the PC_TREE node holding the picked
+partitions and mode info for the current block
+*
+* \remark Nothing is returned. The pc_tree struct is modified to store the
+* picked partition and modes.
+*/
+void av1_nonrd_use_partition(AV1_COMP *cpi, ThreadData *td,
+ TileDataEnc *tile_data, MB_MODE_INFO **mib,
+ TokenExtra **tp, int mi_row, int mi_col,
+ BLOCK_SIZE bsize, PC_TREE *pc_tree) {
+ AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const ModeCosts *mode_costs = &x->mode_costs;
+ // Only square blocks from 8x8 to 128x128 are supported
+ assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128);
+ const int bs = mi_size_wide[bsize];
+ const int hbs = bs / 2;
+ PARTITION_TYPE partition = (bsize >= BLOCK_8X8)
+ ? get_partition(cm, mi_row, mi_col, bsize)
+ : PARTITION_NONE;
+ BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
+ assert(subsize <= BLOCK_LARGEST);
+ const int pl = (bsize >= BLOCK_8X8)
+ ? partition_plane_context(xd, mi_row, mi_col, bsize)
+ : 0;
+
+ RD_STATS dummy_cost;
+ av1_invalid_rd_stats(&dummy_cost);
+
+ if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
+
+ assert(mi_size_wide[bsize] == mi_size_high[bsize]);
+
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+
+ // Initialize default mode evaluation params
+ set_mode_eval_params(cpi, x, DEFAULT_EVAL);
+
+ x->reuse_inter_pred = cpi->sf.rt_sf.reuse_inter_pred_nonrd;
+
+ int change_none_to_split = 0;
+ if (partition == PARTITION_NONE &&
+ cpi->sf.rt_sf.nonrd_check_partition_split == 1) {
+ change_none_to_split =
+ try_split_partition(cpi, td, tile_data, tile_info, tp, x, xd, mi_params,
+ mi_row, mi_col, bsize, pl, pc_tree);
+ if (change_none_to_split) {
+ partition = PARTITION_SPLIT;
+ subsize = get_partition_subsize(bsize, partition);
+ assert(subsize <= BLOCK_LARGEST);
+ }
+ }
+
+ pc_tree->partitioning = partition;
+
+ switch (partition) {
+ case PARTITION_NONE:
+ if (!pc_tree->none) {
+ pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
+ if (!pc_tree->none)
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ } else {
+ av1_reset_pmc(pc_tree->none);
+ }
+ pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, bsize,
+ pc_tree->none);
+ encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize,
+ partition, pc_tree->none, NULL);
+ break;
+ case PARTITION_VERT:
+ for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
+ if (!pc_tree->vertical[i]) {
+ pc_tree->vertical[i] =
+ av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
+ if (!pc_tree->vertical[i])
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ } else {
+ av1_reset_pmc(pc_tree->vertical[i]);
+ }
+ }
+ pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost,
+ subsize, pc_tree->vertical[0]);
+ encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize,
+ PARTITION_VERT, pc_tree->vertical[0], NULL);
+ if (mi_col + hbs < mi_params->mi_cols && bsize > BLOCK_8X8) {
+ pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col + hbs,
+ &dummy_cost, subsize, pc_tree->vertical[1]);
+ encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col + hbs, 0, subsize,
+ PARTITION_VERT, pc_tree->vertical[1], NULL);
+ }
+ break;
+ case PARTITION_HORZ:
+ for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
+ if (!pc_tree->horizontal[i]) {
+ pc_tree->horizontal[i] =
+ av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
+ if (!pc_tree->horizontal[i])
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ } else {
+ av1_reset_pmc(pc_tree->horizontal[i]);
+ }
+ }
+ pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost,
+ subsize, pc_tree->horizontal[0]);
+ encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize,
+ PARTITION_HORZ, pc_tree->horizontal[0], NULL);
+
+ if (mi_row + hbs < mi_params->mi_rows && bsize > BLOCK_8X8) {
+ pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + hbs, mi_col,
+ &dummy_cost, subsize, pc_tree->horizontal[1]);
+ encode_b_nonrd(cpi, tile_data, td, tp, mi_row + hbs, mi_col, 0, subsize,
+ PARTITION_HORZ, pc_tree->horizontal[1], NULL);
+ }
+ break;
+ case PARTITION_SPLIT:
+ for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
+ if (!pc_tree->split[i]) {
+ pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
+ if (!pc_tree->split[i])
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PC_TREE");
+ }
+ pc_tree->split[i]->index = i;
+ }
+ if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode &&
+ av1_is_leaf_split_partition(cm, mi_row, mi_col, bsize) &&
+ !frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
+ try_merge(cpi, td, tile_data, mib, tp, mi_row, mi_col, bsize, pc_tree,
+ partition, subsize, pl);
+ } else {
+ for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
+ int x_idx = (i & 1) * hbs;
+ int y_idx = (i >> 1) * hbs;
+ int jj = i >> 1, ii = i & 0x01;
+ if ((mi_row + y_idx >= mi_params->mi_rows) ||
+ (mi_col + x_idx >= mi_params->mi_cols))
+ continue;
+ av1_nonrd_use_partition(
+ cpi, td, tile_data,
+ mib + jj * hbs * mi_params->mi_stride + ii * hbs, tp,
+ mi_row + y_idx, mi_col + x_idx, subsize, pc_tree->split[i]);
+ }
+
+ if (!change_none_to_split) {
+ // Note: Palette, cfl are not supported.
+ if (!frame_is_intra_only(cm) && !tile_data->allow_update_cdf &&
+ cpi->sf.rt_sf.partition_direct_merging &&
+ mode_costs->partition_cost[pl][PARTITION_NONE] <
+ mode_costs->partition_cost[pl][PARTITION_SPLIT] &&
+ (mi_row + bs <= mi_params->mi_rows) &&
+ (mi_col + bs <= mi_params->mi_cols)) {
+ direct_partition_merging(cpi, td, tile_data, mib, mi_row, mi_col,
+ bsize);
+ }
+ }
+ }
+ break;
+ case PARTITION_VERT_A:
+ case PARTITION_VERT_B:
+ case PARTITION_HORZ_A:
+ case PARTITION_HORZ_B:
+ case PARTITION_HORZ_4:
+ case PARTITION_VERT_4:
+ assert(0 && "Cannot handle extended partition types");
+ default: assert(0); break;
+ }
+}
+
+#if !CONFIG_REALTIME_ONLY
+// Try searching for an encoding for the given subblock. Returns zero if the
+// rdcost is already too high (to tell the caller not to bother searching for
+// encodings of further subblocks).
+static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td,
+ TileDataEnc *tile_data, TokenExtra **tp, int is_last,
+ int mi_row, int mi_col, BLOCK_SIZE subsize,
+ RD_STATS best_rdcost, RD_STATS *sum_rdc,
+ PARTITION_TYPE partition,
+ PICK_MODE_CONTEXT *this_ctx) {
+ MACROBLOCK *const x = &td->mb;
+ const int orig_mult = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, subsize, NO_AQ, NULL);
+
+ av1_rd_cost_update(x->rdmult, &best_rdcost);
+
+ RD_STATS rdcost_remaining;
+ av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining);
+ RD_STATS this_rdc;
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, partition,
+ subsize, this_ctx, rdcost_remaining);
+
+ if (this_rdc.rate == INT_MAX) {
+ sum_rdc->rdcost = INT64_MAX;
+ } else {
+ sum_rdc->rate += this_rdc.rate;
+ sum_rdc->dist += this_rdc.dist;
+ av1_rd_cost_update(x->rdmult, sum_rdc);
+ }
+
+ if (sum_rdc->rdcost >= best_rdcost.rdcost) {
+ x->rdmult = orig_mult;
+ return 0;
+ }
+
+ if (!is_last) {
+ av1_update_state(cpi, td, this_ctx, mi_row, mi_col, subsize, 1);
+ encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL);
+ }
+
+ x->rdmult = orig_mult;
+ return 1;
+}
+
+// Tests an AB partition, and updates the encoder status, the pick mode
+// contexts, the best rdcost, and the best partition.
+static bool rd_test_partition3(AV1_COMP *const cpi, ThreadData *td,
+ TileDataEnc *tile_data, TokenExtra **tp,
+ PC_TREE *pc_tree, RD_STATS *best_rdc,
+ int64_t *this_rdcost,
+ PICK_MODE_CONTEXT *ctxs[SUB_PARTITIONS_AB],
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ PARTITION_TYPE partition,
+ const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB],
+ const int ab_mi_pos[SUB_PARTITIONS_AB][2],
+ const MB_MODE_INFO **mode_cache) {
+ MACROBLOCK *const x = &td->mb;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ RD_STATS sum_rdc;
+ av1_init_rd_stats(&sum_rdc);
+ sum_rdc.rate = x->mode_costs.partition_cost[pl][partition];
+ sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
+ // Loop over sub-partitions in AB partition type.
+ for (int i = 0; i < SUB_PARTITIONS_AB; i++) {
+ if (mode_cache && mode_cache[i]) {
+ x->use_mb_mode_cache = 1;
+ x->mb_mode_cache = mode_cache[i];
+ }
+ const int mode_search_success =
+ rd_try_subblock(cpi, td, tile_data, tp, i == SUB_PARTITIONS_AB - 1,
+ ab_mi_pos[i][0], ab_mi_pos[i][1], ab_subsize[i],
+ *best_rdc, &sum_rdc, partition, ctxs[i]);
+ x->use_mb_mode_cache = 0;
+ x->mb_mode_cache = NULL;
+ if (!mode_search_success) {
+ return false;
+ }
+ }
+
+ av1_rd_cost_update(x->rdmult, &sum_rdc);
+ *this_rdcost = sum_rdc.rdcost;
+ if (sum_rdc.rdcost >= best_rdc->rdcost) return false;
+ sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
+ *this_rdcost = sum_rdc.rdcost;
+ if (sum_rdc.rdcost >= best_rdc->rdcost) return false;
+
+ *best_rdc = sum_rdc;
+ pc_tree->partitioning = partition;
+ return true;
+}
+
+#if CONFIG_COLLECT_PARTITION_STATS
+static void init_partition_block_timing_stats(
+ PartitionTimingStats *part_timing_stats) {
+ av1_zero(*part_timing_stats);
+}
+
+static INLINE void start_partition_block_timer(
+ PartitionTimingStats *part_timing_stats, PARTITION_TYPE partition_type) {
+ assert(!part_timing_stats->timer_is_on);
+ part_timing_stats->partition_attempts[partition_type] += 1;
+ aom_usec_timer_start(&part_timing_stats->timer);
+ part_timing_stats->timer_is_on = 1;
+}
+
+static INLINE void end_partition_block_timer(
+ PartitionTimingStats *part_timing_stats, PARTITION_TYPE partition_type,
+ int64_t rdcost) {
+ if (part_timing_stats->timer_is_on) {
+ aom_usec_timer_mark(&part_timing_stats->timer);
+ const int64_t time = aom_usec_timer_elapsed(&part_timing_stats->timer);
+ part_timing_stats->partition_times[partition_type] += time;
+ part_timing_stats->partition_rdcost[partition_type] = rdcost;
+ part_timing_stats->timer_is_on = 0;
+ }
+}
+static INLINE void print_partition_timing_stats_with_rdcost(
+ const PartitionTimingStats *part_timing_stats, int mi_row, int mi_col,
+ BLOCK_SIZE bsize, FRAME_UPDATE_TYPE frame_update_type, int frame_number,
+ const RD_STATS *best_rdc, const char *filename) {
+ FILE *f = fopen(filename, "a");
+ fprintf(f, "%d,%d,%d,%d,%d,%d,%" PRId64 ",%" PRId64 ",", bsize, frame_number,
+ frame_update_type, mi_row, mi_col, best_rdc->rate, best_rdc->dist,
+ best_rdc->rdcost);
+ for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
+ fprintf(f, "%d,", part_timing_stats->partition_decisions[idx]);
+ }
+ for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
+ fprintf(f, "%d,", part_timing_stats->partition_attempts[idx]);
+ }
+ for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
+ fprintf(f, "%" PRId64 ",", part_timing_stats->partition_times[idx]);
+ }
+ for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
+ if (part_timing_stats->partition_rdcost[idx] == INT64_MAX) {
+ fprintf(f, "%d,", -1);
+ } else {
+ fprintf(f, "%" PRId64 ",", part_timing_stats->partition_rdcost[idx]);
+ }
+ }
+ fprintf(f, "\n");
+ fclose(f);
+}
+
+static INLINE void print_partition_timing_stats(
+ const PartitionTimingStats *part_timing_stats, int intra_only,
+ int show_frame, const BLOCK_SIZE bsize, const char *filename) {
+ FILE *f = fopen(filename, "a");
+ fprintf(f, "%d,%d,%d,", bsize, show_frame, intra_only);
+ for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
+ fprintf(f, "%d,", part_timing_stats->partition_decisions[idx]);
+ }
+ for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
+ fprintf(f, "%d,", part_timing_stats->partition_attempts[idx]);
+ }
+ for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
+ fprintf(f, "%" PRId64 ",", part_timing_stats->partition_times[idx]);
+ }
+ fprintf(f, "\n");
+ fclose(f);
+}
+
+static INLINE void accumulate_partition_timing_stats(
+ FramePartitionTimingStats *fr_part_timing_stats,
+ const PartitionTimingStats *part_timing_stats, BLOCK_SIZE bsize) {
+ const int bsize_idx = av1_get_bsize_idx_for_part_stats(bsize);
+ int *agg_attempts = fr_part_timing_stats->partition_attempts[bsize_idx];
+ int *agg_decisions = fr_part_timing_stats->partition_decisions[bsize_idx];
+ int64_t *agg_times = fr_part_timing_stats->partition_times[bsize_idx];
+ for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
+ agg_attempts[idx] += part_timing_stats->partition_attempts[idx];
+ agg_decisions[idx] += part_timing_stats->partition_decisions[idx];
+ agg_times[idx] += part_timing_stats->partition_times[idx];
+ }
+}
+#endif // CONFIG_COLLECT_PARTITION_STATS
+
+// Initialize state variables of partition search used in
+// av1_rd_pick_partition().
+static void init_partition_search_state_params(
+ MACROBLOCK *x, AV1_COMP *const cpi, PartitionSearchState *part_search_state,
+ int mi_row, int mi_col, BLOCK_SIZE bsize) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const AV1_COMMON *const cm = &cpi->common;
+ PartitionBlkParams *blk_params = &part_search_state->part_blk_params;
+ const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
+
+ // Initialization of block size related parameters.
+ blk_params->mi_step = mi_size_wide[bsize] / 2;
+ blk_params->mi_row = mi_row;
+ blk_params->mi_col = mi_col;
+ blk_params->mi_row_edge = mi_row + blk_params->mi_step;
+ blk_params->mi_col_edge = mi_col + blk_params->mi_step;
+ blk_params->width = block_size_wide[bsize];
+ blk_params->min_partition_size_1d =
+ block_size_wide[x->sb_enc.min_partition_size];
+ blk_params->subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ blk_params->split_bsize2 = blk_params->subsize;
+ blk_params->bsize_at_least_8x8 = (bsize >= BLOCK_8X8);
+ blk_params->bsize = bsize;
+
+ // Check if the partition corresponds to edge block.
+ blk_params->has_rows = (blk_params->mi_row_edge < mi_params->mi_rows);
+ blk_params->has_cols = (blk_params->mi_col_edge < mi_params->mi_cols);
+
+ // Update intra partitioning related info.
+ part_search_state->intra_part_info = &x->part_search_info;
+ // Prepare for segmentation CNN-based partitioning for intra-frame.
+ if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) {
+ part_search_state->intra_part_info->quad_tree_idx = 0;
+ part_search_state->intra_part_info->cnn_output_valid = 0;
+ }
+
+ // Set partition plane context index.
+ part_search_state->pl_ctx_idx =
+ blk_params->bsize_at_least_8x8
+ ? partition_plane_context(xd, mi_row, mi_col, bsize)
+ : 0;
+
+ // Partition cost buffer update
+ ModeCosts *mode_costs = &x->mode_costs;
+ part_search_state->partition_cost =
+ mode_costs->partition_cost[part_search_state->pl_ctx_idx];
+
+ // Initialize HORZ and VERT win flags as true for all split partitions.
+ for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
+ part_search_state->split_part_rect_win[i].rect_part_win[HORZ] = true;
+ part_search_state->split_part_rect_win[i].rect_part_win[VERT] = true;
+ }
+
+ // Initialize the rd cost.
+ av1_init_rd_stats(&part_search_state->this_rdc);
+
+ // Initialize RD costs for partition types to 0.
+ part_search_state->none_rd = 0;
+ av1_zero(part_search_state->split_rd);
+ av1_zero(part_search_state->rect_part_rd);
+
+ // Initialize SPLIT partition to be not ready.
+ av1_zero(part_search_state->is_split_ctx_is_ready);
+ // Initialize HORZ and VERT partitions to be not ready.
+ av1_zero(part_search_state->is_rect_ctx_is_ready);
+
+ // Chroma subsampling.
+ part_search_state->ss_x = x->e_mbd.plane[1].subsampling_x;
+ part_search_state->ss_y = x->e_mbd.plane[1].subsampling_y;
+
+ // Initialize partition search flags to defaults.
