summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/pickrst.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/pickrst.c2217
1 files changed, 2217 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/pickrst.c b/third_party/aom/av1/encoder/pickrst.c
new file mode 100644
index 0000000000..6429064175
--- /dev/null
+++ b/third_party/aom/av1/encoder/pickrst.c
@@ -0,0 +1,2217 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <float.h>
+#include <limits.h>
+#include <math.h>
+
+#include "config/aom_scale_rtcd.h"
+#include "config/av1_rtcd.h"
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/binary_codes_writer.h"
+#include "aom_dsp/mathutils.h"
+#include "aom_dsp/psnr.h"
+#include "aom_mem/aom_mem.h"
+#include "aom_ports/mem.h"
+#include "av1/common/av1_common_int.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/restoration.h"
+
+#include "av1/encoder/av1_quantize.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/picklpf.h"
+#include "av1/encoder/pickrst.h"
+
+// Number of Wiener iterations
+#define NUM_WIENER_ITERS 5
+
+// Penalty factor for use of dual sgr
+#define DUAL_SGR_PENALTY_MULT 0.01
+
+// Working precision for Wiener filter coefficients
+#define WIENER_TAP_SCALE_FACTOR ((int64_t)1 << 16)
+
+#define SGRPROJ_EP_GRP1_START_IDX 0
+#define SGRPROJ_EP_GRP1_END_IDX 9
+#define SGRPROJ_EP_GRP1_SEARCH_COUNT 4
+#define SGRPROJ_EP_GRP2_3_SEARCH_COUNT 2
+static const int sgproj_ep_grp1_seed[SGRPROJ_EP_GRP1_SEARCH_COUNT] = { 0, 3, 6,
+ 9 };
+static const int sgproj_ep_grp2_3[SGRPROJ_EP_GRP2_3_SEARCH_COUNT][14] = {
+ { 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, -1, -1, -1, -1 },
+ { 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15 }
+};
+
+#if DEBUG_LR_COSTING
+RestorationUnitInfo lr_ref_params[RESTORE_TYPES][MAX_MB_PLANE]
+ [MAX_LR_UNITS_W * MAX_LR_UNITS_H];
+#endif // DEBUG_LR_COSTING
+
+typedef int64_t (*sse_extractor_type)(const YV12_BUFFER_CONFIG *a,
+ const YV12_BUFFER_CONFIG *b);
+typedef int64_t (*sse_part_extractor_type)(const YV12_BUFFER_CONFIG *a,
+ const YV12_BUFFER_CONFIG *b,
+ int hstart, int width, int vstart,
+ int height);
+typedef uint64_t (*var_part_extractor_type)(const YV12_BUFFER_CONFIG *a,
+ int hstart, int width, int vstart,
+ int height);
+
+#if CONFIG_AV1_HIGHBITDEPTH
+#define NUM_EXTRACTORS (3 * (1 + 1))
+#else
+#define NUM_EXTRACTORS 3
+#endif
+static const sse_part_extractor_type sse_part_extractors[NUM_EXTRACTORS] = {
+ aom_get_y_sse_part, aom_get_u_sse_part,
+ aom_get_v_sse_part,
+#if CONFIG_AV1_HIGHBITDEPTH
+ aom_highbd_get_y_sse_part, aom_highbd_get_u_sse_part,
+ aom_highbd_get_v_sse_part,
+#endif
+};
+static const var_part_extractor_type var_part_extractors[NUM_EXTRACTORS] = {
+ aom_get_y_var, aom_get_u_var, aom_get_v_var,
+#if CONFIG_AV1_HIGHBITDEPTH
+ aom_highbd_get_y_var, aom_highbd_get_u_var, aom_highbd_get_v_var,
+#endif
+};
+
+static int64_t sse_restoration_unit(const RestorationTileLimits *limits,
+ const YV12_BUFFER_CONFIG *src,
+ const YV12_BUFFER_CONFIG *dst, int plane,
+ int highbd) {
+ return sse_part_extractors[3 * highbd + plane](
+ src, dst, limits->h_start, limits->h_end - limits->h_start,
+ limits->v_start, limits->v_end - limits->v_start);
+}
+
+static uint64_t var_restoration_unit(const RestorationTileLimits *limits,
+ const YV12_BUFFER_CONFIG *src, int plane,
+ int highbd) {
+ return var_part_extractors[3 * highbd + plane](
+ src, limits->h_start, limits->h_end - limits->h_start, limits->v_start,
+ limits->v_end - limits->v_start);
+}
+
+typedef struct {
+ const YV12_BUFFER_CONFIG *src;
+ YV12_BUFFER_CONFIG *dst;
+
+ const AV1_COMMON *cm;
+ const MACROBLOCK *x;
+ int plane;
+ int plane_w;
+ int plane_h;
+ RestUnitSearchInfo *rusi;
+
+ // Speed features
+ const LOOP_FILTER_SPEED_FEATURES *lpf_sf;
+
+ uint8_t *dgd_buffer;
+ int dgd_stride;
+ const uint8_t *src_buffer;
+ int src_stride;
+
+ // SSE values for each restoration mode for the current RU
+ // These are saved by each search function for use in search_switchable()
+ int64_t sse[RESTORE_SWITCHABLE_TYPES];
+
+ // This flag will be set based on the speed feature
+ // 'prune_sgr_based_on_wiener'. 0 implies no pruning and 1 implies pruning.
+ uint8_t skip_sgr_eval;
+
+ // Total rate and distortion so far for each restoration type
+ // These are initialised by reset_rsc in search_rest_type
+ int64_t total_sse[RESTORE_TYPES];
+ int64_t total_bits[RESTORE_TYPES];
+
+ // Reference parameters for delta-coding
+ //
+ // For each restoration type, we need to store the latest parameter set which
+ // has been used, so that we can properly cost up the next parameter set.
+ // Note that we have two sets of these - one for the single-restoration-mode
+ // search (ie, frame_restoration_type = RESTORE_WIENER or RESTORE_SGRPROJ)
+ // and one for the switchable mode. This is because these two cases can lead
+ // to different sets of parameters being signaled, but we don't know which
+ // we will pick for sure until the end of the search process.
+ WienerInfo ref_wiener;
+ SgrprojInfo ref_sgrproj;
+ WienerInfo switchable_ref_wiener;
+ SgrprojInfo switchable_ref_sgrproj;
+
+ // Buffers used to hold dgd-avg and src-avg data respectively during SIMD
+ // call of Wiener filter.
+ int16_t *dgd_avg;
+ int16_t *src_avg;
+} RestSearchCtxt;
+
+static AOM_INLINE void rsc_on_tile(void *priv) {
+ RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
+ set_default_wiener(&rsc->ref_wiener);
+ set_default_sgrproj(&rsc->ref_sgrproj);
+ set_default_wiener(&rsc->switchable_ref_wiener);
+ set_default_sgrproj(&rsc->switchable_ref_sgrproj);
+}
+
+static AOM_INLINE void reset_rsc(RestSearchCtxt *rsc) {
+ memset(rsc->total_sse, 0, sizeof(rsc->total_sse));
+ memset(rsc->total_bits, 0, sizeof(rsc->total_bits));
+}
+
+static AOM_INLINE void init_rsc(const YV12_BUFFER_CONFIG *src,
+ const AV1_COMMON *cm, const MACROBLOCK *x,
+ const LOOP_FILTER_SPEED_FEATURES *lpf_sf,
+ int plane, RestUnitSearchInfo *rusi,
+ YV12_BUFFER_CONFIG *dst, RestSearchCtxt *rsc) {
+ rsc->src = src;
+ rsc->dst = dst;
+ rsc->cm = cm;
+ rsc->x = x;
+ rsc->plane = plane;
+ rsc->rusi = rusi;
+ rsc->lpf_sf = lpf_sf;
+
+ const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf;
+ const int is_uv = plane != AOM_PLANE_Y;
+ int plane_w, plane_h;
+ av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
+ assert(plane_w == src->crop_widths[is_uv]);
+ assert(plane_h == src->crop_heights[is_uv]);
+ assert(src->crop_widths[is_uv] == dgd->crop_widths[is_uv]);
+ assert(src->crop_heights[is_uv] == dgd->crop_heights[is_uv]);
+
+ rsc->plane_w = plane_w;
+ rsc->plane_h = plane_h;
+ rsc->src_buffer = src->buffers[plane];
+ rsc->src_stride = src->strides[is_uv];
+ rsc->dgd_buffer = dgd->buffers[plane];
+ rsc->dgd_stride = dgd->strides[is_uv];
+}
+
+static int64_t try_restoration_unit(const RestSearchCtxt *rsc,
+ const RestorationTileLimits *limits,
+ const RestorationUnitInfo *rui) {
+ const AV1_COMMON *const cm = rsc->cm;
+ const int plane = rsc->plane;
+ const int is_uv = plane > 0;
+ const RestorationInfo *rsi = &cm->rst_info[plane];
+ RestorationLineBuffers rlbs;
+ const int bit_depth = cm->seq_params->bit_depth;
+ const int highbd = cm->seq_params->use_highbitdepth;
+
+ const YV12_BUFFER_CONFIG *fts = &cm->cur_frame->buf;
+ // TODO(yunqing): For now, only use optimized LR filter in decoder. Can be
+ // also used in encoder.
