summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/pass2_strategy.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/pass2_strategy.c4488
1 files changed, 4488 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/pass2_strategy.c b/third_party/aom/av1/encoder/pass2_strategy.c
new file mode 100644
index 0000000000..a9442ffc1a
--- /dev/null
+++ b/third_party/aom/av1/encoder/pass2_strategy.c
@@ -0,0 +1,4488 @@
+/*
+ * Copyright (c) 2019, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+/*!\defgroup gf_group_algo Golden Frame Group
+ * \ingroup high_level_algo
+ * Algorithms regarding determining the length of GF groups and defining GF
+ * group structures.
+ * @{
+ */
+/*! @} - end defgroup gf_group_algo */
+
+#include <assert.h>
+#include <stdint.h>
+
+#include "aom_mem/aom_mem.h"
+#include "config/aom_config.h"
+#include "config/aom_scale_rtcd.h"
+
+#include "aom/aom_codec.h"
+#include "aom/aom_encoder.h"
+
+#include "av1/common/av1_common_int.h"
+
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/firstpass.h"
+#include "av1/encoder/gop_structure.h"
+#include "av1/encoder/pass2_strategy.h"
+#include "av1/encoder/ratectrl.h"
+#include "av1/encoder/rc_utils.h"
+#include "av1/encoder/temporal_filter.h"
+#include "av1/encoder/thirdpass.h"
+#include "av1/encoder/tpl_model.h"
+#include "av1/encoder/encode_strategy.h"
+
+#define DEFAULT_KF_BOOST 2300
+#define DEFAULT_GF_BOOST 2000
+#define GROUP_ADAPTIVE_MAXQ 1
+
+static void init_gf_stats(GF_GROUP_STATS *gf_stats);
+static int define_gf_group_pass3(AV1_COMP *cpi, EncodeFrameParams *frame_params,
+ int is_final_pass);
+
+// Calculate an active area of the image that discounts formatting
+// bars and partially discounts other 0 energy areas.
+#define MIN_ACTIVE_AREA 0.5
+#define MAX_ACTIVE_AREA 1.0
+static double calculate_active_area(const FRAME_INFO *frame_info,
+ const FIRSTPASS_STATS *this_frame) {
+ const double active_pct =
+ 1.0 -
+ ((this_frame->intra_skip_pct / 2) +
+ ((this_frame->inactive_zone_rows * 2) / (double)frame_info->mb_rows));
+ return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA);
+}
+
+// Calculate a modified Error used in distributing bits between easier and
+// harder frames.
+#define ACT_AREA_CORRECTION 0.5
+static double calculate_modified_err_new(const FRAME_INFO *frame_info,
+ const FIRSTPASS_STATS *total_stats,
+ const FIRSTPASS_STATS *this_stats,
+ int vbrbias, double modified_error_min,
+ double modified_error_max) {
+ if (total_stats == NULL) {
+ return 0;
+ }
+ const double av_weight = total_stats->weight / total_stats->count;
+ const double av_err =
+ (total_stats->coded_error * av_weight) / total_stats->count;
+ double modified_error =
+ av_err * pow(this_stats->coded_error * this_stats->weight /
+ DOUBLE_DIVIDE_CHECK(av_err),
+ vbrbias / 100.0);
+
+ // Correction for active area. Frames with a reduced active area
+ // (eg due to formatting bars) have a higher error per mb for the
+ // remaining active MBs. The correction here assumes that coding
+ // 0.5N blocks of complexity 2X is a little easier than coding N
+ // blocks of complexity X.
+ modified_error *=
+ pow(calculate_active_area(frame_info, this_stats), ACT_AREA_CORRECTION);
+
+ return fclamp(modified_error, modified_error_min, modified_error_max);
+}
+
+static double calculate_modified_err(const FRAME_INFO *frame_info,
+ const TWO_PASS *twopass,
+ const AV1EncoderConfig *oxcf,
+ const FIRSTPASS_STATS *this_frame) {
+ const FIRSTPASS_STATS *total_stats = twopass->stats_buf_ctx->total_stats;
+ return calculate_modified_err_new(
+ frame_info, total_stats, this_frame, oxcf->rc_cfg.vbrbias,
+ twopass->modified_error_min, twopass->modified_error_max);
+}
+
+// Resets the first pass file to the given position using a relative seek from
+// the current position.
+static void reset_fpf_position(TWO_PASS_FRAME *p_frame,
+ const FIRSTPASS_STATS *position) {
+ p_frame->stats_in = position;
+}
+
+static int input_stats(TWO_PASS *p, TWO_PASS_FRAME *p_frame,
+ FIRSTPASS_STATS *fps) {
+ if (p_frame->stats_in >= p->stats_buf_ctx->stats_in_end) return EOF;
+
+ *fps = *p_frame->stats_in;
+ ++p_frame->stats_in;
+ return 1;
+}
+
+static int input_stats_lap(TWO_PASS *p, TWO_PASS_FRAME *p_frame,
+ FIRSTPASS_STATS *fps) {
+ if (p_frame->stats_in >= p->stats_buf_ctx->stats_in_end) return EOF;
+
+ *fps = *p_frame->stats_in;
+ /* Move old stats[0] out to accommodate for next frame stats */
+ memmove(p->frame_stats_arr[0], p->frame_stats_arr[1],
+ (p->stats_buf_ctx->stats_in_end - p_frame->stats_in - 1) *
+ sizeof(FIRSTPASS_STATS));
+ p->stats_buf_ctx->stats_in_end--;
+ return 1;
+}
+
+// Read frame stats at an offset from the current position.
+static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p,
+ const TWO_PASS_FRAME *p_frame,
+ int offset) {
+ if ((offset >= 0 &&
+ p_frame->stats_in + offset >= p->stats_buf_ctx->stats_in_end) ||
+ (offset < 0 &&
+ p_frame->stats_in + offset < p->stats_buf_ctx->stats_in_start)) {
+ return NULL;
+ }
+
+ return &p_frame->stats_in[offset];
+}
+
+// This function returns the maximum target rate per frame.
+static int frame_max_bits(const RATE_CONTROL *rc,
+ const AV1EncoderConfig *oxcf) {
+ int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
+ (int64_t)oxcf->rc_cfg.vbrmax_section) /
+ 100;
+ if (max_bits < 0)
+ max_bits = 0;
+ else if (max_bits > rc->max_frame_bandwidth)
+ max_bits = rc->max_frame_bandwidth;
+
+ return (int)max_bits;
+}
+
+static const double q_pow_term[(QINDEX_RANGE >> 5) + 1] = { 0.65, 0.70, 0.75,
+ 0.80, 0.85, 0.90,
+ 0.95, 0.95, 0.95 };
+#define ERR_DIVISOR 96.0
+static double calc_correction_factor(double err_per_mb, int q) {
+ const double error_term = err_per_mb / ERR_DIVISOR;
+ const int index = q >> 5;
+ // Adjustment to power term based on qindex
+ const double power_term =
+ q_pow_term[index] +
+ (((q_pow_term[index + 1] - q_pow_term[index]) * (q % 32)) / 32.0);
+ assert(error_term >= 0.0);
+ return fclamp(pow(error_term, power_term), 0.05, 5.0);
+}
+
+// Based on history adjust expectations of bits per macroblock.
+static void twopass_update_bpm_factor(AV1_COMP *cpi, int rate_err_tol) {
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+
+ // Based on recent history adjust expectations of bits per macroblock.
+ double damp_fac = AOMMAX(5.0, rate_err_tol / 10.0);
+ double rate_err_factor = 1.0;
+ const double adj_limit = AOMMAX(0.2, (double)(100 - rate_err_tol) / 200.0);
+ const double min_fac = 1.0 - adj_limit;
+ const double max_fac = 1.0 + adj_limit;
+
+ if (cpi->third_pass_ctx && cpi->third_pass_ctx->frame_info_count > 0) {
+ int64_t actual_bits = 0;
+ int64_t target_bits = 0;
+ double factor = 0.0;
+ int count = 0;
+ for (int i = 0; i < cpi->third_pass_ctx->frame_info_count; i++) {
+ actual_bits += cpi->third_pass_ctx->frame_info[i].actual_bits;
+ target_bits += cpi->third_pass_ctx->frame_info[i].bits_allocated;
+ factor += cpi->third_pass_ctx->frame_info[i].bpm_factor;
+ count++;
+ }
+
+ if (count == 0) {
+ factor = 1.0;
+ } else {
+ factor /= (double)count;
+ }
+
+ factor *= (double)actual_bits / DOUBLE_DIVIDE_CHECK((double)target_bits);
+
+ if ((twopass->bpm_factor <= 1 && factor < twopass->bpm_factor) ||
+ (twopass->bpm_factor >= 1 && factor > twopass->bpm_factor)) {
+ twopass->bpm_factor = factor;
+ twopass->bpm_factor =
+ AOMMAX(min_fac, AOMMIN(max_fac, twopass->bpm_factor));
+ }
+ }
+
+ int err_estimate = p_rc->rate_error_estimate;
+ int64_t bits_left = twopass->bits_left;
+ int64_t total_actual_bits = p_rc->total_actual_bits;
+ int64_t bits_off_target = p_rc->vbr_bits_off_target;
+ double rolling_arf_group_actual_bits =
+ (double)twopass->rolling_arf_group_actual_bits;
+ double rolling_arf_group_target_bits =
+ (double)twopass->rolling_arf_group_target_bits;
+
+#if CONFIG_FPMT_TEST
+ const int is_parallel_frame =
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 ? 1 : 0;
+ const int simulate_parallel_frame =
+ cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE
+ ? is_parallel_frame
+ : 0;
+ total_actual_bits = simulate_parallel_frame ? p_rc->temp_total_actual_bits
+ : p_rc->total_actual_bits;
+ bits_off_target = simulate_parallel_frame ? p_rc->temp_vbr_bits_off_target
+ : p_rc->vbr_bits_off_target;
+ bits_left =
+ simulate_parallel_frame ? p_rc->temp_bits_left : twopass->bits_left;
+ rolling_arf_group_target_bits =
+ (double)(simulate_parallel_frame
+ ? p_rc->temp_rolling_arf_group_target_bits
+ : twopass->rolling_arf_group_target_bits);
+ rolling_arf_group_actual_bits =
+ (double)(simulate_parallel_frame
+ ? p_rc->temp_rolling_arf_group_actual_bits
+ : twopass->rolling_arf_group_actual_bits);
+ err_estimate = simulate_parallel_frame ? p_rc->temp_rate_error_estimate
+ : p_rc->rate_error_estimate;
+#endif
+
+ if (p_rc->bits_off_target && total_actual_bits > 0) {
+ if (cpi->ppi->lap_enabled) {
+ rate_err_factor = rolling_arf_group_actual_bits /
+ DOUBLE_DIVIDE_CHECK(rolling_arf_group_target_bits);
+ } else {
+ rate_err_factor = 1.0 - ((double)(bits_off_target) /
+ AOMMAX(total_actual_bits, bits_left));
+ }
+
+ // Adjustment is damped if this is 1 pass with look ahead processing
+ // (as there are only ever a few frames of data) and for all but the first
+ // GOP in normal two pass.
+ if ((twopass->bpm_factor != 1.0) || cpi->ppi->lap_enabled) {
+ rate_err_factor = 1.0 + ((rate_err_factor - 1.0) / damp_fac);
+ }
+ rate_err_factor = AOMMAX(min_fac, AOMMIN(max_fac, rate_err_factor));
+ }
+
+ // Is the rate control trending in the right direction. Only make
+ // an adjustment if things are getting worse.
+ if ((rate_err_factor < 1.0 && err_estimate >= 0) ||
+ (rate_err_factor > 1.0 && err_estimate <= 0)) {
+ twopass->bpm_factor *= rate_err_factor;
+ if (rate_err_tol >= 100) {
+ twopass->bpm_factor =
+ AOMMAX(min_fac, AOMMIN(max_fac, twopass->bpm_factor));
+ } else {
+ twopass->bpm_factor = AOMMAX(0.1, AOMMIN(10.0, twopass->bpm_factor));
+ }
+ }
+}
+
+static int qbpm_enumerator(int rate_err_tol) {
+ return 1200000 + ((300000 * AOMMIN(75, AOMMAX(rate_err_tol - 25, 0))) / 75);
+}
+
+// Similar to find_qindex_by_rate() function in ratectrl.c, but includes
+// calculation of a correction_factor.
+static int find_qindex_by_rate_with_correction(
+ int desired_bits_per_mb, aom_bit_depth_t bit_depth, double error_per_mb,
+ double group_weight_factor, int rate_err_tol, int best_qindex,
+ int worst_qindex) {
+ assert(best_qindex <= worst_qindex);
+ int low = best_qindex;
+ int high = worst_qindex;
+
+ while (low < high) {
+ const int mid = (low + high) >> 1;
+ const double mid_factor = calc_correction_factor(error_per_mb, mid);
+ const double q = av1_convert_qindex_to_q(mid, bit_depth);
+ const int enumerator = qbpm_enumerator(rate_err_tol);
+ const int mid_bits_per_mb =
+ (int)((enumerator * mid_factor * group_weight_factor) / q);
+
+ if (mid_bits_per_mb > desired_bits_per_mb) {
+ low = mid + 1;
+ } else {
+ high = mid;
+ }
+ }
+ return low;
+}
+
+/*!\brief Choose a target maximum Q for a group of frames
+ *
+ * \ingroup rate_control
+ *
+ * This function is used to estimate a suitable maximum Q for a
+ * group of frames. Inititally it is called to get a crude estimate
+ * for the whole clip. It is then called for each ARF/GF group to get
+ * a revised estimate for that group.
+ *
+ * \param[in] cpi Top-level encoder structure
+ * \param[in] av_frame_err The average per frame coded error score
+ * for frames making up this section/group.
+ * \param[in] inactive_zone Used to mask off /ignore part of the
+ * frame. The most common use case is where
+ * a wide format video (e.g. 16:9) is
+ * letter-boxed into a more square format.
+ * Here we want to ignore the bands at the
+ * top and bottom.
+ * \param[in] av_target_bandwidth The target bits per frame
+ *
+ * \return The maximum Q for frames in the group.
+ */
+static int get_twopass_worst_quality(AV1_COMP *cpi, const double av_frame_err,
+ double inactive_zone,
+ int av_target_bandwidth) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ const RateControlCfg *const rc_cfg = &oxcf->rc_cfg;
+ inactive_zone = fclamp(inactive_zone, 0.0, 0.9999);
+
+ if (av_target_bandwidth <= 0) {
+ return rc->worst_quality; // Highest value allowed
+ } else {
+ const int num_mbs = (oxcf->resize_cfg.resize_mode != RESIZE_NONE)
+ ? cpi->initial_mbs
+ : cpi->common.mi_params.MBs;
+ const int active_mbs = AOMMAX(1, num_mbs - (int)(num_mbs * inactive_zone));
+ const double av_err_per_mb = av_frame_err / (1.0 - inactive_zone);
+ const int target_norm_bits_per_mb =
+ (int)((uint64_t)av_target_bandwidth << BPER_MB_NORMBITS) / active_mbs;
+ int rate_err_tol = AOMMIN(rc_cfg->under_shoot_pct, rc_cfg->over_shoot_pct);
+
+ // Update bpm correction factor based on previous GOP rate error.
+ twopass_update_bpm_factor(cpi, rate_err_tol);
+
+ // Try and pick a max Q that will be high enough to encode the
+ // content at the given rate.
+ int q = find_qindex_by_rate_with_correction(
+ target_norm_bits_per_mb, cpi->common.seq_params->bit_depth,
+ av_err_per_mb, cpi->ppi->twopass.bpm_factor, rate_err_tol,
+ rc->best_quality, rc->worst_quality);
+
+ // Restriction on active max q for constrained quality mode.
+ if (rc_cfg->mode == AOM_CQ) q = AOMMAX(q, rc_cfg->cq_level);
+ return q;
+ }
+}
+
+#define INTRA_PART 0.005
+#define DEFAULT_DECAY_LIMIT 0.75
+#define LOW_SR_DIFF_TRHESH 0.01
+#define NCOUNT_FRAME_II_THRESH 5.0
+#define LOW_CODED_ERR_PER_MB 0.01
+
+/* This function considers how the quality of prediction may be deteriorating
+ * with distance. It comapres the coded error for the last frame and the
+ * second reference frame (usually two frames old) and also applies a factor
+ * based on the extent of INTRA coding.
+ *
+ * The decay factor is then used to reduce the contribution of frames further
+ * from the alt-ref or golden frame, to the bitframe boost calculation for that
+ * alt-ref or golden frame.
+ */
+static double get_sr_decay_rate(const FIRSTPASS_STATS *frame) {
+ double sr_diff = (frame->sr_coded_error - frame->coded_error);
+ double sr_decay = 1.0;
+ double modified_pct_inter;
+ double modified_pcnt_intra;
+
+ modified_pct_inter = frame->pcnt_inter;
+ if ((frame->coded_error > LOW_CODED_ERR_PER_MB) &&
+ ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) <
+ (double)NCOUNT_FRAME_II_THRESH)) {
+ modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral;
+ }
+ modified_pcnt_intra = 100 * (1.0 - modified_pct_inter);
+
+ if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
+ double sr_diff_part = ((sr_diff * 0.25) / frame->intra_error);
+ sr_decay = 1.0 - sr_diff_part - (INTRA_PART * modified_pcnt_intra);
+ }
+ return AOMMAX(sr_decay, DEFAULT_DECAY_LIMIT);
+}
+
+// This function gives an estimate of how badly we believe the prediction
+// quality is decaying from frame to frame.
+static double get_zero_motion_factor(const FIRSTPASS_STATS *frame) {
+ const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion;
+ double sr_decay = get_sr_decay_rate(frame);
+ return AOMMIN(sr_decay, zero_motion_pct);
+}
+
+#define DEFAULT_ZM_FACTOR 0.5
+static double get_prediction_decay_rate(const FIRSTPASS_STATS *frame_stats) {
+ const double sr_decay_rate = get_sr_decay_rate(frame_stats);
+ double zero_motion_factor =
+ DEFAULT_ZM_FACTOR * (frame_stats->pcnt_inter - frame_stats->pcnt_motion);
+
+ // Clamp value to range 0.0 to 1.0
+ // This should happen anyway if input values are sensibly clamped but checked
+ // here just in case.
+ if (zero_motion_factor > 1.0)
+ zero_motion_factor = 1.0;
+ else if (zero_motion_factor < 0.0)
+ zero_motion_factor = 0.0;
+
+ return AOMMAX(zero_motion_factor,
+ (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
+}
+
+// Function to test for a condition where a complex transition is followed
+// by a static section. For example in slide shows where there is a fade
+// between slides. This is to help with more optimal kf and gf positioning.
+static int detect_transition_to_still(const FIRSTPASS_INFO *firstpass_info,
+ int next_stats_index,
+ const int min_gf_interval,
+ const int frame_interval,
+ const int still_interval,
+ const double loop_decay_rate,
+ const double last_decay_rate) {
+ // Break clause to detect very still sections after motion
+ // For example a static image after a fade or other transition
+ // instead of a clean scene cut.
+ if (frame_interval > min_gf_interval && loop_decay_rate >= 0.999 &&
+ last_decay_rate < 0.9) {
+ int stats_left =
+ av1_firstpass_info_future_count(firstpass_info, next_stats_index);
+ if (stats_left >= still_interval) {
+ int j;
+ // Look ahead a few frames to see if static condition persists...
+ for (j = 0; j < still_interval; ++j) {
+ const FIRSTPASS_STATS *stats =
+ av1_firstpass_info_peek(firstpass_info, next_stats_index + j);
+ if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break;
+ }
+ // Only if it does do we signal a transition to still.
+ return j == still_interval;
+ }
+ }
+ return 0;
+}
+
+// This function detects a flash through the high relative pcnt_second_ref
+// score in the frame following a flash frame. The offset passed in should
+// reflect this.
+static int detect_flash(const TWO_PASS *twopass,
+ const TWO_PASS_FRAME *twopass_frame, const int offset) {
+ const FIRSTPASS_STATS *const next_frame =
+ read_frame_stats(twopass, twopass_frame, offset);
+
+ // What we are looking for here is a situation where there is a
+ // brief break in prediction (such as a flash) but subsequent frames
+ // are reasonably well predicted by an earlier (pre flash) frame.
+ // The recovery after a flash is indicated by a high pcnt_second_ref
+ // compared to pcnt_inter.
+ return next_frame != NULL &&
+ next_frame->pcnt_second_ref > next_frame->pcnt_inter &&
+ next_frame->pcnt_second_ref >= 0.5;
+}
+
+// Update the motion related elements to the GF arf boost calculation.
+static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
+ GF_GROUP_STATS *gf_stats, double f_w,
+ double f_h) {
+ const double pct = stats->pcnt_motion;
+
+ // Accumulate Motion In/Out of frame stats.
+ gf_stats->this_frame_mv_in_out = stats->mv_in_out_count * pct;
+ gf_stats->mv_in_out_accumulator += gf_stats->this_frame_mv_in_out;
+ gf_stats->abs_mv_in_out_accumulator += fabs(gf_stats->this_frame_mv_in_out);
+
+ // Accumulate a measure of how uniform (or conversely how random) the motion
+ // field is (a ratio of abs(mv) / mv).
+ if (pct > 0.05) {
+ const double mvr_ratio =
+ fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
+ const double mvc_ratio =
+ fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
+
+ gf_stats->mv_ratio_accumulator +=
+ pct *
+ (mvr_ratio < stats->mvr_abs * f_h ? mvr_ratio : stats->mvr_abs * f_h);
+ gf_stats->mv_ratio_accumulator +=
+ pct *
+ (mvc_ratio < stats->mvc_abs * f_w ? mvc_ratio : stats->mvc_abs * f_w);
+ }
+}
+
+static void accumulate_this_frame_stats(const FIRSTPASS_STATS *stats,
+ const double mod_frame_err,
+ GF_GROUP_STATS *gf_stats) {
+ gf_stats->gf_group_err += mod_frame_err;
+#if GROUP_ADAPTIVE_MAXQ
+ gf_stats->gf_group_raw_error += stats->coded_error;
+#endif
+ gf_stats->gf_group_skip_pct += stats->intra_skip_pct;
+ gf_stats->gf_group_inactive_zone_rows += stats->inactive_zone_rows;
+}
+
+static void accumulate_next_frame_stats(const FIRSTPASS_STATS *stats,
+ const int flash_detected,
+ const int frames_since_key,
+ const int cur_idx,
+ GF_GROUP_STATS *gf_stats, int f_w,
+ int f_h) {
+ accumulate_frame_motion_stats(stats, gf_stats, f_w, f_h);
+ // sum up the metric values of current gf group
+ gf_stats->avg_sr_coded_error += stats->sr_coded_error;
+ gf_stats->avg_pcnt_second_ref += stats->pcnt_second_ref;
+ gf_stats->avg_new_mv_count += stats->new_mv_count;
+ gf_stats->avg_wavelet_energy += stats->frame_avg_wavelet_energy;
+ if (fabs(stats->raw_error_stdev) > 0.000001) {
+ gf_stats->non_zero_stdev_count++;
+ gf_stats->avg_raw_err_stdev += stats->raw_error_stdev;
+ }
+
+ // Accumulate the effect of prediction quality decay
+ if (!flash_detected) {
+ gf_stats->last_loop_decay_rate = gf_stats->loop_decay_rate;
+ gf_stats->loop_decay_rate = get_prediction_decay_rate(stats);
+
+ gf_stats->decay_accumulator =
+ gf_stats->decay_accumulator * gf_stats->loop_decay_rate;
+
+ // Monitor for static sections.
+ if ((frames_since_key + cur_idx - 1) > 1) {
+ gf_stats->zero_motion_accumulator = AOMMIN(
+ gf_stats->zero_motion_accumulator, get_zero_motion_factor(stats));
+ }
+ }
+}
+
+static void average_gf_stats(const int total_frame, GF_GROUP_STATS *gf_stats) {
+ if (total_frame) {
+ gf_stats->avg_sr_coded_error /= total_frame;
+ gf_stats->avg_pcnt_second_ref /= total_frame;
+ gf_stats->avg_new_mv_count /= total_frame;
+ gf_stats->avg_wavelet_energy /= total_frame;
+ }
+
+ if (gf_stats->non_zero_stdev_count)
+ gf_stats->avg_raw_err_stdev /= gf_stats->non_zero_stdev_count;
+}
+
+#define BOOST_FACTOR 12.5
+static double baseline_err_per_mb(const FRAME_INFO *frame_info) {
+ unsigned int screen_area = frame_info->frame_height * frame_info->frame_width;
+
+ // Use a different error per mb factor for calculating boost for
+ // different formats.