+ part_search_state->terminate_partition_search = 0;
+ part_search_state->do_square_split = blk_params->bsize_at_least_8x8;
+ part_search_state->do_rectangular_split =
+ cpi->oxcf.part_cfg.enable_rect_partitions &&
+ blk_params->bsize_at_least_8x8;
+ av1_zero(part_search_state->prune_rect_part);
+
+ // Initialize allowed partition types for the partition block.
+ part_search_state->partition_none_allowed =
+ av1_blk_has_rows_and_cols(blk_params);
+ part_search_state->partition_rect_allowed[HORZ] =
+ part_search_state->do_rectangular_split && blk_params->has_cols &&
+ get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ),
+ part_search_state->ss_x,
+ part_search_state->ss_y) != BLOCK_INVALID;
+ part_search_state->partition_rect_allowed[VERT] =
+ part_search_state->do_rectangular_split && blk_params->has_rows &&
+ get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT),
+ part_search_state->ss_x,
+ part_search_state->ss_y) != BLOCK_INVALID;
+
+ // Reset the flag indicating whether a partition leading to a rdcost lower
+ // than the bound best_rdc has been found.
+ part_search_state->found_best_partition = false;
+
+#if CONFIG_COLLECT_PARTITION_STATS
+ init_partition_block_timing_stats(&part_search_state->part_timing_stats);
+#endif // CONFIG_COLLECT_PARTITION_STATS
+}
+
+// Override partition cost buffer for the edge blocks.
+static void set_partition_cost_for_edge_blk(
+ AV1_COMMON const *cm, PartitionSearchState *part_search_state) {
+ PartitionBlkParams blk_params = part_search_state->part_blk_params;
+ assert(blk_params.bsize_at_least_8x8 && part_search_state->pl_ctx_idx >= 0);
+ const aom_cdf_prob *partition_cdf =
+ cm->fc->partition_cdf[part_search_state->pl_ctx_idx];
+ const int max_cost = av1_cost_symbol(0);
+ for (PARTITION_TYPE i = 0; i < PARTITION_TYPES; ++i)
+ part_search_state->tmp_partition_cost[i] = max_cost;
+ if (blk_params.has_cols) {
+ // At the bottom, the two possibilities are HORZ and SPLIT.
+ aom_cdf_prob bot_cdf[2];
+ partition_gather_vert_alike(bot_cdf, partition_cdf, blk_params.bsize);
+ static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT };
+ av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, bot_cdf,
+ bot_inv_map);
+ } else if (blk_params.has_rows) {
+ // At the right, the two possibilities are VERT and SPLIT.
+ aom_cdf_prob rhs_cdf[2];
+ partition_gather_horz_alike(rhs_cdf, partition_cdf, blk_params.bsize);
+ static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT };
+ av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, rhs_cdf,
+ rhs_inv_map);
+ } else {
+ // At the bottom right, we always split.
+ part_search_state->tmp_partition_cost[PARTITION_SPLIT] = 0;
+ }
+ // Override the partition cost buffer.
+ part_search_state->partition_cost = part_search_state->tmp_partition_cost;
+}
+
+// Reset the partition search state flags when
+// must_find_valid_partition is equal to 1.
+static AOM_INLINE void reset_part_limitations(
+ AV1_COMP *const cpi, PartitionSearchState *part_search_state) {
+ PartitionBlkParams blk_params = part_search_state->part_blk_params;
+ const int is_rect_part_allowed =
+ blk_params.bsize_at_least_8x8 &&
+ cpi->oxcf.part_cfg.enable_rect_partitions &&
+ (blk_params.width > blk_params.min_partition_size_1d);
+ part_search_state->do_square_split =
+ blk_params.bsize_at_least_8x8 &&
+ (blk_params.width > blk_params.min_partition_size_1d);
+ part_search_state->partition_none_allowed =
+ av1_blk_has_rows_and_cols(&blk_params) &&
+ (blk_params.width >= blk_params.min_partition_size_1d);
+ part_search_state->partition_rect_allowed[HORZ] =
+ blk_params.has_cols && is_rect_part_allowed &&
+ get_plane_block_size(
+ get_partition_subsize(blk_params.bsize, PARTITION_HORZ),
+ part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID;
+ part_search_state->partition_rect_allowed[VERT] =
+ blk_params.has_rows && is_rect_part_allowed &&
+ get_plane_block_size(
+ get_partition_subsize(blk_params.bsize, PARTITION_VERT),
+ part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID;
+ part_search_state->terminate_partition_search = 0;
+}
+
+// Rectangular partitions evaluation at sub-block level.
+static void rd_pick_rect_partition(AV1_COMP *const cpi, TileDataEnc *tile_data,
+ MACROBLOCK *x,
+ PICK_MODE_CONTEXT *cur_partition_ctx,
+ PartitionSearchState *part_search_state,
+ RD_STATS *best_rdc, const int idx,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ PARTITION_TYPE partition_type) {
+ // Obtain the remainder from the best rd cost
+ // for further processing of partition.
+ RD_STATS best_remain_rdcost;
+ av1_rd_stats_subtraction(x->rdmult, best_rdc, &part_search_state->sum_rdc,
+ &best_remain_rdcost);
+
+ // Obtain the best mode for the partition sub-block.
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &part_search_state->this_rdc,
+ partition_type, bsize, cur_partition_ctx, best_remain_rdcost);
+ av1_rd_cost_update(x->rdmult, &part_search_state->this_rdc);
+
+ // Update the partition rd cost with the current sub-block rd.
+ if (part_search_state->this_rdc.rate == INT_MAX) {
+ part_search_state->sum_rdc.rdcost = INT64_MAX;
+ } else {
+ part_search_state->sum_rdc.rate += part_search_state->this_rdc.rate;
+ part_search_state->sum_rdc.dist += part_search_state->this_rdc.dist;
+ av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc);
+ }
+ const RECT_PART_TYPE rect_part =
+ partition_type == PARTITION_HORZ ? HORZ : VERT;
+ part_search_state->rect_part_rd[rect_part][idx] =
+ part_search_state->this_rdc.rdcost;
+}
+
+typedef int (*active_edge_info)(const AV1_COMP *cpi, int mi_col, int mi_step);
+
+// Checks if HORZ / VERT partition search is allowed.
+static AOM_INLINE int is_rect_part_allowed(
+ const AV1_COMP *cpi, const PartitionSearchState *part_search_state,
+ const active_edge_info *active_edge, RECT_PART_TYPE rect_part,
+ const int mi_pos) {
+ const PartitionBlkParams *blk_params = &part_search_state->part_blk_params;
+ const int is_part_allowed =
+ (!part_search_state->terminate_partition_search &&
+ part_search_state->partition_rect_allowed[rect_part] &&
+ !part_search_state->prune_rect_part[rect_part] &&
+ (part_search_state->do_rectangular_split ||
+ active_edge[rect_part](cpi, mi_pos, blk_params->mi_step)));
+ return is_part_allowed;
+}
+
+static void rectangular_partition_search(
+ AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
+ TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree,
+ RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
+ PartitionSearchState *part_search_state, RD_STATS *best_rdc,
+ RD_RECT_PART_WIN_INFO *rect_part_win_info, const RECT_PART_TYPE start_type,
+ const RECT_PART_TYPE end_type) {
+ const AV1_COMMON *const cm = &cpi->common;
+ PartitionBlkParams blk_params = part_search_state->part_blk_params;
+ RD_STATS *sum_rdc = &part_search_state->sum_rdc;
+ const int rect_partition_type[NUM_RECT_PARTS] = { PARTITION_HORZ,
+ PARTITION_VERT };
+
+ // mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][0]: mi_row postion of
+ // HORZ and VERT partition types.
+ // mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][1]: mi_col postion of
+ // HORZ and VERT partition types.
+ const int mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][2] = {
+ { { blk_params.mi_row, blk_params.mi_col },
+ { blk_params.mi_row_edge, blk_params.mi_col } },
+ { { blk_params.mi_row, blk_params.mi_col },
+ { blk_params.mi_row, blk_params.mi_col_edge } }
+ };
+
+ // Initialize active edge_type function pointer
+ // for HOZR and VERT partition types.
+ active_edge_info active_edge_type[NUM_RECT_PARTS] = { av1_active_h_edge,
+ av1_active_v_edge };
+
+ // Indicates edge blocks for HORZ and VERT partition types.
+ const int is_not_edge_block[NUM_RECT_PARTS] = { blk_params.has_rows,
+ blk_params.has_cols };
+
+ // Initialize pc tree context for HORZ and VERT partition types.
+ PICK_MODE_CONTEXT **cur_ctx[NUM_RECT_PARTS][SUB_PARTITIONS_RECT] = {
+ { &pc_tree->horizontal[0], &pc_tree->horizontal[1] },
+ { &pc_tree->vertical[0], &pc_tree->vertical[1] }
+ };
+
+ // Loop over rectangular partition types.
+ for (RECT_PART_TYPE i = start_type; i <= end_type; i++) {
+ assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
+ !part_search_state->partition_rect_allowed[i]));
+
+ // Check if the HORZ / VERT partition search is to be performed.
+ if (!is_rect_part_allowed(cpi, part_search_state, active_edge_type, i,
+ mi_pos_rect[i][0][i]))
+ continue;
+
+ // Sub-partition idx.
+ int sub_part_idx = 0;
+ PARTITION_TYPE partition_type = rect_partition_type[i];
+ blk_params.subsize =
+ get_partition_subsize(blk_params.bsize, partition_type);
+ assert(blk_params.subsize <= BLOCK_LARGEST);
+ av1_init_rd_stats(sum_rdc);
+ for (int j = 0; j < SUB_PARTITIONS_RECT; j++) {
+ if (cur_ctx[i][j][0] == NULL) {
+ cur_ctx[i][j][0] =
+ av1_alloc_pmc(cpi, blk_params.subsize, &td->shared_coeff_buf);
+ if (!cur_ctx[i][j][0])
+ aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ }
+ }
+ sum_rdc->rate = part_search_state->partition_cost[partition_type];
+ sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, 0);
+#if CONFIG_COLLECT_PARTITION_STATS
+ PartitionTimingStats *part_timing_stats =
+ &part_search_state->part_timing_stats;
+ if (best_rdc->rdcost - sum_rdc->rdcost >= 0) {
+ start_partition_block_timer(part_timing_stats, partition_type);
+ }
+#endif
+
+ // First sub-partition evaluation in HORZ / VERT partition type.
+ rd_pick_rect_partition(
+ cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state,
+ best_rdc, 0, mi_pos_rect[i][sub_part_idx][0],
+ mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type);
+
+ // Start of second sub-partition evaluation.
+ // Evaluate second sub-partition if the first sub-partition cost
+ // is less than the best cost and if it is not an edge block.
+ if (sum_rdc->rdcost < best_rdc->rdcost && is_not_edge_block[i]) {
+ const MB_MODE_INFO *const mbmi = &cur_ctx[i][sub_part_idx][0]->mic;
+ const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ // Neither palette mode nor cfl predicted.
+ if (pmi->palette_size[PLANE_TYPE_Y] == 0 &&
+ pmi->palette_size[PLANE_TYPE_UV] == 0) {
+ if (mbmi->uv_mode != UV_CFL_PRED)
+ part_search_state->is_rect_ctx_is_ready[i] = 1;
+ }
+ av1_update_state(cpi, td, cur_ctx[i][sub_part_idx][0], blk_params.mi_row,
+ blk_params.mi_col, blk_params.subsize, DRY_RUN_NORMAL);
+ encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL,
+ blk_params.subsize, NULL);
+
+ // Second sub-partition evaluation in HORZ / VERT partition type.
+ sub_part_idx = 1;
+ rd_pick_rect_partition(
+ cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state,
+ best_rdc, 1, mi_pos_rect[i][sub_part_idx][0],
+ mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type);
+ }
+ // Update HORZ / VERT best partition.
+ if (sum_rdc->rdcost < best_rdc->rdcost) {
+ sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, sum_rdc->dist);
+ if (sum_rdc->rdcost < best_rdc->rdcost) {
+ *best_rdc = *sum_rdc;
+ part_search_state->found_best_partition = true;
+ pc_tree->partitioning = partition_type;
+ }
+ } else {
+ // Update HORZ / VERT win flag.
+ if (rect_part_win_info != NULL)
+ rect_part_win_info->rect_part_win[i] = false;
+ }
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (part_timing_stats->timer_is_on) {
+ end_partition_block_timer(part_timing_stats, partition_type,
+ sum_rdc->rdcost);
+ }
+#endif
+ av1_restore_context(x, x_ctx, blk_params.mi_row, blk_params.mi_col,
+ blk_params.bsize, av1_num_planes(cm));
+ }
+}
+
+// AB partition type evaluation.
+static void rd_pick_ab_part(
+ AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
+ TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
+ PC_TREE *pc_tree, PICK_MODE_CONTEXT *dst_ctxs[SUB_PARTITIONS_AB],
+ PartitionSearchState *part_search_state, RD_STATS *best_rdc,
+ const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB],
+ const int ab_mi_pos[SUB_PARTITIONS_AB][2], const PARTITION_TYPE part_type,
+ const MB_MODE_INFO **mode_cache) {
+ const AV1_COMMON *const cm = &cpi->common;
+ PartitionBlkParams blk_params = part_search_state->part_blk_params;
+ const int mi_row = blk_params.mi_row;
+ const int mi_col = blk_params.mi_col;
+ const BLOCK_SIZE bsize = blk_params.bsize;
+ int64_t this_rdcost = 0;
+
+#if CONFIG_COLLECT_PARTITION_STATS
+ PartitionTimingStats *part_timing_stats =
+ &part_search_state->part_timing_stats;
+ {
+ RD_STATS tmp_sum_rdc;
+ av1_init_rd_stats(&tmp_sum_rdc);
+ tmp_sum_rdc.rate = part_search_state->partition_cost[part_type];
+ tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0);
+ if (best_rdc->rdcost - tmp_sum_rdc.rdcost >= 0) {
+ start_partition_block_timer(part_timing_stats, part_type);
+ }
+ }
+#endif
+
+ // Test this partition and update the best partition.
+ const bool find_best_ab_part = rd_test_partition3(
+ cpi, td, tile_data, tp, pc_tree, best_rdc, &this_rdcost, dst_ctxs, mi_row,
+ mi_col, bsize, part_type, ab_subsize, ab_mi_pos, mode_cache);
+ part_search_state->found_best_partition |= find_best_ab_part;
+
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (part_timing_stats->timer_is_on) {
+ if (!find_best_ab_part) this_rdcost = INT64_MAX;
+ end_partition_block_timer(part_timing_stats, part_type, this_rdcost);
+ }
+#endif
+ av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
+}
+
+// Set mode search context.
+static AOM_INLINE void set_mode_search_ctx(
+ PC_TREE *pc_tree, const int is_ctx_ready[NUM_AB_PARTS][2],
+ PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2]) {
+ mode_srch_ctx[HORZ_B][0] = &pc_tree->horizontal[0];
+ mode_srch_ctx[VERT_B][0] = &pc_tree->vertical[0];
+
+ if (is_ctx_ready[HORZ_A][0])
+ mode_srch_ctx[HORZ_A][0] = &pc_tree->split[0]->none;
+
+ if (is_ctx_ready[VERT_A][0])
+ mode_srch_ctx[VERT_A][0] = &pc_tree->split[0]->none;
+
+ if (is_ctx_ready[HORZ_A][1])
+ mode_srch_ctx[HORZ_A][1] = &pc_tree->split[1]->none;
+}
+
+static AOM_INLINE void copy_partition_mode_from_mode_context(
+ const MB_MODE_INFO **dst_mode, const PICK_MODE_CONTEXT *ctx) {
+ if (ctx && ctx->rd_stats.rate < INT_MAX) {
+ *dst_mode = &ctx->mic;
+ } else {
+ *dst_mode = NULL;
+ }
+}
+
+static AOM_INLINE void copy_partition_mode_from_pc_tree(
+ const MB_MODE_INFO **dst_mode, const PC_TREE *pc_tree) {
+ if (pc_tree) {
+ copy_partition_mode_from_mode_context(dst_mode, pc_tree->none);
+ } else {
+ *dst_mode = NULL;
+ }
+}
+
+static AOM_INLINE void set_mode_cache_for_partition_ab(
+ const MB_MODE_INFO **mode_cache, const PC_TREE *pc_tree,
+ AB_PART_TYPE ab_part_type) {
+ switch (ab_part_type) {
+ case HORZ_A:
+ copy_partition_mode_from_pc_tree(&mode_cache[0], pc_tree->split[0]);
+ copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[1]);
+ copy_partition_mode_from_mode_context(&mode_cache[2],
+ pc_tree->horizontal[1]);
+ break;
+ case HORZ_B:
+ copy_partition_mode_from_mode_context(&mode_cache[0],
+ pc_tree->horizontal[0]);
+ copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[2]);
+ copy_partition_mode_from_pc_tree(&mode_cache[2], pc_tree->split[3]);
+ break;
+ case VERT_A:
+ copy_partition_mode_from_pc_tree(&mode_cache[0], pc_tree->split[0]);
+ copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[2]);
+ copy_partition_mode_from_mode_context(&mode_cache[2],
+ pc_tree->vertical[1]);
+ break;
+ case VERT_B:
+ copy_partition_mode_from_mode_context(&mode_cache[0],
+ pc_tree->vertical[0]);
+ copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[1]);
+ copy_partition_mode_from_pc_tree(&mode_cache[2], pc_tree->split[3]);
+ break;
+ default: assert(0 && "Invalid ab partition type!\n");
+ }
+}
+
+// AB Partitions type search.