+ const int optimized_lr = 0;
+
+ av1_loop_restoration_filter_unit(
+ limits, rui, &rsi->boundaries, &rlbs, rsc->plane_w, rsc->plane_h,
+ is_uv && cm->seq_params->subsampling_x,
+ is_uv && cm->seq_params->subsampling_y, highbd, bit_depth,
+ fts->buffers[plane], fts->strides[is_uv], rsc->dst->buffers[plane],
+ rsc->dst->strides[is_uv], cm->rst_tmpbuf, optimized_lr, cm->error);
+
+ return sse_restoration_unit(limits, rsc->src, rsc->dst, plane, highbd);
+}
+
+int64_t av1_lowbd_pixel_proj_error_c(const uint8_t *src8, int width, int height,
+ int src_stride, const uint8_t *dat8,
+ int dat_stride, int32_t *flt0,
+ int flt0_stride, int32_t *flt1,
+ int flt1_stride, int xq[2],
+ const sgr_params_type *params) {
+ int i, j;
+ const uint8_t *src = src8;
+ const uint8_t *dat = dat8;
+ int64_t err = 0;
+ if (params->r[0] > 0 && params->r[1] > 0) {
+ for (i = 0; i < height; ++i) {
+ for (j = 0; j < width; ++j) {
+ assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15));
+ assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15));
+ const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS);
+ int32_t v = u << SGRPROJ_PRJ_BITS;
+ v += xq[0] * (flt0[j] - u) + xq[1] * (flt1[j] - u);
+ const int32_t e =
+ ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j];
+ err += ((int64_t)e * e);
+ }
+ dat += dat_stride;
+ src += src_stride;
+ flt0 += flt0_stride;
+ flt1 += flt1_stride;
+ }
+ } else if (params->r[0] > 0) {
+ for (i = 0; i < height; ++i) {
+ for (j = 0; j < width; ++j) {
+ assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15));
+ const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS);
+ int32_t v = u << SGRPROJ_PRJ_BITS;
+ v += xq[0] * (flt0[j] - u);
+ const int32_t e =
+ ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j];
+ err += ((int64_t)e * e);
+ }
+ dat += dat_stride;
+ src += src_stride;
+ flt0 += flt0_stride;
+ }
+ } else if (params->r[1] > 0) {
+ for (i = 0; i < height; ++i) {
+ for (j = 0; j < width; ++j) {
+ assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15));
+ const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS);
+ int32_t v = u << SGRPROJ_PRJ_BITS;
+ v += xq[1] * (flt1[j] - u);
+ const int32_t e =
+ ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j];
+ err += ((int64_t)e * e);
+ }
+ dat += dat_stride;
+ src += src_stride;
+ flt1 += flt1_stride;
+ }
+ } else {
+ for (i = 0; i < height; ++i) {
+ for (j = 0; j < width; ++j) {
+ const int32_t e = (int32_t)(dat[j]) - src[j];
+ err += ((int64_t)e * e);
+ }
+ dat += dat_stride;
+ src += src_stride;
+ }
+ }
+
+ return err;
+}
+
+#if CONFIG_AV1_HIGHBITDEPTH
+int64_t av1_highbd_pixel_proj_error_c(const uint8_t *src8, int width,
+ int height, int src_stride,
+ const uint8_t *dat8, int dat_stride,
+ int32_t *flt0, int flt0_stride,
+ int32_t *flt1, int flt1_stride, int xq[2],
+ const sgr_params_type *params) {
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
+ int i, j;
+ int64_t err = 0;
+ const int32_t half = 1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1);
+ if (params->r[0] > 0 && params->r[1] > 0) {
+ int xq0 = xq[0];
+ int xq1 = xq[1];
+ for (i = 0; i < height; ++i) {
+ for (j = 0; j < width; ++j) {
+ const int32_t d = dat[j];
+ const int32_t s = src[j];
+ const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS);
+ int32_t v0 = flt0[j] - u;
+ int32_t v1 = flt1[j] - u;
+ int32_t v = half;
+ v += xq0 * v0;
+ v += xq1 * v1;
+ const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s;
+ err += ((int64_t)e * e);
+ }
+ dat += dat_stride;
+ flt0 += flt0_stride;
+ flt1 += flt1_stride;
+ src += src_stride;
+ }
+ } else if (params->r[0] > 0 || params->r[1] > 0) {
+ int exq;
+ int32_t *flt;
+ int flt_stride;
+ if (params->r[0] > 0) {
+ exq = xq[0];
+ flt = flt0;
+ flt_stride = flt0_stride;
+ } else {
+ exq = xq[1];
+ flt = flt1;
+ flt_stride = flt1_stride;
+ }
+ for (i = 0; i < height; ++i) {
+ for (j = 0; j < width; ++j) {
+ const int32_t d = dat[j];
+ const int32_t s = src[j];
+ const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS);
+ int32_t v = half;
+ v += exq * (flt[j] - u);
+ const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s;
+ err += ((int64_t)e * e);
+ }
+ dat += dat_stride;
+ flt += flt_stride;
+ src += src_stride;
+ }
+ } else {
+ for (i = 0; i < height; ++i) {
+ for (j = 0; j < width; ++j) {
+ const int32_t d = dat[j];
+ const int32_t s = src[j];
+ const int32_t e = d - s;
+ err += ((int64_t)e * e);
+ }
+ dat += dat_stride;
+ src += src_stride;
+ }
+ }
+ return err;
+}
+#endif // CONFIG_AV1_HIGHBITDEPTH
+
+static int64_t get_pixel_proj_error(const uint8_t *src8, int width, int height,
+ int src_stride, const uint8_t *dat8,
+ int dat_stride, int use_highbitdepth,
+ int32_t *flt0, int flt0_stride,
+ int32_t *flt1, int flt1_stride, int *xqd,
+ const sgr_params_type *params) {
+ int xq[2];
+ av1_decode_xq(xqd, xq, params);
+
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (use_highbitdepth) {
+ return av1_highbd_pixel_proj_error(src8, width, height, src_stride, dat8,
+ dat_stride, flt0, flt0_stride, flt1,
+ flt1_stride, xq, params);
+
+ } else {
+ return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8,
+ dat_stride, flt0, flt0_stride, flt1,
+ flt1_stride, xq, params);
+ }
+#else
+ (void)use_highbitdepth;
+ return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8,
+ dat_stride, flt0, flt0_stride, flt1,
+ flt1_stride, xq, params);
+#endif
+}
+
+#define USE_SGRPROJ_REFINEMENT_SEARCH 1
+static int64_t finer_search_pixel_proj_error(
+ const uint8_t *src8, int width, int height, int src_stride,
+ const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt0,
+ int flt0_stride, int32_t *flt1, int flt1_stride, int start_step, int *xqd,
+ const sgr_params_type *params) {
+ int64_t err = get_pixel_proj_error(
+ src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0,
+ flt0_stride, flt1, flt1_stride, xqd, params);
+ (void)start_step;
+#if USE_SGRPROJ_REFINEMENT_SEARCH
+ int64_t err2;
+ int tap_min[] = { SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MIN1 };
+ int tap_max[] = { SGRPROJ_PRJ_MAX0, SGRPROJ_PRJ_MAX1 };
+ for (int s = start_step; s >= 1; s >>= 1) {
+ for (int p = 0; p < 2; ++p) {