+ if (screen_area <= 640 * 360) {
+ return 500.0;
+ } else {
+ return 1000.0;
+ }
+}
+
+static double calc_frame_boost(const PRIMARY_RATE_CONTROL *p_rc,
+ const FRAME_INFO *frame_info,
+ const FIRSTPASS_STATS *this_frame,
+ double this_frame_mv_in_out, double max_boost) {
+ double frame_boost;
+ const double lq = av1_convert_qindex_to_q(p_rc->avg_frame_qindex[INTER_FRAME],
+ frame_info->bit_depth);
+ const double boost_q_correction = AOMMIN((0.5 + (lq * 0.015)), 1.5);
+ const double active_area = calculate_active_area(frame_info, this_frame);
+
+ // Underlying boost factor is based on inter error ratio.
+ frame_boost = AOMMAX(baseline_err_per_mb(frame_info) * active_area,
+ this_frame->intra_error * active_area) /
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
+ frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction;
+
+ // Increase boost for frames where new data coming into frame (e.g. zoom out).
+ // Slightly reduce boost if there is a net balance of motion out of the frame
+ // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0.
+ if (this_frame_mv_in_out > 0.0)
+ frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
+ // In the extreme case the boost is halved.
+ else
+ frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
+
+ return AOMMIN(frame_boost, max_boost * boost_q_correction);
+}
+
+static double calc_kf_frame_boost(const PRIMARY_RATE_CONTROL *p_rc,
+ const FRAME_INFO *frame_info,
+ const FIRSTPASS_STATS *this_frame,
+ double *sr_accumulator, double max_boost) {
+ double frame_boost;
+ const double lq = av1_convert_qindex_to_q(p_rc->avg_frame_qindex[INTER_FRAME],
+ frame_info->bit_depth);
+ const double boost_q_correction = AOMMIN((0.50 + (lq * 0.015)), 2.00);
+ const double active_area = calculate_active_area(frame_info, this_frame);
+
+ // Underlying boost factor is based on inter error ratio.
+ frame_boost = AOMMAX(baseline_err_per_mb(frame_info) * active_area,
+ this_frame->intra_error * active_area) /
+ DOUBLE_DIVIDE_CHECK(
+ (this_frame->coded_error + *sr_accumulator) * active_area);
+
+ // Update the accumulator for second ref error difference.
+ // This is intended to give an indication of how much the coded error is
+ // increasing over time.
+ *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error);
+ *sr_accumulator = AOMMAX(0.0, *sr_accumulator);
+
+ // Q correction and scaling
+ // The 40.0 value here is an experimentally derived baseline minimum.
+ // This value is in line with the minimum per frame boost in the alt_ref
+ // boost calculation.
+ frame_boost = ((frame_boost + 40.0) * boost_q_correction);
+
+ return AOMMIN(frame_boost, max_boost * boost_q_correction);
+}
+
+static int get_projected_gfu_boost(const PRIMARY_RATE_CONTROL *p_rc,
+ int gfu_boost, int frames_to_project,
+ int num_stats_used_for_gfu_boost) {
+ /*
+ * If frames_to_project is equal to num_stats_used_for_gfu_boost,
+ * it means that gfu_boost was calculated over frames_to_project to
+ * begin with(ie; all stats required were available), hence return
+ * the original boost.
+ */
+ if (num_stats_used_for_gfu_boost >= frames_to_project) return gfu_boost;
+
+ double min_boost_factor = sqrt(p_rc->baseline_gf_interval);
+ // Get the current tpl factor (number of frames = frames_to_project).
+ double tpl_factor = av1_get_gfu_boost_projection_factor(
+ min_boost_factor, MAX_GFUBOOST_FACTOR, frames_to_project);
+ // Get the tpl factor when number of frames = num_stats_used_for_prior_boost.
+ double tpl_factor_num_stats = av1_get_gfu_boost_projection_factor(
+ min_boost_factor, MAX_GFUBOOST_FACTOR, num_stats_used_for_gfu_boost);
+ int projected_gfu_boost =
+ (int)rint((tpl_factor * gfu_boost) / tpl_factor_num_stats);
+ return projected_gfu_boost;
+}
+
+#define GF_MAX_BOOST 90.0
+#define GF_MIN_BOOST 50
+#define MIN_DECAY_FACTOR 0.01
+int av1_calc_arf_boost(const TWO_PASS *twopass,
+ const TWO_PASS_FRAME *twopass_frame,
+ const PRIMARY_RATE_CONTROL *p_rc, FRAME_INFO *frame_info,
+ int offset, int f_frames, int b_frames,
+ int *num_fpstats_used, int *num_fpstats_required,
+ int project_gfu_boost) {
+ int i;
+ GF_GROUP_STATS gf_stats;
+ init_gf_stats(&gf_stats);
+ double boost_score = (double)NORMAL_BOOST;
+ int arf_boost;
+ int flash_detected = 0;
+ if (num_fpstats_used) *num_fpstats_used = 0;
+
+ // Search forward from the proposed arf/next gf position.
+ for (i = 0; i < f_frames; ++i) {
+ const FIRSTPASS_STATS *this_frame =
+ read_frame_stats(twopass, twopass_frame, i + offset);
+ if (this_frame == NULL) break;
+
+ // Update the motion related elements to the boost calculation.
+ accumulate_frame_motion_stats(this_frame, &gf_stats,
+ frame_info->frame_width,
+ frame_info->frame_height);
+
+ // We want to discount the flash frame itself and the recovery
+ // frame that follows as both will have poor scores.
+ flash_detected = detect_flash(twopass, twopass_frame, i + offset) ||
+ detect_flash(twopass, twopass_frame, i + offset + 1);
+
+ // Accumulate the effect of prediction quality decay.
+ if (!flash_detected) {
+ gf_stats.decay_accumulator *= get_prediction_decay_rate(this_frame);
+ gf_stats.decay_accumulator = gf_stats.decay_accumulator < MIN_DECAY_FACTOR
+ ? MIN_DECAY_FACTOR
+ : gf_stats.decay_accumulator;
+ }
+
+ boost_score +=
+ gf_stats.decay_accumulator *
+ calc_frame_boost(p_rc, frame_info, this_frame,
+ gf_stats.this_frame_mv_in_out, GF_MAX_BOOST);
+ if (num_fpstats_used) (*num_fpstats_used)++;
+ }
+
+ arf_boost = (int)boost_score;
+
+ // Reset for backward looking loop.
+ boost_score = 0.0;
+ init_gf_stats(&gf_stats);
+ // Search backward towards last gf position.
+ for (i = -1; i >= -b_frames; --i) {
+ const FIRSTPASS_STATS *this_frame =
+ read_frame_stats(twopass, twopass_frame, i + offset);
+ if (this_frame == NULL) break;
+
+ // Update the motion related elements to the boost calculation.
+ accumulate_frame_motion_stats(this_frame, &gf_stats,
+ frame_info->frame_width,
+ frame_info->frame_height);
+
+ // We want to discount the the flash frame itself and the recovery
+ // frame that follows as both will have poor scores.
+ flash_detected = detect_flash(twopass, twopass_frame, i + offset) ||
+ detect_flash(twopass, twopass_frame, i + offset + 1);
+
+ // Cumulative effect of prediction quality decay.
+ if (!flash_detected) {
+ gf_stats.decay_accumulator *= get_prediction_decay_rate(this_frame);
+ gf_stats.decay_accumulator = gf_stats.decay_accumulator < MIN_DECAY_FACTOR
+ ? MIN_DECAY_FACTOR
+ : gf_stats.decay_accumulator;
+ }
+
+ boost_score +=
+ gf_stats.decay_accumulator *
+ calc_frame_boost(p_rc, frame_info, this_frame,
+ gf_stats.this_frame_mv_in_out, GF_MAX_BOOST);
+ if (num_fpstats_used) (*num_fpstats_used)++;
+ }
+ arf_boost += (int)boost_score;
+
+ if (project_gfu_boost) {
+ assert(num_fpstats_required != NULL);
+ assert(num_fpstats_used != NULL);
+ *num_fpstats_required = f_frames + b_frames;
+ arf_boost = get_projected_gfu_boost(p_rc, arf_boost, *num_fpstats_required,
+ *num_fpstats_used);
+ }
+
+ if (arf_boost < ((b_frames + f_frames) * GF_MIN_BOOST))
+ arf_boost = ((b_frames + f_frames) * GF_MIN_BOOST);
+
+ return arf_boost;
+}
+
+// Calculate a section intra ratio used in setting max loop filter.
+static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
+ const FIRSTPASS_STATS *end,
+ int section_length) {
+ const FIRSTPASS_STATS *s = begin;
+ double intra_error = 0.0;
+ double coded_error = 0.0;
+ int i = 0;
+
+ while (s < end && i < section_length) {
+ intra_error += s->intra_error;
+ coded_error += s->coded_error;
+ ++s;
+ ++i;
+ }
+
+ return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
+}
+
+/*!\brief Calculates the bit target for this GF/ARF group
+ *
+ * \ingroup rate_control
+ *
+ * Calculates the total bits to allocate in this GF/ARF group.
+ *
+ * \param[in] cpi Top-level encoder structure
+ * \param[in] gf_group_err Cumulative coded error score for the
+ * frames making up this group.
+ *
+ * \return The target total number of bits for this GF/ARF group.
+ */
+static int64_t calculate_total_gf_group_bits(AV1_COMP *cpi,
+ double gf_group_err) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const TWO_PASS *const twopass = &cpi->ppi->twopass;
+ const int max_bits = frame_max_bits(rc, &cpi->oxcf);
+ int64_t total_group_bits;
+
+ // Calculate the bits to be allocated to the group as a whole.
+ if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) {
+ total_group_bits = (int64_t)(twopass->kf_group_bits *
+ (gf_group_err / twopass->kf_group_error_left));
+ } else {
+ total_group_bits = 0;
+ }
+
+ // Clamp odd edge cases.
+ total_group_bits = (total_group_bits < 0) ? 0
+ : (total_group_bits > twopass->kf_group_bits)
+ ? twopass->kf_group_bits
+ : total_group_bits;
+
+ // Clip based on user supplied data rate variability limit.
+ if (total_group_bits > (int64_t)max_bits * p_rc->baseline_gf_interval)
+ total_group_bits = (int64_t)max_bits * p_rc->baseline_gf_interval;
+
+ return total_group_bits;
+}
+
+// Calculate the number of bits to assign to boosted frames in a group.
+static int calculate_boost_bits(int frame_count, int boost,
+ int64_t total_group_bits) {
+ int allocation_chunks;
+
+ // return 0 for invalid inputs (could arise e.g. through rounding errors)
+ if (!boost || (total_group_bits <= 0)) return 0;
+
+ if (frame_count <= 0) return (int)(AOMMIN(total_group_bits, INT_MAX));
+
+ allocation_chunks = (frame_count * 100) + boost;
+
+ // Prevent overflow.
+ if (boost > 1023) {
+ int divisor = boost >> 10;
+ boost /= divisor;
+ allocation_chunks /= divisor;
+ }
+
+ // Calculate the number of extra bits for use in the boosted frame or frames.
+ return AOMMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
+ 0);
+}
+
+// Calculate the boost factor based on the number of bits assigned, i.e. the
+// inverse of calculate_boost_bits().
+static int calculate_boost_factor(int frame_count, int bits,
+ int64_t total_group_bits) {
+ return (int)(100.0 * frame_count * bits / (total_group_bits - bits));
+}
+
+// Reduce the number of bits assigned to keyframe or arf if necessary, to
+// prevent bitrate spikes that may break level constraints.
+// frame_type: 0: keyframe; 1: arf.
+static int adjust_boost_bits_for_target_level(const AV1_COMP *const cpi,
+ RATE_CONTROL *const rc,
+ int bits_assigned,
+ int64_t group_bits,
+ int frame_type) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const SequenceHeader *const seq_params = cm->seq_params;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const int temporal_layer_id = cm->temporal_layer_id;
+ const int spatial_layer_id = cm->spatial_layer_id;
+ for (int index = 0; index < seq_params->operating_points_cnt_minus_1 + 1;
+ ++index) {
+ if (!is_in_operating_point(seq_params->operating_point_idc[index],
+ temporal_layer_id, spatial_layer_id)) {
+ continue;
+ }
+
+ const AV1_LEVEL target_level =
+ cpi->ppi->level_params.target_seq_level_idx[index];
+ if (target_level >= SEQ_LEVELS) continue;
+
+ assert(is_valid_seq_level_idx(target_level));
+
+ const double level_bitrate_limit = av1_get_max_bitrate_for_level(
+ target_level, seq_params->tier[0], seq_params->profile);
+ const int target_bits_per_frame =
+ (int)(level_bitrate_limit / cpi->framerate);
+ if (frame_type == 0) {
+ // Maximum bits for keyframe is 8 times the target_bits_per_frame.
+ const int level_enforced_max_kf_bits = target_bits_per_frame * 8;
+ if (bits_assigned > level_enforced_max_kf_bits) {
+ const int frames = rc->frames_to_key - 1;
+ p_rc->kf_boost = calculate_boost_factor(
+ frames, level_enforced_max_kf_bits, group_bits);
+ bits_assigned =
+ calculate_boost_bits(frames, p_rc->kf_boost, group_bits);
+ }
+ } else if (frame_type == 1) {
+ // Maximum bits for arf is 4 times the target_bits_per_frame.
+ const int level_enforced_max_arf_bits = target_bits_per_frame * 4;
+ if (bits_assigned > level_enforced_max_arf_bits) {
+ p_rc->gfu_boost =
+ calculate_boost_factor(p_rc->baseline_gf_interval,
+ level_enforced_max_arf_bits, group_bits);
+ bits_assigned = calculate_boost_bits(p_rc->baseline_gf_interval,
+ p_rc->gfu_boost, group_bits);
+ }
+ } else {
+ assert(0);
+ }
+ }
+
+ return bits_assigned;
+}
+
+// Allocate bits to each frame in a GF / ARF group
+double layer_fraction[MAX_ARF_LAYERS + 1] = { 1.0, 0.70, 0.55, 0.60,
+ 0.60, 1.0, 1.0 };
+static void allocate_gf_group_bits(GF_GROUP *gf_group,
+ PRIMARY_RATE_CONTROL *const p_rc,
+ RATE_CONTROL *const rc,
+ int64_t gf_group_bits, int gf_arf_bits,
+ int key_frame, int use_arf) {
+ int64_t total_group_bits = gf_group_bits;
+ int base_frame_bits;
+ const int gf_group_size = gf_group->size;
+ int layer_frames[MAX_ARF_LAYERS + 1] = { 0 };
+
+ // For key frames the frame target rate is already set and it
+ // is also the golden frame.
+ // === [frame_index == 0] ===
+ int frame_index = !!key_frame;
+
+ // Subtract the extra bits set aside for ARF frames from the Group Total
+ if (use_arf) total_group_bits -= gf_arf_bits;
+
+ int num_frames =
+ AOMMAX(1, p_rc->baseline_gf_interval - (rc->frames_since_key == 0));
+ base_frame_bits = (int)(total_group_bits / num_frames);
+
+ // Check the number of frames in each layer in case we have a
+ // non standard group length.
+ int max_arf_layer = gf_group->max_layer_depth - 1;
+ for (int idx = frame_index; idx < gf_group_size; ++idx) {
+ if ((gf_group->update_type[idx] == ARF_UPDATE) ||
+ (gf_group->update_type[idx] == INTNL_ARF_UPDATE)) {
+ layer_frames[gf_group->layer_depth[idx]]++;
+ }
+ }
+
+ // Allocate extra bits to each ARF layer
+ int i;
+ int layer_extra_bits[MAX_ARF_LAYERS + 1] = { 0 };
+ assert(max_arf_layer <= MAX_ARF_LAYERS);
+ for (i = 1; i <= max_arf_layer; ++i) {
+ double fraction = (i == max_arf_layer) ? 1.0 : layer_fraction[i];
+ layer_extra_bits[i] =
+ (int)((gf_arf_bits * fraction) / AOMMAX(1, layer_frames[i]));
+ gf_arf_bits -= (int)(gf_arf_bits * fraction);
+ }
+
+ // Now combine ARF layer and baseline bits to give total bits for each frame.
+ int arf_extra_bits;
+ for (int idx = frame_index; idx < gf_group_size; ++idx) {
+ switch (gf_group->update_type[idx]) {
+ case ARF_UPDATE:
+ case INTNL_ARF_UPDATE:
+ arf_extra_bits = layer_extra_bits[gf_group->layer_depth[idx]];
+ gf_group->bit_allocation[idx] = base_frame_bits + arf_extra_bits;
+ break;
+ case INTNL_OVERLAY_UPDATE:
+ case OVERLAY_UPDATE: gf_group->bit_allocation[idx] = 0; break;
+ default: gf_group->bit_allocation[idx] = base_frame_bits; break;
+ }
+ }
+
+ // Set the frame following the current GOP to 0 bit allocation. For ARF
+ // groups, this next frame will be overlay frame, which is the first frame
+ // in the next GOP. For GF group, next GOP will overwrite the rate allocation.
+ // Setting this frame to use 0 bit (of out the current GOP budget) will
+ // simplify logics in reference frame management.
+ if (gf_group_size < MAX_STATIC_GF_GROUP_LENGTH)
+ gf_group->bit_allocation[gf_group_size] = 0;
+}
+
+// Returns true if KF group and GF group both are almost completely static.
+static INLINE int is_almost_static(double gf_zero_motion, int kf_zero_motion,
+ int is_lap_enabled) {
+ if (is_lap_enabled) {
+ /*
+ * when LAP enabled kf_zero_motion is not reliable, so use strict
+ * constraint on gf_zero_motion.
+ */
+ return (gf_zero_motion >= 0.999);
+ } else {
+ return (gf_zero_motion >= 0.995) &&
+ (kf_zero_motion >= STATIC_KF_GROUP_THRESH);
+ }
+}
+
+#define ARF_ABS_ZOOM_THRESH 4.4
+static INLINE int detect_gf_cut(AV1_COMP *cpi, int frame_index, int cur_start,
+ int flash_detected, int active_max_gf_interval,
+ int active_min_gf_interval,
+ GF_GROUP_STATS *gf_stats) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ AV1_COMMON *const cm = &cpi->common;
+ // Motion breakout threshold for loop below depends on image size.
+ const double mv_ratio_accumulator_thresh = (cm->height + cm->width) / 4.0;
+
+ if (!flash_detected) {
+ // Break clause to detect very still sections after motion. For example,
+ // a static image after a fade or other transition.
+
+ // TODO(angiebird): This is a temporary change, we will avoid using
+ // twopass_frame.stats_in in the follow-up CL
+ int index = (int)(cpi->twopass_frame.stats_in -
+ twopass->stats_buf_ctx->stats_in_start);
+ if (detect_transition_to_still(&twopass->firstpass_info, index,
+ rc->min_gf_interval, frame_index - cur_start,
+ 5, gf_stats->loop_decay_rate,
+ gf_stats->last_loop_decay_rate)) {
+ return 1;
+ }
+ }
+
+ // Some conditions to breakout after min interval.
+ if (frame_index - cur_start >= active_min_gf_interval &&
+ // If possible don't break very close to a kf
+ (rc->frames_to_key - frame_index >= rc->min_gf_interval) &&
+ ((frame_index - cur_start) & 0x01) && !flash_detected &&
+ (gf_stats->mv_ratio_accumulator > mv_ratio_accumulator_thresh ||
+ gf_stats->abs_mv_in_out_accumulator > ARF_ABS_ZOOM_THRESH)) {
+ return 1;
+ }
+
+ // If almost totally static, we will not use the the max GF length later,
+ // so we can continue for more frames.
+ if (((frame_index - cur_start) >= active_max_gf_interval + 1) &&
+ !is_almost_static(gf_stats->zero_motion_accumulator,
+ twopass->kf_zeromotion_pct, cpi->ppi->lap_enabled)) {
+ return 1;
+ }
+ return 0;
+}
+
+static int is_shorter_gf_interval_better(
+ AV1_COMP *cpi, const EncodeFrameParams *frame_params) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ int gop_length_decision_method = cpi->sf.tpl_sf.gop_length_decision_method;
+ int shorten_gf_interval;
+
+ av1_tpl_preload_rc_estimate(cpi, frame_params);
+
+ if (gop_length_decision_method == 2) {
+ // GF group length is decided based on GF boost and tpl stats of ARFs from
+ // base layer, (base+1) layer.
+ shorten_gf_interval =
+ (p_rc->gfu_boost <
+ p_rc->num_stats_used_for_gfu_boost * GF_MIN_BOOST * 1.4) &&
+ !av1_tpl_setup_stats(cpi, 3, frame_params);
+ } else {
+ int do_complete_tpl = 1;
+ GF_GROUP *const gf_group = &cpi->ppi->gf_group;
+ int is_temporal_filter_enabled =
+ (rc->frames_since_key > 0 && gf_group->arf_index > -1);
+
+ if (gop_length_decision_method == 1) {
+ // Check if tpl stats of ARFs from base layer, (base+1) layer,
+ // (base+2) layer can decide the GF group length.
+ int gop_length_eval = av1_tpl_setup_stats(cpi, 2, frame_params);
+
+ if (gop_length_eval != 2) {
+ do_complete_tpl = 0;
+ shorten_gf_interval = !gop_length_eval;
+ }
+ }
+
+ if (do_complete_tpl) {
+ // Decide GF group length based on complete tpl stats.
+ shorten_gf_interval = !av1_tpl_setup_stats(cpi, 1, frame_params);
+ // Tpl stats is reused when the ARF is temporally filtered and GF
+ // interval is not shortened.
+ if (is_temporal_filter_enabled && !shorten_gf_interval) {
+ cpi->skip_tpl_setup_stats = 1;
+#if CONFIG_BITRATE_ACCURACY && !CONFIG_THREE_PASS
+ assert(cpi->gf_frame_index == 0);
+ av1_vbr_rc_update_q_index_list(&cpi->vbr_rc_info, &cpi->ppi->tpl_data,
+ gf_group,
+ cpi->common.seq_params->bit_depth);
+#endif // CONFIG_BITRATE_ACCURACY
+ }
+ }
+ }
+ return shorten_gf_interval;
+}
+
+#define MIN_SHRINK_LEN 6 // the minimum length of gf if we are shrinking
+#define SMOOTH_FILT_LEN 7
+#define HALF_FILT_LEN (SMOOTH_FILT_LEN / 2)
+#define WINDOW_SIZE 7
+#define HALF_WIN (WINDOW_SIZE / 2)
+// A 7-tap gaussian smooth filter
+const double smooth_filt[SMOOTH_FILT_LEN] = { 0.006, 0.061, 0.242, 0.383,
+ 0.242, 0.061, 0.006 };
+
+// Smooth filter intra_error and coded_error in firstpass stats.
+// If stats[i].is_flash==1, the ith element should not be used in the filtering.
+static void smooth_filter_stats(const FIRSTPASS_STATS *stats, int start_idx,
+ int last_idx, double *filt_intra_err,
+ double *filt_coded_err) {
+ int i, j;
+ for (i = start_idx; i <= last_idx; i++) {
+ double total_wt = 0;
+ for (j = -HALF_FILT_LEN; j <= HALF_FILT_LEN; j++) {
+ int idx = AOMMIN(AOMMAX(i + j, start_idx), last_idx);
+ if (stats[idx].is_flash) continue;
+
+ filt_intra_err[i] +=
+ smooth_filt[j + HALF_FILT_LEN] * stats[idx].intra_error;
+ total_wt += smooth_filt[j + HALF_FILT_LEN];
+ }
+ if (total_wt > 0.01) {
+ filt_intra_err[i] /= total_wt;
+ } else {
+ filt_intra_err[i] = stats[i].intra_error;
+ }
+ }
+ for (i = start_idx; i <= last_idx; i++) {
+ double total_wt = 0;
+ for (j = -HALF_FILT_LEN; j <= HALF_FILT_LEN; j++) {
+ int idx = AOMMIN(AOMMAX(i + j, start_idx), last_idx);
+ // Coded error involves idx and idx - 1.