+static void ab_partitions_search(
+ AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
+ TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
+ PC_TREE *pc_tree, PartitionSearchState *part_search_state,
+ RD_STATS *best_rdc, RD_RECT_PART_WIN_INFO *rect_part_win_info,
+ int pb_source_variance, int ext_partition_allowed,
+ const AB_PART_TYPE start_type, const AB_PART_TYPE end_type) {
+ PartitionBlkParams blk_params = part_search_state->part_blk_params;
+ const int mi_row = blk_params.mi_row;
+ const int mi_col = blk_params.mi_col;
+ const BLOCK_SIZE bsize = blk_params.bsize;
+
+ if (part_search_state->terminate_partition_search) {
+ return;
+ }
+
+ int ab_partitions_allowed[NUM_AB_PARTS];
+ // Prune AB partitions
+ av1_prune_ab_partitions(cpi, x, pc_tree, pb_source_variance, best_rdc->rdcost,
+ rect_part_win_info, ext_partition_allowed,
+ part_search_state, ab_partitions_allowed);
+
+ // Flags to indicate whether the mode search is done.
+ const int is_ctx_ready[NUM_AB_PARTS][2] = {
+ { part_search_state->is_split_ctx_is_ready[0],
+ part_search_state->is_split_ctx_is_ready[1] },
+ { part_search_state->is_rect_ctx_is_ready[HORZ], 0 },
+ { part_search_state->is_split_ctx_is_ready[0], 0 },
+ { part_search_state->is_rect_ctx_is_ready[VERT], 0 }
+ };
+
+ // Current partition context.
+ PICK_MODE_CONTEXT **cur_part_ctxs[NUM_AB_PARTS] = { pc_tree->horizontala,
+ pc_tree->horizontalb,
+ pc_tree->verticala,
+ pc_tree->verticalb };
+
+ // Context of already evaluted partition types.
+ PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2];
+ // Set context of already evaluted partition types.
+ set_mode_search_ctx(pc_tree, is_ctx_ready, mode_srch_ctx);
+
+ // Array of sub-partition size of AB partition types.
+ const BLOCK_SIZE ab_subsize[NUM_AB_PARTS][SUB_PARTITIONS_AB] = {
+ { blk_params.split_bsize2, blk_params.split_bsize2,
+ get_partition_subsize(bsize, PARTITION_HORZ_A) },
+ { get_partition_subsize(bsize, PARTITION_HORZ_B), blk_params.split_bsize2,
+ blk_params.split_bsize2 },
+ { blk_params.split_bsize2, blk_params.split_bsize2,
+ get_partition_subsize(bsize, PARTITION_VERT_A) },
+ { get_partition_subsize(bsize, PARTITION_VERT_B), blk_params.split_bsize2,
+ blk_params.split_bsize2 }
+ };
+
+ // Array of mi_row, mi_col positions corresponds to each sub-partition in AB
+ // partition types.
+ const int ab_mi_pos[NUM_AB_PARTS][SUB_PARTITIONS_AB][2] = {
+ { { mi_row, mi_col },
+ { mi_row, blk_params.mi_col_edge },
+ { blk_params.mi_row_edge, mi_col } },
+ { { mi_row, mi_col },
+ { blk_params.mi_row_edge, mi_col },
+ { blk_params.mi_row_edge, blk_params.mi_col_edge } },
+ { { mi_row, mi_col },
+ { blk_params.mi_row_edge, mi_col },
+ { mi_row, blk_params.mi_col_edge } },
+ { { mi_row, mi_col },
+ { mi_row, blk_params.mi_col_edge },
+ { blk_params.mi_row_edge, blk_params.mi_col_edge } }
+ };
+
+ // Loop over AB partition types.
+ for (AB_PART_TYPE ab_part_type = start_type; ab_part_type <= end_type;
+ ab_part_type++) {
+ const PARTITION_TYPE part_type = ab_part_type + PARTITION_HORZ_A;
+
+ // Check if the AB partition search is to be performed.
+ if (!ab_partitions_allowed[ab_part_type]) {
+ continue;
+ }
+
+ blk_params.subsize = get_partition_subsize(bsize, part_type);
+ for (int i = 0; i < SUB_PARTITIONS_AB; i++) {
+ // Set AB partition context.
+ cur_part_ctxs[ab_part_type][i] = av1_alloc_pmc(
+ cpi, ab_subsize[ab_part_type][i], &td->shared_coeff_buf);
+ if (!cur_part_ctxs[ab_part_type][i])
+ aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ // Set mode as not ready.
+ cur_part_ctxs[ab_part_type][i]->rd_mode_is_ready = 0;
+ }
+
+ if (cpi->sf.part_sf.reuse_prev_rd_results_for_part_ab) {
+ // We can copy directly the mode search results if we have already
+ // searched the current block and the contexts match.
+ if (is_ctx_ready[ab_part_type][0]) {
+ av1_copy_tree_context(cur_part_ctxs[ab_part_type][0],
+ mode_srch_ctx[ab_part_type][0][0]);
+ cur_part_ctxs[ab_part_type][0]->mic.partition = part_type;
+ cur_part_ctxs[ab_part_type][0]->rd_mode_is_ready = 1;
+ if (is_ctx_ready[ab_part_type][1]) {
+ av1_copy_tree_context(cur_part_ctxs[ab_part_type][1],
+ mode_srch_ctx[ab_part_type][1][0]);
+ cur_part_ctxs[ab_part_type][1]->mic.partition = part_type;
+ cur_part_ctxs[ab_part_type][1]->rd_mode_is_ready = 1;
+ }
+ }
+ }
+
+ // Even if the contexts don't match, we can still speed up by reusing the
+ // previous prediction mode.
+ const MB_MODE_INFO *mode_cache[3] = { NULL, NULL, NULL };
+ if (cpi->sf.part_sf.reuse_best_prediction_for_part_ab) {
+ set_mode_cache_for_partition_ab(mode_cache, pc_tree, ab_part_type);
+ }
+
+ // Evaluation of AB partition type.
+ rd_pick_ab_part(cpi, td, tile_data, tp, x, x_ctx, pc_tree,
+ cur_part_ctxs[ab_part_type], part_search_state, best_rdc,
+ ab_subsize[ab_part_type], ab_mi_pos[ab_part_type],
+ part_type, mode_cache);
+ }
+}
+
+// Set mi positions for HORZ4 / VERT4 sub-block partitions.
+static void set_mi_pos_partition4(const int inc_step[NUM_PART4_TYPES],
+ int mi_pos[SUB_PARTITIONS_PART4][2],
+ const int mi_row, const int mi_col) {
+ for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; i++) {
+ mi_pos[i][0] = mi_row + i * inc_step[HORZ4];
+ mi_pos[i][1] = mi_col + i * inc_step[VERT4];
+ }
+}
+
+// Set context and RD cost for HORZ4 / VERT4 partition types.
+static void set_4_part_ctx_and_rdcost(
+ MACROBLOCK *x, const AV1_COMP *const cpi, ThreadData *td,
+ PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4],
+ PartitionSearchState *part_search_state, PARTITION_TYPE partition_type,
+ BLOCK_SIZE bsize) {
+ // Initialize sum_rdc RD cost structure.
+ av1_init_rd_stats(&part_search_state->sum_rdc);
+ const int subsize = get_partition_subsize(bsize, partition_type);
+ part_search_state->sum_rdc.rate =
+ part_search_state->partition_cost[partition_type];
+ part_search_state->sum_rdc.rdcost =
+ RDCOST(x->rdmult, part_search_state->sum_rdc.rate, 0);
+ for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) {
+ cur_part_ctx[i] = av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
+ if (!cur_part_ctx[i])
+ aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ }
+}
+
+// Partition search of HORZ4 / VERT4 partition types.
+static void rd_pick_4partition(
+ AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
+ TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
+ PC_TREE *pc_tree, PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4],
+ PartitionSearchState *part_search_state, RD_STATS *best_rdc,
+ const int inc_step[NUM_PART4_TYPES], PARTITION_TYPE partition_type) {
+ const AV1_COMMON *const cm = &cpi->common;
+ PartitionBlkParams blk_params = part_search_state->part_blk_params;
+ // mi positions needed for HORZ4 and VERT4 partition types.
+ int mi_pos_check[NUM_PART4_TYPES] = { cm->mi_params.mi_rows,
+ cm->mi_params.mi_cols };
+ const PART4_TYPES part4_idx = (partition_type != PARTITION_HORZ_4);
+ int mi_pos[SUB_PARTITIONS_PART4][2];
+
+ blk_params.subsize = get_partition_subsize(blk_params.bsize, partition_type);
+ // Set partition context and RD cost.
+ set_4_part_ctx_and_rdcost(x, cpi, td, cur_part_ctx, part_search_state,
+ partition_type, blk_params.bsize);
+ // Set mi positions for sub-block sizes.
+ set_mi_pos_partition4(inc_step, mi_pos, blk_params.mi_row, blk_params.mi_col);
+#if CONFIG_COLLECT_PARTITION_STATS
+ PartitionTimingStats *part_timing_stats =
+ &part_search_state->part_timing_stats;
+ if (best_rdc->rdcost - part_search_state->sum_rdc.rdcost >= 0) {
+ start_partition_block_timer(part_timing_stats, partition_type);
+ }
+#endif
+ // Loop over sub-block partitions.
+ for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) {
+ if (i > 0 && mi_pos[i][part4_idx] >= mi_pos_check[part4_idx]) break;
+
+ // Sub-block evaluation of Horz4 / Vert4 partition type.
+ cur_part_ctx[i]->rd_mode_is_ready = 0;
+ if (!rd_try_subblock(
+ cpi, td, tile_data, tp, (i == SUB_PARTITIONS_PART4 - 1),
+ mi_pos[i][0], mi_pos[i][1], blk_params.subsize, *best_rdc,
+ &part_search_state->sum_rdc, partition_type, cur_part_ctx[i])) {
+ av1_invalid_rd_stats(&part_search_state->sum_rdc);
+ break;
+ }
+ }
+
+ // Calculate the total cost and update the best partition.
+ av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc);
+ if (part_search_state->sum_rdc.rdcost < best_rdc->rdcost) {
+ *best_rdc = part_search_state->sum_rdc;
+ part_search_state->found_best_partition = true;
+ pc_tree->partitioning = partition_type;
+ }
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (part_timing_stats->timer_is_on) {
+ end_partition_block_timer(part_timing_stats, partition_type,
+ part_search_state->sum_rdc.rdcost);
+ }
+#endif
+ av1_restore_context(x, x_ctx, blk_params.mi_row, blk_params.mi_col,
+ blk_params.bsize, av1_num_planes(cm));
+}
+
+// Do not evaluate extended partitions if NONE partition is skippable.
+static INLINE int prune_ext_part_none_skippable(
+ PICK_MODE_CONTEXT *part_none, int must_find_valid_partition,
+ int skip_non_sq_part_based_on_none, BLOCK_SIZE bsize) {
+ if ((skip_non_sq_part_based_on_none >= 1) && (part_none != NULL)) {
+ if (part_none->skippable && !must_find_valid_partition &&
+ bsize >= BLOCK_16X16) {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+// Allow ab partition search
+static int allow_ab_partition_search(PartitionSearchState *part_search_state,
+ PARTITION_SPEED_FEATURES *part_sf,
+ PARTITION_TYPE curr_best_part,
+ int must_find_valid_partition,
+ int prune_ext_part_state,
+ int64_t best_rdcost) {
+ const PartitionBlkParams blk_params = part_search_state->part_blk_params;
+ const BLOCK_SIZE bsize = blk_params.bsize;
+
+ // Do not prune if there is no valid partition
+ if (best_rdcost == INT64_MAX) return 1;
+
+ // Determine bsize threshold to evaluate ab partitions
+ BLOCK_SIZE ab_bsize_thresh = part_sf->ext_partition_eval_thresh;
+ if (part_sf->ext_part_eval_based_on_cur_best && !must_find_valid_partition &&
+ !(curr_best_part == PARTITION_HORZ || curr_best_part == PARTITION_VERT))
+ ab_bsize_thresh = BLOCK_128X128;
+
+ // ab partitions are only allowed for square block sizes BLOCK_16X16 or
+ // higher, so ab_bsize_thresh must be large enough to exclude BLOCK_4X4 and
+ // BLOCK_8X8.
+ assert(ab_bsize_thresh >= BLOCK_8X8);
+
+ int ab_partition_allowed =
+ part_search_state->do_rectangular_split && bsize > ab_bsize_thresh &&
+ av1_blk_has_rows_and_cols(&blk_params) && !prune_ext_part_state;
+
+ return ab_partition_allowed;
+}
+
+// Prune 4-way partitions based on the number of horz/vert wins
+// in the current block and sub-blocks in PARTITION_SPLIT.
+static void prune_4_partition_using_split_info(
+ AV1_COMP *const cpi, MACROBLOCK *x, PartitionSearchState *part_search_state,
+ int part4_search_allowed[NUM_PART4_TYPES]) {
+ PART4_TYPES cur_part[NUM_PART4_TYPES] = { HORZ4, VERT4 };
+ // Count of child blocks in which HORZ or VERT partition has won
+ int num_child_rect_win[NUM_RECT_PARTS] = { 0, 0 };
+ // Prune HORZ4/VERT4 partitions based on number of HORZ/VERT winners of
+ // split partiitons.
+ // Conservative pruning for high quantizers.
+ const int num_win_thresh = AOMMIN(3 * (MAXQ - x->qindex) / MAXQ + 1, 3);
+
+ for (RECT_PART_TYPE i = HORZ; i < NUM_RECT_PARTS; i++) {
+ if (!(cpi->sf.part_sf.prune_ext_part_using_split_info &&
+ part4_search_allowed[cur_part[i]]))
+ continue;
+ // Loop over split partitions.
+ // Get rectangular partitions winner info of split partitions.
+ for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; idx++)
+ num_child_rect_win[i] +=
+ (part_search_state->split_part_rect_win[idx].rect_part_win[i]) ? 1
+ : 0;
+ if (num_child_rect_win[i] < num_win_thresh) {
+ part4_search_allowed[cur_part[i]] = 0;
+ }
+ }
+}
+
+// Prune 4-way partition search.
+static void prune_4_way_partition_search(
+ AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree,
+ PartitionSearchState *part_search_state, RD_STATS *best_rdc,
+ int pb_source_variance, int prune_ext_part_state,
+ int part4_search_allowed[NUM_PART4_TYPES]) {
+ const PartitionBlkParams blk_params = part_search_state->part_blk_params;
+ const BLOCK_SIZE bsize = blk_params.bsize;
+
+ // Do not prune if there is no valid partition
+ if (best_rdc->rdcost == INT64_MAX) return;
+
+ // Determine bsize threshold to evaluate 4-way partitions
+ BLOCK_SIZE part4_bsize_thresh = cpi->sf.part_sf.ext_partition_eval_thresh;
+ if (cpi->sf.part_sf.ext_part_eval_based_on_cur_best &&
+ !x->must_find_valid_partition && pc_tree->partitioning == PARTITION_NONE)
+ part4_bsize_thresh = BLOCK_128X128;
+
+ // 4-way partitions are only allowed for BLOCK_16X16, BLOCK_32X32, and
+ // BLOCK_64X64, so part4_bsize_thresh must be large enough to exclude
+ // BLOCK_4X4 and BLOCK_8X8.
+ assert(part4_bsize_thresh >= BLOCK_8X8);
+
+ bool partition4_allowed =
+ part_search_state->do_rectangular_split && bsize > part4_bsize_thresh &&
+ av1_blk_has_rows_and_cols(&blk_params) && !prune_ext_part_state;
+
+ // Disable 4-way partition search flags for width less than a multiple of the
+ // minimum partition width.
+ if (blk_params.width < (blk_params.min_partition_size_1d
+ << cpi->sf.part_sf.prune_part4_search)) {
+ part4_search_allowed[HORZ4] = 0;
+ part4_search_allowed[VERT4] = 0;
+ return;
+ }
+
+ PARTITION_TYPE cur_part[NUM_PART4_TYPES] = { PARTITION_HORZ_4,
+ PARTITION_VERT_4 };
+ const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg;
+ // partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or
+ // PARTITION_VERT_4 for this block. This is almost the same as
+ // partition4_allowed, except that we don't allow 128x32 or 32x128
+ // blocks, so we require that bsize is not BLOCK_128X128.
+ partition4_allowed &=
+ part_cfg->enable_1to4_partitions && bsize != BLOCK_128X128;
+
+ for (PART4_TYPES i = HORZ4; i < NUM_PART4_TYPES; i++) {
+ part4_search_allowed[i] =
+ partition4_allowed && part_search_state->partition_rect_allowed[i] &&
+ get_plane_block_size(get_partition_subsize(bsize, cur_part[i]),
+ part_search_state->ss_x,
+ part_search_state->ss_y) != BLOCK_INVALID;
+ }
+ // Pruning: pruning out 4-way partitions based on the current best partition.
+ if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 2) {
+ part4_search_allowed[HORZ4] &= (pc_tree->partitioning == PARTITION_HORZ ||
+ pc_tree->partitioning == PARTITION_HORZ_A ||
+ pc_tree->partitioning == PARTITION_HORZ_B ||
+ pc_tree->partitioning == PARTITION_SPLIT ||
+ pc_tree->partitioning == PARTITION_NONE);
+ part4_search_allowed[VERT4] &= (pc_tree->partitioning == PARTITION_VERT ||
+ pc_tree->partitioning == PARTITION_VERT_A ||
+ pc_tree->partitioning == PARTITION_VERT_B ||
+ pc_tree->partitioning == PARTITION_SPLIT ||
+ pc_tree->partitioning == PARTITION_NONE);
+ }
+
+ // Pruning: pruning out some 4-way partitions using a DNN taking rd costs of
+ // sub-blocks from basic partition types.