+ if ((params->r[0] == 0 && p == 0) || (params->r[1] == 0 && p == 1)) {
+ continue;
+ }
+ int skip = 0;
+ do {
+ if (xqd[p] - s >= tap_min[p]) {
+ xqd[p] -= s;
+ err2 =
+ get_pixel_proj_error(src8, width, height, src_stride, dat8,
+ dat_stride, use_highbitdepth, flt0,
+ flt0_stride, flt1, flt1_stride, xqd, params);
+ if (err2 > err) {
+ xqd[p] += s;
+ } else {
+ err = err2;
+ skip = 1;
+ // At the highest step size continue moving in the same direction
+ if (s == start_step) continue;
+ }
+ }
+ break;
+ } while (1);
+ if (skip) break;
+ do {
+ if (xqd[p] + s <= tap_max[p]) {
+ xqd[p] += s;
+ err2 =
+ get_pixel_proj_error(src8, width, height, src_stride, dat8,
+ dat_stride, use_highbitdepth, flt0,
+ flt0_stride, flt1, flt1_stride, xqd, params);
+ if (err2 > err) {
+ xqd[p] -= s;
+ } else {
+ err = err2;
+ // At the highest step size continue moving in the same direction
+ if (s == start_step) continue;
+ }
+ }
+ break;
+ } while (1);
+ }
+ }
+#endif // USE_SGRPROJ_REFINEMENT_SEARCH
+ return err;
+}
+
+static int64_t signed_rounded_divide(int64_t dividend, int64_t divisor) {
+ if (dividend < 0)
+ return (dividend - divisor / 2) / divisor;
+ else
+ return (dividend + divisor / 2) / divisor;
+}
+
+static AOM_INLINE void calc_proj_params_r0_r1_c(
+ const uint8_t *src8, int width, int height, int src_stride,
+ const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
+ int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
+ const int size = width * height;
+ const uint8_t *src = src8;
+ const uint8_t *dat = dat8;
+ for (int i = 0; i < height; ++i) {
+ for (int j = 0; j < width; ++j) {
+ const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
+ const int32_t s =
+ (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
+ const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
+ const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
+ H[0][0] += (int64_t)f1 * f1;
+ H[1][1] += (int64_t)f2 * f2;
+ H[0][1] += (int64_t)f1 * f2;
+ C[0] += (int64_t)f1 * s;
+ C[1] += (int64_t)f2 * s;
+ }
+ }
+ H[0][0] /= size;
+ H[0][1] /= size;
+ H[1][1] /= size;
+ H[1][0] = H[0][1];
+ C[0] /= size;
+ C[1] /= size;
+}
+
+static AOM_INLINE void calc_proj_params_r0_r1_high_bd_c(
+ const uint8_t *src8, int width, int height, int src_stride,
+ const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
+ int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
+ const int size = width * height;
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
+ for (int i = 0; i < height; ++i) {
+ for (int j = 0; j < width; ++j) {
+ const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
+ const int32_t s =
+ (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
+ const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
+ const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
+ H[0][0] += (int64_t)f1 * f1;
+ H[1][1] += (int64_t)f2 * f2;
+ H[0][1] += (int64_t)f1 * f2;
+ C[0] += (int64_t)f1 * s;
+ C[1] += (int64_t)f2 * s;
+ }
+ }
+ H[0][0] /= size;
+ H[0][1] /= size;
+ H[1][1] /= size;
+ H[1][0] = H[0][1];
+ C[0] /= size;
+ C[1] /= size;
+}
+
+static AOM_INLINE void calc_proj_params_r0_c(const uint8_t *src8, int width,
+ int height, int src_stride,
+ const uint8_t *dat8,
+ int dat_stride, int32_t *flt0,
+ int flt0_stride, int64_t H[2][2],
+ int64_t C[2]) {
+ const int size = width * height;
+ const uint8_t *src = src8;
+ const uint8_t *dat = dat8;
+ for (int i = 0; i < height; ++i) {
+ for (int j = 0; j < width; ++j) {
+ const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
+ const int32_t s =
+ (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
+ const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
+ H[0][0] += (int64_t)f1 * f1;
+ C[0] += (int64_t)f1 * s;
+ }
+ }
+ H[0][0] /= size;
+ C[0] /= size;
+}
+
+static AOM_INLINE void calc_proj_params_r0_high_bd_c(
+ const uint8_t *src8, int width, int height, int src_stride,
+ const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
+ int64_t H[2][2], int64_t C[2]) {
+ const int size = width * height;
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
+ for (int i = 0; i < height; ++i) {
+ for (int j = 0; j < width; ++j) {
+ const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
+ const int32_t s =
+ (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
+ const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
+ H[0][0] += (int64_t)f1 * f1;
+ C[0] += (int64_t)f1 * s;
+ }
+ }
+ H[0][0] /= size;
+ C[0] /= size;
+}
+
+static AOM_INLINE void calc_proj_params_r1_c(const uint8_t *src8, int width,
+ int height, int src_stride,
+ const uint8_t *dat8,
+ int dat_stride, int32_t *flt1,
+ int flt1_stride, int64_t H[2][2],
+ int64_t C[2]) {
+ const int size = width * height;
+ const uint8_t *src = src8;
+ const uint8_t *dat = dat8;
+ for (int i = 0; i < height; ++i) {
+ for (int j = 0; j < width; ++j) {
+ const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
+ const int32_t s =
+ (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
+ const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
+ H[1][1] += (int64_t)f2 * f2;
+ C[1] += (int64_t)f2 * s;
+ }
+ }
+ H[1][1] /= size;
+ C[1] /= size;
+}
+
+static AOM_INLINE void calc_proj_params_r1_high_bd_c(
+ const uint8_t *src8, int width, int height, int src_stride,
+ const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride,
+ int64_t H[2][2], int64_t C[2]) {
+ const int size = width * height;
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
+ for (int i = 0; i < height; ++i) {
+ for (int j = 0; j < width; ++j) {
+ const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
+ const int32_t s =
+ (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
+ const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
+ H[1][1] += (int64_t)f2 * f2;
+ C[1] += (int64_t)f2 * s;
+ }
+ }
+ H[1][1] /= size;
+ C[1] /= size;
+}
+
+// The function calls 3 subfunctions for the following cases :
+// 1) When params->r[0] > 0 and params->r[1] > 0. In this case all elements
+// of C and H need to be computed.
+// 2) When only params->r[0] > 0. In this case only H[0][0] and C[0] are
+// non-zero and need to be computed.
+// 3) When only params->r[1] > 0. In this case only H[1][1] and C[1] are
+// non-zero and need to be computed.