+ if (stats[idx].is_flash || (idx > 0 && stats[idx - 1].is_flash)) continue;
+
+ filt_coded_err[i] +=
+ smooth_filt[j + HALF_FILT_LEN] * stats[idx].coded_error;
+ total_wt += smooth_filt[j + HALF_FILT_LEN];
+ }
+ if (total_wt > 0.01) {
+ filt_coded_err[i] /= total_wt;
+ } else {
+ filt_coded_err[i] = stats[i].coded_error;
+ }
+ }
+}
+
+// Calculate gradient
+static void get_gradient(const double *values, int start, int last,
+ double *grad) {
+ if (start == last) {
+ grad[start] = 0;
+ return;
+ }
+ for (int i = start; i <= last; i++) {
+ int prev = AOMMAX(i - 1, start);
+ int next = AOMMIN(i + 1, last);
+ grad[i] = (values[next] - values[prev]) / (next - prev);
+ }
+}
+
+static int find_next_scenecut(const FIRSTPASS_STATS *const stats_start,
+ int first, int last) {
+ // Identify unstable areas caused by scenecuts.
+ // Find the max and 2nd max coded error, and the average of the rest frames.
+ // If there is only one frame that yields a huge coded error, it is likely a
+ // scenecut.
+ double this_ratio, max_prev_ratio, max_next_ratio, max_prev_coded,
+ max_next_coded;
+
+ if (last - first == 0) return -1;
+
+ for (int i = first; i <= last; i++) {
+ if (stats_start[i].is_flash || (i > 0 && stats_start[i - 1].is_flash))
+ continue;
+ double temp_intra = AOMMAX(stats_start[i].intra_error, 0.01);
+ this_ratio = stats_start[i].coded_error / temp_intra;
+ // find the avg ratio in the preceding neighborhood
+ max_prev_ratio = 0;
+ max_prev_coded = 0;
+ for (int j = AOMMAX(first, i - HALF_WIN); j < i; j++) {
+ if (stats_start[j].is_flash || (j > 0 && stats_start[j - 1].is_flash))
+ continue;
+ temp_intra = AOMMAX(stats_start[j].intra_error, 0.01);
+ double temp_ratio = stats_start[j].coded_error / temp_intra;
+ if (temp_ratio > max_prev_ratio) {
+ max_prev_ratio = temp_ratio;
+ }
+ if (stats_start[j].coded_error > max_prev_coded) {
+ max_prev_coded = stats_start[j].coded_error;
+ }
+ }
+ // find the avg ratio in the following neighborhood
+ max_next_ratio = 0;
+ max_next_coded = 0;
+ for (int j = i + 1; j <= AOMMIN(i + HALF_WIN, last); j++) {
+ if (stats_start[i].is_flash || (i > 0 && stats_start[i - 1].is_flash))
+ continue;
+ temp_intra = AOMMAX(stats_start[j].intra_error, 0.01);
+ double temp_ratio = stats_start[j].coded_error / temp_intra;
+ if (temp_ratio > max_next_ratio) {
+ max_next_ratio = temp_ratio;
+ }
+ if (stats_start[j].coded_error > max_next_coded) {
+ max_next_coded = stats_start[j].coded_error;
+ }
+ }
+
+ if (max_prev_ratio < 0.001 && max_next_ratio < 0.001) {
+ // the ratios are very small, only check a small fixed threshold
+ if (this_ratio < 0.02) continue;
+ } else {
+ // check if this frame has a larger ratio than the neighborhood
+ double max_sr = stats_start[i].sr_coded_error;
+ if (i < last) max_sr = AOMMAX(max_sr, stats_start[i + 1].sr_coded_error);
+ double max_sr_fr_ratio =
+ max_sr / AOMMAX(stats_start[i].coded_error, 0.01);
+
+ if (max_sr_fr_ratio > 1.2) continue;
+ if (this_ratio < 2 * AOMMAX(max_prev_ratio, max_next_ratio) &&
+ stats_start[i].coded_error <
+ 2 * AOMMAX(max_prev_coded, max_next_coded)) {
+ continue;
+ }
+ }
+ return i;
+ }
+ return -1;
+}
+
+// Remove the region with index next_region.
+// parameter merge: 0: merge with previous; 1: merge with next; 2:
+// merge with both, take type from previous if possible
+// After removing, next_region will be the index of the next region.
+static void remove_region(int merge, REGIONS *regions, int *num_regions,
+ int *next_region) {
+ int k = *next_region;
+ assert(k < *num_regions);
+ if (*num_regions == 1) {
+ *num_regions = 0;
+ return;
+ }
+ if (k == 0) {
+ merge = 1;
+ } else if (k == *num_regions - 1) {
+ merge = 0;
+ }
+ int num_merge = (merge == 2) ? 2 : 1;
+ switch (merge) {
+ case 0:
+ regions[k - 1].last = regions[k].last;
+ *next_region = k;
+ break;
+ case 1:
+ regions[k + 1].start = regions[k].start;
+ *next_region = k + 1;
+ break;
+ case 2:
+ regions[k - 1].last = regions[k + 1].last;
+ *next_region = k;
+ break;
+ default: assert(0);
+ }
+ *num_regions -= num_merge;
+ for (k = *next_region - (merge == 1); k < *num_regions; k++) {
+ regions[k] = regions[k + num_merge];
+ }
+}
+
+// Insert a region in the cur_region_idx. The start and last should both be in
+// the current region. After insertion, the cur_region_idx will point to the
+// last region that was splitted from the original region.
+static void insert_region(int start, int last, REGION_TYPES type,
+ REGIONS *regions, int *num_regions,
+ int *cur_region_idx) {
+ int k = *cur_region_idx;
+ REGION_TYPES this_region_type = regions[k].type;
+ int this_region_last = regions[k].last;
+ int num_add = (start != regions[k].start) + (last != regions[k].last);
+ // move the following regions further to the back
+ for (int r = *num_regions - 1; r > k; r--) {
+ regions[r + num_add] = regions[r];
+ }
+ *num_regions += num_add;
+ if (start > regions[k].start) {
+ regions[k].last = start - 1;
+ k++;
+ regions[k].start = start;
+ }
+ regions[k].type = type;
+ if (last < this_region_last) {
+ regions[k].last = last;
+ k++;
+ regions[k].start = last + 1;
+ regions[k].last = this_region_last;
+ regions[k].type = this_region_type;
+ } else {
+ regions[k].last = this_region_last;
+ }
+ *cur_region_idx = k;
+}
+
+// Get the average of stats inside a region.
+static void analyze_region(const FIRSTPASS_STATS *stats, int k,
+ REGIONS *regions) {
+ int i;
+ regions[k].avg_cor_coeff = 0;
+ regions[k].avg_sr_fr_ratio = 0;
+ regions[k].avg_intra_err = 0;
+ regions[k].avg_coded_err = 0;
+
+ int check_first_sr = (k != 0);
+
+ for (i = regions[k].start; i <= regions[k].last; i++) {
+ if (i > regions[k].start || check_first_sr) {
+ double num_frames =
+ (double)(regions[k].last - regions[k].start + check_first_sr);
+ double max_coded_error =
+ AOMMAX(stats[i].coded_error, stats[i - 1].coded_error);
+ double this_ratio =
+ stats[i].sr_coded_error / AOMMAX(max_coded_error, 0.001);
+ regions[k].avg_sr_fr_ratio += this_ratio / num_frames;
+ }
+
+ regions[k].avg_intra_err +=
+ stats[i].intra_error / (double)(regions[k].last - regions[k].start + 1);
+ regions[k].avg_coded_err +=
+ stats[i].coded_error / (double)(regions[k].last - regions[k].start + 1);
+
+ regions[k].avg_cor_coeff +=
+ AOMMAX(stats[i].cor_coeff, 0.001) /
+ (double)(regions[k].last - regions[k].start + 1);
+ regions[k].avg_noise_var +=
+ AOMMAX(stats[i].noise_var, 0.001) /
+ (double)(regions[k].last - regions[k].start + 1);
+ }
+}
+
+// Calculate the regions stats of every region.
+static void get_region_stats(const FIRSTPASS_STATS *stats, REGIONS *regions,
+ int num_regions) {
+ for (int k = 0; k < num_regions; k++) {
+ analyze_region(stats, k, regions);
+ }
+}
+
+// Find tentative stable regions
+static int find_stable_regions(const FIRSTPASS_STATS *stats,
+ const double *grad_coded, int this_start,
+ int this_last, REGIONS *regions) {
+ int i, j, k = 0;
+ regions[k].start = this_start;
+ for (i = this_start; i <= this_last; i++) {
+ // Check mean and variance of stats in a window
+ double mean_intra = 0.001, var_intra = 0.001;
+ double mean_coded = 0.001, var_coded = 0.001;
+ int count = 0;
+ for (j = -HALF_WIN; j <= HALF_WIN; j++) {
+ int idx = AOMMIN(AOMMAX(i + j, this_start), this_last);
+ if (stats[idx].is_flash || (idx > 0 && stats[idx - 1].is_flash)) continue;
+ mean_intra += stats[idx].intra_error;
+ var_intra += stats[idx].intra_error * stats[idx].intra_error;
+ mean_coded += stats[idx].coded_error;
+ var_coded += stats[idx].coded_error * stats[idx].coded_error;
+ count++;
+ }
+
+ REGION_TYPES cur_type;
+ if (count > 0) {
+ mean_intra /= (double)count;
+ var_intra /= (double)count;
+ mean_coded /= (double)count;
+ var_coded /= (double)count;
+ int is_intra_stable = (var_intra / (mean_intra * mean_intra) < 1.03);
+ int is_coded_stable = (var_coded / (mean_coded * mean_coded) < 1.04 &&
+ fabs(grad_coded[i]) / mean_coded < 0.05) ||
+ mean_coded / mean_intra < 0.05;
+ int is_coded_small = mean_coded < 0.5 * mean_intra;
+ cur_type = (is_intra_stable && is_coded_stable && is_coded_small)
+ ? STABLE_REGION
+ : HIGH_VAR_REGION;
+ } else {
+ cur_type = HIGH_VAR_REGION;
+ }
+
+ // mark a new region if type changes
+ if (i == regions[k].start) {
+ // first frame in the region
+ regions[k].type = cur_type;
+ } else if (cur_type != regions[k].type) {
+ // Append a new region
+ regions[k].last = i - 1;
+ regions[k + 1].start = i;
+ regions[k + 1].type = cur_type;
+ k++;
+ }
+ }
+ regions[k].last = this_last;
+ return k + 1;
+}
+
+// Clean up regions that should be removed or merged.
+static void cleanup_regions(REGIONS *regions, int *num_regions) {
+ int k = 0;
+ while (k < *num_regions) {
+ if ((k > 0 && regions[k - 1].type == regions[k].type &&
+ regions[k].type != SCENECUT_REGION) ||
+ regions[k].last < regions[k].start) {
+ remove_region(0, regions, num_regions, &k);
+ } else {
+ k++;
+ }
+ }
+}
+
+// Remove regions that are of type and shorter than length.
+// Merge it with its neighboring regions.
+static void remove_short_regions(REGIONS *regions, int *num_regions,
+ REGION_TYPES type, int length) {
+ int k = 0;
+ while (k < *num_regions && (*num_regions) > 1) {
+ if ((regions[k].last - regions[k].start + 1 < length &&
+ regions[k].type == type)) {
+ // merge current region with the previous and next regions
+ remove_region(2, regions, num_regions, &k);
+ } else {
+ k++;
+ }
+ }
+ cleanup_regions(regions, num_regions);
+}
+
+static void adjust_unstable_region_bounds(const FIRSTPASS_STATS *stats,
+ REGIONS *regions, int *num_regions) {
+ int i, j, k;
+ // Remove regions that are too short. Likely noise.
+ remove_short_regions(regions, num_regions, STABLE_REGION, HALF_WIN);
+ remove_short_regions(regions, num_regions, HIGH_VAR_REGION, HALF_WIN);
+
+ get_region_stats(stats, regions, *num_regions);
+
+ // Adjust region boundaries. The thresholds are empirically obtained, but
+ // overall the performance is not very sensitive to small changes to them.
+ for (k = 0; k < *num_regions; k++) {
+ if (regions[k].type == STABLE_REGION) continue;
+ if (k > 0) {
+ // Adjust previous boundary.
+ // First find the average intra/coded error in the previous
+ // neighborhood.
+ double avg_intra_err = 0;
+ const int starti = AOMMAX(regions[k - 1].last - WINDOW_SIZE + 1,
+ regions[k - 1].start + 1);
+ const int lasti = regions[k - 1].last;
+ int counti = 0;
+ for (i = starti; i <= lasti; i++) {
+ avg_intra_err += stats[i].intra_error;
+ counti++;
+ }
+ if (counti > 0) {
+ avg_intra_err = AOMMAX(avg_intra_err / (double)counti, 0.001);
+ int count_coded = 0, count_grad = 0;
+ for (j = lasti + 1; j <= regions[k].last; j++) {
+ const int intra_close =
+ fabs(stats[j].intra_error - avg_intra_err) / avg_intra_err < 0.1;
+ const int coded_small = stats[j].coded_error / avg_intra_err < 0.1;
+ const int coeff_close = stats[j].cor_coeff > 0.995;
+ if (!coeff_close || !coded_small) count_coded--;
+ if (intra_close && count_coded >= 0 && count_grad >= 0) {
+ // this frame probably belongs to the previous stable region
+ regions[k - 1].last = j;
+ regions[k].start = j + 1;
+ } else {
+ break;
+ }
+ }
+ }
+ } // if k > 0
+ if (k < *num_regions - 1) {
+ // Adjust next boundary.
+ // First find the average intra/coded error in the next neighborhood.
+ double avg_intra_err = 0;
+ const int starti = regions[k + 1].start;
+ const int lasti = AOMMIN(regions[k + 1].last - 1,
+ regions[k + 1].start + WINDOW_SIZE - 1);
+ int counti = 0;
+ for (i = starti; i <= lasti; i++) {
+ avg_intra_err += stats[i].intra_error;
+ counti++;
+ }
+ if (counti > 0) {
+ avg_intra_err = AOMMAX(avg_intra_err / (double)counti, 0.001);
+ // At the boundary, coded error is large, but still the frame is stable
+ int count_coded = 1, count_grad = 1;
+ for (j = starti - 1; j >= regions[k].start; j--) {
+ const int intra_close =
+ fabs(stats[j].intra_error - avg_intra_err) / avg_intra_err < 0.1;
+ const int coded_small =
+ stats[j + 1].coded_error / avg_intra_err < 0.1;
+ const int coeff_close = stats[j].cor_coeff > 0.995;
+ if (!coeff_close || !coded_small) count_coded--;
+ if (intra_close && count_coded >= 0 && count_grad >= 0) {
+ // this frame probably belongs to the next stable region
+ regions[k + 1].start = j;
+ regions[k].last = j - 1;
+ } else {
+ break;
+ }
+ }
+ }
+ } // if k < *num_regions - 1
+ } // end of loop over all regions
+
+ cleanup_regions(regions, num_regions);
+ remove_short_regions(regions, num_regions, HIGH_VAR_REGION, HALF_WIN);
+ get_region_stats(stats, regions, *num_regions);
+
+ // If a stable regions has higher error than neighboring high var regions,
+ // or if the stable region has a lower average correlation,
+ // then it should be merged with them
+ k = 0;
+ while (k < *num_regions && (*num_regions) > 1) {
+ if (regions[k].type == STABLE_REGION &&
+ (regions[k].last - regions[k].start + 1) < 2 * WINDOW_SIZE &&
+ ((k > 0 && // previous regions
+ (regions[k].avg_coded_err > regions[k - 1].avg_coded_err * 1.01 ||
+ regions[k].avg_cor_coeff < regions[k - 1].avg_cor_coeff * 0.999)) &&
+ (k < *num_regions - 1 && // next region
+ (regions[k].avg_coded_err > regions[k + 1].avg_coded_err * 1.01 ||
+ regions[k].avg_cor_coeff < regions[k + 1].avg_cor_coeff * 0.999)))) {
+ // merge current region with the previous and next regions
+ remove_region(2, regions, num_regions, &k);
+ analyze_region(stats, k - 1, regions);
+ } else if (regions[k].type == HIGH_VAR_REGION &&
+ (regions[k].last - regions[k].start + 1) < 2 * WINDOW_SIZE &&
+ ((k > 0 && // previous regions
+ (regions[k].avg_coded_err <
+ regions[k - 1].avg_coded_err * 0.99 ||
+ regions[k].avg_cor_coeff >
+ regions[k - 1].avg_cor_coeff * 1.001)) &&
+ (k < *num_regions - 1 && // next region
+ (regions[k].avg_coded_err <
+ regions[k + 1].avg_coded_err * 0.99 ||
+ regions[k].avg_cor_coeff >
+ regions[k + 1].avg_cor_coeff * 1.001)))) {
+ // merge current region with the previous and next regions
+ remove_region(2, regions, num_regions, &k);
+ analyze_region(stats, k - 1, regions);
+ } else {
+ k++;
+ }
+ }
+
+ remove_short_regions(regions, num_regions, STABLE_REGION, WINDOW_SIZE);
+ remove_short_regions(regions, num_regions, HIGH_VAR_REGION, HALF_WIN);
+}
+
+// Identify blending regions.
+static void find_blending_regions(const FIRSTPASS_STATS *stats,
+ REGIONS *regions, int *num_regions) {
+ int i, k = 0;
+ // Blending regions will have large content change, therefore will have a
+ // large consistent change in intra error.
+ int count_stable = 0;
+ while (k < *num_regions) {
+ if (regions[k].type == STABLE_REGION) {
+ k++;
+ count_stable++;
+ continue;
+ }
+ int dir = 0;
+ int start = 0, last;
+ for (i = regions[k].start; i <= regions[k].last; i++) {
+ // First mark the regions that has consistent large change of intra error.
+ if (k == 0 && i == regions[k].start) continue;
+ if (stats[i].is_flash || (i > 0 && stats[i - 1].is_flash)) continue;
+ double grad = stats[i].intra_error - stats[i - 1].intra_error;
+ int large_change = fabs(grad) / AOMMAX(stats[i].intra_error, 0.01) > 0.05;
+ int this_dir = 0;
+ if (large_change) {
+ this_dir = (grad > 0) ? 1 : -1;
+ }
+ // the current trend continues
+ if (dir == this_dir) continue;
+ if (dir != 0) {
+ // Mark the end of a new large change group and add it
+ last = i - 1;
+ insert_region(start, last, BLENDING_REGION, regions, num_regions, &k);
+ }
+ dir = this_dir;
+ if (k == 0 && i == regions[k].start + 1) {
+ start = i - 1;
+ } else {
+ start = i;
+ }
+ }
+ if (dir != 0) {
+ last = regions[k].last;
+ insert_region(start, last, BLENDING_REGION, regions, num_regions, &k);
+ }
+ k++;
+ }
+
+ // If the blending region has very low correlation, mark it as high variance
+ // since we probably cannot benefit from it anyways.
+ get_region_stats(stats, regions, *num_regions);
+ for (k = 0; k < *num_regions; k++) {
+ if (regions[k].type != BLENDING_REGION) continue;
+ if (regions[k].last == regions[k].start || regions[k].avg_cor_coeff < 0.6 ||
+ count_stable == 0)
+ regions[k].type = HIGH_VAR_REGION;
+ }
+ get_region_stats(stats, regions, *num_regions);
+
+ // It is possible for blending to result in a "dip" in intra error (first
+ // decrease then increase). Therefore we need to find the dip and combine the
+ // two regions.
+ k = 1;
+ while (k < *num_regions) {
+ if (k < *num_regions - 1 && regions[k].type == HIGH_VAR_REGION) {
+ // Check if this short high variance regions is actually in the middle of
+ // a blending region.
+ if (regions[k - 1].type == BLENDING_REGION &&
+ regions[k + 1].type == BLENDING_REGION &&
+ regions[k].last - regions[k].start < 3) {
+ int prev_dir = (stats[regions[k - 1].last].intra_error -
+ stats[regions[k - 1].last - 1].intra_error) > 0
+ ? 1
+ : -1;
+ int next_dir = (stats[regions[k + 1].last].intra_error -
+ stats[regions[k + 1].last - 1].intra_error) > 0
+ ? 1
+ : -1;
+ if (prev_dir < 0 && next_dir > 0) {
+ // This is possibly a mid region of blending. Check the ratios
+ double ratio_thres = AOMMIN(regions[k - 1].avg_sr_fr_ratio,
+ regions[k + 1].avg_sr_fr_ratio) *
+ 0.95;
+ if (regions[k].avg_sr_fr_ratio > ratio_thres) {
+ regions[k].type = BLENDING_REGION;
+ remove_region(2, regions, num_regions, &k);
+ analyze_region(stats, k - 1, regions);
+ continue;
+ }
+ }
+ }
+ }
+ // Check if we have a pair of consecutive blending regions.
+ if (regions[k - 1].type == BLENDING_REGION &&
+ regions[k].type == BLENDING_REGION) {
+ int prev_dir = (stats[regions[k - 1].last].intra_error -
+ stats[regions[k - 1].last - 1].intra_error) > 0
+ ? 1
+ : -1;
+ int next_dir = (stats[regions[k].last].intra_error -
+ stats[regions[k].last - 1].intra_error) > 0
+ ? 1
+ : -1;
+
+ // if both are too short, no need to check
+ int total_length = regions[k].last - regions[k - 1].start + 1;
+ if (total_length < 4) {
+ regions[k - 1].type = HIGH_VAR_REGION;
+ k++;
+ continue;
+ }
+
+ int to_merge = 0;
+ if (prev_dir < 0 && next_dir > 0) {
+ // In this case we check the last frame in the previous region.
+ double prev_length =
+ (double)(regions[k - 1].last - regions[k - 1].start + 1);
+ double last_ratio, ratio_thres;
+ if (prev_length < 2.01) {
+ // if the previous region is very short
+ double max_coded_error =
+ AOMMAX(stats[regions[k - 1].last].coded_error,
+ stats[regions[k - 1].last - 1].coded_error);
+ last_ratio = stats[regions[k - 1].last].sr_coded_error /
+ AOMMAX(max_coded_error, 0.001);
+ ratio_thres = regions[k].avg_sr_fr_ratio * 0.95;
+ } else {
+ double max_coded_error =
+ AOMMAX(stats[regions[k - 1].last].coded_error,
+ stats[regions[k - 1].last - 1].coded_error);
+ last_ratio = stats[regions[k - 1].last].sr_coded_error /
+ AOMMAX(max_coded_error, 0.001);
+ double prev_ratio =
+ (regions[k - 1].avg_sr_fr_ratio * prev_length - last_ratio) /
+ (prev_length - 1.0);
+ ratio_thres = AOMMIN(prev_ratio, regions[k].avg_sr_fr_ratio) * 0.95;
+ }
+ if (last_ratio > ratio_thres) {
+ to_merge = 1;
+ }
+ }
+
+ if (to_merge) {
+ remove_region(0, regions, num_regions, &k);
+ analyze_region(stats, k - 1, regions);
+ continue;
+ } else {
+ // These are possibly two separate blending regions. Mark the boundary
+ // frame as HIGH_VAR_REGION to separate the two.
+ int prev_k = k - 1;
+ insert_region(regions[prev_k].last, regions[prev_k].last,
+ HIGH_VAR_REGION, regions, num_regions, &prev_k);
+ analyze_region(stats, prev_k, regions);
+ k = prev_k + 1;
+ analyze_region(stats, k, regions);
+ }
+ }
+ k++;
+ }
+ cleanup_regions(regions, num_regions);
+}
+
+// Clean up decision for blendings. Remove blending regions that are too short.
+// Also if a very short high var region is between a blending and a stable
+// region, just merge it with one of them.