+ if (cpi->sf.part_sf.ml_prune_partition && partition4_allowed &&
+ part_search_state->partition_rect_allowed[HORZ] &&
+ part_search_state->partition_rect_allowed[VERT]) {
+ av1_ml_prune_4_partition(cpi, x, pc_tree->partitioning, best_rdc->rdcost,
+ part_search_state, part4_search_allowed,
+ pb_source_variance);
+ }
+
+ // Pruning: pruning out 4-way partitions based on the number of horz/vert wins
+ // in the current block and sub-blocks in PARTITION_SPLIT.
+ prune_4_partition_using_split_info(cpi, x, part_search_state,
+ part4_search_allowed);
+}
+
+// Set params needed for PARTITION_NONE search.
+static void set_none_partition_params(const AV1_COMP *const cpi, ThreadData *td,
+ MACROBLOCK *x, PC_TREE *pc_tree,
+ PartitionSearchState *part_search_state,
+ RD_STATS *best_remain_rdcost,
+ RD_STATS *best_rdc, int *pt_cost) {
+ PartitionBlkParams blk_params = part_search_state->part_blk_params;
+ RD_STATS partition_rdcost;
+ // Set PARTITION_NONE context.
+ if (pc_tree->none == NULL)
+ pc_tree->none = av1_alloc_pmc(cpi, blk_params.bsize, &td->shared_coeff_buf);
+ if (!pc_tree->none)
+ aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+
+ // Set PARTITION_NONE type cost.
+ if (part_search_state->partition_none_allowed) {
+ if (blk_params.bsize_at_least_8x8) {
+ *pt_cost = part_search_state->partition_cost[PARTITION_NONE] < INT_MAX
+ ? part_search_state->partition_cost[PARTITION_NONE]
+ : 0;
+ }
+
+ // Initialize the RD stats structure.
+ av1_init_rd_stats(&partition_rdcost);
+ partition_rdcost.rate = *pt_cost;
+ av1_rd_cost_update(x->rdmult, &partition_rdcost);
+ av1_rd_stats_subtraction(x->rdmult, best_rdc, &partition_rdcost,
+ best_remain_rdcost);
+ }
+}
+
+// Skip other partitions based on PARTITION_NONE rd cost.
+static void prune_partitions_after_none(AV1_COMP *const cpi, MACROBLOCK *x,
+ SIMPLE_MOTION_DATA_TREE *sms_tree,
+ PICK_MODE_CONTEXT *ctx_none,
+ PartitionSearchState *part_search_state,
+ RD_STATS *best_rdc,
+ unsigned int *pb_source_variance) {
+ const AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const PartitionBlkParams blk_params = part_search_state->part_blk_params;
+ RD_STATS *this_rdc = &part_search_state->this_rdc;
+ const BLOCK_SIZE bsize = blk_params.bsize;
+ assert(bsize < BLOCK_SIZES_ALL);
+
+ if (!frame_is_intra_only(cm) &&
+ (part_search_state->do_square_split ||
+ part_search_state->do_rectangular_split) &&
+ !x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) {
+ const int use_ml_based_breakout =
+ bsize <= cpi->sf.part_sf.use_square_partition_only_threshold &&
+ bsize > BLOCK_4X4 && cpi->sf.part_sf.ml_predict_breakout_level >= 1;
+ if (use_ml_based_breakout) {
+ av1_ml_predict_breakout(cpi, x, this_rdc, *pb_source_variance, xd->bd,
+ part_search_state);
+ }
+
+ // Adjust dist breakout threshold according to the partition size.
+ const int64_t dist_breakout_thr =
+ cpi->sf.part_sf.partition_search_breakout_dist_thr >>
+ ((2 * (MAX_SB_SIZE_LOG2 - 2)) -
+ (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]));
+ const int rate_breakout_thr =
+ cpi->sf.part_sf.partition_search_breakout_rate_thr *
+ num_pels_log2_lookup[bsize];
+ // If all y, u, v transform blocks in this partition are skippable,
+ // and the dist & rate are within the thresholds, the partition
+ // search is terminated for current branch of the partition search
+ // tree. The dist & rate thresholds are set to 0 at speed 0 to
+ // disable the early termination at that speed.
+ if (best_rdc->dist < dist_breakout_thr &&
+ best_rdc->rate < rate_breakout_thr) {
+ part_search_state->do_square_split = 0;
+ part_search_state->do_rectangular_split = 0;
+ }
+ }
+
+ // Early termination: using simple_motion_search features and the
+ // rate, distortion, and rdcost of PARTITION_NONE, a DNN will make a
+ // decision on early terminating at PARTITION_NONE.
+ if (cpi->sf.part_sf.simple_motion_search_early_term_none && cm->show_frame &&
+ !frame_is_intra_only(cm) && bsize >= BLOCK_16X16 &&
+ av1_blk_has_rows_and_cols(&blk_params) && this_rdc->rdcost < INT64_MAX &&
+ this_rdc->rdcost >= 0 && this_rdc->rate < INT_MAX &&
+ this_rdc->rate >= 0 &&
+ (part_search_state->do_square_split ||
+ part_search_state->do_rectangular_split)) {
+ av1_simple_motion_search_early_term_none(cpi, x, sms_tree, this_rdc,
+ part_search_state);
+ }
+}
+
+// Decide early termination and rectangular partition pruning
+// based on PARTITION_NONE and PARTITION_SPLIT costs.
+static void prune_partitions_after_split(
+ AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
+ PartitionSearchState *part_search_state, RD_STATS *best_rdc,
+ int64_t part_none_rd, int64_t part_split_rd) {
+ const AV1_COMMON *const cm = &cpi->common;
+ PartitionBlkParams blk_params = part_search_state->part_blk_params;
+ const int mi_row = blk_params.mi_row;
+ const int mi_col = blk_params.mi_col;
+ const BLOCK_SIZE bsize = blk_params.bsize;
+ assert(bsize < BLOCK_SIZES_ALL);
+
+ // Early termination: using the rd costs of PARTITION_NONE and subblocks
+ // from PARTITION_SPLIT to determine an early breakout.
+ if (cpi->sf.part_sf.ml_early_term_after_part_split_level &&
+ !frame_is_intra_only(cm) &&
+ !part_search_state->terminate_partition_search &&
+ part_search_state->do_rectangular_split &&
+ (part_search_state->partition_rect_allowed[HORZ] ||
+ part_search_state->partition_rect_allowed[VERT])) {
+ av1_ml_early_term_after_split(
+ cpi, x, sms_tree, best_rdc->rdcost, part_none_rd, part_split_rd,
+ part_search_state->split_rd, part_search_state);
+ }
+
+ // Use the rd costs of PARTITION_NONE and subblocks from PARTITION_SPLIT
+ // to prune out rectangular partitions in some directions.
+ if (!cpi->sf.part_sf.ml_early_term_after_part_split_level &&
+ cpi->sf.part_sf.ml_prune_partition && !frame_is_intra_only(cm) &&
+ (part_search_state->partition_rect_allowed[HORZ] ||
+ part_search_state->partition_rect_allowed[VERT]) &&
+ !(part_search_state->prune_rect_part[HORZ] ||
+ part_search_state->prune_rect_part[VERT]) &&
+ !part_search_state->terminate_partition_search) {
+ av1_setup_src_planes(x, cpi->source, mi_row, mi_col, av1_num_planes(cm),
+ bsize);
+ av1_ml_prune_rect_partition(cpi, x, best_rdc->rdcost,
+ part_search_state->none_rd,
+ part_search_state->split_rd, part_search_state);
+ }
+}
+
+// Returns true if either of the left and top neighbor blocks is larger than
+// the current block; false otherwise.
+static AOM_INLINE bool is_neighbor_blk_larger_than_cur_blk(
+ const MACROBLOCKD *xd, BLOCK_SIZE bsize) {
+ const int cur_blk_area = (block_size_high[bsize] * block_size_wide[bsize]);
+ if (xd->left_available) {
+ const BLOCK_SIZE left_bsize = xd->left_mbmi->bsize;
+ if (block_size_high[left_bsize] * block_size_wide[left_bsize] >
+ cur_blk_area)
+ return true;
+ }
+
+ if (xd->up_available) {
+ const BLOCK_SIZE above_bsize = xd->above_mbmi->bsize;
+ if (block_size_high[above_bsize] * block_size_wide[above_bsize] >
+ cur_blk_area)
+ return true;
+ }
+ return false;
+}
+
+static AOM_INLINE void prune_rect_part_using_none_pred_mode(
+ const MACROBLOCKD *xd, PartitionSearchState *part_state,
+ PREDICTION_MODE mode, BLOCK_SIZE bsize) {
+ if (mode == DC_PRED || mode == SMOOTH_PRED) {
+ // If the prediction mode of NONE partition is either DC_PRED or
+ // SMOOTH_PRED, it indicates that the current block has less variation. In
+ // this case, HORZ and VERT partitions are pruned if at least one of left
+ // and top neighbor blocks is larger than the current block.
+ if (is_neighbor_blk_larger_than_cur_blk(xd, bsize)) {
+ part_state->prune_rect_part[HORZ] = 1;
+ part_state->prune_rect_part[VERT] = 1;
+ }
+ } else if (mode == D67_PRED || mode == V_PRED || mode == D113_PRED) {
+ // If the prediction mode chosen by NONE partition is close to 90 degrees,
+ // it implies a dominant vertical pattern, and the chance of choosing a
+ // vertical rectangular partition is high. Hence, horizontal partition is
+ // pruned in these cases.
+ part_state->prune_rect_part[HORZ] = 1;
+ } else if (mode == D157_PRED || mode == H_PRED || mode == D203_PRED) {
+ // If the prediction mode chosen by NONE partition is close to 180 degrees,
+ // it implies a dominant horizontal pattern, and the chance of choosing a
+ // horizontal rectangular partition is high. Hence, vertical partition is
+ // pruned in these cases.
+ part_state->prune_rect_part[VERT] = 1;
+ }
+}
+
+// PARTITION_NONE search.
+static void none_partition_search(
+ AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, MACROBLOCK *x,
+ PC_TREE *pc_tree, SIMPLE_MOTION_DATA_TREE *sms_tree,
+ RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
+ PartitionSearchState *part_search_state, RD_STATS *best_rdc,
+ unsigned int *pb_source_variance, int64_t *none_rd, int64_t *part_none_rd) {
+ const AV1_COMMON *const cm = &cpi->common;
+ PartitionBlkParams blk_params = part_search_state->part_blk_params;
+ RD_STATS *this_rdc = &part_search_state->this_rdc;
+ const int mi_row = blk_params.mi_row;
+ const int mi_col = blk_params.mi_col;
+ const BLOCK_SIZE bsize = blk_params.bsize;
+ assert(bsize < BLOCK_SIZES_ALL);
+
+ if (part_search_state->terminate_partition_search ||
+ !part_search_state->partition_none_allowed)
+ return;
+
+ int pt_cost = 0;
+ RD_STATS best_remain_rdcost;
+ av1_invalid_rd_stats(&best_remain_rdcost);
+
+ // Set PARTITION_NONE context and cost.
+ set_none_partition_params(cpi, td, x, pc_tree, part_search_state,
+ &best_remain_rdcost, best_rdc, &pt_cost);
+
+#if CONFIG_COLLECT_PARTITION_STATS
+ // Timer start for partition None.
+ PartitionTimingStats *part_timing_stats =
+ &part_search_state->part_timing_stats;
+ if (best_remain_rdcost.rdcost >= 0) {
+ start_partition_block_timer(part_timing_stats, PARTITION_NONE);
+ }
+#endif
+ // PARTITION_NONE evaluation and cost update.
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, this_rdc, PARTITION_NONE,
+ bsize, pc_tree->none, best_remain_rdcost);
+
+ av1_rd_cost_update(x->rdmult, this_rdc);
+
+#if CONFIG_COLLECT_PARTITION_STATS
+ // Timer end for partition None.
+ if (part_timing_stats->timer_is_on) {
+ RD_STATS tmp_rdc;
+ av1_init_rd_stats(&tmp_rdc);
+ if (this_rdc->rate != INT_MAX) {
+ tmp_rdc.rate = this_rdc->rate;
+ tmp_rdc.dist = this_rdc->dist;
+ tmp_rdc.rdcost = this_rdc->rdcost;
+ if (blk_params.bsize_at_least_8x8) {
+ tmp_rdc.rate += pt_cost;
+ tmp_rdc.rdcost = RDCOST(x->rdmult, tmp_rdc.rate, tmp_rdc.dist);
+ }
+ }
+ end_partition_block_timer(part_timing_stats, PARTITION_NONE,
+ tmp_rdc.rdcost);
+ }
+#endif
+ *pb_source_variance = x->source_variance;
+ if (none_rd) *none_rd = this_rdc->rdcost;
+ part_search_state->none_rd = this_rdc->rdcost;
+ if (this_rdc->rate != INT_MAX) {
+ // Record picked ref frame to prune ref frames for other partition types.
+ if (cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions) {
+ const int ref_type = av1_ref_frame_type(pc_tree->none->mic.ref_frame);
+ av1_update_picked_ref_frames_mask(
+ x, ref_type, bsize, cm->seq_params->mib_size, mi_row, mi_col);
+ }
+
+ // Calculate the total cost and update the best partition.
+ if (blk_params.bsize_at_least_8x8) {
+ this_rdc->rate += pt_cost;
+ this_rdc->rdcost = RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist);
+ }
+ *part_none_rd = this_rdc->rdcost;
+ if (this_rdc->rdcost < best_rdc->rdcost) {
+ *best_rdc = *this_rdc;
+ part_search_state->found_best_partition = true;
+ if (blk_params.bsize_at_least_8x8) {
+ pc_tree->partitioning = PARTITION_NONE;
+ }
+
+ // Disable split and rectangular partition search
+ // based on PARTITION_NONE cost.
+ prune_partitions_after_none(cpi, x, sms_tree, pc_tree->none,
+ part_search_state, best_rdc,
+ pb_source_variance);
+ }
+
+ if (cpi->sf.part_sf.prune_rect_part_using_none_pred_mode)
+ prune_rect_part_using_none_pred_mode(&x->e_mbd, part_search_state,
+ pc_tree->none->mic.mode, bsize);
+ }
+ av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
+}
+
+// PARTITION_SPLIT search.
+static void split_partition_search(
+ AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
+ TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree,
+ SIMPLE_MOTION_DATA_TREE *sms_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
+ PartitionSearchState *part_search_state, RD_STATS *best_rdc,
+ SB_MULTI_PASS_MODE multi_pass_mode, int64_t *part_split_rd) {
+ const AV1_COMMON *const cm = &cpi->common;
+ PartitionBlkParams blk_params = part_search_state->part_blk_params;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ const int mi_row = blk_params.mi_row;
+ const int mi_col = blk_params.mi_col;
+ const BLOCK_SIZE bsize = blk_params.bsize;
+ assert(bsize < BLOCK_SIZES_ALL);
+ RD_STATS sum_rdc = part_search_state->sum_rdc;
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+
+ // Check if partition split is allowed.
+ if (part_search_state->terminate_partition_search ||
+ !part_search_state->do_square_split)
+ return;
+
+ for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
+ if (pc_tree->split[i] == NULL)
+ pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
+ if (!pc_tree->split[i])
+ aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PC_TREE");
+ pc_tree->split[i]->index = i;
+ }
+
+ // Initialization of this partition RD stats.
+ av1_init_rd_stats(&sum_rdc);
+ sum_rdc.rate = part_search_state->partition_cost[PARTITION_SPLIT];
+ sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
+
+ int idx;
+#if CONFIG_COLLECT_PARTITION_STATS
+ PartitionTimingStats *part_timing_stats =
+ &part_search_state->part_timing_stats;
+ if (best_rdc->rdcost - sum_rdc.rdcost >= 0) {
+ start_partition_block_timer(part_timing_stats, PARTITION_SPLIT);
+ }
+#endif
+ // Recursive partition search on 4 sub-blocks.
+ for (idx = 0; idx < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc->rdcost;
+ ++idx) {
+ const int x_idx = (idx & 1) * blk_params.mi_step;
+ const int y_idx = (idx >> 1) * blk_params.mi_step;
+
+ if (mi_row + y_idx >= mi_params->mi_rows ||
+ mi_col + x_idx >= mi_params->mi_cols)
+ continue;
+
+ pc_tree->split[idx]->index = idx;
+ int64_t *p_split_rd = &part_search_state->split_rd[idx];
+ RD_STATS best_remain_rdcost;
+ av1_rd_stats_subtraction(x->rdmult, best_rdc, &sum_rdc,
+ &best_remain_rdcost);
+
+ int curr_quad_tree_idx = 0;
+ if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
+ curr_quad_tree_idx = part_search_state->intra_part_info->quad_tree_idx;
+ part_search_state->intra_part_info->quad_tree_idx =
+ 4 * curr_quad_tree_idx + idx + 1;
+ }
+ // Split partition evaluation of corresponding idx.
+ // If the RD cost exceeds the best cost then do not
+ // evaluate other split sub-partitions.