+void av1_calc_proj_params_c(const uint8_t *src8, int width, int height,
+ int src_stride, const uint8_t *dat8, int dat_stride,
+ int32_t *flt0, int flt0_stride, int32_t *flt1,
+ int flt1_stride, int64_t H[2][2], int64_t C[2],
+ const sgr_params_type *params) {
+ if ((params->r[0] > 0) && (params->r[1] > 0)) {
+ calc_proj_params_r0_r1_c(src8, width, height, src_stride, dat8, dat_stride,
+ flt0, flt0_stride, flt1, flt1_stride, H, C);
+ } else if (params->r[0] > 0) {
+ calc_proj_params_r0_c(src8, width, height, src_stride, dat8, dat_stride,
+ flt0, flt0_stride, H, C);
+ } else if (params->r[1] > 0) {
+ calc_proj_params_r1_c(src8, width, height, src_stride, dat8, dat_stride,
+ flt1, flt1_stride, H, C);
+ }
+}
+
+void av1_calc_proj_params_high_bd_c(const uint8_t *src8, int width, int height,
+ int src_stride, const uint8_t *dat8,
+ int dat_stride, int32_t *flt0,
+ int flt0_stride, int32_t *flt1,
+ int flt1_stride, int64_t H[2][2],
+ int64_t C[2],
+ const sgr_params_type *params) {
+ if ((params->r[0] > 0) && (params->r[1] > 0)) {
+ calc_proj_params_r0_r1_high_bd_c(src8, width, height, src_stride, dat8,
+ dat_stride, flt0, flt0_stride, flt1,
+ flt1_stride, H, C);
+ } else if (params->r[0] > 0) {
+ calc_proj_params_r0_high_bd_c(src8, width, height, src_stride, dat8,
+ dat_stride, flt0, flt0_stride, H, C);
+ } else if (params->r[1] > 0) {
+ calc_proj_params_r1_high_bd_c(src8, width, height, src_stride, dat8,
+ dat_stride, flt1, flt1_stride, H, C);
+ }
+}
+
+static AOM_INLINE void get_proj_subspace(const uint8_t *src8, int width,
+ int height, int src_stride,
+ const uint8_t *dat8, int dat_stride,
+ int use_highbitdepth, int32_t *flt0,
+ int flt0_stride, int32_t *flt1,
+ int flt1_stride, int *xq,
+ const sgr_params_type *params) {
+ int64_t H[2][2] = { { 0, 0 }, { 0, 0 } };
+ int64_t C[2] = { 0, 0 };
+
+ // Default values to be returned if the problem becomes ill-posed
+ xq[0] = 0;
+ xq[1] = 0;
+
+ if (!use_highbitdepth) {
+ if ((width & 0x7) == 0) {
+ av1_calc_proj_params(src8, width, height, src_stride, dat8, dat_stride,
+ flt0, flt0_stride, flt1, flt1_stride, H, C, params);
+ } else {
+ av1_calc_proj_params_c(src8, width, height, src_stride, dat8, dat_stride,
+ flt0, flt0_stride, flt1, flt1_stride, H, C,
+ params);
+ }
+ }
+#if CONFIG_AV1_HIGHBITDEPTH
+ else { // NOLINT
+ if ((width & 0x7) == 0) {
+ av1_calc_proj_params_high_bd(src8, width, height, src_stride, dat8,
+ dat_stride, flt0, flt0_stride, flt1,
+ flt1_stride, H, C, params);
+ } else {
+ av1_calc_proj_params_high_bd_c(src8, width, height, src_stride, dat8,
+ dat_stride, flt0, flt0_stride, flt1,
+ flt1_stride, H, C, params);
+ }
+ }
+#endif
+
+ if (params->r[0] == 0) {
+ // H matrix is now only the scalar H[1][1]
+ // C vector is now only the scalar C[1]
+ const int64_t Det = H[1][1];
+ if (Det == 0) return; // ill-posed, return default values
+ xq[0] = 0;
+ xq[1] = (int)signed_rounded_divide(C[1] * (1 << SGRPROJ_PRJ_BITS), Det);
+ } else if (params->r[1] == 0) {
+ // H matrix is now only the scalar H[0][0]
+ // C vector is now only the scalar C[0]
+ const int64_t Det = H[0][0];
+ if (Det == 0) return; // ill-posed, return default values
+ xq[0] = (int)signed_rounded_divide(C[0] * (1 << SGRPROJ_PRJ_BITS), Det);
+ xq[1] = 0;
+ } else {
+ const int64_t Det = H[0][0] * H[1][1] - H[0][1] * H[1][0];
+ if (Det == 0) return; // ill-posed, return default values
+
+ // If scaling up dividend would overflow, instead scale down the divisor
+ const int64_t div1 = H[1][1] * C[0] - H[0][1] * C[1];
+ if ((div1 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div1) ||
+ (div1 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div1))
+ xq[0] = (int)signed_rounded_divide(div1, Det / (1 << SGRPROJ_PRJ_BITS));
+ else
+ xq[0] = (int)signed_rounded_divide(div1 * (1 << SGRPROJ_PRJ_BITS), Det);
+
+ const int64_t div2 = H[0][0] * C[1] - H[1][0] * C[0];
+ if ((div2 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div2) ||
+ (div2 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div2))
+ xq[1] = (int)signed_rounded_divide(div2, Det / (1 << SGRPROJ_PRJ_BITS));
+ else
+ xq[1] = (int)signed_rounded_divide(div2 * (1 << SGRPROJ_PRJ_BITS), Det);
+ }
+}
+
+static AOM_INLINE void encode_xq(int *xq, int *xqd,
+ const sgr_params_type *params) {
+ if (params->r[0] == 0) {
+ xqd[0] = 0;
+ xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xq[1], SGRPROJ_PRJ_MIN1,
+ SGRPROJ_PRJ_MAX1);
+ } else if (params->r[1] == 0) {
+ xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0);
+ xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0], SGRPROJ_PRJ_MIN1,
+ SGRPROJ_PRJ_MAX1);
+ } else {
+ xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0);
+ xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1], SGRPROJ_PRJ_MIN1,
+ SGRPROJ_PRJ_MAX1);
+ }
+}
+
+// Apply the self-guided filter across an entire restoration unit.