+static void cleanup_blendings(REGIONS *regions, int *num_regions) {
+ int k = 0;
+ while (k<*num_regions && * num_regions> 1) {
+ int is_short_blending = regions[k].type == BLENDING_REGION &&
+ regions[k].last - regions[k].start + 1 < 5;
+ int is_short_hv = regions[k].type == HIGH_VAR_REGION &&
+ regions[k].last - regions[k].start + 1 < 5;
+ int has_stable_neighbor =
+ ((k > 0 && regions[k - 1].type == STABLE_REGION) ||
+ (k < *num_regions - 1 && regions[k + 1].type == STABLE_REGION));
+ int has_blend_neighbor =
+ ((k > 0 && regions[k - 1].type == BLENDING_REGION) ||
+ (k < *num_regions - 1 && regions[k + 1].type == BLENDING_REGION));
+ int total_neighbors = (k > 0) + (k < *num_regions - 1);
+
+ if (is_short_blending ||
+ (is_short_hv &&
+ has_stable_neighbor + has_blend_neighbor >= total_neighbors)) {
+ // Remove this region.Try to determine whether to combine it with the
+ // previous or next region.
+ int merge;
+ double prev_diff =
+ (k > 0)
+ ? fabs(regions[k].avg_cor_coeff - regions[k - 1].avg_cor_coeff)
+ : 1;
+ double next_diff =
+ (k < *num_regions - 1)
+ ? fabs(regions[k].avg_cor_coeff - regions[k + 1].avg_cor_coeff)
+ : 1;
+ // merge == 0 means to merge with previous, 1 means to merge with next
+ merge = prev_diff > next_diff;
+ remove_region(merge, regions, num_regions, &k);
+ } else {
+ k++;
+ }
+ }
+ cleanup_regions(regions, num_regions);
+}
+
+static void free_firstpass_stats_buffers(REGIONS *temp_regions,
+ double *filt_intra_err,
+ double *filt_coded_err,
+ double *grad_coded) {
+ aom_free(temp_regions);
+ aom_free(filt_intra_err);
+ aom_free(filt_coded_err);
+ aom_free(grad_coded);
+}
+
+// Identify stable and unstable regions from first pass stats.
+// stats_start points to the first frame to analyze.
+// |offset| is the offset from the current frame to the frame stats_start is
+// pointing to.
+// Returns 0 on success, -1 on memory allocation failure.
+static int identify_regions(const FIRSTPASS_STATS *const stats_start,
+ int total_frames, int offset, REGIONS *regions,
+ int *total_regions) {
+ int k;
+ if (total_frames <= 1) return 0;
+
+ // store the initial decisions
+ REGIONS *temp_regions =
+ (REGIONS *)aom_malloc(total_frames * sizeof(temp_regions[0]));
+ // buffers for filtered stats
+ double *filt_intra_err =
+ (double *)aom_calloc(total_frames, sizeof(*filt_intra_err));
+ double *filt_coded_err =
+ (double *)aom_calloc(total_frames, sizeof(*filt_coded_err));
+ double *grad_coded = (double *)aom_calloc(total_frames, sizeof(*grad_coded));
+ if (!(temp_regions && filt_intra_err && filt_coded_err && grad_coded)) {
+ free_firstpass_stats_buffers(temp_regions, filt_intra_err, filt_coded_err,
+ grad_coded);
+ return -1;
+ }
+ av1_zero_array(temp_regions, total_frames);
+
+ int cur_region = 0, this_start = 0, this_last;
+
+ int next_scenecut = -1;
+ do {
+ // first get the obvious scenecuts
+ next_scenecut =
+ find_next_scenecut(stats_start, this_start, total_frames - 1);
+ this_last = (next_scenecut >= 0) ? (next_scenecut - 1) : total_frames - 1;
+
+ // low-pass filter the needed stats
+ smooth_filter_stats(stats_start, this_start, this_last, filt_intra_err,
+ filt_coded_err);
+ get_gradient(filt_coded_err, this_start, this_last, grad_coded);
+
+ // find tentative stable regions and unstable regions
+ int num_regions = find_stable_regions(stats_start, grad_coded, this_start,
+ this_last, temp_regions);
+
+ adjust_unstable_region_bounds(stats_start, temp_regions, &num_regions);
+
+ get_region_stats(stats_start, temp_regions, num_regions);
+
+ // Try to identify blending regions in the unstable regions
+ find_blending_regions(stats_start, temp_regions, &num_regions);
+ cleanup_blendings(temp_regions, &num_regions);
+
+ // The flash points should all be considered high variance points
+ k = 0;
+ while (k < num_regions) {
+ if (temp_regions[k].type != STABLE_REGION) {
+ k++;
+ continue;
+ }
+ int start = temp_regions[k].start;
+ int last = temp_regions[k].last;
+ for (int i = start; i <= last; i++) {
+ if (stats_start[i].is_flash) {
+ insert_region(i, i, HIGH_VAR_REGION, temp_regions, &num_regions, &k);
+ }
+ }
+ k++;
+ }
+ cleanup_regions(temp_regions, &num_regions);
+
+ // copy the regions in the scenecut group
+ for (k = 0; k < num_regions; k++) {
+ if (temp_regions[k].last < temp_regions[k].start &&
+ k == num_regions - 1) {
+ num_regions--;
+ break;
+ }
+ regions[k + cur_region] = temp_regions[k];
+ }
+ cur_region += num_regions;
+
+ // add the scenecut region
+ if (next_scenecut > -1) {
+ // add the scenecut region, and find the next scenecut
+ regions[cur_region].type = SCENECUT_REGION;
+ regions[cur_region].start = next_scenecut;
+ regions[cur_region].last = next_scenecut;
+ cur_region++;
+ this_start = next_scenecut + 1;
+ }
+ } while (next_scenecut >= 0);
+
+ *total_regions = cur_region;
+ get_region_stats(stats_start, regions, *total_regions);
+
+ for (k = 0; k < *total_regions; k++) {
+ // If scenecuts are very minor, mark them as high variance.
+ if (regions[k].type != SCENECUT_REGION ||
+ regions[k].avg_cor_coeff *
+ (1 - stats_start[regions[k].start].noise_var /
+ regions[k].avg_intra_err) <
+ 0.8) {
+ continue;
+ }
+ regions[k].type = HIGH_VAR_REGION;
+ }
+ cleanup_regions(regions, total_regions);
+ get_region_stats(stats_start, regions, *total_regions);
+
+ for (k = 0; k < *total_regions; k++) {
+ regions[k].start += offset;
+ regions[k].last += offset;
+ }
+
+ free_firstpass_stats_buffers(temp_regions, filt_intra_err, filt_coded_err,
+ grad_coded);
+ return 0;
+}
+
+static int find_regions_index(const REGIONS *regions, int num_regions,
+ int frame_idx) {
+ for (int k = 0; k < num_regions; k++) {
+ if (regions[k].start <= frame_idx && regions[k].last >= frame_idx) {
+ return k;
+ }
+ }
+ return -1;
+}
+
+/*!\brief Determine the length of future GF groups.
+ *
+ * \ingroup gf_group_algo
+ * This function decides the gf group length of future frames in batch
+ *
+ * \param[in] cpi Top-level encoder structure
+ * \param[in] max_gop_length Maximum length of the GF group
+ * \param[in] max_intervals Maximum number of intervals to decide
+ *
+ * \remark Nothing is returned. Instead, cpi->ppi->rc.gf_intervals is
+ * changed to store the decided GF group lengths.
+ */
+static void calculate_gf_length(AV1_COMP *cpi, int max_gop_length,
+ int max_intervals) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ FIRSTPASS_STATS next_frame;
+ const FIRSTPASS_STATS *const start_pos = cpi->twopass_frame.stats_in;
+ const FIRSTPASS_STATS *const stats = start_pos - (rc->frames_since_key == 0);
+
+ const int f_w = cpi->common.width;
+ const int f_h = cpi->common.height;
+ int i;
+
+ int flash_detected;
+
+ av1_zero(next_frame);
+
+ if (has_no_stats_stage(cpi)) {
+ for (i = 0; i < MAX_NUM_GF_INTERVALS; i++) {
+ p_rc->gf_intervals[i] = AOMMIN(rc->max_gf_interval, max_gop_length);
+ }
+ p_rc->cur_gf_index = 0;
+ rc->intervals_till_gf_calculate_due = MAX_NUM_GF_INTERVALS;
+ return;
+ }
+
+ // TODO(urvang): Try logic to vary min and max interval based on q.
+ const int active_min_gf_interval = rc->min_gf_interval;
+ const int active_max_gf_interval =
+ AOMMIN(rc->max_gf_interval, max_gop_length);
+ const int min_shrink_int = AOMMAX(MIN_SHRINK_LEN, active_min_gf_interval);
+
+ i = (rc->frames_since_key == 0);
+ max_intervals = cpi->ppi->lap_enabled ? 1 : max_intervals;
+ int count_cuts = 1;
+ // If cpi->gf_state.arf_gf_boost_lst is 0, we are starting with a KF or GF.
+ int cur_start = -1 + !cpi->ppi->gf_state.arf_gf_boost_lst, cur_last;
+ int cut_pos[MAX_NUM_GF_INTERVALS + 1] = { -1 };
+ int cut_here;
+ GF_GROUP_STATS gf_stats;
+ init_gf_stats(&gf_stats);
+ while (count_cuts < max_intervals + 1) {
+ // reaches next key frame, break here
+ if (i >= rc->frames_to_key) {
+ cut_here = 2;
+ } else if (i - cur_start >= rc->static_scene_max_gf_interval) {
+ // reached maximum len, but nothing special yet (almost static)
+ // let's look at the next interval
+ cut_here = 1;
+ } else if (EOF == input_stats(twopass, &cpi->twopass_frame, &next_frame)) {
+ // reaches last frame, break
+ cut_here = 2;
+ } else {
+ // Test for the case where there is a brief flash but the prediction
+ // quality back to an earlier frame is then restored.
+ flash_detected = detect_flash(twopass, &cpi->twopass_frame, 0);
+ // TODO(bohanli): remove redundant accumulations here, or unify
+ // this and the ones in define_gf_group
+ accumulate_next_frame_stats(&next_frame, flash_detected,
+ rc->frames_since_key, i, &gf_stats, f_w, f_h);
+
+ cut_here = detect_gf_cut(cpi, i, cur_start, flash_detected,
+ active_max_gf_interval, active_min_gf_interval,
+ &gf_stats);
+ }
+ if (cut_here) {
+ cur_last = i - 1; // the current last frame in the gf group
+ int ori_last = cur_last;
+ // The region frame idx does not start from the same frame as cur_start
+ // and cur_last. Need to offset them.
+ int offset = rc->frames_since_key - p_rc->regions_offset;
+ REGIONS *regions = p_rc->regions;
+ int num_regions = p_rc->num_regions;
+
+ int scenecut_idx = -1;
+ // only try shrinking if interval smaller than active_max_gf_interval
+ if (cur_last - cur_start <= active_max_gf_interval &&
+ cur_last > cur_start) {
+ // find the region indices of where the first and last frame belong.
+ int k_start =
+ find_regions_index(regions, num_regions, cur_start + offset);
+ int k_last =
+ find_regions_index(regions, num_regions, cur_last + offset);
+ if (cur_start + offset == 0) k_start = 0;
+
+ // See if we have a scenecut in between
+ for (int r = k_start + 1; r <= k_last; r++) {
+ if (regions[r].type == SCENECUT_REGION &&
+ regions[r].last - offset - cur_start > active_min_gf_interval) {
+ scenecut_idx = r;
+ break;
+ }
+ }
+
+ // if the found scenecut is very close to the end, ignore it.
+ if (regions[num_regions - 1].last - regions[scenecut_idx].last < 4) {
+ scenecut_idx = -1;
+ }
+
+ if (scenecut_idx != -1) {
+ // If we have a scenecut, then stop at it.
+ // TODO(bohanli): add logic here to stop before the scenecut and for
+ // the next gop start from the scenecut with GF
+ int is_minor_sc =
+ (regions[scenecut_idx].avg_cor_coeff *
+ (1 - stats[regions[scenecut_idx].start - offset].noise_var /
+ regions[scenecut_idx].avg_intra_err) >
+ 0.6);
+ cur_last = regions[scenecut_idx].last - offset - !is_minor_sc;
+ } else {
+ int is_last_analysed = (k_last == num_regions - 1) &&
+ (cur_last + offset == regions[k_last].last);
+ int not_enough_regions =
+ k_last - k_start <=
+ 1 + (regions[k_start].type == SCENECUT_REGION);
+ // if we are very close to the end, then do not shrink since it may
+ // introduce intervals that are too short
+ if (!(is_last_analysed && not_enough_regions)) {
+ const double arf_length_factor = 0.1;
+ double best_score = 0;
+ int best_j = -1;
+ const int first_frame = regions[0].start - offset;
+ const int last_frame = regions[num_regions - 1].last - offset;
+ // score of how much the arf helps the whole GOP
+ double base_score = 0.0;
+ // Accumulate base_score in
+ for (int j = cur_start + 1; j < cur_start + min_shrink_int; j++) {
+ if (stats + j >= twopass->stats_buf_ctx->stats_in_end) break;
+ base_score = (base_score + 1.0) * stats[j].cor_coeff;
+ }
+ int met_blending = 0; // Whether we have met blending areas before
+ int last_blending = 0; // Whether the previous frame if blending
+ for (int j = cur_start + min_shrink_int; j <= cur_last; j++) {
+ if (stats + j >= twopass->stats_buf_ctx->stats_in_end) break;
+ base_score = (base_score + 1.0) * stats[j].cor_coeff;
+ int this_reg =
+ find_regions_index(regions, num_regions, j + offset);
+ if (this_reg < 0) continue;
+ // A GOP should include at most 1 blending region.
+ if (regions[this_reg].type == BLENDING_REGION) {
+ last_blending = 1;
+ if (met_blending) {
+ break;
+ } else {
+ base_score = 0;
+ continue;
+ }
+ } else {
+ if (last_blending) met_blending = 1;
+ last_blending = 0;
+ }
+
+ // Add the factor of how good the neighborhood is for this
+ // candidate arf.
+ double this_score = arf_length_factor * base_score;
+ double temp_accu_coeff = 1.0;
+ // following frames
+ int count_f = 0;
+ for (int n = j + 1; n <= j + 3 && n <= last_frame; n++) {
+ if (stats + n >= twopass->stats_buf_ctx->stats_in_end) break;
+ temp_accu_coeff *= stats[n].cor_coeff;
+ this_score +=
+ temp_accu_coeff *
+ sqrt(AOMMAX(0.5,
+ 1 - stats[n].noise_var /
+ AOMMAX(stats[n].intra_error, 0.001)));
+ count_f++;
+ }
+ // preceding frames
+ temp_accu_coeff = 1.0;
+ for (int n = j; n > j - 3 * 2 + count_f && n > first_frame; n--) {
+ if (stats + n < twopass->stats_buf_ctx->stats_in_start) break;
+ temp_accu_coeff *= stats[n].cor_coeff;
+ this_score +=
+ temp_accu_coeff *
+ sqrt(AOMMAX(0.5,
+ 1 - stats[n].noise_var /
+ AOMMAX(stats[n].intra_error, 0.001)));
+ }
+
+ if (this_score > best_score) {
+ best_score = this_score;
+ best_j = j;
+ }
+ }
+
+ // For blending areas, move one more frame in case we missed the
+ // first blending frame.
+ int best_reg =
+ find_regions_index(regions, num_regions, best_j + offset);
+ if (best_reg < num_regions - 1 && best_reg > 0) {
+ if (regions[best_reg - 1].type == BLENDING_REGION &&
+ regions[best_reg + 1].type == BLENDING_REGION) {
+ if (best_j + offset == regions[best_reg].start &&
+ best_j + offset < regions[best_reg].last) {
+ best_j += 1;
+ } else if (best_j + offset == regions[best_reg].last &&
+ best_j + offset > regions[best_reg].start) {
+ best_j -= 1;
+ }
+ }
+ }
+
+ if (cur_last - best_j < 2) best_j = cur_last;
+ if (best_j > 0 && best_score > 0.1) cur_last = best_j;
+ // if cannot find anything, just cut at the original place.
+ }
+ }
+ }
+ cut_pos[count_cuts] = cur_last;
+ count_cuts++;
+
+ // reset pointers to the shrunken location
+ cpi->twopass_frame.stats_in = start_pos + cur_last;
+ cur_start = cur_last;
+ int cur_region_idx =
+ find_regions_index(regions, num_regions, cur_start + 1 + offset);
+ if (cur_region_idx >= 0)
+ if (regions[cur_region_idx].type == SCENECUT_REGION) cur_start++;
+
+ i = cur_last;
+
+ if (cut_here > 1 && cur_last == ori_last) break;
+
+ // reset accumulators
+ init_gf_stats(&gf_stats);
+ }
+ ++i;
+ }
+
+ // save intervals
+ rc->intervals_till_gf_calculate_due = count_cuts - 1;
+ for (int n = 1; n < count_cuts; n++) {
+ p_rc->gf_intervals[n - 1] = cut_pos[n] - cut_pos[n - 1];
+ }
+ p_rc->cur_gf_index = 0;
+ cpi->twopass_frame.stats_in = start_pos;
+}
+
+static void correct_frames_to_key(AV1_COMP *cpi) {
+ int lookahead_size =
+ (int)av1_lookahead_depth(cpi->ppi->lookahead, cpi->compressor_stage);
+ if (lookahead_size <
+ av1_lookahead_pop_sz(cpi->ppi->lookahead, cpi->compressor_stage)) {
+ assert(
+ IMPLIES(cpi->oxcf.pass != AOM_RC_ONE_PASS && cpi->ppi->frames_left > 0,
+ lookahead_size == cpi->ppi->frames_left));
+ cpi->rc.frames_to_key = AOMMIN(cpi->rc.frames_to_key, lookahead_size);
+ } else if (cpi->ppi->frames_left > 0) {
+ // Correct frames to key based on limit
+ cpi->rc.frames_to_key =
+ AOMMIN(cpi->rc.frames_to_key, cpi->ppi->frames_left);
+ }
+}
+
+/*!\brief Define a GF group in one pass mode when no look ahead stats are
+ * available.
+ *
+ * \ingroup gf_group_algo
+ * This function defines the structure of a GF group, along with various
+ * parameters regarding bit-allocation and quality setup in the special
+ * case of one pass encoding where no lookahead stats are avialable.
+ *
+ * \param[in] cpi Top-level encoder structure
+ *
+ * \remark Nothing is returned. Instead, cpi->ppi->gf_group is changed.
+ */
+static void define_gf_group_pass0(AV1_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ GF_GROUP *const gf_group = &cpi->ppi->gf_group;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ const GFConfig *const gf_cfg = &oxcf->gf_cfg;
+ int target;
+
+ if (oxcf->q_cfg.aq_mode == CYCLIC_REFRESH_AQ) {
+ av1_cyclic_refresh_set_golden_update(cpi);
+ } else {
+ p_rc->baseline_gf_interval = p_rc->gf_intervals[p_rc->cur_gf_index];
+ rc->intervals_till_gf_calculate_due--;
+ p_rc->cur_gf_index++;
+ }
+
+ // correct frames_to_key when lookahead queue is flushing
+ correct_frames_to_key(cpi);
+
+ if (p_rc->baseline_gf_interval > rc->frames_to_key)
+ p_rc->baseline_gf_interval = rc->frames_to_key;
+
+ p_rc->gfu_boost = DEFAULT_GF_BOOST;
+ p_rc->constrained_gf_group =
+ (p_rc->baseline_gf_interval >= rc->frames_to_key) ? 1 : 0;
+
+ gf_group->max_layer_depth_allowed = oxcf->gf_cfg.gf_max_pyr_height;
+
+ // Rare case when the look-ahead is less than the target GOP length, can't
+ // generate ARF frame.
+ if (p_rc->baseline_gf_interval > gf_cfg->lag_in_frames ||
+ !is_altref_enabled(gf_cfg->lag_in_frames, gf_cfg->enable_auto_arf) ||
+ p_rc->baseline_gf_interval < rc->min_gf_interval)
+ gf_group->max_layer_depth_allowed = 0;
+
+ // Set up the structure of this Group-Of-Pictures (same as GF_GROUP)
+ av1_gop_setup_structure(cpi);
+
+ // Allocate bits to each of the frames in the GF group.
+ // TODO(sarahparker) Extend this to work with pyramid structure.
+ for (int cur_index = 0; cur_index < gf_group->size; ++cur_index) {
+ const FRAME_UPDATE_TYPE cur_update_type = gf_group->update_type[cur_index];
+ if (oxcf->rc_cfg.mode == AOM_CBR) {
+ if (cur_update_type == KF_UPDATE) {
+ target = av1_calc_iframe_target_size_one_pass_cbr(cpi);
+ } else {
+ target = av1_calc_pframe_target_size_one_pass_cbr(cpi, cur_update_type);
+ }
+ } else {
+ if (cur_update_type == KF_UPDATE) {
+ target = av1_calc_iframe_target_size_one_pass_vbr(cpi);
+ } else {
+ target = av1_calc_pframe_target_size_one_pass_vbr(cpi, cur_update_type);
+ }
+ }
+ gf_group->bit_allocation[cur_index] = target;
+ }
+}
+
+static INLINE void set_baseline_gf_interval(PRIMARY_RATE_CONTROL *p_rc,
+ int arf_position) {
+ p_rc->baseline_gf_interval = arf_position;
+}
+
+// initialize GF_GROUP_STATS
+static void init_gf_stats(GF_GROUP_STATS *gf_stats) {
+ gf_stats->gf_group_err = 0.0;
+ gf_stats->gf_group_raw_error = 0.0;
+ gf_stats->gf_group_skip_pct = 0.0;
+ gf_stats->gf_group_inactive_zone_rows = 0.0;
+
+ gf_stats->mv_ratio_accumulator = 0.0;
+ gf_stats->decay_accumulator = 1.0;
+ gf_stats->zero_motion_accumulator = 1.0;
+ gf_stats->loop_decay_rate = 1.0;
+ gf_stats->last_loop_decay_rate = 1.0;
+ gf_stats->this_frame_mv_in_out = 0.0;
+ gf_stats->mv_in_out_accumulator = 0.0;
+ gf_stats->abs_mv_in_out_accumulator = 0.0;
+
+ gf_stats->avg_sr_coded_error = 0.0;
+ gf_stats->avg_pcnt_second_ref = 0.0;
+ gf_stats->avg_new_mv_count = 0.0;
+ gf_stats->avg_wavelet_energy = 0.0;
+ gf_stats->avg_raw_err_stdev = 0.0;
+ gf_stats->non_zero_stdev_count = 0;
+}
+
+static void accumulate_gop_stats(AV1_COMP *cpi, int is_intra_only, int f_w,
+ int f_h, FIRSTPASS_STATS *next_frame,
+ const FIRSTPASS_STATS *start_pos,
+ GF_GROUP_STATS *gf_stats, int *idx) {
+ int i, flash_detected;
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ RATE_CONTROL *const rc = &cpi->rc;
+ FRAME_INFO *frame_info = &cpi->frame_info;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+
+ init_gf_stats(gf_stats);
+ av1_zero(*next_frame);
+
+ // If this is a key frame or the overlay from a previous arf then
+ // the error score / cost of this frame has already been accounted for.
+ i = is_intra_only;
+ // get the determined gf group length from p_rc->gf_intervals
+ while (i < p_rc->gf_intervals[p_rc->cur_gf_index]) {
+ // read in the next frame
+ if (EOF == input_stats(twopass, &cpi->twopass_frame, next_frame)) break;
+ // Accumulate error score of frames in this gf group.
+ double mod_frame_err =
+ calculate_modified_err(frame_info, twopass, oxcf, next_frame);
+ // accumulate stats for this frame
+ accumulate_this_frame_stats(next_frame, mod_frame_err, gf_stats);
+ ++i;
+ }
+
+ reset_fpf_position(&cpi->twopass_frame, start_pos);
+
+ i = is_intra_only;
+ input_stats(twopass, &cpi->twopass_frame, next_frame);
+ while (i < p_rc->gf_intervals[p_rc->cur_gf_index]) {
+ // read in the next frame
+ if (EOF == input_stats(twopass, &cpi->twopass_frame, next_frame)) break;
+
+ // Test for the case where there is a brief flash but the prediction
+ // quality back to an earlier frame is then restored.