+ SIMPLE_MOTION_DATA_TREE *const sms_tree_split =
+ (sms_tree == NULL) ? NULL : sms_tree->split[idx];
+ if (!av1_rd_pick_partition(
+ cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize,
+ &part_search_state->this_rdc, best_remain_rdcost,
+ pc_tree->split[idx], sms_tree_split, p_split_rd, multi_pass_mode,
+ &part_search_state->split_part_rect_win[idx])) {
+ av1_invalid_rd_stats(&sum_rdc);
+ break;
+ }
+ if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
+ part_search_state->intra_part_info->quad_tree_idx = curr_quad_tree_idx;
+ }
+
+ sum_rdc.rate += part_search_state->this_rdc.rate;
+ sum_rdc.dist += part_search_state->this_rdc.dist;
+ av1_rd_cost_update(x->rdmult, &sum_rdc);
+
+ // Set split ctx as ready for use.
+ if (idx <= 1 && (bsize <= BLOCK_8X8 ||
+ pc_tree->split[idx]->partitioning == PARTITION_NONE)) {
+ const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none->mic;
+ const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ // Neither palette mode nor cfl predicted.
+ if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) {
+ if (mbmi->uv_mode != UV_CFL_PRED)
+ part_search_state->is_split_ctx_is_ready[idx] = 1;
+ }
+ }
+ }
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (part_timing_stats->timer_is_on) {
+ end_partition_block_timer(part_timing_stats, PARTITION_SPLIT,
+ sum_rdc.rdcost);
+ }
+#endif
+ const int reached_last_index = (idx == SUB_PARTITIONS_SPLIT);
+
+ // Calculate the total cost and update the best partition.
+ *part_split_rd = sum_rdc.rdcost;
+ if (reached_last_index && sum_rdc.rdcost < best_rdc->rdcost) {
+ sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
+ if (sum_rdc.rdcost < best_rdc->rdcost) {
+ *best_rdc = sum_rdc;
+ part_search_state->found_best_partition = true;
+ pc_tree->partitioning = PARTITION_SPLIT;
+ }
+ } else if (cpi->sf.part_sf.less_rectangular_check_level > 0) {
+ // Skip rectangular partition test when partition type none gives better
+ // rd than partition type split.
+ if (cpi->sf.part_sf.less_rectangular_check_level == 2 || idx <= 2) {
+ const int partition_none_valid = part_search_state->none_rd > 0;
+ const int partition_none_better =
+ part_search_state->none_rd < sum_rdc.rdcost;
+ part_search_state->do_rectangular_split &=
+ !(partition_none_valid && partition_none_better);
+ }
+ }
+ // Restore the context for the following cases:
+ // 1) Current block size not more than maximum partition size as dry run
+ // encode happens for these cases
+ // 2) Current block size same as superblock size as the final encode
+ // happens for this case
+ if (bsize <= x->sb_enc.max_partition_size || bsize == cm->seq_params->sb_size)
+ av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
+}
+
+// The max number of nodes in the partition tree.
+// The number of leaf nodes is (128x128) / (4x4) = 1024.
+// The number of All possible parent nodes is 1 + 2 + ... + 512 = 1023.
+#define NUM_NODES 2048
+
+static void write_partition_tree(AV1_COMP *const cpi,
+ const PC_TREE *const pc_tree,
+ const BLOCK_SIZE bsize, const int mi_row,
+ const int mi_col) {
+ (void)mi_row;
+ (void)mi_col;
+ const char *path = cpi->oxcf.partition_info_path;
+ char filename[256];
+ snprintf(filename, sizeof(filename), "%s/partition_tree_sb%d_c%d", path,
+ cpi->sb_counter, 0);
+ FILE *pfile = fopen(filename, "w");
+ fprintf(pfile, "%d", bsize);
+
+ // Write partition type with BFS order.
+ const PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
+ int q_idx = 0;
+ int last_idx = 1;
+ int num_nodes = 1;
+
+ // First traversal to get number of leaf nodes.
+ tree_node_queue[q_idx] = pc_tree;
+ while (num_nodes > 0) {
+ const PC_TREE *node = tree_node_queue[q_idx];
+ if (node->partitioning == PARTITION_SPLIT) {
+ for (int i = 0; i < 4; ++i) {
+ tree_node_queue[last_idx] = node->split[i];
+ ++last_idx;
+ }
+ num_nodes += 4;
+ }
+ --num_nodes;
+ ++q_idx;
+ }
+ const int num_leafs = last_idx;
+ fprintf(pfile, ",%d,%d", num_leafs, /*num_configs=*/1);
+
+ // Write partitions for each node.
+ q_idx = 0;
+ last_idx = 1;
+ num_nodes = 1;
+ tree_node_queue[q_idx] = pc_tree;
+ while (num_nodes > 0) {
+ const PC_TREE *node = tree_node_queue[q_idx];
+ fprintf(pfile, ",%d", node->partitioning);
+ if (node->partitioning == PARTITION_SPLIT) {
+ for (int i = 0; i < 4; ++i) {
+ tree_node_queue[last_idx] = node->split[i];
+ ++last_idx;
+ }
+ num_nodes += 4;
+ }
+ --num_nodes;
+ ++q_idx;
+ }
+ fprintf(pfile, "\n");
+
+ fclose(pfile);
+}
+
+#if CONFIG_PARTITION_SEARCH_ORDER
+static void verify_write_partition_tree(const AV1_COMP *const cpi,
+ const PC_TREE *const pc_tree,
+ const BLOCK_SIZE bsize,
+ const int config_id, const int mi_row,
+ const int mi_col) {
+ (void)mi_row;
+ (void)mi_col;
+ const char *path = cpi->oxcf.partition_info_path;
+ char filename[256];
+ snprintf(filename, sizeof(filename), "%s/verify_partition_tree_sb%d_c%d",
+ path, cpi->sb_counter, config_id);
+ FILE *pfile = fopen(filename, "w");
+ fprintf(pfile, "%d", bsize);
+
+ // Write partition type with BFS order.
+ const PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
+ int q_idx = 0;
+ int last_idx = 1;
+ int num_nodes = 1;
+
+ // First traversal to get number of leaf nodes.
+ tree_node_queue[q_idx] = pc_tree;
+ while (num_nodes > 0) {
+ const PC_TREE *node = tree_node_queue[q_idx];
+ if (node != NULL && node->partitioning == PARTITION_SPLIT) {
+ for (int i = 0; i < 4; ++i) {
+ tree_node_queue[last_idx] = node->split[i];
+ ++last_idx;
+ }
+ num_nodes += 4;
+ }
+ --num_nodes;
+ ++q_idx;
+ }
+ const int num_leafs = last_idx;
+ fprintf(pfile, ",%d,%d", num_leafs, /*num_configs=*/1);
+
+ // Write partitions for each node.
+ q_idx = 0;
+ last_idx = 1;
+ num_nodes = 1;
+ tree_node_queue[q_idx] = pc_tree;
+ while (num_nodes > 0) {
+ const PC_TREE *node = tree_node_queue[q_idx];
+ if (node != NULL) { // suppress warning
+ fprintf(pfile, ",%d", node->partitioning);
+ if (node->partitioning == PARTITION_SPLIT) {
+ for (int i = 0; i < 4; ++i) {
+ tree_node_queue[last_idx] = node->split[i];
+ ++last_idx;
+ }
+ num_nodes += 4;
+ }
+ }
+ --num_nodes;
+ ++q_idx;
+ }
+ fprintf(pfile, "\n");
+
+ fclose(pfile);
+}
+
+static int read_partition_tree(AV1_COMP *const cpi, PC_TREE *const pc_tree,
+ struct aom_internal_error_info *error_info,
+ const int config_id) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const char *path = cpi->oxcf.partition_info_path;
+ char filename[256];
+ snprintf(filename, sizeof(filename), "%s/partition_tree_sb%d_c%d", path,
+ cpi->sb_counter, config_id);
+ FILE *pfile = fopen(filename, "r");
+ if (pfile == NULL) {
+ aom_internal_error(cm->error, AOM_CODEC_ERROR, "Can't find input file: %s.",
+ filename);
+ }
+
+ int read_bsize;
+ int num_nodes;
+ int num_configs;
+ fscanf(pfile, "%d,%d,%d", &read_bsize, &num_nodes, &num_configs);
+ assert(read_bsize == cpi->common.seq_params->sb_size);
+ BLOCK_SIZE bsize = (BLOCK_SIZE)read_bsize;
+ assert(bsize == pc_tree->block_size);
+
+ PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
+ int last_idx = 1;
+ int q_idx = 0;
+ tree_node_queue[q_idx] = pc_tree;
+ while (num_nodes > 0) {
+ int partitioning;
+ fscanf(pfile, ",%d", &partitioning);
+ assert(partitioning >= PARTITION_NONE &&
+ partitioning < EXT_PARTITION_TYPES);
+ PC_TREE *node = tree_node_queue[q_idx];
+ if (node != NULL) {
+ node->partitioning = partitioning;
+ bsize = node->block_size;
+ }
+ if (partitioning == PARTITION_SPLIT) {
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ for (int i = 0; i < 4; ++i) {
+ if (node != NULL) { // Suppress warning
+ node->split[i] = av1_alloc_pc_tree_node(subsize);
+ if (!node->split[i])
+ aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PC_TREE");
+ node->split[i]->index = i;
+ tree_node_queue[last_idx] = node->split[i];
+ ++last_idx;
+ }
+ }
+ }
+ --num_nodes;
+ ++q_idx;
+ }
+ fclose(pfile);
+
+ return num_configs;
+}
+
+static RD_STATS rd_search_for_fixed_partition(
+ AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
+ TokenExtra **tp, SIMPLE_MOTION_DATA_TREE *sms_tree, int mi_row, int mi_col,
+ const BLOCK_SIZE bsize, PC_TREE *pc_tree) {
+ const PARTITION_TYPE partition = pc_tree->partitioning;
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ RD_STATS best_rdc;
+ av1_invalid_rd_stats(&best_rdc);
+ int sum_subblock_rate = 0;
+ int64_t sum_subblock_dist = 0;
+ PartitionSearchState part_search_state;
+ init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col,
+ bsize);
+ // Override partition costs at the edges of the frame in the same
+ // way as in read_partition (see decodeframe.c).
+ PartitionBlkParams blk_params = part_search_state.part_blk_params;
+ if (!av1_blk_has_rows_and_cols(&blk_params))
+ set_partition_cost_for_edge_blk(cm, &part_search_state);
+
+ av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+
+ // Save rdmult before it might be changed, so it can be restored later.
+ const int orig_rdmult = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
+ (void)orig_rdmult;
+
+ // Set the context.
+ RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+ av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+
+ assert(bsize < BLOCK_SIZES_ALL);
+ unsigned int pb_source_variance = UINT_MAX;
+ int64_t part_none_rd = INT64_MAX;
+ int64_t none_rd = INT64_MAX;
+ int inc_step[NUM_PART4_TYPES] = { 0 };
+ if (partition == PARTITION_HORZ_4) inc_step[HORZ4] = mi_size_high[bsize] / 4;
+ if (partition == PARTITION_VERT_4) inc_step[VERT4] = mi_size_wide[bsize] / 4;
+
+ switch (partition) {
+ case PARTITION_NONE:
+ none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx,
+ &part_search_state, &best_rdc, &pb_source_variance,
+ &none_rd, &part_none_rd);
+ break;
+ case PARTITION_HORZ:
+ rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx,
+ &part_search_state, &best_rdc, NULL, HORZ,
+ HORZ);
+ break;
+ case PARTITION_VERT:
+ rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx,
+ &part_search_state, &best_rdc, NULL, VERT,
+ VERT);
+ break;
+ case PARTITION_HORZ_A:
+ ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
+ &part_search_state, &best_rdc, NULL,
+ pb_source_variance, 1, HORZ_A, HORZ_A);
+ break;
+ case PARTITION_HORZ_B:
+ ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
+ &part_search_state, &best_rdc, NULL,
+ pb_source_variance, 1, HORZ_B, HORZ_B);
+ break;
+ case PARTITION_VERT_A:
+ ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
+ &part_search_state, &best_rdc, NULL,
+ pb_source_variance, 1, VERT_A, VERT_A);
+ break;
+ case PARTITION_VERT_B:
+ ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
+ &part_search_state, &best_rdc, NULL,
+ pb_source_variance, 1, VERT_B, VERT_B);
+ break;
+ case PARTITION_HORZ_4:
+ rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
+ pc_tree->horizontal4, &part_search_state, &best_rdc,
+ inc_step, PARTITION_HORZ_4);
+ break;
+ case PARTITION_VERT_4:
+ rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
+ pc_tree->vertical4, &part_search_state, &best_rdc,
+ inc_step, PARTITION_VERT_4);
+ break;
+ case PARTITION_SPLIT:
+ for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; ++idx) {
+ const BLOCK_SIZE subsize =
+ get_partition_subsize(bsize, PARTITION_SPLIT);
+ assert(subsize < BLOCK_SIZES_ALL);
+ const int next_mi_row =
+ idx < 2 ? mi_row : mi_row + mi_size_high[subsize];
+ const int next_mi_col =
+ idx % 2 == 0 ? mi_col : mi_col + mi_size_wide[subsize];
+ if (next_mi_row >= cm->mi_params.mi_rows ||
+ next_mi_col >= cm->mi_params.mi_cols) {
+ continue;
+ }
+ const RD_STATS subblock_rdc = rd_search_for_fixed_partition(
+ cpi, td, tile_data, tp, sms_tree->split[idx], next_mi_row,
+ next_mi_col, subsize, pc_tree->split[idx]);
+ sum_subblock_rate += subblock_rdc.rate;
+ sum_subblock_dist += subblock_rdc.dist;
+ }
+ best_rdc.rate = sum_subblock_rate;
+ best_rdc.rate += part_search_state.partition_cost[PARTITION_SPLIT];
+ best_rdc.dist = sum_subblock_dist;
+ best_rdc.rdcost = RDCOST(x->rdmult, best_rdc.rate, best_rdc.dist);
+ break;
+ default:
+ assert(0 && "invalid partition type.");
+ aom_internal_error(cm->error, AOM_CODEC_ERROR, "Invalid partition type.");
+ }
+ // Note: it is necessary to restore context information.
+ av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+
+ if (bsize != cm->seq_params->sb_size) {
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
+ pc_tree, NULL);
+ }
+ x->rdmult = orig_rdmult;
+
+ return best_rdc;
+}
+
+static void prepare_sb_features_before_search(
+ AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, int mi_row,
+ int mi_col, const BLOCK_SIZE bsize, aom_partition_features_t *features) {
+ av1_collect_motion_search_features_sb(cpi, td, tile_data, mi_row, mi_col,
+ bsize, features);
+ collect_tpl_stats_sb(cpi, bsize, mi_row, mi_col, features);
+}
+
+static void update_partition_stats(const RD_STATS *const this_rdcost,
+ aom_partition_stats_t *stats) {
+ stats->rate = this_rdcost->rate;
+ stats->dist = this_rdcost->dist;
+ stats->rdcost = this_rdcost->rdcost;
+}
+
+static void build_pc_tree_from_part_decision(
+ const aom_partition_decision_t *partition_decision,
+ const BLOCK_SIZE this_bsize, PC_TREE *pc_tree,
+ struct aom_internal_error_info *error_info) {
+ BLOCK_SIZE bsize = this_bsize;
+ int num_nodes = partition_decision->num_nodes;
+ PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
+ int last_idx = 1;
+ int q_idx = 0;
+ tree_node_queue[q_idx] = pc_tree;
+ while (num_nodes > 0) {
+ const int partitioning = partition_decision->partition_decision[q_idx];
+ assert(partitioning >= PARTITION_NONE &&
+ partitioning < EXT_PARTITION_TYPES);
+ PC_TREE *node = tree_node_queue[q_idx];
+ if (node != NULL) {
+ node->partitioning = partitioning;
+ bsize = node->block_size;
+ }
+ if (partitioning == PARTITION_SPLIT) {
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ for (int i = 0; i < 4; ++i) {
+ if (node != NULL) { // Suppress warning
+ node->split[i] = av1_alloc_pc_tree_node(subsize);
+ if (!node->split[i])
+ aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PC_TREE");
+ node->split[i]->index = i;
+ tree_node_queue[last_idx] = node->split[i];
+ ++last_idx;
+ }
+ }
+ }
+ --num_nodes;
+ ++q_idx;
+ }
+}
+
+// The ML model needs to provide the whole decision tree for the superblock.
+static bool ml_partition_search_whole_tree(AV1_COMP *const cpi, ThreadData *td,
+ TileDataEnc *tile_data,
+ TokenExtra **tp,
+ SIMPLE_MOTION_DATA_TREE *sms_root,
+ int mi_row, int mi_col,
+ const BLOCK_SIZE bsize) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &td->mb;
+ ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
+ struct aom_internal_error_info *error_info = x->e_mbd.error_info;
+ aom_partition_features_t features;
+ prepare_sb_features_before_search(cpi, td, tile_data, mi_row, mi_col, bsize,
+ &features);
+ features.mi_row = mi_row;
+ features.mi_col = mi_col;
+ features.frame_width = cpi->frame_info.frame_width;
+ features.frame_height = cpi->frame_info.frame_height;
+ features.block_size = bsize;
+ av1_ext_part_send_features(ext_part_controller, &features);
+
+ // rd mode search (dry run) for a valid partition decision from the ml model.
+ aom_partition_decision_t partition_decision;
+ do {
+ const bool valid_decision = av1_ext_part_get_partition_decision(
+ ext_part_controller, &partition_decision);
+ if (!valid_decision) return false;
+
+ // First, let's take the easy approach.
+ // We require that the ml model has to provide partition decisions for the
+ // whole superblock.