+static AOM_INLINE void apply_sgr(int sgr_params_idx, const uint8_t *dat8,
+ int width, int height, int dat_stride,
+ int use_highbd, int bit_depth, int pu_width,
+ int pu_height, int32_t *flt0, int32_t *flt1,
+ int flt_stride,
+ struct aom_internal_error_info *error_info) {
+ for (int i = 0; i < height; i += pu_height) {
+ const int h = AOMMIN(pu_height, height - i);
+ int32_t *flt0_row = flt0 + i * flt_stride;
+ int32_t *flt1_row = flt1 + i * flt_stride;
+ const uint8_t *dat8_row = dat8 + i * dat_stride;
+
+ // Iterate over the stripe in blocks of width pu_width
+ for (int j = 0; j < width; j += pu_width) {
+ const int w = AOMMIN(pu_width, width - j);
+ if (av1_selfguided_restoration(
+ dat8_row + j, w, h, dat_stride, flt0_row + j, flt1_row + j,
+ flt_stride, sgr_params_idx, bit_depth, use_highbd) != 0) {
+ aom_internal_error(
+ error_info, AOM_CODEC_MEM_ERROR,
+ "Error allocating buffer in av1_selfguided_restoration");
+ }
+ }
+ }
+}
+
+static AOM_INLINE void compute_sgrproj_err(
+ const uint8_t *dat8, const int width, const int height,
+ const int dat_stride, const uint8_t *src8, const int src_stride,
+ const int use_highbitdepth, const int bit_depth, const int pu_width,
+ const int pu_height, const int ep, int32_t *flt0, int32_t *flt1,
+ const int flt_stride, int *exqd, int64_t *err,
+ struct aom_internal_error_info *error_info) {
+ int exq[2];
+ apply_sgr(ep, dat8, width, height, dat_stride, use_highbitdepth, bit_depth,
+ pu_width, pu_height, flt0, flt1, flt_stride, error_info);
+ const sgr_params_type *const params = &av1_sgr_params[ep];
+ get_proj_subspace(src8, width, height, src_stride, dat8, dat_stride,
+ use_highbitdepth, flt0, flt_stride, flt1, flt_stride, exq,
+ params);
+ encode_xq(exq, exqd, params);
+ *err = finer_search_pixel_proj_error(
+ src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0,
+ flt_stride, flt1, flt_stride, 2, exqd, params);
+}
+
+static AOM_INLINE void get_best_error(int64_t *besterr, const int64_t err,
+ const int *exqd, int *bestxqd,
+ int *bestep, const int ep) {
+ if (*besterr == -1 || err < *besterr) {
+ *bestep = ep;
+ *besterr = err;
+ bestxqd[0] = exqd[0];
+ bestxqd[1] = exqd[1];
+ }
+}
+
+static SgrprojInfo search_selfguided_restoration(
+ const uint8_t *dat8, int width, int height, int dat_stride,
+ const uint8_t *src8, int src_stride, int use_highbitdepth, int bit_depth,
+ int pu_width, int pu_height, int32_t *rstbuf, int enable_sgr_ep_pruning,
+ struct aom_internal_error_info *error_info) {
+ int32_t *flt0 = rstbuf;
+ int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
+ int ep, idx, bestep = 0;
+ int64_t besterr = -1;
+ int exqd[2], bestxqd[2] = { 0, 0 };
+ int flt_stride = ((width + 7) & ~7) + 8;
+ assert(pu_width == (RESTORATION_PROC_UNIT_SIZE >> 1) ||
+ pu_width == RESTORATION_PROC_UNIT_SIZE);
+ assert(pu_height == (RESTORATION_PROC_UNIT_SIZE >> 1) ||
+ pu_height == RESTORATION_PROC_UNIT_SIZE);
+ if (!enable_sgr_ep_pruning) {
+ for (ep = 0; ep < SGRPROJ_PARAMS; ep++) {
+ int64_t err;
+ compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
+ use_highbitdepth, bit_depth, pu_width, pu_height, ep,
+ flt0, flt1, flt_stride, exqd, &err, error_info);
+ get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
+ }
+ } else {
+ // evaluate first four seed ep in first group
+ for (idx = 0; idx < SGRPROJ_EP_GRP1_SEARCH_COUNT; idx++) {
+ ep = sgproj_ep_grp1_seed[idx];
+ int64_t err;
+ compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
+ use_highbitdepth, bit_depth, pu_width, pu_height, ep,
+ flt0, flt1, flt_stride, exqd, &err, error_info);
+ get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
+ }
+ // evaluate left and right ep of winner in seed ep
+ int bestep_ref = bestep;
+ for (ep = bestep_ref - 1; ep < bestep_ref + 2; ep += 2) {
+ if (ep < SGRPROJ_EP_GRP1_START_IDX || ep > SGRPROJ_EP_GRP1_END_IDX)
+ continue;
+ int64_t err;
+ compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
+ use_highbitdepth, bit_depth, pu_width, pu_height, ep,
+ flt0, flt1, flt_stride, exqd, &err, error_info);
+ get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
+ }
+ // evaluate last two group
+ for (idx = 0; idx < SGRPROJ_EP_GRP2_3_SEARCH_COUNT; idx++) {
+ ep = sgproj_ep_grp2_3[idx][bestep];
+ int64_t err;
+ compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
+ use_highbitdepth, bit_depth, pu_width, pu_height, ep,
+ flt0, flt1, flt_stride, exqd, &err, error_info);
+ get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
+ }
+ }
+
+ SgrprojInfo ret;
+ ret.ep = bestep;
+ ret.xqd[0] = bestxqd[0];
+ ret.xqd[1] = bestxqd[1];
+ return ret;
+}
+
+static int count_sgrproj_bits(SgrprojInfo *sgrproj_info,
+ SgrprojInfo *ref_sgrproj_info) {
+ int bits = SGRPROJ_PARAMS_BITS;
+ const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
+ if (params->r[0] > 0)
+ bits += aom_count_primitive_refsubexpfin(
+ SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
+ ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
+ sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
+ if (params->r[1] > 0)
+ bits += aom_count_primitive_refsubexpfin(
+ SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
+ ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
+ sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
+ return bits;
+}
+
+static AOM_INLINE void search_sgrproj(
+ const RestorationTileLimits *limits, int rest_unit_idx, void *priv,
+ int32_t *tmpbuf, RestorationLineBuffers *rlbs,
+ struct aom_internal_error_info *error_info) {
+ (void)rlbs;
+ RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
+ RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
+
+ const MACROBLOCK *const x = rsc->x;
+ const AV1_COMMON *const cm = rsc->cm;
+ const int highbd = cm->seq_params->use_highbitdepth;
+ const int bit_depth = cm->seq_params->bit_depth;
+
+ const int64_t bits_none = x->mode_costs.sgrproj_restore_cost[0];
+ // Prune evaluation of RESTORE_SGRPROJ if 'skip_sgr_eval' is set
+ if (rsc->skip_sgr_eval) {
+ rsc->total_bits[RESTORE_SGRPROJ] += bits_none;
+ rsc->total_sse[RESTORE_SGRPROJ] += rsc->sse[RESTORE_NONE];
+ rusi->best_rtype[RESTORE_SGRPROJ - 1] = RESTORE_NONE;
+ rsc->sse[RESTORE_SGRPROJ] = INT64_MAX;
+ return;
+ }
+
+ uint8_t *dgd_start =
+ rsc->dgd_buffer + limits->v_start * rsc->dgd_stride + limits->h_start;
+ const uint8_t *src_start =
+ rsc->src_buffer + limits->v_start * rsc->src_stride + limits->h_start;
+
+ const int is_uv = rsc->plane > 0;
+ const int ss_x = is_uv && cm->seq_params->subsampling_x;
+ const int ss_y = is_uv && cm->seq_params->subsampling_y;
+ const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
+ const int procunit_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
+
+ rusi->sgrproj = search_selfguided_restoration(
+ dgd_start, limits->h_end - limits->h_start,
+ limits->v_end - limits->v_start, rsc->dgd_stride, src_start,
+ rsc->src_stride, highbd, bit_depth, procunit_width, procunit_height,
+ tmpbuf, rsc->lpf_sf->enable_sgr_ep_pruning, error_info);
+
+ RestorationUnitInfo rui;
+ rui.restoration_type = RESTORE_SGRPROJ;
+ rui.sgrproj_info = rusi->sgrproj;
+
+ rsc->sse[RESTORE_SGRPROJ] = try_restoration_unit(rsc, limits, &rui);
+
+ const int64_t bits_sgr =
+ x->mode_costs.sgrproj_restore_cost[1] +
+ (count_sgrproj_bits(&rusi->sgrproj, &rsc->ref_sgrproj)
+ << AV1_PROB_COST_SHIFT);
+ double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST(
+ x->rdmult, bits_none >> 4, rsc->sse[RESTORE_NONE], bit_depth);
+ double cost_sgr = RDCOST_DBL_WITH_NATIVE_BD_DIST(
+ x->rdmult, bits_sgr >> 4, rsc->sse[RESTORE_SGRPROJ], bit_depth);
+ if (rusi->sgrproj.ep < 10)
+ cost_sgr *=
+ (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level);
+
+ RestorationType rtype =
+ (cost_sgr < cost_none) ? RESTORE_SGRPROJ : RESTORE_NONE;
+ rusi->best_rtype[RESTORE_SGRPROJ - 1] = rtype;
+
+#if DEBUG_LR_COSTING
+ // Store ref params for later checking
+ lr_ref_params[RESTORE_SGRPROJ][rsc->plane][rest_unit_idx].sgrproj_info =
+ rsc->ref_sgrproj;
+#endif // DEBUG_LR_COSTING
+
+ rsc->total_sse[RESTORE_SGRPROJ] += rsc->sse[rtype];
+ rsc->total_bits[RESTORE_SGRPROJ] +=
+ (cost_sgr < cost_none) ? bits_sgr : bits_none;
+ if (cost_sgr < cost_none) rsc->ref_sgrproj = rusi->sgrproj;
+}
+
+static void acc_stat_one_line(const uint8_t *dgd, const uint8_t *src,
+ int dgd_stride, int h_start, int h_end,
+ uint8_t avg, const int wiener_halfwin,
+ const int wiener_win2, int32_t *M_int32,
+ int32_t *H_int32, int count) {
+ int j, k, l;
+ int16_t Y[WIENER_WIN2];
+
+ for (j = h_start; j < h_end; j++) {
+ const int16_t X = (int16_t)src[j] - (int16_t)avg;
+ int idx = 0;
+ for (k = -wiener_halfwin; k <= wiener_halfwin; k++) {
+ for (l = -wiener_halfwin; l <= wiener_halfwin; l++) {
+ Y[idx] =
+ (int16_t)dgd[(count + l) * dgd_stride + (j + k)] - (int16_t)avg;
+ idx++;
+ }
+ }
+ assert(idx == wiener_win2);
+ for (k = 0; k < wiener_win2; ++k) {
+ M_int32[k] += (int32_t)Y[k] * X;
+ for (l = k; l < wiener_win2; ++l) {
+ // H is a symmetric matrix, so we only need to fill out the upper
+ // triangle here. We can copy it down to the lower triangle outside
+ // the (i, j) loops.