+ flash_detected = detect_flash(twopass, &cpi->twopass_frame, 0);
+
+ // accumulate stats for next frame
+ accumulate_next_frame_stats(next_frame, flash_detected,
+ rc->frames_since_key, i, gf_stats, f_w, f_h);
+
+ ++i;
+ }
+
+ i = p_rc->gf_intervals[p_rc->cur_gf_index];
+ average_gf_stats(i, gf_stats);
+
+ *idx = i;
+}
+
+static void update_gop_length(RATE_CONTROL *rc, PRIMARY_RATE_CONTROL *p_rc,
+ int idx, int is_final_pass) {
+ if (is_final_pass) {
+ rc->intervals_till_gf_calculate_due--;
+ p_rc->cur_gf_index++;
+ }
+
+ // Was the group length constrained by the requirement for a new KF?
+ p_rc->constrained_gf_group = (idx >= rc->frames_to_key) ? 1 : 0;
+
+ set_baseline_gf_interval(p_rc, idx);
+ rc->frames_till_gf_update_due = p_rc->baseline_gf_interval;
+}
+
+#define MAX_GF_BOOST 5400
+#define REDUCE_GF_LENGTH_THRESH 4
+#define REDUCE_GF_LENGTH_TO_KEY_THRESH 9
+#define REDUCE_GF_LENGTH_BY 1
+static void set_gop_bits_boost(AV1_COMP *cpi, int i, int is_intra_only,
+ int is_final_pass, int use_alt_ref,
+ int alt_offset, const FIRSTPASS_STATS *start_pos,
+ GF_GROUP_STATS *gf_stats) {
+ // Should we use the alternate reference frame.
+ AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ GF_GROUP *gf_group = &cpi->ppi->gf_group;
+ FRAME_INFO *frame_info = &cpi->frame_info;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ const RateControlCfg *const rc_cfg = &oxcf->rc_cfg;
+
+ int ext_len = i - is_intra_only;
+ if (use_alt_ref) {
+ const int forward_frames = (rc->frames_to_key - i >= ext_len)
+ ? ext_len
+ : AOMMAX(0, rc->frames_to_key - i);
+
+ // Calculate the boost for alt ref.
+ p_rc->gfu_boost = av1_calc_arf_boost(
+ twopass, &cpi->twopass_frame, p_rc, frame_info, alt_offset,
+ forward_frames, ext_len, &p_rc->num_stats_used_for_gfu_boost,
+ &p_rc->num_stats_required_for_gfu_boost, cpi->ppi->lap_enabled);
+ } else {
+ reset_fpf_position(&cpi->twopass_frame, start_pos);
+ p_rc->gfu_boost = AOMMIN(
+ MAX_GF_BOOST,
+ av1_calc_arf_boost(
+ twopass, &cpi->twopass_frame, p_rc, frame_info, alt_offset, ext_len,
+ 0, &p_rc->num_stats_used_for_gfu_boost,
+ &p_rc->num_stats_required_for_gfu_boost, cpi->ppi->lap_enabled));
+ }
+
+#define LAST_ALR_BOOST_FACTOR 0.2f
+ p_rc->arf_boost_factor = 1.0;
+ if (use_alt_ref && !is_lossless_requested(rc_cfg)) {
+ // Reduce the boost of altref in the last gf group
+ if (rc->frames_to_key - ext_len == REDUCE_GF_LENGTH_BY ||
+ rc->frames_to_key - ext_len == 0) {
+ p_rc->arf_boost_factor = LAST_ALR_BOOST_FACTOR;
+ }
+ }
+
+ // Reset the file position.
+ reset_fpf_position(&cpi->twopass_frame, start_pos);
+ if (cpi->ppi->lap_enabled) {
+ // Since we don't have enough stats to know the actual error of the
+ // gf group, we assume error of each frame to be equal to 1 and set
+ // the error of the group as baseline_gf_interval.
+ gf_stats->gf_group_err = p_rc->baseline_gf_interval;
+ }
+ // Calculate the bits to be allocated to the gf/arf group as a whole
+ p_rc->gf_group_bits =
+ calculate_total_gf_group_bits(cpi, gf_stats->gf_group_err);
+
+#if GROUP_ADAPTIVE_MAXQ
+ // Calculate an estimate of the maxq needed for the group.
+ // We are more aggressive about correcting for sections
+ // where there could be significant overshoot than for easier
+ // sections where we do not wish to risk creating an overshoot
+ // of the allocated bit budget.
+ if ((rc_cfg->mode != AOM_Q) && (p_rc->baseline_gf_interval > 1) &&
+ is_final_pass) {
+ const int vbr_group_bits_per_frame =
+ (int)(p_rc->gf_group_bits / p_rc->baseline_gf_interval);
+ const double group_av_err =
+ gf_stats->gf_group_raw_error / p_rc->baseline_gf_interval;
+ const double group_av_skip_pct =
+ gf_stats->gf_group_skip_pct / p_rc->baseline_gf_interval;
+ const double group_av_inactive_zone =
+ ((gf_stats->gf_group_inactive_zone_rows * 2) /
+ (p_rc->baseline_gf_interval * (double)cm->mi_params.mb_rows));
+
+ int tmp_q;
+ tmp_q = get_twopass_worst_quality(
+ cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone),
+ vbr_group_bits_per_frame);
+ rc->active_worst_quality = AOMMAX(tmp_q, rc->active_worst_quality >> 1);
+ }
+#endif
+
+ // Adjust KF group bits and error remaining.
+ if (is_final_pass) twopass->kf_group_error_left -= gf_stats->gf_group_err;
+
+ // Reset the file position.
+ reset_fpf_position(&cpi->twopass_frame, start_pos);
+
+ // Calculate a section intra ratio used in setting max loop filter.
+ if (rc->frames_since_key != 0) {
+ twopass->section_intra_rating = calculate_section_intra_ratio(
+ start_pos, twopass->stats_buf_ctx->stats_in_end,
+ p_rc->baseline_gf_interval);
+ }
+
+ av1_gop_bit_allocation(cpi, rc, gf_group, rc->frames_since_key == 0,
+ use_alt_ref, p_rc->gf_group_bits);
+
+ // TODO(jingning): Generalize this condition.
+ if (is_final_pass) {
+ cpi->ppi->gf_state.arf_gf_boost_lst = use_alt_ref;
+
+ // Reset rolling actual and target bits counters for ARF groups.
+ twopass->rolling_arf_group_target_bits = 1;
+ twopass->rolling_arf_group_actual_bits = 1;
+ }
+#if CONFIG_BITRATE_ACCURACY
+ if (is_final_pass) {
+ av1_vbr_rc_set_gop_bit_budget(&cpi->vbr_rc_info,
+ p_rc->baseline_gf_interval);
+ }
+#endif
+}
+
+/*!\brief Define a GF group.
+ *
+ * \ingroup gf_group_algo
+ * This function defines the structure of a GF group, along with various
+ * parameters regarding bit-allocation and quality setup.
+ *
+ * \param[in] cpi Top-level encoder structure
+ * \param[in] frame_params Structure with frame parameters
+ * \param[in] is_final_pass Whether this is the final pass for the
+ * GF group, or a trial (non-zero)
+ *
+ * \remark Nothing is returned. Instead, cpi->ppi->gf_group is changed.
+ */
+static void define_gf_group(AV1_COMP *cpi, EncodeFrameParams *frame_params,
+ int is_final_pass) {
+ AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ FIRSTPASS_STATS next_frame;
+ const FIRSTPASS_STATS *const start_pos = cpi->twopass_frame.stats_in;
+ GF_GROUP *gf_group = &cpi->ppi->gf_group;
+ const GFConfig *const gf_cfg = &oxcf->gf_cfg;
+ const RateControlCfg *const rc_cfg = &oxcf->rc_cfg;
+ const int f_w = cm->width;
+ const int f_h = cm->height;
+ int i;
+ const int is_intra_only = rc->frames_since_key == 0;
+
+ cpi->ppi->internal_altref_allowed = (gf_cfg->gf_max_pyr_height > 1);
+
+ // Reset the GF group data structures unless this is a key
+ // frame in which case it will already have been done.
+ if (!is_intra_only) {
+ av1_zero(cpi->ppi->gf_group);
+ cpi->gf_frame_index = 0;
+ }
+
+ if (has_no_stats_stage(cpi)) {
+ define_gf_group_pass0(cpi);
+ return;
+ }
+
+ if (cpi->third_pass_ctx && oxcf->pass == AOM_RC_THIRD_PASS) {
+ int ret = define_gf_group_pass3(cpi, frame_params, is_final_pass);
+ if (ret == 0) return;
+
+ av1_free_thirdpass_ctx(cpi->third_pass_ctx);
+ cpi->third_pass_ctx = NULL;
+ }
+
+ // correct frames_to_key when lookahead queue is emptying
+ if (cpi->ppi->lap_enabled) {
+ correct_frames_to_key(cpi);
+ }
+
+ GF_GROUP_STATS gf_stats;
+ accumulate_gop_stats(cpi, is_intra_only, f_w, f_h, &next_frame, start_pos,
+ &gf_stats, &i);
+
+ const int can_disable_arf = !gf_cfg->gf_min_pyr_height;
+
+ // If this is a key frame or the overlay from a previous arf then
+ // the error score / cost of this frame has already been accounted for.
+ const int active_min_gf_interval = rc->min_gf_interval;
+
+ // Disable internal ARFs for "still" gf groups.
+ // zero_motion_accumulator: minimum percentage of (0,0) motion;
+ // avg_sr_coded_error: average of the SSE per pixel of each frame;
+ // avg_raw_err_stdev: average of the standard deviation of (0,0)
+ // motion error per block of each frame.
+ const int can_disable_internal_arfs = gf_cfg->gf_min_pyr_height <= 1;
+ if (can_disable_internal_arfs &&
+ gf_stats.zero_motion_accumulator > MIN_ZERO_MOTION &&
+ gf_stats.avg_sr_coded_error < MAX_SR_CODED_ERROR &&
+ gf_stats.avg_raw_err_stdev < MAX_RAW_ERR_VAR) {
+ cpi->ppi->internal_altref_allowed = 0;
+ }
+
+ int use_alt_ref;
+ if (can_disable_arf) {
+ use_alt_ref =
+ !is_almost_static(gf_stats.zero_motion_accumulator,
+ twopass->kf_zeromotion_pct, cpi->ppi->lap_enabled) &&
+ p_rc->use_arf_in_this_kf_group && (i < gf_cfg->lag_in_frames) &&
+ (i >= MIN_GF_INTERVAL);
+ } else {
+ use_alt_ref = p_rc->use_arf_in_this_kf_group &&
+ (i < gf_cfg->lag_in_frames) && (i > 2);
+ }
+ if (use_alt_ref) {
+ gf_group->max_layer_depth_allowed = gf_cfg->gf_max_pyr_height;
+ } else {
+ gf_group->max_layer_depth_allowed = 0;
+ }
+
+ int alt_offset = 0;
+ // The length reduction strategy is tweaked for certain cases, and doesn't
+ // work well for certain other cases.
+ const int allow_gf_length_reduction =
+ ((rc_cfg->mode == AOM_Q && rc_cfg->cq_level <= 128) ||
+ !cpi->ppi->internal_altref_allowed) &&
+ !is_lossless_requested(rc_cfg);
+
+ if (allow_gf_length_reduction && use_alt_ref) {
+ // adjust length of this gf group if one of the following condition met
+ // 1: only one overlay frame left and this gf is too long
+ // 2: next gf group is too short to have arf compared to the current gf
+
+ // maximum length of next gf group
+ const int next_gf_len = rc->frames_to_key - i;
+ const int single_overlay_left =
+ next_gf_len == 0 && i > REDUCE_GF_LENGTH_THRESH;
+ // the next gf is probably going to have a ARF but it will be shorter than
+ // this gf
+ const int unbalanced_gf =
+ i > REDUCE_GF_LENGTH_TO_KEY_THRESH &&
+ next_gf_len + 1 < REDUCE_GF_LENGTH_TO_KEY_THRESH &&
+ next_gf_len + 1 >= rc->min_gf_interval;
+
+ if (single_overlay_left || unbalanced_gf) {
+ const int roll_back = REDUCE_GF_LENGTH_BY;
+ // Reduce length only if active_min_gf_interval will be respected later.
+ if (i - roll_back >= active_min_gf_interval + 1) {
+ alt_offset = -roll_back;
+ i -= roll_back;
+ if (is_final_pass) rc->intervals_till_gf_calculate_due = 0;
+ p_rc->gf_intervals[p_rc->cur_gf_index] -= roll_back;
+ reset_fpf_position(&cpi->twopass_frame, start_pos);
+ accumulate_gop_stats(cpi, is_intra_only, f_w, f_h, &next_frame,
+ start_pos, &gf_stats, &i);
+ }
+ }
+ }
+
+ update_gop_length(rc, p_rc, i, is_final_pass);
+
+ // Set up the structure of this Group-Of-Pictures (same as GF_GROUP)
+ av1_gop_setup_structure(cpi);
+
+ set_gop_bits_boost(cpi, i, is_intra_only, is_final_pass, use_alt_ref,
+ alt_offset, start_pos, &gf_stats);
+
+ frame_params->frame_type =
+ rc->frames_since_key == 0 ? KEY_FRAME : INTER_FRAME;
+ frame_params->show_frame =
+ !(gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE ||
+ gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE);
+}
+
+/*!\brief Define a GF group for the third apss.
+ *
+ * \ingroup gf_group_algo
+ * This function defines the structure of a GF group for the third pass, along
+ * with various parameters regarding bit-allocation and quality setup based on
+ * the two-pass bitstream.
+ * Much of the function still uses the strategies used for the second pass and
+ * relies on first pass statistics. It is expected that over time these portions
+ * would be replaced with strategies specific to the third pass.
+ *
+ * \param[in] cpi Top-level encoder structure
+ * \param[in] frame_params Structure with frame parameters
+ * \param[in] is_final_pass Whether this is the final pass for the
+ * GF group, or a trial (non-zero)
+ *
+ * \return 0: Success;
+ * -1: There are conflicts between the bitstream and current config
+ * The values in cpi->ppi->gf_group are also changed.
+ */
+static int define_gf_group_pass3(AV1_COMP *cpi, EncodeFrameParams *frame_params,
+ int is_final_pass) {
+ if (!cpi->third_pass_ctx) return -1;
+ AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ FIRSTPASS_STATS next_frame;
+ const FIRSTPASS_STATS *const start_pos = cpi->twopass_frame.stats_in;
+ GF_GROUP *gf_group = &cpi->ppi->gf_group;
+ const GFConfig *const gf_cfg = &oxcf->gf_cfg;
+ const int f_w = cm->width;
+ const int f_h = cm->height;
+ int i;
+ const int is_intra_only = rc->frames_since_key == 0;
+
+ cpi->ppi->internal_altref_allowed = (gf_cfg->gf_max_pyr_height > 1);
+
+ // Reset the GF group data structures unless this is a key
+ // frame in which case it will already have been done.
+ if (!is_intra_only) {
+ av1_zero(cpi->ppi->gf_group);
+ cpi->gf_frame_index = 0;
+ }
+
+ GF_GROUP_STATS gf_stats;
+ accumulate_gop_stats(cpi, is_intra_only, f_w, f_h, &next_frame, start_pos,
+ &gf_stats, &i);
+
+ const int can_disable_arf = !gf_cfg->gf_min_pyr_height;
+
+ // TODO(any): set cpi->ppi->internal_altref_allowed accordingly;
+
+ int use_alt_ref = av1_check_use_arf(cpi->third_pass_ctx);
+ if (use_alt_ref == 0 && !can_disable_arf) return -1;
+ if (use_alt_ref) {
+ gf_group->max_layer_depth_allowed = gf_cfg->gf_max_pyr_height;
+ } else {
+ gf_group->max_layer_depth_allowed = 0;
+ }
+
+ update_gop_length(rc, p_rc, i, is_final_pass);
+
+ // Set up the structure of this Group-Of-Pictures (same as GF_GROUP)
+ av1_gop_setup_structure(cpi);
+
+ set_gop_bits_boost(cpi, i, is_intra_only, is_final_pass, use_alt_ref, 0,
+ start_pos, &gf_stats);
+
+ frame_params->frame_type = cpi->third_pass_ctx->frame_info[0].frame_type;
+ frame_params->show_frame = cpi->third_pass_ctx->frame_info[0].is_show_frame;
+ return 0;
+}
+
+// #define FIXED_ARF_BITS
+#ifdef FIXED_ARF_BITS
+#define ARF_BITS_FRACTION 0.75
+#endif
+void av1_gop_bit_allocation(const AV1_COMP *cpi, RATE_CONTROL *const rc,
+ GF_GROUP *gf_group, int is_key_frame, int use_arf,
+ int64_t gf_group_bits) {
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ // Calculate the extra bits to be used for boosted frame(s)
+#ifdef FIXED_ARF_BITS
+ int gf_arf_bits = (int)(ARF_BITS_FRACTION * gf_group_bits);
+#else
+ int gf_arf_bits = calculate_boost_bits(
+ p_rc->baseline_gf_interval - (rc->frames_since_key == 0), p_rc->gfu_boost,
+ gf_group_bits);
+#endif
+
+ gf_arf_bits = adjust_boost_bits_for_target_level(cpi, rc, gf_arf_bits,
+ gf_group_bits, 1);
+
+ // Allocate bits to each of the frames in the GF group.
+ allocate_gf_group_bits(gf_group, p_rc, rc, gf_group_bits, gf_arf_bits,
+ is_key_frame, use_arf);
+}
+
+// Minimum % intra coding observed in first pass (1.0 = 100%)
+#define MIN_INTRA_LEVEL 0.25
+// Minimum ratio between the % of intra coding and inter coding in the first
+// pass after discounting neutral blocks (discounting neutral blocks in this
+// way helps catch scene cuts in clips with very flat areas or letter box
+// format clips with image padding.
+#define INTRA_VS_INTER_THRESH 2.0
+// Hard threshold where the first pass chooses intra for almost all blocks.
+// In such a case even if the frame is not a scene cut coding a key frame
+// may be a good option.
+#define VERY_LOW_INTER_THRESH 0.05
+// Maximum threshold for the relative ratio of intra error score vs best
+// inter error score.
+#define KF_II_ERR_THRESHOLD 1.9
+// In real scene cuts there is almost always a sharp change in the intra
+// or inter error score.
+#define ERR_CHANGE_THRESHOLD 0.4
+// For real scene cuts we expect an improvment in the intra inter error
+// ratio in the next frame.
+#define II_IMPROVEMENT_THRESHOLD 3.5
+#define KF_II_MAX 128.0
+// Intra / Inter threshold very low
+#define VERY_LOW_II 1.5
+// Clean slide transitions we expect a sharp single frame spike in error.
+#define ERROR_SPIKE 5.0
+
+// Slide show transition detection.
+// Tests for case where there is very low error either side of the current frame
+// but much higher just for this frame. This can help detect key frames in
+// slide shows even where the slides are pictures of different sizes.
+// Also requires that intra and inter errors are very similar to help eliminate
+// harmful false positives.
+// It will not help if the transition is a fade or other multi-frame effect.
+static int slide_transition(const FIRSTPASS_STATS *this_frame,
+ const FIRSTPASS_STATS *last_frame,
+ const FIRSTPASS_STATS *next_frame) {
+ return (this_frame->intra_error < (this_frame->coded_error * VERY_LOW_II)) &&
+ (this_frame->coded_error > (last_frame->coded_error * ERROR_SPIKE)) &&
+ (this_frame->coded_error > (next_frame->coded_error * ERROR_SPIKE));
+}
+
+// Threshold for use of the lagging second reference frame. High second ref
+// usage may point to a transient event like a flash or occlusion rather than
+// a real scene cut.
+// We adapt the threshold based on number of frames in this key-frame group so
+// far.
+static double get_second_ref_usage_thresh(int frame_count_so_far) {
+ const int adapt_upto = 32;
+ const double min_second_ref_usage_thresh = 0.085;
+ const double second_ref_usage_thresh_max_delta = 0.035;
+ if (frame_count_so_far >= adapt_upto) {
+ return min_second_ref_usage_thresh + second_ref_usage_thresh_max_delta;
+ }
+ return min_second_ref_usage_thresh +
+ ((double)frame_count_so_far / (adapt_upto - 1)) *
+ second_ref_usage_thresh_max_delta;
+}
+
+static int test_candidate_kf(const FIRSTPASS_INFO *firstpass_info,
+ int this_stats_index, int frame_count_so_far,
+ enum aom_rc_mode rc_mode, int scenecut_mode,
+ int num_mbs) {
+ const FIRSTPASS_STATS *last_stats =
+ av1_firstpass_info_peek(firstpass_info, this_stats_index - 1);
+ const FIRSTPASS_STATS *this_stats =
+ av1_firstpass_info_peek(firstpass_info, this_stats_index);
+ const FIRSTPASS_STATS *next_stats =
+ av1_firstpass_info_peek(firstpass_info, this_stats_index + 1);
+ if (last_stats == NULL || this_stats == NULL || next_stats == NULL) {
+ return 0;
+ }
+
+ int is_viable_kf = 0;
+ double pcnt_intra = 1.0 - this_stats->pcnt_inter;
+ double modified_pcnt_inter =
+ this_stats->pcnt_inter - this_stats->pcnt_neutral;
+ const double second_ref_usage_thresh =
+ get_second_ref_usage_thresh(frame_count_so_far);
+ int frames_to_test_after_candidate_key = SCENE_CUT_KEY_TEST_INTERVAL;
+ int count_for_tolerable_prediction = 3;
+
+ // We do "-1" because the candidate key is not counted.
+ int stats_after_this_stats =
+ av1_firstpass_info_future_count(firstpass_info, this_stats_index) - 1;
+
+ if (scenecut_mode == ENABLE_SCENECUT_MODE_1) {
+ if (stats_after_this_stats < 3) {
+ return 0;
+ } else {
+ frames_to_test_after_candidate_key = 3;
+ count_for_tolerable_prediction = 1;
+ }
+ }
+ // Make sure we have enough stats after the candidate key.
+ frames_to_test_after_candidate_key =
+ AOMMIN(frames_to_test_after_candidate_key, stats_after_this_stats);
+
+ // Does the frame satisfy the primary criteria of a key frame?
+ // See above for an explanation of the test criteria.
+ // If so, then examine how well it predicts subsequent frames.
+ if (IMPLIES(rc_mode == AOM_Q, frame_count_so_far >= 3) &&
+ (this_stats->pcnt_second_ref < second_ref_usage_thresh) &&
+ (next_stats->pcnt_second_ref < second_ref_usage_thresh) &&
+ ((this_stats->pcnt_inter < VERY_LOW_INTER_THRESH) ||
+ slide_transition(this_stats, last_stats, next_stats) ||
+ ((pcnt_intra > MIN_INTRA_LEVEL) &&
+ (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) &&
+ ((this_stats->intra_error /
+ DOUBLE_DIVIDE_CHECK(this_stats->coded_error)) <
+ KF_II_ERR_THRESHOLD) &&
+ ((fabs(last_stats->coded_error - this_stats->coded_error) /
+ DOUBLE_DIVIDE_CHECK(this_stats->coded_error) >
+ ERR_CHANGE_THRESHOLD) ||
+ (fabs(last_stats->intra_error - this_stats->intra_error) /
+ DOUBLE_DIVIDE_CHECK(this_stats->intra_error) >
+ ERR_CHANGE_THRESHOLD) ||
+ ((next_stats->intra_error /
+ DOUBLE_DIVIDE_CHECK(next_stats->coded_error)) >
+ II_IMPROVEMENT_THRESHOLD))))) {
+ int i;
+ double boost_score = 0.0;
+ double old_boost_score = 0.0;
+ double decay_accumulator = 1.0;
+
+ // Examine how well the key frame predicts subsequent frames.
+ for (i = 1; i <= frames_to_test_after_candidate_key; ++i) {
+ // Get the next frame details
+ const FIRSTPASS_STATS *local_next_frame =
+ av1_firstpass_info_peek(firstpass_info, this_stats_index + i);
+ double next_iiratio =
+ (BOOST_FACTOR * local_next_frame->intra_error /
+ DOUBLE_DIVIDE_CHECK(local_next_frame->coded_error));
+
+ if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX;
+
+ // Cumulative effect of decay in prediction quality.
+ if (local_next_frame->pcnt_inter > 0.85)
+ decay_accumulator *= local_next_frame->pcnt_inter;
+ else
+ decay_accumulator *= (0.85 + local_next_frame->pcnt_inter) / 2.0;
+
+ // Keep a running total.
+ boost_score += (decay_accumulator * next_iiratio);
+
+ // Test various breakout clauses.