+ td->pc_root = av1_alloc_pc_tree_node(bsize);
+ if (!td->pc_root)
+ aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PC_TREE");
+ build_pc_tree_from_part_decision(&partition_decision, bsize, td->pc_root,
+ error_info);
+
+ const RD_STATS this_rdcost = rd_search_for_fixed_partition(
+ cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, td->pc_root);
+ aom_partition_stats_t stats;
+ update_partition_stats(&this_rdcost, &stats);
+ av1_ext_part_send_partition_stats(ext_part_controller, &stats);
+ if (!partition_decision.is_final_decision) {
+ av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
+ cpi->sf.part_sf.partition_search_type);
+ td->pc_root = NULL;
+ }
+ } while (!partition_decision.is_final_decision);
+
+ // Encode with the selected mode and partition.
+ set_cb_offsets(x->cb_offset, 0, 0);
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
+ td->pc_root, NULL);
+ av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
+ cpi->sf.part_sf.partition_search_type);
+ td->pc_root = NULL;
+
+ return true;
+}
+
+// Use a bitmask to represent the valid partition types for the current
+// block. "1" represents the corresponding partition type is vaild.
+// The least significant bit represents "PARTITION_NONE", the
+// largest significant bit represents "PARTITION_VERT_4", follow
+// the enum order for PARTITION_TYPE in "enums.h"
+static int get_valid_partition_types(
+ const AV1_COMP *const cpi,
+ const PartitionSearchState *const part_search_state,
+ const BLOCK_SIZE bsize) {
+ const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg;
+ const PartitionBlkParams blk_params = part_search_state->part_blk_params;
+ int valid_types = 0;
+ // PARTITION_NONE
+ valid_types |= (part_search_state->partition_none_allowed << 0);
+ // PARTITION_HORZ
+ valid_types |= (part_search_state->partition_rect_allowed[HORZ] << 1);
+ // PARTITION_VERT
+ valid_types |= (part_search_state->partition_rect_allowed[VERT] << 2);
+ // PARTITION_SPLIT
+ valid_types |= (part_search_state->do_square_split << 3);
+ // PARTITION_HORZ_A
+ const int ext_partition_allowed = part_search_state->do_rectangular_split &&
+ av1_blk_has_rows_and_cols(&blk_params);
+ const int horzab_partition_allowed =
+ ext_partition_allowed && part_cfg->enable_ab_partitions &&
+ part_search_state->partition_rect_allowed[HORZ];
+ valid_types |= (horzab_partition_allowed << 4);
+ // PARTITION_HORZ_B
+ valid_types |= (horzab_partition_allowed << 5);
+ // PARTITION_VERT_A
+ const int vertab_partition_allowed =
+ ext_partition_allowed && part_cfg->enable_ab_partitions &&
+ part_search_state->partition_rect_allowed[VERT];
+ valid_types |= (vertab_partition_allowed << 6);
+ // PARTITION_VERT_B
+ valid_types |= (vertab_partition_allowed << 7);
+ // PARTITION_HORZ_4
+ const int partition4_allowed = part_cfg->enable_1to4_partitions &&
+ ext_partition_allowed &&
+ bsize != BLOCK_128X128;
+ const int horz4_allowed =
+ partition4_allowed && part_search_state->partition_rect_allowed[HORZ] &&
+ get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ_4),
+ part_search_state->ss_x,
+ part_search_state->ss_y) != BLOCK_INVALID;
+ valid_types |= (horz4_allowed << 8);
+ // PARTITION_VERT_4
+ const int vert4_allowed =
+ partition4_allowed && part_search_state->partition_rect_allowed[HORZ] &&
+ get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT_4),
+ part_search_state->ss_x,
+ part_search_state->ss_y) != BLOCK_INVALID;
+ valid_types |= (vert4_allowed << 9);
+
+ return valid_types;
+}
+
+static void prepare_tpl_stats_block(const AV1_COMP *const cpi,
+ const BLOCK_SIZE bsize, const int mi_row,
+ const int mi_col, int64_t *intra_cost,
+ int64_t *inter_cost, int64_t *mc_dep_cost) {
+ const AV1_COMMON *const cm = &cpi->common;
+ GF_GROUP *gf_group = &cpi->ppi->gf_group;
+ if (gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE ||
+ gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) {
+ return;
+ }
+
+ TplParams *const tpl_data = &cpi->ppi->tpl_data;
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[cpi->gf_frame_index];
+ TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+ // If tpl stats is not established, early return
+ if (!tpl_data->ready || gf_group->max_layer_depth_allowed == 0) {
+ return;
+ }
+
+ const int tpl_stride = tpl_frame->stride;
+ const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
+ const int mi_width =
+ AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
+ const int mi_height =
+ AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
+
+ int64_t sum_intra_cost = 0;
+ int64_t sum_inter_cost = 0;
+ int64_t sum_mc_dep_cost = 0;
+ for (int row = 0; row < mi_height; row += step) {
+ for (int col = 0; col < mi_width; col += step) {
+ TplDepStats *this_stats =
+ &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
+ tpl_data->tpl_stats_block_mis_log2)];
+ sum_intra_cost += this_stats->intra_cost;
+ sum_inter_cost += this_stats->inter_cost;
+ const int64_t mc_dep_delta =
+ RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
+ this_stats->mc_dep_dist);
+ sum_mc_dep_cost += mc_dep_delta;
+ }
+ }
+
+ *intra_cost = sum_intra_cost;
+ *inter_cost = sum_inter_cost;
+ *mc_dep_cost = sum_mc_dep_cost;
+}
+
+static bool recursive_partition(AV1_COMP *const cpi, ThreadData *td,
+ TileDataEnc *tile_data, TokenExtra **tp,
+ SIMPLE_MOTION_DATA_TREE *sms_root,
+ PC_TREE *pc_tree, int mi_row, int mi_col,
+ const BLOCK_SIZE bsize, RD_STATS *this_rdcost) {
+ const AV1_COMMON *const cm = &cpi->common;
+ ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) {
+ return false;
+ }
+ aom_partition_decision_t partition_decision;
+ do {
+ PartitionSearchState part_search_state;
+ // Initialization of state variables used in partition search.
+ // TODO(chengchen): check if there is hidden conditions that don't allow
+ // all possible partition types.
+ init_partition_search_state_params(x, cpi, &part_search_state, mi_row,
+ mi_col, bsize);
+ // Override partition costs at the edges of the frame in the same
+ // way as in read_partition (see decodeframe.c).
+ PartitionBlkParams blk_params = part_search_state.part_blk_params;
+ if (!av1_blk_has_rows_and_cols(&blk_params))
+ set_partition_cost_for_edge_blk(cm, &part_search_state);
+ const int orig_rdmult = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
+ const int valid_partition_types =
+ get_valid_partition_types(cpi, &part_search_state, bsize);
+ const FRAME_UPDATE_TYPE update_type =
+ get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
+ const int qindex = av1_get_qindex(&cm->seg, xd->mi[0]->segment_id,
+ cm->quant_params.base_qindex);
+ // RD multiplier
+ const int rdmult = x->rdmult;
+ // pyramid level
+ const int pyramid_level =
+ cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index];
+ x->rdmult = orig_rdmult;
+ // Neighbor information
+ const int has_above = !!xd->above_mbmi;
+ const int has_left = !!xd->left_mbmi;
+ const BLOCK_SIZE above_bsize =
+ has_above ? xd->above_mbmi->bsize : BLOCK_INVALID;
+ const BLOCK_SIZE left_bsize =
+ has_left ? xd->left_mbmi->bsize : BLOCK_INVALID;
+ const int above_block_width =
+ above_bsize == BLOCK_INVALID ? -1 : block_size_wide[above_bsize];
+ const int above_block_height =
+ above_bsize == BLOCK_INVALID ? -1 : block_size_high[above_bsize];
+ const int left_block_width =
+ left_bsize == BLOCK_INVALID ? -1 : block_size_wide[left_bsize];
+ const int left_block_height =
+ left_bsize == BLOCK_INVALID ? -1 : block_size_high[left_bsize];
+ // Prepare simple motion search stats as features
+ unsigned int block_sse = -1;
+ unsigned int block_var = -1;
+ unsigned int sub_block_sse[4] = { -1, -1, -1, -1 };
+ unsigned int sub_block_var[4] = { -1, -1, -1, -1 };
+ unsigned int horz_block_sse[2] = { -1, -1 };
+ unsigned int horz_block_var[2] = { -1, -1 };
+ unsigned int vert_block_sse[2] = { -1, -1 };
+ unsigned int vert_block_var[2] = { -1, -1 };
+ av1_prepare_motion_search_features_block(
+ cpi, td, tile_data, mi_row, mi_col, bsize, valid_partition_types,
+ &block_sse, &block_var, sub_block_sse, sub_block_var, horz_block_sse,
+ horz_block_var, vert_block_sse, vert_block_var);
+ // Prepare tpl stats for the current block as features
+ int64_t tpl_intra_cost = -1;
+ int64_t tpl_inter_cost = -1;
+ int64_t tpl_mc_dep_cost = -1;
+ prepare_tpl_stats_block(cpi, bsize, mi_row, mi_col, &tpl_intra_cost,
+ &tpl_inter_cost, &tpl_mc_dep_cost);
+
+ aom_partition_features_t features;
+ features.mi_row = mi_row;
+ features.mi_col = mi_col;
+ features.frame_width = cpi->frame_info.frame_width;
+ features.frame_height = cpi->frame_info.frame_height;
+ features.block_size = bsize;
+ features.valid_partition_types = valid_partition_types;
+ features.update_type = update_type;
+ features.qindex = qindex;
+ features.rdmult = rdmult;
+ features.pyramid_level = pyramid_level;
+ features.has_above_block = has_above;
+ features.above_block_width = above_block_width;
+ features.above_block_height = above_block_height;
+ features.has_left_block = has_left;
+ features.left_block_width = left_block_width;
+ features.left_block_height = left_block_height;
+ features.block_sse = block_sse;
+ features.block_var = block_var;
+ for (int i = 0; i < 4; ++i) {
+ features.sub_block_sse[i] = sub_block_sse[i];
+ features.sub_block_var[i] = sub_block_var[i];
+ }
+ for (int i = 0; i < 2; ++i) {
+ features.horz_block_sse[i] = horz_block_sse[i];
+ features.horz_block_var[i] = horz_block_var[i];
+ features.vert_block_sse[i] = vert_block_sse[i];
+ features.vert_block_var[i] = vert_block_var[i];
+ }
+ features.tpl_intra_cost = tpl_intra_cost;
+ features.tpl_inter_cost = tpl_inter_cost;
+ features.tpl_mc_dep_cost = tpl_mc_dep_cost;
+ av1_ext_part_send_features(ext_part_controller, &features);
+ const bool valid_decision = av1_ext_part_get_partition_decision(
+ ext_part_controller, &partition_decision);
+ if (!valid_decision) return false;
+ pc_tree->partitioning = partition_decision.current_decision;
+
+ av1_init_rd_stats(this_rdcost);
+ if (partition_decision.current_decision == PARTITION_SPLIT) {
+ assert(block_size_wide[bsize] >= 8 && block_size_high[bsize] >= 8);
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ RD_STATS split_rdc[SUB_PARTITIONS_SPLIT];
+ for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
+ av1_init_rd_stats(&split_rdc[i]);
+ if (pc_tree->split[i] == NULL)
+ pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
+ if (!pc_tree->split[i])
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PC_TREE");
+ pc_tree->split[i]->index = i;
+ }
+ const int orig_rdmult_tmp = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
+ // TODO(chengchen): check boundary conditions
+ // top-left
+ recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[0],
+ mi_row, mi_col, subsize, &split_rdc[0]);
+ // top-right
+ recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[1],
+ mi_row, mi_col + mi_size_wide[subsize], subsize,
+ &split_rdc[1]);
+ // bottom-left
+ recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[2],
+ mi_row + mi_size_high[subsize], mi_col, subsize,
+ &split_rdc[2]);
+ // bottom_right
+ recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[3],
+ mi_row + mi_size_high[subsize],
+ mi_col + mi_size_wide[subsize], subsize,
+ &split_rdc[3]);
+ this_rdcost->rate += part_search_state.partition_cost[PARTITION_SPLIT];
+ // problem is here, the rdmult is different from the rdmult in sub block.
+ for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
+ this_rdcost->rate += split_rdc[i].rate;
+ this_rdcost->dist += split_rdc[i].dist;
+ av1_rd_cost_update(x->rdmult, this_rdcost);
+ }
+ x->rdmult = orig_rdmult_tmp;
+ } else {
+ *this_rdcost = rd_search_for_fixed_partition(
+ cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, pc_tree);
+ }
+
+ aom_partition_stats_t stats;
+ update_partition_stats(this_rdcost, &stats);
+ av1_ext_part_send_partition_stats(ext_part_controller, &stats);
+ if (!partition_decision.is_final_decision) {
+ if (partition_decision.current_decision == PARTITION_SPLIT) {
+ for (int i = 0; i < 4; ++i) {
+ if (pc_tree->split[i] != NULL) {
+ av1_free_pc_tree_recursive(pc_tree->split[i], av1_num_planes(cm), 0,
+ 0,
+ cpi->sf.part_sf.partition_search_type);
+ pc_tree->split[i] = NULL;
+ }
+ }
+ }
+ }
+ } while (!partition_decision.is_final_decision);
+
+ return true;
+}
+
+// The ML model only needs to make decisions for the current block each time.
+static bool ml_partition_search_partial(AV1_COMP *const cpi, ThreadData *td,
+ TileDataEnc *tile_data, TokenExtra **tp,
+ SIMPLE_MOTION_DATA_TREE *sms_root,
+ int mi_row, int mi_col,
+ const BLOCK_SIZE bsize) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &td->mb;
+ ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
+ aom_partition_features_t features;
+ prepare_sb_features_before_search(cpi, td, tile_data, mi_row, mi_col, bsize,
+ &features);
+ features.mi_row = mi_row;
+ features.mi_col = mi_col;
+ features.frame_width = cpi->frame_info.frame_width;
+ features.frame_height = cpi->frame_info.frame_height;
+ features.block_size = bsize;
+ av1_ext_part_send_features(ext_part_controller, &features);
+ td->pc_root = av1_alloc_pc_tree_node(bsize);
+ if (!td->pc_root)
+ aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PC_TREE");
+
+ RD_STATS rdcost;
+ const bool valid_partition =
+ recursive_partition(cpi, td, tile_data, tp, sms_root, td->pc_root, mi_row,
+ mi_col, bsize, &rdcost);
+ if (!valid_partition) {
+ return false;
+ }
+
+ // Encode with the selected mode and partition.
+ set_cb_offsets(x->cb_offset, 0, 0);
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
+ td->pc_root, NULL);
+ av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
+ cpi->sf.part_sf.partition_search_type);
+ td->pc_root = NULL;
+
+ return true;
+}
+
+bool av1_rd_partition_search(AV1_COMP *const cpi, ThreadData *td,
+ TileDataEnc *tile_data, TokenExtra **tp,
+ SIMPLE_MOTION_DATA_TREE *sms_root, int mi_row,
+ int mi_col, const BLOCK_SIZE bsize,
+ RD_STATS *best_rd_cost) {
+ AV1_COMMON *const cm = &cpi->common;
+ if (cpi->ext_part_controller.ready) {
+ bool valid_search = true;
+ const aom_ext_part_decision_mode_t decision_mode =
+ av1_get_ext_part_decision_mode(&cpi->ext_part_controller);
+ if (decision_mode == AOM_EXT_PART_WHOLE_TREE) {
+ valid_search = ml_partition_search_whole_tree(
+ cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize);
+ } else if (decision_mode == AOM_EXT_PART_RECURSIVE) {
+ valid_search = ml_partition_search_partial(
+ cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize);
+ } else {
+ assert(0 && "Unknown decision mode.");
+ return false;
+ }
+ if (!valid_search) {
+ aom_internal_error(
+ cm->error, AOM_CODEC_ERROR,
+ "Invalid search from ML model, partition search failed");
+ }
+ return true;
+ }
+
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ int best_idx = 0;
+ int64_t min_rdcost = INT64_MAX;
+ int num_configs;
+ int i = 0;
+ do {
+ td->pc_root = av1_alloc_pc_tree_node(bsize);
+ if (!td->pc_root)
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PC_TREE");
+ num_configs = read_partition_tree(cpi, td->pc_root, xd->error_info, i);
+ if (num_configs <= 0) {
+ av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
+ cpi->sf.part_sf.partition_search_type);
+ td->pc_root = NULL;
+ aom_internal_error(xd->error_info, AOM_CODEC_ERROR, "Invalid configs.");
+ }
+ verify_write_partition_tree(cpi, td->pc_root, bsize, i, mi_row, mi_col);
+ if (i == 0) {
+ AOM_CHECK_MEM_ERROR(xd->error_info, x->rdcost,
+ aom_calloc(num_configs, sizeof(*x->rdcost)));
+ }
+ // Encode the block with the given partition tree. Get rdcost and encoding
+ // time.
+ x->rdcost[i] = rd_search_for_fixed_partition(
+ cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, td->pc_root);
+
+ if (x->rdcost[i].rdcost < min_rdcost) {
+ min_rdcost = x->rdcost[i].rdcost;
+ best_idx = i;
+ *best_rd_cost = x->rdcost[i];
+ }
+ av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
+ cpi->sf.part_sf.partition_search_type);
+ td->pc_root = NULL;
+ ++i;
+ } while (i < num_configs);
+
+ aom_free(x->rdcost);
+ x->rdcost = NULL;
+ // Encode with the partition configuration with the smallest rdcost.