+ H_int32[k * wiener_win2 + l] += (int32_t)Y[k] * Y[l];
+ }
+ }
+ }
+}
+
+void av1_compute_stats_c(int wiener_win, const uint8_t *dgd, const uint8_t *src,
+ int16_t *dgd_avg, int16_t *src_avg, int h_start,
+ int h_end, int v_start, int v_end, int dgd_stride,
+ int src_stride, int64_t *M, int64_t *H,
+ int use_downsampled_wiener_stats) {
+ (void)dgd_avg;
+ (void)src_avg;
+ int i, k, l;
+ const int wiener_win2 = wiener_win * wiener_win;
+ const int wiener_halfwin = (wiener_win >> 1);
+ uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
+ int32_t M_row[WIENER_WIN2] = { 0 };
+ int32_t H_row[WIENER_WIN2 * WIENER_WIN2] = { 0 };
+ int downsample_factor =
+ use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
+
+ memset(M, 0, sizeof(*M) * wiener_win2);
+ memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);
+
+ for (i = v_start; i < v_end; i = i + downsample_factor) {
+ if (use_downsampled_wiener_stats &&
+ (v_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) {
+ downsample_factor = v_end - i;
+ }
+
+ memset(M_row, 0, sizeof(int32_t) * WIENER_WIN2);
+ memset(H_row, 0, sizeof(int32_t) * WIENER_WIN2 * WIENER_WIN2);
+ acc_stat_one_line(dgd, src + i * src_stride, dgd_stride, h_start, h_end,
+ avg, wiener_halfwin, wiener_win2, M_row, H_row, i);
+
+ for (k = 0; k < wiener_win2; ++k) {
+ // Scale M matrix based on the downsampling factor
+ M[k] += ((int64_t)M_row[k] * downsample_factor);
+ for (l = k; l < wiener_win2; ++l) {
+ // H is a symmetric matrix, so we only need to fill out the upper
+ // triangle here. We can copy it down to the lower triangle outside
+ // the (i, j) loops.
+ // Scale H Matrix based on the downsampling factor
+ H[k * wiener_win2 + l] +=
+ ((int64_t)H_row[k * wiener_win2 + l] * downsample_factor);
+ }
+ }
+ }
+
+ for (k = 0; k < wiener_win2; ++k) {
+ for (l = k + 1; l < wiener_win2; ++l) {
+ H[l * wiener_win2 + k] = H[k * wiener_win2 + l];
+ }
+ }
+}
+
+#if CONFIG_AV1_HIGHBITDEPTH
+void av1_compute_stats_highbd_c(int wiener_win, const uint8_t *dgd8,
+ const uint8_t *src8, int h_start, int h_end,
+ int v_start, int v_end, int dgd_stride,
+ int src_stride, int64_t *M, int64_t *H,
+ aom_bit_depth_t bit_depth) {
+ int i, j, k, l;
+ int32_t Y[WIENER_WIN2];
+ const int wiener_win2 = wiener_win * wiener_win;
+ const int wiener_halfwin = (wiener_win >> 1);
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
+ uint16_t avg =
+ find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
+
+ uint8_t bit_depth_divider = 1;
+ if (bit_depth == AOM_BITS_12)
+ bit_depth_divider = 16;
+ else if (bit_depth == AOM_BITS_10)
+ bit_depth_divider = 4;
+
+ memset(M, 0, sizeof(*M) * wiener_win2);
+ memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);
+ for (i = v_start; i < v_end; i++) {
+ for (j = h_start; j < h_end; j++) {
+ const int32_t X = (int32_t)src[i * src_stride + j] - (int32_t)avg;
+ int idx = 0;
+ for (k = -wiener_halfwin; k <= wiener_halfwin; k++) {
+ for (l = -wiener_halfwin; l <= wiener_halfwin; l++) {
+ Y[idx] = (int32_t)dgd[(i + l) * dgd_stride + (j + k)] - (int32_t)avg;
+ idx++;
+ }
+ }
+ assert(idx == wiener_win2);
+ for (k = 0; k < wiener_win2; ++k) {
+ M[k] += (int64_t)Y[k] * X;
+ for (l = k; l < wiener_win2; ++l) {
+ // H is a symmetric matrix, so we only need to fill out the upper
+ // triangle here. We can copy it down to the lower triangle outside
+ // the (i, j) loops.
+ H[k * wiener_win2 + l] += (int64_t)Y[k] * Y[l];
+ }
+ }
+ }
+ }
+ for (k = 0; k < wiener_win2; ++k) {
+ M[k] /= bit_depth_divider;
+ H[k * wiener_win2 + k] /= bit_depth_divider;
+ for (l = k + 1; l < wiener_win2; ++l) {
+ H[k * wiener_win2 + l] /= bit_depth_divider;
+ H[l * wiener_win2 + k] = H[k * wiener_win2 + l];
+ }
+ }
+}
+#endif // CONFIG_AV1_HIGHBITDEPTH
+
+static INLINE int wrap_index(int i, int wiener_win) {
+ const int wiener_halfwin1 = (wiener_win >> 1) + 1;
+ return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i);
+}
+
+// Solve linear equations to find Wiener filter tap values
+// Taps are output scaled by WIENER_FILT_STEP
+static int linsolve_wiener(int n, int64_t *A, int stride, int64_t *b,
+ int64_t *x) {
+ for (int k = 0; k < n - 1; k++) {
+ // Partial pivoting: bring the row with the largest pivot to the top
+ for (int i = n - 1; i > k; i--) {
+ // If row i has a better (bigger) pivot than row (i-1), swap them
+ if (llabs(A[(i - 1) * stride + k]) < llabs(A[i * stride + k])) {
+ for (int j = 0; j < n; j++) {
+ const int64_t c = A[i * stride + j];
+ A[i * stride + j] = A[(i - 1) * stride + j];
+ A[(i - 1) * stride + j] = c;
+ }
+ const int64_t c = b[i];
+ b[i] = b[i - 1];
+ b[i - 1] = c;
+ }
+ }
+
+ // b/278065963: The multiplies
+ // c / 256 * A[k * stride + j] / cd * 256
+ // and
+ // c / 256 * b[k] / cd * 256
+ // within Gaussian elimination can cause a signed integer overflow. Rework
+ // the multiplies so that larger scaling is used without significantly
+ // impacting the overall precision.
+ //
+ // Precision guidance:
+ // scale_threshold: Pick as high as possible.
+ // For max_abs_akj >= scale_threshold scenario:
+ // scaler_A: Pick as low as possible. Needed for A[(i + 1) * stride + j].
+ // scaler_c: Pick as low as possible while maintaining scaler_c >=
+ // (1 << 7). Needed for A[(i + 1) * stride + j] and b[i + 1].