+ // TODO(any): Test of intra error should be normalized to an MB.
+ if ((local_next_frame->pcnt_inter < 0.05) || (next_iiratio < 1.5) ||
+ (((local_next_frame->pcnt_inter - local_next_frame->pcnt_neutral) <
+ 0.20) &&
+ (next_iiratio < 3.0)) ||
+ ((boost_score - old_boost_score) < 3.0) ||
+ (local_next_frame->intra_error < (200.0 / (double)num_mbs))) {
+ break;
+ }
+
+ old_boost_score = boost_score;
+ }
+
+ // If there is tolerable prediction for at least the next 3 frames then
+ // break out else discard this potential key frame and move on
+ if (boost_score > 30.0 && (i > count_for_tolerable_prediction)) {
+ is_viable_kf = 1;
+ } else {
+ is_viable_kf = 0;
+ }
+ }
+ return is_viable_kf;
+}
+
+#define FRAMES_TO_CHECK_DECAY 8
+#define KF_MIN_FRAME_BOOST 80.0
+#define KF_MAX_FRAME_BOOST 128.0
+#define MIN_KF_BOOST 600 // Minimum boost for non-static KF interval
+#define MAX_KF_BOOST 3200
+#define MIN_STATIC_KF_BOOST 5400 // Minimum boost for static KF interval
+
+static int detect_app_forced_key(AV1_COMP *cpi) {
+ int num_frames_to_app_forced_key = is_forced_keyframe_pending(
+ cpi->ppi->lookahead, cpi->ppi->lookahead->max_sz, cpi->compressor_stage);
+ return num_frames_to_app_forced_key;
+}
+
+static int get_projected_kf_boost(AV1_COMP *cpi) {
+ /*
+ * If num_stats_used_for_kf_boost >= frames_to_key, then
+ * all stats needed for prior boost calculation are available.
+ * Hence projecting the prior boost is not needed in this cases.
+ */
+ if (cpi->ppi->p_rc.num_stats_used_for_kf_boost >= cpi->rc.frames_to_key)
+ return cpi->ppi->p_rc.kf_boost;
+
+ // Get the current tpl factor (number of frames = frames_to_key).
+ double tpl_factor = av1_get_kf_boost_projection_factor(cpi->rc.frames_to_key);
+ // Get the tpl factor when number of frames = num_stats_used_for_kf_boost.
+ double tpl_factor_num_stats = av1_get_kf_boost_projection_factor(
+ cpi->ppi->p_rc.num_stats_used_for_kf_boost);
+ int projected_kf_boost =
+ (int)rint((tpl_factor * cpi->ppi->p_rc.kf_boost) / tpl_factor_num_stats);
+ return projected_kf_boost;
+}
+
+/*!\brief Determine the location of the next key frame
+ *
+ * \ingroup gf_group_algo
+ * This function decides the placement of the next key frame when a
+ * scenecut is detected or the maximum key frame distance is reached.
+ *
+ * \param[in] cpi Top-level encoder structure
+ * \param[in] firstpass_info struct for firstpass info
+ * \param[in] num_frames_to_detect_scenecut Maximum lookahead frames.
+ * \param[in] search_start_idx the start index for searching key frame.
+ * Set it to one if we already know the
+ * current frame is key frame. Otherwise,
+ * set it to zero.
+ *
+ * \return Number of frames to the next key including the current frame.
+ */
+static int define_kf_interval(AV1_COMP *cpi,
+ const FIRSTPASS_INFO *firstpass_info,
+ int num_frames_to_detect_scenecut,
+ int search_start_idx) {
+ const TWO_PASS *const twopass = &cpi->ppi->twopass;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ const KeyFrameCfg *const kf_cfg = &oxcf->kf_cfg;
+ double recent_loop_decay[FRAMES_TO_CHECK_DECAY];
+ double decay_accumulator = 1.0;
+ int i = 0, j;
+ int frames_to_key = search_start_idx;
+ int frames_since_key = rc->frames_since_key + 1;
+ int scenecut_detected = 0;
+
+ int num_frames_to_next_key = detect_app_forced_key(cpi);
+
+ if (num_frames_to_detect_scenecut == 0) {
+ if (num_frames_to_next_key != -1)
+ return num_frames_to_next_key;
+ else
+ return rc->frames_to_key;
+ }
+
+ if (num_frames_to_next_key != -1)
+ num_frames_to_detect_scenecut =
+ AOMMIN(num_frames_to_detect_scenecut, num_frames_to_next_key);
+
+ // Initialize the decay rates for the recent frames to check
+ for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0;
+
+ i = 0;
+ const int num_mbs = (oxcf->resize_cfg.resize_mode != RESIZE_NONE)
+ ? cpi->initial_mbs
+ : cpi->common.mi_params.MBs;
+ const int future_stats_count =
+ av1_firstpass_info_future_count(firstpass_info, 0);
+ while (frames_to_key < future_stats_count &&
+ frames_to_key < num_frames_to_detect_scenecut) {
+ // Provided that we are not at the end of the file...
+ if ((cpi->ppi->p_rc.enable_scenecut_detection > 0) && kf_cfg->auto_key &&
+ frames_to_key + 1 < future_stats_count) {
+ double loop_decay_rate;
+
+ // Check for a scene cut.
+ if (frames_since_key >= kf_cfg->key_freq_min) {
+ scenecut_detected = test_candidate_kf(
+ &twopass->firstpass_info, frames_to_key, frames_since_key,
+ oxcf->rc_cfg.mode, cpi->ppi->p_rc.enable_scenecut_detection,
+ num_mbs);
+ if (scenecut_detected) {
+ break;
+ }
+ }
+
+ // How fast is the prediction quality decaying?
+ const FIRSTPASS_STATS *next_stats =
+ av1_firstpass_info_peek(firstpass_info, frames_to_key + 1);
+ loop_decay_rate = get_prediction_decay_rate(next_stats);
+
+ // We want to know something about the recent past... rather than
+ // as used elsewhere where we are concerned with decay in prediction
+ // quality since the last GF or KF.
+ recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate;
+ decay_accumulator = 1.0;
+ for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j)
+ decay_accumulator *= recent_loop_decay[j];
+
+ // Special check for transition or high motion followed by a
+ // static scene.
+ if (frames_since_key >= kf_cfg->key_freq_min) {
+ scenecut_detected = detect_transition_to_still(
+ firstpass_info, frames_to_key + 1, rc->min_gf_interval, i,
+ kf_cfg->key_freq_max - i, loop_decay_rate, decay_accumulator);
+ if (scenecut_detected) {
+ // In the case of transition followed by a static scene, the key frame
+ // could be a good predictor for the following frames, therefore we
+ // do not use an arf.
+ p_rc->use_arf_in_this_kf_group = 0;
+ break;
+ }
+ }
+
+ // Step on to the next frame.
+ ++frames_to_key;
+ ++frames_since_key;
+
+ // If we don't have a real key frame within the next two
+ // key_freq_max intervals then break out of the loop.
+ if (frames_to_key >= 2 * kf_cfg->key_freq_max) {
+ break;
+ }
+ } else {
+ ++frames_to_key;
+ ++frames_since_key;
+ }
+ ++i;
+ }
+ if (cpi->ppi->lap_enabled && !scenecut_detected)
+ frames_to_key = num_frames_to_next_key;
+
+ return frames_to_key;
+}
+
+static double get_kf_group_avg_error(TWO_PASS *twopass,
+ TWO_PASS_FRAME *twopass_frame,
+ const FIRSTPASS_STATS *first_frame,
+ const FIRSTPASS_STATS *start_position,
+ int frames_to_key) {
+ FIRSTPASS_STATS cur_frame = *first_frame;
+ int num_frames, i;
+ double kf_group_avg_error = 0.0;
+
+ reset_fpf_position(twopass_frame, start_position);
+
+ for (i = 0; i < frames_to_key; ++i) {
+ kf_group_avg_error += cur_frame.coded_error;
+ if (EOF == input_stats(twopass, twopass_frame, &cur_frame)) break;
+ }
+ num_frames = i + 1;
+ num_frames = AOMMIN(num_frames, frames_to_key);
+ kf_group_avg_error = kf_group_avg_error / num_frames;
+
+ return (kf_group_avg_error);
+}
+
+static int64_t get_kf_group_bits(AV1_COMP *cpi, double kf_group_err,
+ double kf_group_avg_error) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ int64_t kf_group_bits;
+ if (cpi->ppi->lap_enabled) {
+ kf_group_bits = (int64_t)rc->frames_to_key * rc->avg_frame_bandwidth;
+ if (cpi->oxcf.rc_cfg.vbr_corpus_complexity_lap) {
+ double vbr_corpus_complexity_lap =
+ cpi->oxcf.rc_cfg.vbr_corpus_complexity_lap / 10.0;
+ /* Get the average corpus complexity of the frame */
+ kf_group_bits = (int64_t)(
+ kf_group_bits * (kf_group_avg_error / vbr_corpus_complexity_lap));
+ }
+ } else {
+ kf_group_bits = (int64_t)(twopass->bits_left *
+ (kf_group_err / twopass->modified_error_left));
+ }
+
+ return kf_group_bits;
+}
+
+static int calc_avg_stats(AV1_COMP *cpi, FIRSTPASS_STATS *avg_frame_stat) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ FIRSTPASS_STATS cur_frame;
+ av1_zero(cur_frame);
+ int num_frames = 0;
+ // Accumulate total stat using available number of stats.
+ for (num_frames = 0; num_frames < (rc->frames_to_key - 1); ++num_frames) {
+ if (EOF == input_stats(twopass, &cpi->twopass_frame, &cur_frame)) break;
+ av1_accumulate_stats(avg_frame_stat, &cur_frame);
+ }
+
+ if (num_frames < 2) {
+ return num_frames;
+ }
+ // Average the total stat
+ avg_frame_stat->weight = avg_frame_stat->weight / num_frames;
+ avg_frame_stat->intra_error = avg_frame_stat->intra_error / num_frames;
+ avg_frame_stat->frame_avg_wavelet_energy =
+ avg_frame_stat->frame_avg_wavelet_energy / num_frames;
+ avg_frame_stat->coded_error = avg_frame_stat->coded_error / num_frames;
+ avg_frame_stat->sr_coded_error = avg_frame_stat->sr_coded_error / num_frames;
+ avg_frame_stat->pcnt_inter = avg_frame_stat->pcnt_inter / num_frames;
+ avg_frame_stat->pcnt_motion = avg_frame_stat->pcnt_motion / num_frames;
+ avg_frame_stat->pcnt_second_ref =
+ avg_frame_stat->pcnt_second_ref / num_frames;
+ avg_frame_stat->pcnt_neutral = avg_frame_stat->pcnt_neutral / num_frames;
+ avg_frame_stat->intra_skip_pct = avg_frame_stat->intra_skip_pct / num_frames;
+ avg_frame_stat->inactive_zone_rows =
+ avg_frame_stat->inactive_zone_rows / num_frames;
+ avg_frame_stat->inactive_zone_cols =
+ avg_frame_stat->inactive_zone_cols / num_frames;
+ avg_frame_stat->MVr = avg_frame_stat->MVr / num_frames;
+ avg_frame_stat->mvr_abs = avg_frame_stat->mvr_abs / num_frames;
+ avg_frame_stat->MVc = avg_frame_stat->MVc / num_frames;
+ avg_frame_stat->mvc_abs = avg_frame_stat->mvc_abs / num_frames;
+ avg_frame_stat->MVrv = avg_frame_stat->MVrv / num_frames;
+ avg_frame_stat->MVcv = avg_frame_stat->MVcv / num_frames;
+ avg_frame_stat->mv_in_out_count =
+ avg_frame_stat->mv_in_out_count / num_frames;
+ avg_frame_stat->new_mv_count = avg_frame_stat->new_mv_count / num_frames;
+ avg_frame_stat->count = avg_frame_stat->count / num_frames;
+ avg_frame_stat->duration = avg_frame_stat->duration / num_frames;
+
+ return num_frames;
+}
+
+static double get_kf_boost_score(AV1_COMP *cpi, double kf_raw_err,
+ double *zero_motion_accumulator,
+ double *sr_accumulator, int use_avg_stat) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ FRAME_INFO *const frame_info = &cpi->frame_info;
+ FIRSTPASS_STATS frame_stat;
+ av1_zero(frame_stat);
+ int i = 0, num_stat_used = 0;
+ double boost_score = 0.0;
+ const double kf_max_boost =
+ cpi->oxcf.rc_cfg.mode == AOM_Q
+ ? AOMMIN(AOMMAX(rc->frames_to_key * 2.0, KF_MIN_FRAME_BOOST),
+ KF_MAX_FRAME_BOOST)
+ : KF_MAX_FRAME_BOOST;
+
+ // Calculate the average using available number of stats.
+ if (use_avg_stat) num_stat_used = calc_avg_stats(cpi, &frame_stat);
+
+ for (i = num_stat_used; i < (rc->frames_to_key - 1); ++i) {
+ if (!use_avg_stat &&
+ EOF == input_stats(twopass, &cpi->twopass_frame, &frame_stat))
+ break;
+
+ // Monitor for static sections.
+ // For the first frame in kf group, the second ref indicator is invalid.
+ if (i > 0) {
+ *zero_motion_accumulator =
+ AOMMIN(*zero_motion_accumulator, get_zero_motion_factor(&frame_stat));
+ } else {
+ *zero_motion_accumulator = frame_stat.pcnt_inter - frame_stat.pcnt_motion;
+ }
+
+ // Not all frames in the group are necessarily used in calculating boost.
+ if ((*sr_accumulator < (kf_raw_err * 1.50)) &&
+ (i <= rc->max_gf_interval * 2)) {
+ double frame_boost;
+ double zm_factor;
+
+ // Factor 0.75-1.25 based on how much of frame is static.
+ zm_factor = (0.75 + (*zero_motion_accumulator / 2.0));
+
+ if (i < 2) *sr_accumulator = 0.0;
+ frame_boost =
+ calc_kf_frame_boost(&cpi->ppi->p_rc, frame_info, &frame_stat,
+ sr_accumulator, kf_max_boost);
+ boost_score += frame_boost * zm_factor;
+ }
+ }
+ return boost_score;
+}
+
+/*!\brief Interval(in seconds) to clip key-frame distance to in LAP.
+ */
+#define MAX_KF_BITS_INTERVAL_SINGLE_PASS 5
+
+/*!\brief Determine the next key frame group
+ *
+ * \ingroup gf_group_algo
+ * This function decides the placement of the next key frame, and
+ * calculates the bit allocation of the KF group and the keyframe itself.
+ *
+ * \param[in] cpi Top-level encoder structure
+ * \param[in] this_frame Pointer to first pass stats
+ */
+static void find_next_key_frame(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ GF_GROUP *const gf_group = &cpi->ppi->gf_group;
+ FRAME_INFO *const frame_info = &cpi->frame_info;
+ AV1_COMMON *const cm = &cpi->common;
+ CurrentFrame *const current_frame = &cm->current_frame;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ const KeyFrameCfg *const kf_cfg = &oxcf->kf_cfg;
+ const FIRSTPASS_STATS first_frame = *this_frame;
+ FIRSTPASS_STATS next_frame;
+ const FIRSTPASS_INFO *firstpass_info = &twopass->firstpass_info;
+ av1_zero(next_frame);
+
+ rc->frames_since_key = 0;
+ // Use arfs if possible.
+ p_rc->use_arf_in_this_kf_group = is_altref_enabled(
+ oxcf->gf_cfg.lag_in_frames, oxcf->gf_cfg.enable_auto_arf);
+
+ // Reset the GF group data structures.
+ av1_zero(*gf_group);
+ cpi->gf_frame_index = 0;
+
+ // KF is always a GF so clear frames till next gf counter.
+ rc->frames_till_gf_update_due = 0;
+
+ if (has_no_stats_stage(cpi)) {
+ int num_frames_to_app_forced_key = detect_app_forced_key(cpi);
+ p_rc->this_key_frame_forced =
+ current_frame->frame_number != 0 && rc->frames_to_key == 0;
+ if (num_frames_to_app_forced_key != -1)
+ rc->frames_to_key = num_frames_to_app_forced_key;
+ else
+ rc->frames_to_key = AOMMAX(1, kf_cfg->key_freq_max);
+ correct_frames_to_key(cpi);
+ p_rc->kf_boost = DEFAULT_KF_BOOST;
+ gf_group->update_type[0] = KF_UPDATE;
+ return;
+ }
+ int i;
+ const FIRSTPASS_STATS *const start_position = cpi->twopass_frame.stats_in;
+ int kf_bits = 0;
+ double zero_motion_accumulator = 1.0;
+ double boost_score = 0.0;
+ double kf_raw_err = 0.0;
+ double kf_mod_err = 0.0;
+ double sr_accumulator = 0.0;
+ double kf_group_avg_error = 0.0;
+ int frames_to_key, frames_to_key_clipped = INT_MAX;
+ int64_t kf_group_bits_clipped = INT64_MAX;
+
+ // Is this a forced key frame by interval.
+ p_rc->this_key_frame_forced = p_rc->next_key_frame_forced;
+
+ twopass->kf_group_bits = 0; // Total bits available to kf group
+ twopass->kf_group_error_left = 0; // Group modified error score.
+
+ kf_raw_err = this_frame->intra_error;
+ kf_mod_err = calculate_modified_err(frame_info, twopass, oxcf, this_frame);
+
+ // We assume the current frame is a key frame and we are looking for the next
+ // key frame. Therefore search_start_idx = 1
+ frames_to_key = define_kf_interval(cpi, firstpass_info, kf_cfg->key_freq_max,
+ /*search_start_idx=*/1);
+
+ if (frames_to_key != -1) {
+ rc->frames_to_key = AOMMIN(kf_cfg->key_freq_max, frames_to_key);
+ } else {
+ rc->frames_to_key = kf_cfg->key_freq_max;
+ }
+
+ if (cpi->ppi->lap_enabled) correct_frames_to_key(cpi);
+
+ // If there is a max kf interval set by the user we must obey it.
+ // We already breakout of the loop above at 2x max.
+ // This code centers the extra kf if the actual natural interval
+ // is between 1x and 2x.
+ if (kf_cfg->auto_key && rc->frames_to_key > kf_cfg->key_freq_max) {
+ FIRSTPASS_STATS tmp_frame = first_frame;
+
+ rc->frames_to_key /= 2;
+
+ // Reset to the start of the group.
+ reset_fpf_position(&cpi->twopass_frame, start_position);
+ // Rescan to get the correct error data for the forced kf group.
+ for (i = 0; i < rc->frames_to_key; ++i) {
+ if (EOF == input_stats(twopass, &cpi->twopass_frame, &tmp_frame)) break;
+ }
+ p_rc->next_key_frame_forced = 1;
+ } else if ((cpi->twopass_frame.stats_in ==
+ twopass->stats_buf_ctx->stats_in_end &&
+ is_stat_consumption_stage_twopass(cpi)) ||
+ rc->frames_to_key >= kf_cfg->key_freq_max) {
+ p_rc->next_key_frame_forced = 1;
+ } else {
+ p_rc->next_key_frame_forced = 0;
+ }
+
+ double kf_group_err = 0;
+ for (i = 0; i < rc->frames_to_key; ++i) {
+ const FIRSTPASS_STATS *this_stats =
+ av1_firstpass_info_peek(&twopass->firstpass_info, i);
+ if (this_stats != NULL) {
+ // Accumulate kf group error.
+ kf_group_err += calculate_modified_err_new(
+ frame_info, &firstpass_info->total_stats, this_stats,
+ oxcf->rc_cfg.vbrbias, twopass->modified_error_min,
+ twopass->modified_error_max);
+ ++p_rc->num_stats_used_for_kf_boost;
+ }
+ }
+
+ // Calculate the number of bits that should be assigned to the kf group.
+ if ((twopass->bits_left > 0 && twopass->modified_error_left > 0.0) ||
+ (cpi->ppi->lap_enabled && oxcf->rc_cfg.mode != AOM_Q)) {
+ // Maximum number of bits for a single normal frame (not key frame).
+ const int max_bits = frame_max_bits(rc, oxcf);
+
+ // Maximum number of bits allocated to the key frame group.
+ int64_t max_grp_bits;
+
+ if (oxcf->rc_cfg.vbr_corpus_complexity_lap) {
+ kf_group_avg_error =
+ get_kf_group_avg_error(twopass, &cpi->twopass_frame, &first_frame,
+ start_position, rc->frames_to_key);
+ }
+
+ // Default allocation based on bits left and relative
+ // complexity of the section.
+ twopass->kf_group_bits =
+ get_kf_group_bits(cpi, kf_group_err, kf_group_avg_error);
+ // Clip based on maximum per frame rate defined by the user.
+ max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
+ if (twopass->kf_group_bits > max_grp_bits)
+ twopass->kf_group_bits = max_grp_bits;
+ } else {
+ twopass->kf_group_bits = 0;
+ }
+ twopass->kf_group_bits = AOMMAX(0, twopass->kf_group_bits);
+
+ if (cpi->ppi->lap_enabled) {
+ // In the case of single pass based on LAP, frames to key may have an
+ // inaccurate value, and hence should be clipped to an appropriate
+ // interval.
+ frames_to_key_clipped =
+ (int)(MAX_KF_BITS_INTERVAL_SINGLE_PASS * cpi->framerate);
+
+ // This variable calculates the bits allocated to kf_group with a clipped
+ // frames_to_key.
+ if (rc->frames_to_key > frames_to_key_clipped) {
+ kf_group_bits_clipped =
+ (int64_t)((double)twopass->kf_group_bits * frames_to_key_clipped /
+ rc->frames_to_key);
+ }
+ }
+
+ // Reset the first pass file position.
+ reset_fpf_position(&cpi->twopass_frame, start_position);
+
+ // Scan through the kf group collating various stats used to determine
+ // how many bits to spend on it.
+ boost_score = get_kf_boost_score(cpi, kf_raw_err, &zero_motion_accumulator,
+ &sr_accumulator, 0);
+ reset_fpf_position(&cpi->twopass_frame, start_position);
+ // Store the zero motion percentage
+ twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
+
+ // Calculate a section intra ratio used in setting max loop filter.
+ twopass->section_intra_rating = calculate_section_intra_ratio(
+ start_position, twopass->stats_buf_ctx->stats_in_end, rc->frames_to_key);
+
+ p_rc->kf_boost = (int)boost_score;
+
+ if (cpi->ppi->lap_enabled) {
+ if (oxcf->rc_cfg.mode == AOM_Q) {
+ p_rc->kf_boost = get_projected_kf_boost(cpi);
+ } else {
+ // TODO(any): Explore using average frame stats for AOM_Q as well.
+ boost_score = get_kf_boost_score(
+ cpi, kf_raw_err, &zero_motion_accumulator, &sr_accumulator, 1);
+ reset_fpf_position(&cpi->twopass_frame, start_position);
+ p_rc->kf_boost += (int)boost_score;
+ }
+ }
+
+ // Special case for static / slide show content but don't apply
+ // if the kf group is very short.
+ if ((zero_motion_accumulator > STATIC_KF_GROUP_FLOAT_THRESH) &&
+ (rc->frames_to_key > 8)) {
+ p_rc->kf_boost = AOMMAX(p_rc->kf_boost, MIN_STATIC_KF_BOOST);
+ } else {
+ // Apply various clamps for min and max boost
+ p_rc->kf_boost = AOMMAX(p_rc->kf_boost, (rc->frames_to_key * 3));
+ p_rc->kf_boost = AOMMAX(p_rc->kf_boost, MIN_KF_BOOST);
+#ifdef STRICT_RC
+ p_rc->kf_boost = AOMMIN(p_rc->kf_boost, MAX_KF_BOOST);
+#endif
+ }
+
+ // Work out how many bits to allocate for the key frame itself.
+ // In case of LAP enabled for VBR, if the frames_to_key value is
+ // very high, we calculate the bits based on a clipped value of
+ // frames_to_key.
+ kf_bits = calculate_boost_bits(
+ AOMMIN(rc->frames_to_key, frames_to_key_clipped) - 1, p_rc->kf_boost,
+ AOMMIN(twopass->kf_group_bits, kf_group_bits_clipped));
+ // printf("kf boost = %d kf_bits = %d kf_zeromotion_pct = %d\n",
+ // p_rc->kf_boost,
+ // kf_bits, twopass->kf_zeromotion_pct);
+ kf_bits = adjust_boost_bits_for_target_level(cpi, rc, kf_bits,
+ twopass->kf_group_bits, 0);
+
+ twopass->kf_group_bits -= kf_bits;
+
+ // Save the bits to spend on the key frame.