+ td->pc_root = av1_alloc_pc_tree_node(bsize);
+ if (!td->pc_root)
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PC_TREE");
+ read_partition_tree(cpi, td->pc_root, xd->error_info, best_idx);
+ rd_search_for_fixed_partition(cpi, td, tile_data, tp, sms_root, mi_row,
+ mi_col, bsize, td->pc_root);
+ set_cb_offsets(x->cb_offset, 0, 0);
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
+ td->pc_root, NULL);
+ av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
+ cpi->sf.part_sf.partition_search_type);
+ td->pc_root = NULL;
+ ++cpi->sb_counter;
+
+ return true;
+}
+#endif // CONFIG_PARTITION_SEARCH_ORDER
+
+static AOM_INLINE bool should_do_dry_run_encode_for_current_block(
+ BLOCK_SIZE sb_size, BLOCK_SIZE max_partition_size, int curr_block_index,
+ BLOCK_SIZE bsize) {
+ if (bsize > max_partition_size) return false;
+
+ // Enable the reconstruction with dry-run for the 4th sub-block only if its
+ // parent block's reconstruction with dry-run is skipped. If
+ // max_partition_size is the same as immediate split of superblock, then avoid
+ // reconstruction of the 4th sub-block, as this data is not consumed.
+ if (curr_block_index != 3) return true;
+
+ const BLOCK_SIZE sub_sb_size =
+ get_partition_subsize(sb_size, PARTITION_SPLIT);
+ return bsize == max_partition_size && sub_sb_size != max_partition_size;
+}
+
+static void log_sub_block_var(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs,
+ double *var_min, double *var_max) {
+ // This functions returns a the minimum and maximum log variances for 4x4
+ // sub blocks in the current block.
+
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const int is_hbd = is_cur_buf_hbd(xd);
+ const int right_overflow =
+ (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0;
+ const int bottom_overflow =
+ (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0;
+ const int bw = MI_SIZE * mi_size_wide[bs] - right_overflow;
+ const int bh = MI_SIZE * mi_size_high[bs] - bottom_overflow;
+
+ // Initialize minimum variance to a large value and maximum variance to 0.
+ double min_var_4x4 = (double)INT_MAX;
+ double max_var_4x4 = 0.0;
+
+ for (int i = 0; i < bh; i += MI_SIZE) {
+ for (int j = 0; j < bw; j += MI_SIZE) {
+ int var;
+ // Calculate the 4x4 sub-block variance.
+ var = av1_calc_normalized_variance(
+ cpi->ppi->fn_ptr[BLOCK_4X4].vf,
+ x->plane[0].src.buf + (i * x->plane[0].src.stride) + j,
+ x->plane[0].src.stride, is_hbd);
+
+ // Record min and max for over-arching block
+ min_var_4x4 = AOMMIN(min_var_4x4, var);
+ max_var_4x4 = AOMMAX(max_var_4x4, var);
+ }
+ }
+ *var_min = log1p(min_var_4x4 / 16.0);
+ *var_max = log1p(max_var_4x4 / 16.0);
+}
+
+static AOM_INLINE void set_sms_tree_partitioning(
+ SIMPLE_MOTION_DATA_TREE *sms_tree, PARTITION_TYPE partition) {
+ if (sms_tree == NULL) return;
+ sms_tree->partitioning = partition;
+}
+
+/*!\brief AV1 block partition search (full search).
+*
+* \ingroup partition_search
+* \callgraph
+* Searches for the best partition pattern for a block based on the
+* rate-distortion cost, and returns a bool value to indicate whether a valid
+* partition pattern is found. The partition can recursively go down to the
+* smallest block size.
+*
+* \param[in] cpi Top-level encoder structure
+* \param[in] td Pointer to thread data
+* \param[in] tile_data Pointer to struct holding adaptive
+data/contexts/models for the tile during
+encoding
+* \param[in] tp Pointer to the starting token
+* \param[in] mi_row Row coordinate of the block in a step size
+of MI_SIZE
+* \param[in] mi_col Column coordinate of the block in a step
+size of MI_SIZE
+* \param[in] bsize Current block size
+* \param[in] rd_cost Pointer to the final rd cost of the block
+* \param[in] best_rdc Upper bound of rd cost of a valid partition
+* \param[in] pc_tree Pointer to the PC_TREE node storing the
+picked partitions and mode info for the
+current block
+* \param[in] sms_tree Pointer to struct holding simple motion
+search data for the current block
+* \param[in] none_rd Pointer to the rd cost in the case of not
+splitting the current block
+* \param[in] multi_pass_mode SB_SINGLE_PASS/SB_DRY_PASS/SB_WET_PASS
+* \param[in] rect_part_win_info Pointer to struct storing whether horz/vert
+partition outperforms previously tested
+partitions
+*
+* \return A bool value is returned indicating if a valid partition is found.
+* The pc_tree struct is modified to store the picked partition and modes.
+* The rd_cost struct is also updated with the RD stats corresponding to the
+* best partition found.
+*/
+bool av1_rd_pick_partition(AV1_COMP *const cpi, ThreadData *td,
+ TileDataEnc *tile_data, TokenExtra **tp, int mi_row,
+ int mi_col, BLOCK_SIZE bsize, RD_STATS *rd_cost,
+ RD_STATS best_rdc, PC_TREE *pc_tree,
+ SIMPLE_MOTION_DATA_TREE *sms_tree, int64_t *none_rd,
+ SB_MULTI_PASS_MODE multi_pass_mode,
+ RD_RECT_PART_WIN_INFO *rect_part_win_info) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
+ const TokenExtra *const tp_orig = *tp;
+ PartitionSearchState part_search_state;
+
+ // Initialization of state variables used in partition search.
+ init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col,
+ bsize);
+ PartitionBlkParams blk_params = part_search_state.part_blk_params;
+
+ set_sms_tree_partitioning(sms_tree, PARTITION_NONE);
+ if (best_rdc.rdcost < 0) {
+ av1_invalid_rd_stats(rd_cost);
+ return part_search_state.found_best_partition;
+ }
+ if (bsize == cm->seq_params->sb_size) x->must_find_valid_partition = 0;
+
+ // Override skipping rectangular partition operations for edge blocks.
+ if (none_rd) *none_rd = 0;
+ (void)*tp_orig;
+
+#if CONFIG_COLLECT_PARTITION_STATS
+ // Stats at the current quad tree
+ PartitionTimingStats *part_timing_stats =
+ &part_search_state.part_timing_stats;
+ // Stats aggregated at frame level
+ FramePartitionTimingStats *fr_part_timing_stats = &cpi->partition_stats;
+#endif // CONFIG_COLLECT_PARTITION_STATS
+
+ // Override partition costs at the edges of the frame in the same
+ // way as in read_partition (see decodeframe.c).
+ if (!av1_blk_has_rows_and_cols(&blk_params))
+ set_partition_cost_for_edge_blk(cm, &part_search_state);
+
+ // Disable rectangular partitions for inner blocks when the current block is
+ // forced to only use square partitions.
+ if (bsize > cpi->sf.part_sf.use_square_partition_only_threshold) {
+ part_search_state.partition_rect_allowed[HORZ] &= !blk_params.has_rows;
+ part_search_state.partition_rect_allowed[VERT] &= !blk_params.has_cols;
+ }
+
+#ifndef NDEBUG
+ // Nothing should rely on the default value of this array (which is just
+ // leftover from encoding the previous block. Setting it to fixed pattern
+ // when debugging.
+ // bit 0, 1, 2 are blk_skip of each plane
+ // bit 4, 5, 6 are initialization checking of each plane
+ memset(x->txfm_search_info.blk_skip, 0x77,
+ sizeof(x->txfm_search_info.blk_skip));
+#endif // NDEBUG
+
+ assert(mi_size_wide[bsize] == mi_size_high[bsize]);
+
+ // Set buffers and offsets.
+ av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+
+ if (cpi->oxcf.mode == ALLINTRA) {
+ if (bsize == cm->seq_params->sb_size) {
+ double var_min, var_max;
+ log_sub_block_var(cpi, x, bsize, &var_min, &var_max);
+
+ x->intra_sb_rdmult_modifier = 128;
+ if ((var_min < 2.0) && (var_max > 4.0)) {
+ if ((var_max - var_min) > 8.0) {
+ x->intra_sb_rdmult_modifier -= 48;
+ } else {
+ x->intra_sb_rdmult_modifier -= (int)((var_max - var_min) * 6);
+ }
+ }
+ }
+ }
+
+ // Save rdmult before it might be changed, so it can be restored later.
+ const int orig_rdmult = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
+
+ // Apply simple motion search for the entire super block with fixed block
+ // size, e.g., 16x16, to collect features and write to files for the
+ // external ML model.
+ // TODO(chengchen): reduce motion search. This function is similar to
+ // av1_get_max_min_partition_features().
+ if (COLLECT_MOTION_SEARCH_FEATURE_SB && !frame_is_intra_only(cm) &&
+ bsize == cm->seq_params->sb_size) {
+ av1_collect_motion_search_features_sb(cpi, td, tile_data, mi_row, mi_col,
+ bsize, /*features=*/NULL);
+ collect_tpl_stats_sb(cpi, bsize, mi_row, mi_col, /*features=*/NULL);
+ }
+
+ // Update rd cost of the bound using the current multiplier.
+ av1_rd_cost_update(x->rdmult, &best_rdc);
+
+ if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
+ x->mb_energy = av1_log_block_var(cpi, x, bsize);
+
+ // Set the context.
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+ av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, av1_prune_partitions_time);
+#endif
+ // Pruning: before searching any partition type, using source and simple
+ // motion search results to prune out unlikely partitions.
+ av1_prune_partitions_before_search(cpi, x, sms_tree, &part_search_state);
+
+ // Pruning: eliminating partition types leading to coding block sizes outside
+ // the min and max bsize limitations set from the encoder.
+ av1_prune_partitions_by_max_min_bsize(&x->sb_enc, &part_search_state);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, av1_prune_partitions_time);
+#endif
+
+ // Partition search
+BEGIN_PARTITION_SEARCH:
+ // If a valid partition is required, usually when the first round cannot find
+ // a valid one under the cost limit after pruning, reset the limitations on
+ // partition types and intra cnn output.
+ if (x->must_find_valid_partition) {
+ reset_part_limitations(cpi, &part_search_state);
+ av1_prune_partitions_by_max_min_bsize(&x->sb_enc, &part_search_state);
+ // Invalidate intra cnn output for key frames.
+ if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) {
+ part_search_state.intra_part_info->quad_tree_idx = 0;
+ part_search_state.intra_part_info->cnn_output_valid = 0;
+ }
+ }
+ // Partition block source pixel variance.
+ unsigned int pb_source_variance = UINT_MAX;
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, none_partition_search_time);
+#endif
+
+ if (cpi->oxcf.mode == ALLINTRA) {
+ const bool bsize_at_least_16x16 = (bsize >= BLOCK_16X16);
+ const bool prune_rect_part_using_4x4_var_deviation =
+ (cpi->sf.part_sf.prune_rect_part_using_4x4_var_deviation &&
+ !x->must_find_valid_partition);
+
+ if (bsize_at_least_16x16 || prune_rect_part_using_4x4_var_deviation) {
+ double var_min, var_max;
+ log_sub_block_var(cpi, x, bsize, &var_min, &var_max);
+
+ // Further pruning or in some cases reverse pruning when allintra is set.
+ // This code helps visual and in some cases metrics quality where the
+ // current block comprises at least one very low variance sub-block and at
+ // least one where the variance is much higher.
+ //
+ // The idea is that in such cases there is danger of ringing and other
+ // visual artifacts from a high variance feature such as an edge into a
+ // very low variance region.
+ //
+ // The approach taken is to force break down / split to a smaller block
+ // size to try and separate out the low variance and well predicted blocks
+ // from the more complex ones and to prevent propagation of ringing over a
+ // large region.
+ if (bsize_at_least_16x16 && (var_min < 0.272) &&
+ ((var_max - var_min) > 3.0)) {
+ part_search_state.partition_none_allowed = 0;
+ part_search_state.terminate_partition_search = 0;
+ part_search_state.do_square_split = 1;
+ } else if (prune_rect_part_using_4x4_var_deviation &&
+ (var_max - var_min < 3.0)) {
+ // Prune rectangular partitions if the variance deviation of 4x4
+ // sub-blocks within the block is less than a threshold (derived
+ // empirically).
+ part_search_state.do_rectangular_split = 0;
+ }
+ }
+ }
+
+ // PARTITION_NONE search stage.
+ int64_t part_none_rd = INT64_MAX;
+ none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx,
+ &part_search_state, &best_rdc, &pb_source_variance,
+ none_rd, &part_none_rd);
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, none_partition_search_time);
+#endif
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, split_partition_search_time);
+#endif
+ // PARTITION_SPLIT search stage.
+ int64_t part_split_rd = INT64_MAX;
+ split_partition_search(cpi, td, tile_data, tp, x, pc_tree, sms_tree, &x_ctx,
+ &part_search_state, &best_rdc, multi_pass_mode,
+ &part_split_rd);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, split_partition_search_time);
+#endif
+ // Terminate partition search for child partition,
+ // when NONE and SPLIT partition rd_costs are INT64_MAX.
+ if (cpi->sf.part_sf.early_term_after_none_split &&
+ part_none_rd == INT64_MAX && part_split_rd == INT64_MAX &&
+ !x->must_find_valid_partition && (bsize != cm->seq_params->sb_size)) {
+ part_search_state.terminate_partition_search = 1;
+ }
+
+ // Do not evaluate non-square partitions if NONE partition did not choose a
+ // newmv mode and is skippable.
+ if ((cpi->sf.part_sf.skip_non_sq_part_based_on_none >= 2) &&
+ (pc_tree->none != NULL)) {
+ if (x->qindex <= 200 && is_inter_mode(pc_tree->none->mic.mode) &&
+ !have_newmv_in_inter_mode(pc_tree->none->mic.mode) &&
+ pc_tree->none->skippable && !x->must_find_valid_partition &&
+ bsize >= BLOCK_16X16)
+ part_search_state.do_rectangular_split = 0;
+ }
+
+ // Prune partitions based on PARTITION_NONE and PARTITION_SPLIT.
+ prune_partitions_after_split(cpi, x, sms_tree, &part_search_state, &best_rdc,
+ part_none_rd, part_split_rd);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, rectangular_partition_search_time);
+#endif
+ // Rectangular partitions search stage.
+ rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx,
+ &part_search_state, &best_rdc,
+ rect_part_win_info, HORZ, VERT);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, rectangular_partition_search_time);
+#endif
+
+ if (pb_source_variance == UINT_MAX) {
+ av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
+ pb_source_variance = av1_get_perpixel_variance_facade(
+ cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y);
+ }
+
+ assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
+ !part_search_state.do_rectangular_split));
+
+ const int prune_ext_part_state = prune_ext_part_none_skippable(
+ pc_tree->none, x->must_find_valid_partition,
+ cpi->sf.part_sf.skip_non_sq_part_based_on_none, bsize);
+
+ const int ab_partition_allowed = allow_ab_partition_search(
+ &part_search_state, &cpi->sf.part_sf, pc_tree->partitioning,
+ x->must_find_valid_partition, prune_ext_part_state, best_rdc.rdcost);
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, ab_partitions_search_time);
+#endif
+ // AB partitions search stage.
+ ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
+ &part_search_state, &best_rdc, rect_part_win_info,
+ pb_source_variance, ab_partition_allowed, HORZ_A,
+ VERT_B);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, ab_partitions_search_time);
+#endif
+
+ // 4-way partitions search stage.
+ int part4_search_allowed[NUM_PART4_TYPES] = { 1, 1 };
+ // Prune 4-way partition search.
+ prune_4_way_partition_search(cpi, x, pc_tree, &part_search_state, &best_rdc,
+ pb_source_variance, prune_ext_part_state,
+ part4_search_allowed);
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, rd_pick_4partition_time);
+#endif
+ // PARTITION_HORZ_4
+ assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
+ !part4_search_allowed[HORZ4]));
+ if (!part_search_state.terminate_partition_search &&
+ part4_search_allowed[HORZ4]) {
+ const int inc_step[NUM_PART4_TYPES] = { mi_size_high[blk_params.bsize] / 4,
+ 0 };
+ // Evaluation of Horz4 partition type.
+ rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
+ pc_tree->horizontal4, &part_search_state, &best_rdc,
+ inc_step, PARTITION_HORZ_4);
+ }
+
+ // PARTITION_VERT_4
+ assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
+ !part4_search_allowed[VERT4]));
+ if (!part_search_state.terminate_partition_search &&
+ part4_search_allowed[VERT4] && blk_params.has_cols) {
+ const int inc_step[NUM_PART4_TYPES] = { 0, mi_size_wide[blk_params.bsize] /
+ 4 };
+ // Evaluation of Vert4 partition type.
+ rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
+ pc_tree->vertical4, &part_search_state, &best_rdc,
+ inc_step, PARTITION_VERT_4);
+ }
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, rd_pick_4partition_time);
+#endif
+
+ if (bsize == cm->seq_params->sb_size &&
+ !part_search_state.found_best_partition) {
+ // Did not find a valid partition, go back and search again, with less
+ // constraint on which partition types to search.