+ int64_t max_abs_akj = 0;
+ for (int j = 0; j < n; j++) {
+ const int64_t abs_akj = llabs(A[k * stride + j]);
+ if (abs_akj > max_abs_akj) max_abs_akj = abs_akj;
+ }
+ const int scale_threshold = 1 << 22;
+ const int scaler_A = max_abs_akj < scale_threshold ? 1 : (1 << 5);
+ const int scaler_c = max_abs_akj < scale_threshold ? 1 : (1 << 7);
+ const int scaler = scaler_c * scaler_A;
+
+ // Forward elimination (convert A to row-echelon form)
+ for (int i = k; i < n - 1; i++) {
+ if (A[k * stride + k] == 0) return 0;
+ const int64_t c = A[(i + 1) * stride + k] / scaler_c;
+ const int64_t cd = A[k * stride + k];
+ for (int j = 0; j < n; j++) {
+ A[(i + 1) * stride + j] -=
+ A[k * stride + j] / scaler_A * c / cd * scaler;
+ }
+ b[i + 1] -= c * b[k] / cd * scaler_c;
+ }
+ }
+ // Back-substitution
+ for (int i = n - 1; i >= 0; i--) {
+ if (A[i * stride + i] == 0) return 0;
+ int64_t c = 0;
+ for (int j = i + 1; j <= n - 1; j++) {
+ c += A[i * stride + j] * x[j] / WIENER_TAP_SCALE_FACTOR;
+ }
+ // Store filter taps x in scaled form.
+ x[i] = WIENER_TAP_SCALE_FACTOR * (b[i] - c) / A[i * stride + i];
+ }
+
+ return 1;
+}
+
+// Fix vector b, update vector a
+static AOM_INLINE void update_a_sep_sym(int wiener_win, int64_t **Mc,
+ int64_t **Hc, int32_t *a, int32_t *b) {
+ int i, j;
+ int64_t S[WIENER_WIN];
+ int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
+ const int wiener_win2 = wiener_win * wiener_win;
+ const int wiener_halfwin1 = (wiener_win >> 1) + 1;
+ memset(A, 0, sizeof(A));
+ memset(B, 0, sizeof(B));
+ for (i = 0; i < wiener_win; i++) {
+ for (j = 0; j < wiener_win; ++j) {
+ const int jj = wrap_index(j, wiener_win);
+ A[jj] += Mc[i][j] * b[i] / WIENER_TAP_SCALE_FACTOR;
+ }
+ }
+
+ // b/274668506: This is the dual branch for the issue in b/272139363. The fix
+ // is similar. See comments in update_b_sep_sym() below.
+ int32_t max_b_l = 0;
+ for (int l = 0; l < wiener_win; ++l) {
+ const int32_t abs_b_l = abs(b[l]);
+ if (abs_b_l > max_b_l) max_b_l = abs_b_l;
+ }
+ const int scale_threshold = 128 * WIENER_TAP_SCALE_FACTOR;
+ const int scaler = max_b_l < scale_threshold ? 1 : 4;
+
+ for (i = 0; i < wiener_win; i++) {
+ for (j = 0; j < wiener_win; j++) {
+ int k, l;
+ for (k = 0; k < wiener_win; ++k) {
+ const int kk = wrap_index(k, wiener_win);
+ for (l = 0; l < wiener_win; ++l) {
+ const int ll = wrap_index(l, wiener_win);
+ B[ll * wiener_halfwin1 + kk] +=
+ Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] /
+ (scaler * WIENER_TAP_SCALE_FACTOR) * b[j] /
+ (WIENER_TAP_SCALE_FACTOR / scaler);
+ }
+ }
+ }
+ }
+ // Normalization enforcement in the system of equations itself
+ for (i = 0; i < wiener_halfwin1 - 1; ++i) {
+ A[i] -=
+ A[wiener_halfwin1 - 1] * 2 +
+ B[i * wiener_halfwin1 + wiener_halfwin1 - 1] -
+ 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)];
+ }
+ for (i = 0; i < wiener_halfwin1 - 1; ++i) {
+ for (j = 0; j < wiener_halfwin1 - 1; ++j) {
+ B[i * wiener_halfwin1 + j] -=
+ 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] +
+ B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] -
+ 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 +
+ (wiener_halfwin1 - 1)]);
+ }
+ }
+ if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) {
+ S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR;
+ for (i = wiener_halfwin1; i < wiener_win; ++i) {
+ S[i] = S[wiener_win - 1 - i];
+ S[wiener_halfwin1 - 1] -= 2 * S[i];
+ }
+ for (i = 0; i < wiener_win; ++i) {
+ a[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)),
+ (1 << (WIENER_FILT_BITS - 1)) - 1);
+ }
+ }
+}
+
+// Fix vector a, update vector b
+static AOM_INLINE void update_b_sep_sym(int wiener_win, int64_t **Mc,
+ int64_t **Hc, int32_t *a, int32_t *b) {
+ int i, j;
+ int64_t S[WIENER_WIN];
+ int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
+ const int wiener_win2 = wiener_win * wiener_win;
+ const int wiener_halfwin1 = (wiener_win >> 1) + 1;
+ memset(A, 0, sizeof(A));
+ memset(B, 0, sizeof(B));
+ for (i = 0; i < wiener_win; i++) {
+ const int ii = wrap_index(i, wiener_win);
+ for (j = 0; j < wiener_win; j++) {
+ A[ii] += Mc[i][j] * a[j] / WIENER_TAP_SCALE_FACTOR;
+ }
+ }
+
+ // b/272139363: The computation,
+ // Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] /
+ // WIENER_TAP_SCALE_FACTOR * a[l] / WIENER_TAP_SCALE_FACTOR;
+ // may generate a signed-integer-overflow. Conditionally scale the terms to
+ // avoid a potential overflow.
+ //
+ // Hc contains accumulated correlation statistics and it is desired to leave
+ // as much room as possible for Hc. It was experimentally observed that the
+ // primary issue manifests itself with the second, a[l], multiply. For
+ // max_a_l < WIENER_TAP_SCALE_FACTOR the first multiply with a[k] should not
+ // increase dynamic range and the second multiply should hence be safe.
+ // Thereafter a safe scale_threshold depends on the actual operational range
+ // of Hc. The largest scale_threshold is expected to depend on bit-depth
+ // (av1_compute_stats_highbd_c() scales highbd to 8-bit) and maximum
+ // restoration-unit size (256), leading up to 32-bit positive numbers in Hc.
+ // Noting that the caller, wiener_decompose_sep_sym(), initializes a[...]
+ // to a range smaller than 16 bits, the scale_threshold is set as below for
+ // convenience.