+ gf_group->bit_allocation[0] = kf_bits;
+ gf_group->update_type[0] = KF_UPDATE;
+
+ // Note the total error score of the kf group minus the key frame itself.
+ if (cpi->ppi->lap_enabled)
+ // As we don't have enough stats to know the actual error of the group,
+ // we assume the complexity of each frame to be equal to 1, and set the
+ // error as the number of frames in the group(minus the keyframe).
+ twopass->kf_group_error_left = (double)(rc->frames_to_key - 1);
+ else
+ twopass->kf_group_error_left = kf_group_err - kf_mod_err;
+
+ // Adjust the count of total modified error left.
+ // The count of bits left is adjusted elsewhere based on real coded frame
+ // sizes.
+ twopass->modified_error_left -= kf_group_err;
+}
+
+#define ARF_STATS_OUTPUT 0
+#if ARF_STATS_OUTPUT
+unsigned int arf_count = 0;
+#endif
+
+static int get_section_target_bandwidth(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ CurrentFrame *const current_frame = &cm->current_frame;
+ RATE_CONTROL *const rc = &cpi->rc;
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ int section_target_bandwidth;
+ const int frames_left = (int)(twopass->stats_buf_ctx->total_stats->count -
+ current_frame->frame_number);
+ if (cpi->ppi->lap_enabled)
+ section_target_bandwidth = (int)rc->avg_frame_bandwidth;
+ else
+ section_target_bandwidth = (int)(twopass->bits_left / frames_left);
+ return section_target_bandwidth;
+}
+
+static INLINE void set_twopass_params_based_on_fp_stats(
+ AV1_COMP *cpi, const FIRSTPASS_STATS *this_frame_ptr) {
+ if (this_frame_ptr == NULL) return;
+
+ TWO_PASS_FRAME *twopass_frame = &cpi->twopass_frame;
+ // The multiplication by 256 reverses a scaling factor of (>> 8)
+ // applied when combining MB error values for the frame.
+ twopass_frame->mb_av_energy = log1p(this_frame_ptr->intra_error);
+
+ const FIRSTPASS_STATS *const total_stats =
+ cpi->ppi->twopass.stats_buf_ctx->total_stats;
+ if (is_fp_wavelet_energy_invalid(total_stats) == 0) {
+ twopass_frame->frame_avg_haar_energy =
+ log1p(this_frame_ptr->frame_avg_wavelet_energy);
+ }
+
+ // Set the frame content type flag.
+ if (this_frame_ptr->intra_skip_pct >= FC_ANIMATION_THRESH)
+ twopass_frame->fr_content_type = FC_GRAPHICS_ANIMATION;
+ else
+ twopass_frame->fr_content_type = FC_NORMAL;
+}
+
+static void process_first_pass_stats(AV1_COMP *cpi,
+ FIRSTPASS_STATS *this_frame) {
+ AV1_COMMON *const cm = &cpi->common;
+ CurrentFrame *const current_frame = &cm->current_frame;
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ FIRSTPASS_STATS *total_stats = twopass->stats_buf_ctx->total_stats;
+
+ if (cpi->oxcf.rc_cfg.mode != AOM_Q && current_frame->frame_number == 0 &&
+ cpi->gf_frame_index == 0 && total_stats &&
+ twopass->stats_buf_ctx->total_left_stats) {
+ if (cpi->ppi->lap_enabled) {
+ /*
+ * Accumulate total_stats using available limited number of stats,
+ * and assign it to total_left_stats.
+ */
+ *twopass->stats_buf_ctx->total_left_stats = *total_stats;
+ }
+ // Special case code for first frame.
+ const int section_target_bandwidth = get_section_target_bandwidth(cpi);
+ const double section_length =
+ twopass->stats_buf_ctx->total_left_stats->count;
+ const double section_error =
+ twopass->stats_buf_ctx->total_left_stats->coded_error / section_length;
+ const double section_intra_skip =
+ twopass->stats_buf_ctx->total_left_stats->intra_skip_pct /
+ section_length;
+ const double section_inactive_zone =
+ (twopass->stats_buf_ctx->total_left_stats->inactive_zone_rows * 2) /
+ ((double)cm->mi_params.mb_rows * section_length);
+ const int tmp_q = get_twopass_worst_quality(
+ cpi, section_error, section_intra_skip + section_inactive_zone,
+ section_target_bandwidth);
+
+ rc->active_worst_quality = tmp_q;
+ rc->ni_av_qi = tmp_q;
+ p_rc->last_q[INTER_FRAME] = tmp_q;
+ p_rc->avg_q = av1_convert_qindex_to_q(tmp_q, cm->seq_params->bit_depth);
+ p_rc->avg_frame_qindex[INTER_FRAME] = tmp_q;
+ p_rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.rc_cfg.best_allowed_q) / 2;
+ p_rc->avg_frame_qindex[KEY_FRAME] = p_rc->last_q[KEY_FRAME];
+ }
+
+ if (cpi->twopass_frame.stats_in < twopass->stats_buf_ctx->stats_in_end) {
+ *this_frame = *cpi->twopass_frame.stats_in;
+ ++cpi->twopass_frame.stats_in;
+ }
+ set_twopass_params_based_on_fp_stats(cpi, this_frame);
+}
+
+static void setup_target_rate(AV1_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ GF_GROUP *const gf_group = &cpi->ppi->gf_group;
+
+ int target_rate = gf_group->bit_allocation[cpi->gf_frame_index];
+
+ if (has_no_stats_stage(cpi)) {
+ av1_rc_set_frame_target(cpi, target_rate, cpi->common.width,
+ cpi->common.height);
+ }
+
+ rc->base_frame_target = target_rate;
+}
+
+void av1_mark_flashes(FIRSTPASS_STATS *first_stats,
+ FIRSTPASS_STATS *last_stats) {
+ FIRSTPASS_STATS *this_stats = first_stats, *next_stats;
+ while (this_stats < last_stats - 1) {
+ next_stats = this_stats + 1;
+ if (next_stats->pcnt_second_ref > next_stats->pcnt_inter &&
+ next_stats->pcnt_second_ref >= 0.5) {
+ this_stats->is_flash = 1;
+ } else {
+ this_stats->is_flash = 0;
+ }
+ this_stats = next_stats;
+ }
+ // We always treat the last one as none flash.
+ if (last_stats - 1 >= first_stats) {
+ (last_stats - 1)->is_flash = 0;
+ }
+}
+
+// Smooth-out the noise variance so it is more stable
+// Returns 0 on success, -1 on memory allocation failure.
+// TODO(bohanli): Use a better low-pass filter than averaging
+static int smooth_filter_noise(FIRSTPASS_STATS *first_stats,
+ FIRSTPASS_STATS *last_stats) {
+ int len = (int)(last_stats - first_stats);
+ double *smooth_noise = aom_malloc(len * sizeof(*smooth_noise));
+ if (!smooth_noise) return -1;
+
+ for (int i = 0; i < len; i++) {
+ double total_noise = 0;
+ double total_wt = 0;
+ for (int j = -HALF_FILT_LEN; j <= HALF_FILT_LEN; j++) {
+ int idx = AOMMIN(AOMMAX(i + j, 0), len - 1);
+ if (first_stats[idx].is_flash) continue;
+
+ total_noise += first_stats[idx].noise_var;
+ total_wt += 1.0;
+ }
+ if (total_wt > 0.01) {
+ total_noise /= total_wt;
+ } else {
+ total_noise = first_stats[i].noise_var;
+ }
+ smooth_noise[i] = total_noise;
+ }
+
+ for (int i = 0; i < len; i++) {
+ first_stats[i].noise_var = smooth_noise[i];
+ }
+
+ aom_free(smooth_noise);
+ return 0;
+}
+
+// Estimate the noise variance of each frame from the first pass stats
+void av1_estimate_noise(FIRSTPASS_STATS *first_stats,
+ FIRSTPASS_STATS *last_stats,
+ struct aom_internal_error_info *error_info) {
+ FIRSTPASS_STATS *this_stats, *next_stats;
+ double C1, C2, C3, noise;
+ for (this_stats = first_stats + 2; this_stats < last_stats; this_stats++) {
+ this_stats->noise_var = 0.0;
+ // flashes tend to have high correlation of innovations, so ignore them.
+ if (this_stats->is_flash || (this_stats - 1)->is_flash ||
+ (this_stats - 2)->is_flash)
+ continue;
+
+ C1 = (this_stats - 1)->intra_error *
+ (this_stats->intra_error - this_stats->coded_error);
+ C2 = (this_stats - 2)->intra_error *
+ ((this_stats - 1)->intra_error - (this_stats - 1)->coded_error);
+ C3 = (this_stats - 2)->intra_error *
+ (this_stats->intra_error - this_stats->sr_coded_error);
+ if (C1 <= 0 || C2 <= 0 || C3 <= 0) continue;
+ C1 = sqrt(C1);
+ C2 = sqrt(C2);
+ C3 = sqrt(C3);
+
+ noise = (this_stats - 1)->intra_error - C1 * C2 / C3;
+ noise = AOMMAX(noise, 0.01);
+ this_stats->noise_var = noise;
+ }
+
+ // Copy noise from the neighbor if the noise value is not trustworthy
+ for (this_stats = first_stats + 2; this_stats < last_stats; this_stats++) {
+ if (this_stats->is_flash || (this_stats - 1)->is_flash ||
+ (this_stats - 2)->is_flash)
+ continue;
+ if (this_stats->noise_var < 1.0) {
+ int found = 0;
+ // TODO(bohanli): consider expanding to two directions at the same time
+ for (next_stats = this_stats + 1; next_stats < last_stats; next_stats++) {
+ if (next_stats->is_flash || (next_stats - 1)->is_flash ||
+ (next_stats - 2)->is_flash || next_stats->noise_var < 1.0)
+ continue;
+ found = 1;
+ this_stats->noise_var = next_stats->noise_var;
+ break;
+ }
+ if (found) continue;
+ for (next_stats = this_stats - 1; next_stats >= first_stats + 2;
+ next_stats--) {
+ if (next_stats->is_flash || (next_stats - 1)->is_flash ||
+ (next_stats - 2)->is_flash || next_stats->noise_var < 1.0)
+ continue;
+ this_stats->noise_var = next_stats->noise_var;
+ break;
+ }
+ }
+ }
+
+ // copy the noise if this is a flash
+ for (this_stats = first_stats + 2; this_stats < last_stats; this_stats++) {
+ if (this_stats->is_flash || (this_stats - 1)->is_flash ||
+ (this_stats - 2)->is_flash) {
+ int found = 0;
+ for (next_stats = this_stats + 1; next_stats < last_stats; next_stats++) {
+ if (next_stats->is_flash || (next_stats - 1)->is_flash ||
+ (next_stats - 2)->is_flash)
+ continue;
+ found = 1;
+ this_stats->noise_var = next_stats->noise_var;
+ break;
+ }
+ if (found) continue;
+ for (next_stats = this_stats - 1; next_stats >= first_stats + 2;
+ next_stats--) {
+ if (next_stats->is_flash || (next_stats - 1)->is_flash ||
+ (next_stats - 2)->is_flash)
+ continue;
+ this_stats->noise_var = next_stats->noise_var;
+ break;
+ }
+ }
+ }
+
+ // if we are at the first 2 frames, copy the noise
+ for (this_stats = first_stats;
+ this_stats < first_stats + 2 && (first_stats + 2) < last_stats;
+ this_stats++) {
+ this_stats->noise_var = (first_stats + 2)->noise_var;
+ }
+
+ if (smooth_filter_noise(first_stats, last_stats) == -1) {
+ aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
+ "Error allocating buffers in smooth_filter_noise()");
+ }
+}
+
+// Estimate correlation coefficient of each frame with its previous frame.
+void av1_estimate_coeff(FIRSTPASS_STATS *first_stats,
+ FIRSTPASS_STATS *last_stats) {
+ FIRSTPASS_STATS *this_stats;
+ for (this_stats = first_stats + 1; this_stats < last_stats; this_stats++) {
+ const double C =
+ sqrt(AOMMAX((this_stats - 1)->intra_error *
+ (this_stats->intra_error - this_stats->coded_error),
+ 0.001));
+ const double cor_coeff =
+ C /
+ AOMMAX((this_stats - 1)->intra_error - this_stats->noise_var, 0.001);
+
+ this_stats->cor_coeff =
+ cor_coeff *
+ sqrt(AOMMAX((this_stats - 1)->intra_error - this_stats->noise_var,
+ 0.001) /
+ AOMMAX(this_stats->intra_error - this_stats->noise_var, 0.001));
+ // clip correlation coefficient.
+ this_stats->cor_coeff = AOMMIN(AOMMAX(this_stats->cor_coeff, 0), 1);
+ }
+ first_stats->cor_coeff = 1.0;
+}
+
+void av1_get_second_pass_params(AV1_COMP *cpi,
+ EncodeFrameParams *const frame_params,
+ unsigned int frame_flags) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ GF_GROUP *const gf_group = &cpi->ppi->gf_group;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+
+ if (cpi->use_ducky_encode &&
+ cpi->ducky_encode_info.frame_info.gop_mode == DUCKY_ENCODE_GOP_MODE_RCL) {
+ frame_params->frame_type = gf_group->frame_type[cpi->gf_frame_index];
+ frame_params->show_frame =
+ !(gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE ||
+ gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE);
+ if (cpi->gf_frame_index == 0) {
+ av1_tf_info_reset(&cpi->ppi->tf_info);
+ av1_tf_info_filtering(&cpi->ppi->tf_info, cpi, gf_group);
+ }
+ return;
+ }
+
+ const FIRSTPASS_STATS *const start_pos = cpi->twopass_frame.stats_in;
+ int update_total_stats = 0;
+
+ if (is_stat_consumption_stage(cpi) && !cpi->twopass_frame.stats_in) return;
+
+ // Check forced key frames.
+ const int frames_to_next_forced_key = detect_app_forced_key(cpi);
+ if (frames_to_next_forced_key == 0) {
+ rc->frames_to_key = 0;
+ frame_flags &= FRAMEFLAGS_KEY;
+ } else if (frames_to_next_forced_key > 0 &&
+ frames_to_next_forced_key < rc->frames_to_key) {
+ rc->frames_to_key = frames_to_next_forced_key;
+ }
+
+ assert(cpi->twopass_frame.stats_in != NULL);
+ const int update_type = gf_group->update_type[cpi->gf_frame_index];
+ frame_params->frame_type = gf_group->frame_type[cpi->gf_frame_index];
+
+ if (cpi->gf_frame_index < gf_group->size && !(frame_flags & FRAMEFLAGS_KEY)) {
+ assert(cpi->gf_frame_index < gf_group->size);
+
+ setup_target_rate(cpi);
+
+ // If this is an arf frame then we dont want to read the stats file or
+ // advance the input pointer as we already have what we need.
+ if (update_type == ARF_UPDATE || update_type == INTNL_ARF_UPDATE) {
+ const FIRSTPASS_STATS *const this_frame_ptr =
+ read_frame_stats(twopass, &cpi->twopass_frame,
+ gf_group->arf_src_offset[cpi->gf_frame_index]);
+ set_twopass_params_based_on_fp_stats(cpi, this_frame_ptr);
+ return;
+ }
+ }
+
+ if (oxcf->rc_cfg.mode == AOM_Q)
+ rc->active_worst_quality = oxcf->rc_cfg.cq_level;
+
+ if (cpi->gf_frame_index == gf_group->size) {
+ if (cpi->ppi->lap_enabled && cpi->ppi->p_rc.enable_scenecut_detection) {
+ const int num_frames_to_detect_scenecut = MAX_GF_LENGTH_LAP + 1;
+ const int frames_to_key = define_kf_interval(
+ cpi, &twopass->firstpass_info, num_frames_to_detect_scenecut,
+ /*search_start_idx=*/0);
+ if (frames_to_key != -1)
+ rc->frames_to_key = AOMMIN(rc->frames_to_key, frames_to_key);
+ }
+ }
+
+ FIRSTPASS_STATS this_frame;
+ av1_zero(this_frame);
+ // call above fn
+ if (is_stat_consumption_stage(cpi)) {
+ if (cpi->gf_frame_index < gf_group->size || rc->frames_to_key == 0) {
+ process_first_pass_stats(cpi, &this_frame);
+ update_total_stats = 1;
+ }
+ } else {
+ rc->active_worst_quality = oxcf->rc_cfg.cq_level;
+ }
+
+ // Keyframe and section processing.
+ FIRSTPASS_STATS this_frame_copy;
+ this_frame_copy = this_frame;
+ if (rc->frames_to_key <= 0) {
+ assert(rc->frames_to_key == 0);
+ // Define next KF group and assign bits to it.
+ frame_params->frame_type = KEY_FRAME;
+ find_next_key_frame(cpi, &this_frame);
+ this_frame = this_frame_copy;
+ }
+
+ if (rc->frames_to_fwd_kf <= 0)
+ rc->frames_to_fwd_kf = oxcf->kf_cfg.fwd_kf_dist;
+
+ // Define a new GF/ARF group. (Should always enter here for key frames).
+ if (cpi->gf_frame_index == gf_group->size) {
+ av1_tf_info_reset(&cpi->ppi->tf_info);
+#if CONFIG_BITRATE_ACCURACY && !CONFIG_THREE_PASS
+ vbr_rc_reset_gop_data(&cpi->vbr_rc_info);
+#endif // CONFIG_BITRATE_ACCURACY
+ int max_gop_length =
+ (oxcf->gf_cfg.lag_in_frames >= 32)
+ ? AOMMIN(MAX_GF_INTERVAL, oxcf->gf_cfg.lag_in_frames -
+ oxcf->algo_cfg.arnr_max_frames / 2)
+ : MAX_GF_LENGTH_LAP;
+
+ // Handle forward key frame when enabled.
+ if (oxcf->kf_cfg.fwd_kf_dist > 0)
+ max_gop_length = AOMMIN(rc->frames_to_fwd_kf + 1, max_gop_length);
+
+ // Use the provided gop size in low delay setting
+ if (oxcf->gf_cfg.lag_in_frames == 0) max_gop_length = rc->max_gf_interval;
+
+ // Limit the max gop length for the last gop in 1 pass setting.
+ max_gop_length = AOMMIN(max_gop_length, rc->frames_to_key);
+
+ // Identify regions if needed.
+ // TODO(bohanli): identify regions for all stats available.
+ if (rc->frames_since_key == 0 || rc->frames_since_key == 1 ||
+ (p_rc->frames_till_regions_update - rc->frames_since_key <
+ rc->frames_to_key &&
+ p_rc->frames_till_regions_update - rc->frames_since_key <
+ max_gop_length + 1)) {
+ // how many frames we can analyze from this frame
+ int rest_frames =
+ AOMMIN(rc->frames_to_key, MAX_FIRSTPASS_ANALYSIS_FRAMES);
+ rest_frames =
+ AOMMIN(rest_frames, (int)(twopass->stats_buf_ctx->stats_in_end -
+ cpi->twopass_frame.stats_in +
+ (rc->frames_since_key == 0)));
+ p_rc->frames_till_regions_update = rest_frames;
+
+ int ret;
+ if (cpi->ppi->lap_enabled) {
+ av1_mark_flashes(twopass->stats_buf_ctx->stats_in_start,
+ twopass->stats_buf_ctx->stats_in_end);
+ av1_estimate_noise(twopass->stats_buf_ctx->stats_in_start,
+ twopass->stats_buf_ctx->stats_in_end,
+ cpi->common.error);
+ av1_estimate_coeff(twopass->stats_buf_ctx->stats_in_start,
+ twopass->stats_buf_ctx->stats_in_end);
+ ret = identify_regions(cpi->twopass_frame.stats_in, rest_frames,
+ (rc->frames_since_key == 0), p_rc->regions,
+ &p_rc->num_regions);
+ } else {
+ ret = identify_regions(
+ cpi->twopass_frame.stats_in - (rc->frames_since_key == 0),
+ rest_frames, 0, p_rc->regions, &p_rc->num_regions);
+ }
+ if (ret == -1) {
+ aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
+ "Error allocating buffers in identify_regions");
+ }
+ }
+
+ int cur_region_idx =
+ find_regions_index(p_rc->regions, p_rc->num_regions,
+ rc->frames_since_key - p_rc->regions_offset);
+ if ((cur_region_idx >= 0 &&
+ p_rc->regions[cur_region_idx].type == SCENECUT_REGION) ||
+ rc->frames_since_key == 0) {
+ // If we start from a scenecut, then the last GOP's arf boost is not
+ // needed for this GOP.
+ cpi->ppi->gf_state.arf_gf_boost_lst = 0;
+ }
+
+ int need_gf_len = 1;
+ if (cpi->third_pass_ctx && oxcf->pass == AOM_RC_THIRD_PASS) {
+ // set up bitstream to read
+ if (!cpi->third_pass_ctx->input_file_name && oxcf->two_pass_output) {
+ cpi->third_pass_ctx->input_file_name = oxcf->two_pass_output;
+ }
+ av1_open_second_pass_log(cpi, 1);
+ THIRD_PASS_GOP_INFO *gop_info = &cpi->third_pass_ctx->gop_info;
+ // Read in GOP information from the second pass file.
+ av1_read_second_pass_gop_info(cpi->second_pass_log_stream, gop_info,
+ cpi->common.error);
+#if CONFIG_BITRATE_ACCURACY
+ TPL_INFO *tpl_info;
+ AOM_CHECK_MEM_ERROR(cpi->common.error, tpl_info,
+ aom_malloc(sizeof(*tpl_info)));
+ av1_read_tpl_info(tpl_info, cpi->second_pass_log_stream,
+ cpi->common.error);
+ aom_free(tpl_info);
+#if CONFIG_THREE_PASS
+ // TODO(angiebird): Put this part into a func
+ cpi->vbr_rc_info.cur_gop_idx++;
+#endif // CONFIG_THREE_PASS
+#endif // CONFIG_BITRATE_ACCURACY
+ // Read in third_pass_info from the bitstream.
+ av1_set_gop_third_pass(cpi->third_pass_ctx);
+ // Read in per-frame info from second-pass encoding
+ av1_read_second_pass_per_frame_info(
+ cpi->second_pass_log_stream, cpi->third_pass_ctx->frame_info,
+ gop_info->num_frames, cpi->common.error);
+
+ p_rc->cur_gf_index = 0;
+ p_rc->gf_intervals[0] = cpi->third_pass_ctx->gop_info.gf_length;
+ need_gf_len = 0;
+ }
+
+ if (need_gf_len) {
+ // If we cannot obtain GF group length from second_pass_file
+ // TODO(jingning): Resolve the redundant calls here.
+ if (rc->intervals_till_gf_calculate_due == 0 || 1) {
+ calculate_gf_length(cpi, max_gop_length, MAX_NUM_GF_INTERVALS);
+ }
+
+ if (max_gop_length > 16 && oxcf->algo_cfg.enable_tpl_model &&
+ oxcf->gf_cfg.lag_in_frames >= 32 &&
+ cpi->sf.tpl_sf.gop_length_decision_method != 3) {
+ int this_idx = rc->frames_since_key +
+ p_rc->gf_intervals[p_rc->cur_gf_index] -
+ p_rc->regions_offset - 1;
+ int this_region =
+ find_regions_index(p_rc->regions, p_rc->num_regions, this_idx);
+ int next_region =
+ find_regions_index(p_rc->regions, p_rc->num_regions, this_idx + 1);
+ // TODO(angiebird): Figure out why this_region and next_region are -1 in
+ // unit test like AltRefFramePresenceTestLarge (aomedia:3134)
+ int is_last_scenecut =
+ p_rc->gf_intervals[p_rc->cur_gf_index] >= rc->frames_to_key ||
+ (this_region != -1 &&
+ p_rc->regions[this_region].type == SCENECUT_REGION) ||
+ (next_region != -1 &&
+ p_rc->regions[next_region].type == SCENECUT_REGION);
+
+ int ori_gf_int = p_rc->gf_intervals[p_rc->cur_gf_index];
+
+ if (p_rc->gf_intervals[p_rc->cur_gf_index] > 16 &&
+ rc->min_gf_interval <= 16) {
+ // The calculate_gf_length function is previously used with
+ // max_gop_length = 32 with look-ahead gf intervals.