+ x->must_find_valid_partition = 1;
+#if CONFIG_COLLECT_PARTITION_STATS
+ fr_part_timing_stats->partition_redo += 1;
+#endif // CONFIG_COLLECT_PARTITION_STATS
+ goto BEGIN_PARTITION_SEARCH;
+ }
+
+ // Store the final rd cost
+ *rd_cost = best_rdc;
+
+ // Also record the best partition in simple motion data tree because it is
+ // necessary for the related speed features.
+ set_sms_tree_partitioning(sms_tree, pc_tree->partitioning);
+
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) {
+ part_timing_stats->partition_decisions[pc_tree->partitioning] += 1;
+ }
+
+ // If CONFIG_COLLECT_PARTITION_STATS is 1, then print out the stats for each
+ // prediction block.
+ print_partition_timing_stats_with_rdcost(
+ part_timing_stats, mi_row, mi_col, bsize,
+ cpi->ppi->gf_group.update_type[cpi->gf_frame_index],
+ cm->current_frame.frame_number, &best_rdc, "part_timing.csv");
+ const bool print_timing_stats = false;
+ if (print_timing_stats) {
+ print_partition_timing_stats(part_timing_stats, cm->show_frame,
+ frame_is_intra_only(cm), bsize,
+ "part_timing_data.csv");
+ }
+ // If CONFIG_COLLECTION_PARTITION_STATS is 2, then we print out the stats for
+ // the whole clip. So we need to pass the information upstream to the encoder.
+ accumulate_partition_timing_stats(fr_part_timing_stats, part_timing_stats,
+ bsize);
+#endif // CONFIG_COLLECT_PARTITION_STATS
+
+ // Reset the PC_TREE deallocation flag.
+ int pc_tree_dealloc = 0;
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, encode_sb_time);
+#endif
+ if (part_search_state.found_best_partition) {
+ if (bsize == cm->seq_params->sb_size) {
+ // Encode the superblock.
+ const int emit_output = multi_pass_mode != SB_DRY_PASS;
+ const RUN_TYPE run_type = emit_output ? OUTPUT_ENABLED : DRY_RUN_NORMAL;
+
+ // Write partition tree to file. Not used by default.
+ if (COLLECT_MOTION_SEARCH_FEATURE_SB) {
+ write_partition_tree(cpi, pc_tree, bsize, mi_row, mi_col);
+ ++cpi->sb_counter;
+ }
+
+ set_cb_offsets(x->cb_offset, 0, 0);
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, run_type, bsize,
+ pc_tree, NULL);
+ assert(pc_tree == td->pc_root);
+ // Dealloc the whole PC_TREE after a superblock is done.
+ av1_free_pc_tree_recursive(pc_tree, num_planes, 0, 0,
+ cpi->sf.part_sf.partition_search_type);
+ pc_tree = NULL;
+ td->pc_root = NULL;
+ pc_tree_dealloc = 1;
+ } else if (should_do_dry_run_encode_for_current_block(
+ cm->seq_params->sb_size, x->sb_enc.max_partition_size,
+ pc_tree->index, bsize)) {
+ // Encode the smaller blocks in DRY_RUN mode.
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
+ pc_tree, NULL);
+ }
+ }
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, encode_sb_time);
+#endif
+
+ // If the tree still exists (non-superblock), dealloc most nodes, only keep
+ // nodes for the best partition and PARTITION_NONE.
+ if (pc_tree_dealloc == 0)
+ av1_free_pc_tree_recursive(pc_tree, num_planes, 1, 1,
+ cpi->sf.part_sf.partition_search_type);
+
+ if (bsize == cm->seq_params->sb_size) {
+ assert(best_rdc.rate < INT_MAX);
+ assert(best_rdc.dist < INT64_MAX);
+ } else {
+ assert(tp_orig == *tp);
+ }
+
+ // Restore the rd multiplier.
+ x->rdmult = orig_rdmult;
+ return part_search_state.found_best_partition;
+}
+#endif // !CONFIG_REALTIME_ONLY
+
+#undef COLLECT_MOTION_SEARCH_FEATURE_SB
+
+#if CONFIG_RT_ML_PARTITIONING
+#define FEATURES 6
+#define LABELS 2
+static int ml_predict_var_partitioning(AV1_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, int mi_row,
+ int mi_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ const NN_CONFIG *nn_config = NULL;
+ const float *means = NULL;
+ const float *vars = NULL;
+ switch (bsize) {
+ case BLOCK_64X64:
+ nn_config = &av1_var_part_nnconfig_64;
+ means = av1_var_part_means_64;
+ vars = av1_var_part_vars_64;
+ break;
+ case BLOCK_32X32:
+ nn_config = &av1_var_part_nnconfig_32;
+ means = av1_var_part_means_32;
+ vars = av1_var_part_vars_32;
+ break;
+ case BLOCK_16X16:
+ nn_config = &av1_var_part_nnconfig_16;
+ means = av1_var_part_means_16;
+ vars = av1_var_part_vars_16;
+ break;
+ case BLOCK_8X8:
+ default: assert(0 && "Unexpected block size."); return -1;
+ }
+
+ if (!nn_config) return -1;
+
+ {
+ const float thresh = cpi->oxcf.speed <= 5 ? 1.25f : 0.0f;
+ float features[FEATURES] = { 0.0f };
+ const int dc_q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0,
+ cm->seq_params->bit_depth);
+ int feature_idx = 0;
+ float score[LABELS];
+
+ features[feature_idx] =
+ (log1pf((float)(dc_q * dc_q) / 256.0f) - means[feature_idx]) /
+ sqrtf(vars[feature_idx]);
+ feature_idx++;
+ av1_setup_src_planes(x, cpi->source, mi_row, mi_col, 1, bsize);
+ {
+ const int bs = block_size_wide[bsize];
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ const int sb_offset_row = 4 * (mi_row & 15);
+ const int sb_offset_col = 4 * (mi_col & 15);
+ const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col;
+ const uint8_t *src = x->plane[0].src.buf;
+ const int src_stride = x->plane[0].src.stride;
+ const int pred_stride = 64;
+ unsigned int sse;
+ int i;
+ // Variance of whole block.
+ const unsigned int var =
+ cpi->ppi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
+ const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);
+
+ features[feature_idx] =
+ (log1pf((float)var) - means[feature_idx]) / sqrtf(vars[feature_idx]);
+ feature_idx++;
+ for (i = 0; i < 4; ++i) {
+ const int x_idx = (i & 1) * bs / 2;
+ const int y_idx = (i >> 1) * bs / 2;
+ const int src_offset = y_idx * src_stride + x_idx;
+ const int pred_offset = y_idx * pred_stride + x_idx;
+ // Variance of quarter block.
+ const unsigned int sub_var =
+ cpi->ppi->fn_ptr[subsize].vf(src + src_offset, src_stride,
+ pred + pred_offset, pred_stride, &sse);
+ const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
+ features[feature_idx] =
+ (var_ratio - means[feature_idx]) / sqrtf(vars[feature_idx]);
+ feature_idx++;
+ }
+ }
+ // for (int i = 0; i<FEATURES; i++)
+ // printf("F_%d, %f; ", i, features[i]);
+ assert(feature_idx == FEATURES);
+ av1_nn_predict(features, nn_config, 1, score);
+ // printf("Score %f, thr %f ", (float)score[0], thresh);
+ if (score[0] > thresh) return PARTITION_SPLIT;
+ if (score[0] < -thresh) return PARTITION_NONE;
+ return -1;
+ }
+}
+#undef FEATURES
+#undef LABELS
+
+// Uncomment for collecting data for ML-based partitioning
+// #define _COLLECT_GROUND_TRUTH_
+
+#ifdef _COLLECT_GROUND_TRUTH_
+static int store_partition_data(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
+ int mi_row, int mi_col, PARTITION_TYPE part) {
+ AV1_COMMON *const cm = &cpi->common;
+ char fname[128];
+ switch (bsize) {
+ case BLOCK_64X64: sprintf(fname, "data_64x64.txt"); break;
+ case BLOCK_32X32: sprintf(fname, "data_32x32.txt"); break;
+ case BLOCK_16X16: sprintf(fname, "data_16x16.txt"); break;
+ case BLOCK_8X8: sprintf(fname, "data_8x8.txt"); break;
+ default: assert(0 && "Unexpected block size."); return -1;
+ }
+
+ float features[6]; // DC_Q, VAR, VAR_RATIO-0..3
+
+ FILE *f = fopen(fname, "a");
+
+ {
+ const int dc_q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0,
+ cm->seq_params->bit_depth);
+ int feature_idx = 0;
+
+ features[feature_idx++] = log1pf((float)(dc_q * dc_q) / 256.0f);
+ av1_setup_src_planes(x, cpi->source, mi_row, mi_col, 1, bsize);
+ {
+ const int bs = block_size_wide[bsize];
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ const int sb_offset_row = 4 * (mi_row & 15);
+ const int sb_offset_col = 4 * (mi_col & 15);
+ const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col;
+ const uint8_t *src = x->plane[0].src.buf;
+ const int src_stride = x->plane[0].src.stride;
+ const int pred_stride = 64;
+ unsigned int sse;
+ int i;
+ // Variance of whole block.
+ /*
+ if (bs == 8)
+ {
+ int r, c;
+ printf("%d %d\n", mi_row, mi_col);
+ for (r = 0; r < bs; ++r) {
+ for (c = 0; c < bs; ++c) {
+ printf("%3d ",
+ src[r * src_stride + c] - pred[64 * r + c]);
+ }
+ printf("\n");
+ }
+ printf("\n");
+ }
+ */
+ const unsigned int var =
+ cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
+ const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);
+
+ features[feature_idx++] = log1pf((float)var);
+
+ fprintf(f, "%f,%f,", features[0], features[1]);
+ for (i = 0; i < 4; ++i) {
+ const int x_idx = (i & 1) * bs / 2;
+ const int y_idx = (i >> 1) * bs / 2;
+ const int src_offset = y_idx * src_stride + x_idx;
+ const int pred_offset = y_idx * pred_stride + x_idx;
+ // Variance of quarter block.
+ const unsigned int sub_var =
+ cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
+ pred + pred_offset, pred_stride, &sse);
+ const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
+ features[feature_idx++] = var_ratio;
+ fprintf(f, "%f,", var_ratio);
+ }
+
+ fprintf(f, "%d\n", part == PARTITION_NONE ? 0 : 1);
+ }
+
+ fclose(f);
+ return -1;
+ }
+}
+#endif
+
+static void duplicate_mode_info_in_sb(AV1_COMMON *cm, MACROBLOCKD *xd,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ const int block_width =
+ AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
+ const int block_height =
+ AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
+ const int mi_stride = xd->mi_stride;
+ MB_MODE_INFO *const src_mi = xd->mi[0];
+ int i, j;
+
+ for (j = 0; j < block_height; ++j)
+ for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi;
+}
+
+static INLINE void copy_mbmi_ext_frame_to_mbmi_ext(
+ MB_MODE_INFO_EXT *const mbmi_ext,
+ const MB_MODE_INFO_EXT_FRAME *mbmi_ext_best, uint8_t ref_frame_type) {
+ memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack,
+ sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
+ memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight,
+ sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
+ mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context;
+ mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count;
+ memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs,
+ sizeof(mbmi_ext->global_mvs));
+}
+
+static void fill_mode_info_sb(AV1_COMP *cpi, MACROBLOCK *x, int mi_row,
+ int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *xd = &x->e_mbd;
+ int hbs = mi_size_wide[bsize] >> 1;
+ PARTITION_TYPE partition = pc_tree->partitioning;
+ BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
+
+ assert(bsize >= BLOCK_8X8);
+
+ if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
+ return;
+
+ switch (partition) {
+ case PARTITION_NONE:
+ set_mode_info_offsets(&cm->mi_params, &cpi->mbmi_ext_info, x, xd, mi_row,
+ mi_col);
+ *(xd->mi[0]) = pc_tree->none->mic;
+ copy_mbmi_ext_frame_to_mbmi_ext(
+ &x->mbmi_ext, &pc_tree->none->mbmi_ext_best, LAST_FRAME);
+ duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
+ break;
+ case PARTITION_SPLIT: {
+ fill_mode_info_sb(cpi, x, mi_row, mi_col, subsize, pc_tree->split[0]);
+ fill_mode_info_sb(cpi, x, mi_row, mi_col + hbs, subsize,
+ pc_tree->split[1]);
+ fill_mode_info_sb(cpi, x, mi_row + hbs, mi_col, subsize,
+ pc_tree->split[2]);
+ fill_mode_info_sb(cpi, x, mi_row + hbs, mi_col + hbs, subsize,
+ pc_tree->split[3]);
+ break;
+ }
+ default: break;
+ }
+}
+
+void av1_nonrd_pick_partition(AV1_COMP *cpi, ThreadData *td,
+ TileDataEnc *tile_data, TokenExtra **tp,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ RD_STATS *rd_cost, int do_recon, int64_t best_rd,
+ PC_TREE *pc_tree) {
+ AV1_COMMON *const cm = &cpi->common;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int hbs = mi_size_wide[bsize] >> 1;
+ TokenExtra *tp_orig = *tp;
+ const ModeCosts *mode_costs = &x->mode_costs;
+ RD_STATS this_rdc, best_rdc;
+ RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
+ int do_split = bsize > BLOCK_8X8;
+ // Override skipping rectangular partition operations for edge blocks
+ const int force_horz_split = (mi_row + 2 * hbs > cm->mi_params.mi_rows);
+ const int force_vert_split = (mi_col + 2 * hbs > cm->mi_params.mi_cols);
+
+ int partition_none_allowed = !force_horz_split && !force_vert_split;
+
+ assert(mi_size_wide[bsize] == mi_size_high[bsize]); // Square partition only
+ assert(cm->seq_params->sb_size == BLOCK_64X64); // Small SB so far
+
+ (void)*tp_orig;
+
+ av1_invalid_rd_stats(&best_rdc);
+ best_rdc.rdcost = best_rd;
+#ifndef _COLLECT_GROUND_TRUTH_
+ if (partition_none_allowed && do_split) {
+ const int ml_predicted_partition =
+ ml_predict_var_partitioning(cpi, x, bsize, mi_row, mi_col);
+ if (ml_predicted_partition == PARTITION_NONE) do_split = 0;
+ if (ml_predicted_partition == PARTITION_SPLIT) partition_none_allowed = 0;
+ }
+#endif
+
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+ av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
+
+ // PARTITION_NONE
+ if (partition_none_allowed) {
+ pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
+ if (!pc_tree->none)
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PICK_MODE_CONTEXT");
+ PICK_MODE_CONTEXT *ctx = pc_tree->none;
+
+// Flip for RDO based pick mode
+#if 0
+ RD_STATS dummy;
+ av1_invalid_rd_stats(&dummy);
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc,
+ PARTITION_NONE, bsize, ctx, dummy);
+#else
+ pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize,
+ ctx);
+#endif
+ if (this_rdc.rate != INT_MAX) {
+ const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+
+ this_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
+ this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
+ if (this_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = this_rdc;
+ if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
+ }
+ }
+ }
+
+ // PARTITION_SPLIT
+ if (do_split) {
+ RD_STATS sum_rdc;
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+
+ av1_init_rd_stats(&sum_rdc);
+
+ for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
+ pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
+ if (!pc_tree->split[i])
+ aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate PC_TREE");
+ pc_tree->split[i]->index = i;
+ }
+
+ int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ sum_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT];
+ sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
+ for (int i = 0;
+ i < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
+ const int x_idx = (i & 1) * hbs;
+ const int y_idx = (i >> 1) * hbs;
+
+ if (mi_row + y_idx >= cm->mi_params.mi_rows ||
+ mi_col + x_idx >= cm->mi_params.mi_cols)
+ continue;
+ av1_nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
+ mi_col + x_idx, subsize, &this_rdc, i < 3,
+ best_rdc.rdcost - sum_rdc.rdcost,
+ pc_tree->split[i]);
+
+ if (this_rdc.rate == INT_MAX) {
+ av1_invalid_rd_stats(&sum_rdc);
+ } else {
+ sum_rdc.rate += this_rdc.rate;
+ sum_rdc.dist += this_rdc.dist;
+ sum_rdc.rdcost += this_rdc.rdcost;
+ }
+ }
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = sum_rdc;
+ pc_tree->partitioning = PARTITION_SPLIT;
+ }
+ }
+
+#ifdef _COLLECT_GROUND_TRUTH_
+ store_partition_data(cpi, x, bsize, mi_row, mi_col, pc_tree->partitioning);
+#endif
+
+ *rd_cost = best_rdc;
+
+ av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
+
+ if (best_rdc.rate == INT_MAX) {
+ av1_invalid_rd_stats(rd_cost);
+ return;
+ }
+
+ // update mode info array
+ fill_mode_info_sb(cpi, x, mi_row, mi_col, bsize, pc_tree);
+
+ if (do_recon) {
+ if (bsize == cm->seq_params->sb_size) {
+ // NOTE: To get estimate for rate due to the tokens, use:
+ // int rate_coeffs = 0;
+ // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
+ // bsize, pc_tree, &rate_coeffs);
+ set_cb_offsets(x->cb_offset, 0, 0);
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
+ pc_tree, NULL);
+ } else {
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
+ pc_tree, NULL);
+ }
+ }
+
+ if (bsize == BLOCK_64X64 && do_recon) {
+ assert(best_rdc.rate < INT_MAX);
+ assert(best_rdc.dist < INT64_MAX);
+ } else {
+ assert(tp_orig == *tp);
+ }
+}
+#endif // CONFIG_RT_ML_PARTITIONING