+ define_gf_group(cpi, frame_params, 0);
+ av1_tf_info_filtering(&cpi->ppi->tf_info, cpi, gf_group);
+ this_frame = this_frame_copy;
+
+ if (is_shorter_gf_interval_better(cpi, frame_params)) {
+ // A shorter gf interval is better.
+ // TODO(jingning): Remove redundant computations here.
+ max_gop_length = 16;
+ calculate_gf_length(cpi, max_gop_length, 1);
+ if (is_last_scenecut &&
+ (ori_gf_int - p_rc->gf_intervals[p_rc->cur_gf_index] < 4)) {
+ p_rc->gf_intervals[p_rc->cur_gf_index] = ori_gf_int;
+ }
+ }
+ }
+ }
+ }
+
+ define_gf_group(cpi, frame_params, 0);
+
+ if (gf_group->update_type[cpi->gf_frame_index] != ARF_UPDATE &&
+ rc->frames_since_key > 0)
+ process_first_pass_stats(cpi, &this_frame);
+
+ define_gf_group(cpi, frame_params, 1);
+
+ // write gop info if needed for third pass. Per-frame info is written after
+ // each frame is encoded.
+ av1_write_second_pass_gop_info(cpi);
+
+ av1_tf_info_filtering(&cpi->ppi->tf_info, cpi, gf_group);
+
+ rc->frames_till_gf_update_due = p_rc->baseline_gf_interval;
+ assert(cpi->gf_frame_index == 0);
+#if ARF_STATS_OUTPUT
+ {
+ FILE *fpfile;
+ fpfile = fopen("arf.stt", "a");
+ ++arf_count;
+ fprintf(fpfile, "%10d %10d %10d %10d %10d\n",
+ cpi->common.current_frame.frame_number,
+ rc->frames_till_gf_update_due, cpi->ppi->p_rc.kf_boost, arf_count,
+ p_rc->gfu_boost);
+
+ fclose(fpfile);
+ }
+#endif
+ }
+ assert(cpi->gf_frame_index < gf_group->size);
+
+ if (gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE ||
+ gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE) {
+ reset_fpf_position(&cpi->twopass_frame, start_pos);
+
+ const FIRSTPASS_STATS *const this_frame_ptr =
+ read_frame_stats(twopass, &cpi->twopass_frame,
+ gf_group->arf_src_offset[cpi->gf_frame_index]);
+ set_twopass_params_based_on_fp_stats(cpi, this_frame_ptr);
+ } else {
+ // Back up this frame's stats for updating total stats during post encode.
+ cpi->twopass_frame.this_frame = update_total_stats ? start_pos : NULL;
+ }
+
+ frame_params->frame_type = gf_group->frame_type[cpi->gf_frame_index];
+ setup_target_rate(cpi);
+}
+
+void av1_init_second_pass(AV1_COMP *cpi) {
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ FRAME_INFO *const frame_info = &cpi->frame_info;
+ double frame_rate;
+ FIRSTPASS_STATS *stats;
+
+ if (!twopass->stats_buf_ctx->stats_in_end) return;
+
+ av1_mark_flashes(twopass->stats_buf_ctx->stats_in_start,
+ twopass->stats_buf_ctx->stats_in_end);
+ av1_estimate_noise(twopass->stats_buf_ctx->stats_in_start,
+ twopass->stats_buf_ctx->stats_in_end, cpi->common.error);
+ av1_estimate_coeff(twopass->stats_buf_ctx->stats_in_start,
+ twopass->stats_buf_ctx->stats_in_end);
+
+ stats = twopass->stats_buf_ctx->total_stats;
+
+ *stats = *twopass->stats_buf_ctx->stats_in_end;
+ *twopass->stats_buf_ctx->total_left_stats = *stats;
+
+ frame_rate = 10000000.0 * stats->count / stats->duration;
+ // Each frame can have a different duration, as the frame rate in the source
+ // isn't guaranteed to be constant. The frame rate prior to the first frame
+ // encoded in the second pass is a guess. However, the sum duration is not.
+ // It is calculated based on the actual durations of all frames from the
+ // first pass.
+ av1_new_framerate(cpi, frame_rate);
+ twopass->bits_left =
+ (int64_t)(stats->duration * oxcf->rc_cfg.target_bandwidth / 10000000.0);
+
+#if CONFIG_BITRATE_ACCURACY
+ av1_vbr_rc_init(&cpi->vbr_rc_info, twopass->bits_left,
+ (int)round(stats->count));
+#endif
+
+#if CONFIG_RATECTRL_LOG
+ rc_log_init(&cpi->rc_log);
+#endif
+
+ // This variable monitors how far behind the second ref update is lagging.
+ twopass->sr_update_lag = 1;
+
+ // Scan the first pass file and calculate a modified total error based upon
+ // the bias/power function used to allocate bits.
+ {
+ const double avg_error =
+ stats->coded_error / DOUBLE_DIVIDE_CHECK(stats->count);
+ const FIRSTPASS_STATS *s = cpi->twopass_frame.stats_in;
+ double modified_error_total = 0.0;
+ twopass->modified_error_min =
+ (avg_error * oxcf->rc_cfg.vbrmin_section) / 100;
+ twopass->modified_error_max =
+ (avg_error * oxcf->rc_cfg.vbrmax_section) / 100;
+ while (s < twopass->stats_buf_ctx->stats_in_end) {
+ modified_error_total +=
+ calculate_modified_err(frame_info, twopass, oxcf, s);
+ ++s;
+ }
+ twopass->modified_error_left = modified_error_total;
+ }
+
+ // Reset the vbr bits off target counters
+ cpi->ppi->p_rc.vbr_bits_off_target = 0;
+ cpi->ppi->p_rc.vbr_bits_off_target_fast = 0;
+
+ cpi->ppi->p_rc.rate_error_estimate = 0;
+
+ // Static sequence monitor variables.
+ twopass->kf_zeromotion_pct = 100;
+ twopass->last_kfgroup_zeromotion_pct = 100;
+
+ // Initialize bits per macro_block estimate correction factor.
+ twopass->bpm_factor = 1.0;
+ // Initialize actual and target bits counters for ARF groups so that
+ // at the start we have a neutral bpm adjustment.
+ twopass->rolling_arf_group_target_bits = 1;
+ twopass->rolling_arf_group_actual_bits = 1;
+}
+
+void av1_init_single_pass_lap(AV1_COMP *cpi) {
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+
+ if (!twopass->stats_buf_ctx->stats_in_end) return;
+
+ // This variable monitors how far behind the second ref update is lagging.
+ twopass->sr_update_lag = 1;
+
+ twopass->bits_left = 0;
+ twopass->modified_error_min = 0.0;
+ twopass->modified_error_max = 0.0;
+ twopass->modified_error_left = 0.0;
+
+ // Reset the vbr bits off target counters
+ cpi->ppi->p_rc.vbr_bits_off_target = 0;
+ cpi->ppi->p_rc.vbr_bits_off_target_fast = 0;
+
+ cpi->ppi->p_rc.rate_error_estimate = 0;
+
+ // Static sequence monitor variables.
+ twopass->kf_zeromotion_pct = 100;
+ twopass->last_kfgroup_zeromotion_pct = 100;
+
+ // Initialize bits per macro_block estimate correction factor.
+ twopass->bpm_factor = 1.0;
+ // Initialize actual and target bits counters for ARF groups so that
+ // at the start we have a neutral bpm adjustment.
+ twopass->rolling_arf_group_target_bits = 1;
+ twopass->rolling_arf_group_actual_bits = 1;
+}
+
+#define MINQ_ADJ_LIMIT 48
+#define MINQ_ADJ_LIMIT_CQ 20
+#define HIGH_UNDERSHOOT_RATIO 2
+void av1_twopass_postencode_update(AV1_COMP *cpi) {
+ TWO_PASS *const twopass = &cpi->ppi->twopass;
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg;
+
+ // Increment the stats_in pointer.
+ if (is_stat_consumption_stage(cpi) &&
+ !(cpi->use_ducky_encode && cpi->ducky_encode_info.frame_info.gop_mode ==
+ DUCKY_ENCODE_GOP_MODE_RCL) &&
+ (cpi->gf_frame_index < cpi->ppi->gf_group.size ||
+ rc->frames_to_key == 0)) {
+ const int update_type = cpi->ppi->gf_group.update_type[cpi->gf_frame_index];
+ if (update_type != ARF_UPDATE && update_type != INTNL_ARF_UPDATE) {
+ FIRSTPASS_STATS this_frame;
+ assert(cpi->twopass_frame.stats_in >
+ twopass->stats_buf_ctx->stats_in_start);
+ --cpi->twopass_frame.stats_in;
+ if (cpi->ppi->lap_enabled) {
+ input_stats_lap(twopass, &cpi->twopass_frame, &this_frame);
+ } else {
+ input_stats(twopass, &cpi->twopass_frame, &this_frame);
+ }
+ } else if (cpi->ppi->lap_enabled) {
+ cpi->twopass_frame.stats_in = twopass->stats_buf_ctx->stats_in_start;
+ }
+ }
+
+ // VBR correction is done through rc->vbr_bits_off_target. Based on the
+ // sign of this value, a limited % adjustment is made to the target rate
+ // of subsequent frames, to try and push it back towards 0. This method
+ // is designed to prevent extreme behaviour at the end of a clip
+ // or group of frames.
+ p_rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
+ twopass->bits_left = AOMMAX(twopass->bits_left - rc->base_frame_target, 0);
+
+ if (cpi->do_update_vbr_bits_off_target_fast) {
+ // Subtract current frame's fast_extra_bits.
+ p_rc->vbr_bits_off_target_fast -= rc->frame_level_fast_extra_bits;
+ rc->frame_level_fast_extra_bits = 0;
+ }
+
+ // Target vs actual bits for this arf group.
+ twopass->rolling_arf_group_target_bits += rc->base_frame_target;
+ twopass->rolling_arf_group_actual_bits += rc->projected_frame_size;
+
+ // Calculate the pct rc error.
+ if (p_rc->total_actual_bits) {
+ p_rc->rate_error_estimate =
+ (int)((p_rc->vbr_bits_off_target * 100) / p_rc->total_actual_bits);
+ p_rc->rate_error_estimate = clamp(p_rc->rate_error_estimate, -100, 100);
+ } else {
+ p_rc->rate_error_estimate = 0;
+ }
+
+#if CONFIG_FPMT_TEST
+ /* The variables temp_vbr_bits_off_target, temp_bits_left,
+ * temp_rolling_arf_group_target_bits, temp_rolling_arf_group_actual_bits
+ * temp_rate_error_estimate are introduced for quality simulation purpose,
+ * it retains the value previous to the parallel encode frames. The
+ * variables are updated based on the update flag.
+ *
+ * If there exist show_existing_frames between parallel frames, then to
+ * retain the temp state do not update it. */
+ const int simulate_parallel_frame =
+ cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
+ int show_existing_between_parallel_frames =
+ (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] ==
+ INTNL_OVERLAY_UPDATE &&
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2);
+
+ if (cpi->do_frame_data_update && !show_existing_between_parallel_frames &&
+ simulate_parallel_frame) {
+ cpi->ppi->p_rc.temp_vbr_bits_off_target = p_rc->vbr_bits_off_target;
+ cpi->ppi->p_rc.temp_bits_left = twopass->bits_left;
+ cpi->ppi->p_rc.temp_rolling_arf_group_target_bits =
+ twopass->rolling_arf_group_target_bits;
+ cpi->ppi->p_rc.temp_rolling_arf_group_actual_bits =
+ twopass->rolling_arf_group_actual_bits;
+ cpi->ppi->p_rc.temp_rate_error_estimate = p_rc->rate_error_estimate;
+ }
+#endif
+ // Update the active best quality pyramid.
+ if (!rc->is_src_frame_alt_ref) {
+ const int pyramid_level =
+ cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index];
+ int i;
+ for (i = pyramid_level; i <= MAX_ARF_LAYERS; ++i) {
+ p_rc->active_best_quality[i] = cpi->common.quant_params.base_qindex;
+#if CONFIG_TUNE_VMAF
+ if (cpi->vmaf_info.original_qindex != -1 &&
+ (cpi->oxcf.tune_cfg.tuning >= AOM_TUNE_VMAF_WITH_PREPROCESSING &&
+ cpi->oxcf.tune_cfg.tuning <= AOM_TUNE_VMAF_NEG_MAX_GAIN)) {
+ p_rc->active_best_quality[i] = cpi->vmaf_info.original_qindex;
+ }
+#endif
+ }
+ }
+
+#if 0
+ {
+ AV1_COMMON *cm = &cpi->common;
+ FILE *fpfile;
+ fpfile = fopen("details.stt", "a");
+ fprintf(fpfile,
+ "%10d %10d %10d %10" PRId64 " %10" PRId64
+ " %10d %10d %10d %10.4lf %10.4lf %10.4lf %10.4lf\n",
+ cm->current_frame.frame_number, rc->base_frame_target,
+ rc->projected_frame_size, rc->total_actual_bits,
+ rc->vbr_bits_off_target, p_rc->rate_error_estimate,
+ twopass->rolling_arf_group_target_bits,
+ twopass->rolling_arf_group_actual_bits,
+ (double)twopass->rolling_arf_group_actual_bits /
+ (double)twopass->rolling_arf_group_target_bits,
+ twopass->bpm_factor,
+ av1_convert_qindex_to_q(cpi->common.quant_params.base_qindex,
+ cm->seq_params->bit_depth),
+ av1_convert_qindex_to_q(rc->active_worst_quality,
+ cm->seq_params->bit_depth));
+ fclose(fpfile);
+ }
+#endif
+
+ if (cpi->common.current_frame.frame_type != KEY_FRAME) {
+ twopass->kf_group_bits -= rc->base_frame_target;
+ twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
+ }
+ twopass->kf_group_bits = AOMMAX(twopass->kf_group_bits, 0);
+
+ // If the rate control is drifting consider adjustment to min or maxq.
+ if ((rc_cfg->mode != AOM_Q) && !cpi->rc.is_src_frame_alt_ref) {
+ int minq_adj_limit;
+ int maxq_adj_limit;
+ minq_adj_limit =
+ (rc_cfg->mode == AOM_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
+ maxq_adj_limit = rc->worst_quality - rc->active_worst_quality;
+
+ // Undershoot
+ if ((rc_cfg->under_shoot_pct < 100) &&
+ (p_rc->rolling_actual_bits < p_rc->rolling_target_bits)) {
+ int pct_error =
+ ((p_rc->rolling_target_bits - p_rc->rolling_actual_bits) * 100) /
+ p_rc->rolling_target_bits;
+
+ if ((pct_error >= rc_cfg->under_shoot_pct) &&
+ (p_rc->rate_error_estimate > 0)) {
+ twopass->extend_minq += 1;
+ }
+ twopass->extend_maxq -= 1;
+ // Overshoot
+ } else if ((rc_cfg->over_shoot_pct < 100) &&
+ (p_rc->rolling_actual_bits > p_rc->rolling_target_bits)) {
+ int pct_error =
+ ((p_rc->rolling_actual_bits - p_rc->rolling_target_bits) * 100) /
+ p_rc->rolling_target_bits;
+
+ pct_error = clamp(pct_error, 0, 100);
+ if ((pct_error >= rc_cfg->over_shoot_pct) &&
+ (p_rc->rate_error_estimate < 0)) {
+ twopass->extend_maxq += 1;
+ }
+ twopass->extend_minq -= 1;
+ } else {
+ // Adjustment for extreme local overshoot.
+ // Only applies when normal adjustment above is not used (e.g.
+ // when threshold is set to 100).
+ if (rc->projected_frame_size > (2 * rc->base_frame_target) &&
+ rc->projected_frame_size > (2 * rc->avg_frame_bandwidth))
+ ++twopass->extend_maxq;
+ // Unwind extreme overshoot adjustment.
+ else if (p_rc->rolling_target_bits > p_rc->rolling_actual_bits)
+ --twopass->extend_maxq;
+ }
+ twopass->extend_minq =
+ clamp(twopass->extend_minq, -minq_adj_limit, minq_adj_limit);
+ twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit);
+
+ // If there is a big and undexpected undershoot then feed the extra
+ // bits back in quickly. One situation where this may happen is if a
+ // frame is unexpectedly almost perfectly predicted by the ARF or GF
+ // but not very well predcited by the previous frame.
+ if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) {
+ int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO;
+ if (rc->projected_frame_size < fast_extra_thresh) {
+ p_rc->vbr_bits_off_target_fast +=
+ fast_extra_thresh - rc->projected_frame_size;
+ p_rc->vbr_bits_off_target_fast = AOMMIN(p_rc->vbr_bits_off_target_fast,
+ (4 * rc->avg_frame_bandwidth));
+ }
+ }
+
+#if CONFIG_FPMT_TEST
+ if (cpi->do_frame_data_update && !show_existing_between_parallel_frames &&
+ simulate_parallel_frame) {
+ cpi->ppi->p_rc.temp_vbr_bits_off_target_fast =
+ p_rc->vbr_bits_off_target_fast;
+ cpi->ppi->p_rc.temp_extend_minq = twopass->extend_minq;
+ cpi->ppi->p_rc.temp_extend_maxq = twopass->extend_maxq;
+ }
+#endif
+ }
+
+ // Update the frame probabilities obtained from parallel encode frames
+ FrameProbInfo *const frame_probs = &cpi->ppi->frame_probs;
+#if CONFIG_FPMT_TEST
+ /* The variable temp_active_best_quality is introduced only for quality
+ * simulation purpose, it retains the value previous to the parallel
+ * encode frames. The variable is updated based on the update flag.
+ *
+ * If there exist show_existing_frames between parallel frames, then to
+ * retain the temp state do not update it. */
+ if (cpi->do_frame_data_update && !show_existing_between_parallel_frames &&
+ simulate_parallel_frame) {
+ int i;
+ const int pyramid_level =
+ cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index];
+ if (!rc->is_src_frame_alt_ref) {
+ for (i = pyramid_level; i <= MAX_ARF_LAYERS; ++i)
+ cpi->ppi->p_rc.temp_active_best_quality[i] =
+ p_rc->active_best_quality[i];
+ }
+ }
+
+ // Update the frame probabilities obtained from parallel encode frames
+ FrameProbInfo *const temp_frame_probs_simulation =
+ simulate_parallel_frame ? &cpi->ppi->temp_frame_probs_simulation
+ : frame_probs;
+ FrameProbInfo *const temp_frame_probs =
+ simulate_parallel_frame ? &cpi->ppi->temp_frame_probs : NULL;
+#endif
+ int i, j, loop;
+ // Sequentially do average on temp_frame_probs_simulation which holds
+ // probabilities of last frame before parallel encode
+ for (loop = 0; loop <= cpi->num_frame_recode; loop++) {
+ // Sequentially update tx_type_probs
+ if (cpi->do_update_frame_probs_txtype[loop] &&
+ (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)) {
+ const FRAME_UPDATE_TYPE update_type =
+ get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
+ for (i = 0; i < TX_SIZES_ALL; i++) {
+ int left = 1024;
+
+ for (j = TX_TYPES - 1; j >= 0; j--) {
+ const int new_prob =
+ cpi->frame_new_probs[loop].tx_type_probs[update_type][i][j];
+#if CONFIG_FPMT_TEST
+ int prob =
+ (temp_frame_probs_simulation->tx_type_probs[update_type][i][j] +
+ new_prob) >>
+ 1;
+ left -= prob;
+ if (j == 0) prob += left;
+ temp_frame_probs_simulation->tx_type_probs[update_type][i][j] = prob;
+#else
+ int prob =
+ (frame_probs->tx_type_probs[update_type][i][j] + new_prob) >> 1;
+ left -= prob;
+ if (j == 0) prob += left;
+ frame_probs->tx_type_probs[update_type][i][j] = prob;
+#endif
+ }
+ }
+ }
+
+ // Sequentially update obmc_probs
+ if (cpi->do_update_frame_probs_obmc[loop] &&
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
+ const FRAME_UPDATE_TYPE update_type =
+ get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
+
+ for (i = 0; i < BLOCK_SIZES_ALL; i++) {
+ const int new_prob =
+ cpi->frame_new_probs[loop].obmc_probs[update_type][i];
+#if CONFIG_FPMT_TEST
+ temp_frame_probs_simulation->obmc_probs[update_type][i] =
+ (temp_frame_probs_simulation->obmc_probs[update_type][i] +
+ new_prob) >>
+ 1;
+#else
+ frame_probs->obmc_probs[update_type][i] =
+ (frame_probs->obmc_probs[update_type][i] + new_prob) >> 1;
+#endif
+ }
+ }
+
+ // Sequentially update warped_probs
+ if (cpi->do_update_frame_probs_warp[loop] &&
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
+ const FRAME_UPDATE_TYPE update_type =
+ get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
+ const int new_prob = cpi->frame_new_probs[loop].warped_probs[update_type];
+#if CONFIG_FPMT_TEST
+ temp_frame_probs_simulation->warped_probs[update_type] =
+ (temp_frame_probs_simulation->warped_probs[update_type] + new_prob) >>
+ 1;
+#else
+ frame_probs->warped_probs[update_type] =
+ (frame_probs->warped_probs[update_type] + new_prob) >> 1;
+#endif
+ }
+
+ // Sequentially update switchable_interp_probs
+ if (cpi->do_update_frame_probs_interpfilter[loop] &&
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
+ const FRAME_UPDATE_TYPE update_type =
+ get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
+
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
+ int left = 1536;
+
+ for (j = SWITCHABLE_FILTERS - 1; j >= 0; j--) {
+ const int new_prob = cpi->frame_new_probs[loop]
+ .switchable_interp_probs[update_type][i][j];
+#if CONFIG_FPMT_TEST
+ int prob = (temp_frame_probs_simulation
+ ->switchable_interp_probs[update_type][i][j] +
+ new_prob) >>
+ 1;
+ left -= prob;
+ if (j == 0) prob += left;
+
+ temp_frame_probs_simulation
+ ->switchable_interp_probs[update_type][i][j] = prob;
+#else
+ int prob = (frame_probs->switchable_interp_probs[update_type][i][j] +
+ new_prob) >>
+ 1;
+ left -= prob;
+ if (j == 0) prob += left;
+ frame_probs->switchable_interp_probs[update_type][i][j] = prob;
+#endif
+ }
+ }
+ }
+ }
+
+#if CONFIG_FPMT_TEST
+ // Copying temp_frame_probs_simulation to temp_frame_probs based on
+ // the flag
+ if (cpi->do_frame_data_update &&
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
+ simulate_parallel_frame) {
+ for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES;
+ update_type_idx++) {
+ for (i = 0; i < BLOCK_SIZES_ALL; i++) {
+ temp_frame_probs->obmc_probs[update_type_idx][i] =
+ temp_frame_probs_simulation->obmc_probs[update_type_idx][i];
+ }
+ temp_frame_probs->warped_probs[update_type_idx] =
+ temp_frame_probs_simulation->warped_probs[update_type_idx];
+ for (i = 0; i < TX_SIZES_ALL; i++) {
+ for (j = 0; j < TX_TYPES; j++) {
+ temp_frame_probs->tx_type_probs[update_type_idx][i][j] =
+ temp_frame_probs_simulation->tx_type_probs[update_type_idx][i][j];
+ }
+ }
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
+ for (j = 0; j < SWITCHABLE_FILTERS; j++) {
+ temp_frame_probs->switchable_interp_probs[update_type_idx][i][j] =
+ temp_frame_probs_simulation
+ ->switchable_interp_probs[update_type_idx][i][j];
+ }
+ }
+ }
+ }
+#endif
+ // Update framerate obtained from parallel encode frames
+ if (cpi->common.show_frame &&
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
+ cpi->framerate = cpi->new_framerate;
+#if CONFIG_FPMT_TEST
+ // SIMULATION PURPOSE
+ int show_existing_between_parallel_frames_cndn =
+ (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] ==
+ INTNL_OVERLAY_UPDATE &&
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2);
+ if (cpi->common.show_frame && !show_existing_between_parallel_frames_cndn &&
+ cpi->do_frame_data_update && simulate_parallel_frame)
+ cpi->temp_framerate = cpi->framerate;
+#endif
+}