+ int32_t max_a_l = 0;
+ for (int l = 0; l < wiener_win; ++l) {
+ const int32_t abs_a_l = abs(a[l]);
+ if (abs_a_l > max_a_l) max_a_l = abs_a_l;
+ }
+ const int scale_threshold = 128 * WIENER_TAP_SCALE_FACTOR;
+ const int scaler = max_a_l < scale_threshold ? 1 : 4;
+
+ for (i = 0; i < wiener_win; i++) {
+ const int ii = wrap_index(i, wiener_win);
+ for (j = 0; j < wiener_win; j++) {
+ const int jj = wrap_index(j, wiener_win);
+ int k, l;
+ for (k = 0; k < wiener_win; ++k) {
+ for (l = 0; l < wiener_win; ++l) {
+ B[jj * wiener_halfwin1 + ii] +=
+ Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] /
+ (scaler * WIENER_TAP_SCALE_FACTOR) * a[l] /
+ (WIENER_TAP_SCALE_FACTOR / scaler);
+ }
+ }
+ }
+ }
+ // Normalization enforcement in the system of equations itself
+ for (i = 0; i < wiener_halfwin1 - 1; ++i) {
+ A[i] -=
+ A[wiener_halfwin1 - 1] * 2 +
+ B[i * wiener_halfwin1 + wiener_halfwin1 - 1] -
+ 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)];
+ }
+ for (i = 0; i < wiener_halfwin1 - 1; ++i) {
+ for (j = 0; j < wiener_halfwin1 - 1; ++j) {
+ B[i * wiener_halfwin1 + j] -=
+ 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] +
+ B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] -
+ 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 +
+ (wiener_halfwin1 - 1)]);
+ }
+ }
+ if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) {
+ S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR;
+ for (i = wiener_halfwin1; i < wiener_win; ++i) {
+ S[i] = S[wiener_win - 1 - i];
+ S[wiener_halfwin1 - 1] -= 2 * S[i];
+ }
+ for (i = 0; i < wiener_win; ++i) {
+ b[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)),
+ (1 << (WIENER_FILT_BITS - 1)) - 1);
+ }
+ }
+}
+
+static void wiener_decompose_sep_sym(int wiener_win, int64_t *M, int64_t *H,
+ int32_t *a, int32_t *b) {
+ static const int32_t init_filt[WIENER_WIN] = {
+ WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV,
+ WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV,
+ WIENER_FILT_TAP0_MIDV,
+ };
+ int64_t *Hc[WIENER_WIN2];
+ int64_t *Mc[WIENER_WIN];
+ int i, j, iter;
+ const int plane_off = (WIENER_WIN - wiener_win) >> 1;
+ const int wiener_win2 = wiener_win * wiener_win;
+ for (i = 0; i < wiener_win; i++) {
+ a[i] = b[i] =
+ WIENER_TAP_SCALE_FACTOR / WIENER_FILT_STEP * init_filt[i + plane_off];
+ }
+ for (i = 0; i < wiener_win; i++) {
+ Mc[i] = M + i * wiener_win;
+ for (j = 0; j < wiener_win; j++) {
+ Hc[i * wiener_win + j] =
+ H + i * wiener_win * wiener_win2 + j * wiener_win;
+ }
+ }
+
+ iter = 1;
+ while (iter < NUM_WIENER_ITERS) {
+ update_a_sep_sym(wiener_win, Mc, Hc, a, b);
+ update_b_sep_sym(wiener_win, Mc, Hc, a, b);
+ iter++;
+ }
+}
+
+// Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares
+// against identity filters; Final score is defined as the difference between
+// the function values
+static int64_t compute_score(int wiener_win, int64_t *M, int64_t *H,
+ InterpKernel vfilt, InterpKernel hfilt) {
+ int32_t ab[WIENER_WIN * WIENER_WIN];
+ int16_t a[WIENER_WIN], b[WIENER_WIN];
+ int64_t P = 0, Q = 0;
+ int64_t iP = 0, iQ = 0;
+ int64_t Score, iScore;
+ int i, k, l;
+ const int plane_off = (WIENER_WIN - wiener_win) >> 1;
+ const int wiener_win2 = wiener_win * wiener_win;
+
+ a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = WIENER_FILT_STEP;
+ for (i = 0; i < WIENER_HALFWIN; ++i) {
+ a[i] = a[WIENER_WIN - i - 1] = vfilt[i];
+ b[i] = b[WIENER_WIN - i - 1] = hfilt[i];
+ a[WIENER_HALFWIN] -= 2 * a[i];
+ b[WIENER_HALFWIN] -= 2 * b[i];
+ }
+ memset(ab, 0, sizeof(ab));
+ for (k = 0; k < wiener_win; ++k) {
+ for (l = 0; l < wiener_win; ++l)
+ ab[k * wiener_win + l] = a[l + plane_off] * b[k + plane_off];
+ }
+ for (k = 0; k < wiener_win2; ++k) {
+ P += ab[k] * M[k] / WIENER_FILT_STEP / WIENER_FILT_STEP;
+ for (l = 0; l < wiener_win2; ++l) {
+ Q += ab[k] * H[k * wiener_win2 + l] * ab[l] / WIENER_FILT_STEP /
+ WIENER_FILT_STEP / WIENER_FILT_STEP / WIENER_FILT_STEP;
+ }
+ }
+ Score = Q - 2 * P;
+
+ iP = M[wiener_win2 >> 1];
+ iQ = H[(wiener_win2 >> 1) * wiener_win2 + (wiener_win2 >> 1)];
+ iScore = iQ - 2 * iP;
+
+ return Score - iScore;
+}
+
+static AOM_INLINE void finalize_sym_filter(int wiener_win, int32_t *f,
+ InterpKernel fi) {
+ int i;
+ const int wiener_halfwin = (wiener_win >> 1);
+
+ for (i = 0; i < wiener_halfwin; ++i) {
+ const int64_t dividend = (int64_t)f[i] * WIENER_FILT_STEP;
+ const int64_t divisor = WIENER_TAP_SCALE_FACTOR;
+ // Perform this division with proper rounding rather than truncation
+ if (dividend < 0) {
+ fi[i] = (int16_t)((dividend - (divisor / 2)) / divisor);
+ } else {
+ fi[i] = (int16_t)((dividend + (divisor / 2)) / divisor);
+ }
+ }
+ // Specialize for 7-tap filter
+ if (wiener_win == WIENER_WIN) {
+ fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV);
+ fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
+ fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
+ } else {
+ fi[2] = CLIP(fi[1], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
+ fi[1] = CLIP(fi[0], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
+ fi[0] = 0;
+ }
+ // Satisfy filter constraints
+ fi[WIENER_WIN - 1] = fi[0];
+ fi[WIENER_WIN - 2] = fi[1];
+ fi[WIENER_WIN - 3] = fi[2];
+ // The central element has an implicit +WIENER_FILT_STEP
+ fi[3] = -2 * (fi[0] + fi[1] + fi[2]);
+}
+
+static int count_wiener_bits(int wiener_win, WienerInfo *wiener_info,
+ WienerInfo *ref_wiener_info) {
+ int bits = 0;
+ if (wiener_win == WIENER_WIN)
+ bits += aom_count_primitive_refsubexpfin(
+ WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
+ WIENER_FILT_TAP0_SUBEXP_K,
+ ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
+ wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
+ bits += aom_count_primitive_refsubexpfin(
+ WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
+ WIENER_FILT_TAP1_SUBEXP_K,
+ ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
+ wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
+ bits += aom_count_primitive_refsubexpfin(
+ WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
+ WIENER_FILT_TAP2_SUBEXP_K,
+ ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
+ wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
+ if (wiener_win == WIENER_WIN)
+ bits += aom_count_primitive_refsubexpfin(
+ WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
+ WIENER_FILT_TAP0_SUBEXP_K,
+ ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
+ wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
+ bits += aom_count_primitive_refsubexpfin(
+ WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
+ WIENER_FILT_TAP1_SUBEXP_K,
+ ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
+ wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
+ bits += aom_count_primitive_refsubexpfin(
+ WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
+ WIENER_FILT_TAP2_SUBEXP_K,
+ ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
+ wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
+ return bits;
+}
+
+static int64_t finer_search_wiener(const RestSearchCtxt *rsc,
+ const RestorationTileLimits *limits,
+ RestorationUnitInfo *rui, int wiener_win) {
+ const int plane_off = (WIENER_WIN - wiener_win) >> 1;
+ int64_t err = try_restoration_unit(rsc, limits, rui);
+
+ if (rsc->lpf_sf->disable_wiener_coeff_refine_search) return err;
+
+ // Refinement search around the wiener filter coefficients.
+ int64_t err2;
+ int tap_min[] = { WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP1_MINV,
+ WIENER_FILT_TAP2_MINV };
+ int tap_max[] = { WIENER_FILT_TAP0_MAXV, WIENER_FILT_TAP1_MAXV,
+ WIENER_FILT_TAP2_MAXV };
+
+ WienerInfo *plane_wiener = &rui->wiener_info;
+
+ // printf("err pre = %"PRId64"\n", err);
+ const int start_step = 4;
+ for (int s = start_step; s >= 1; s >>= 1) {
+ for (int p = plane_off; p < WIENER_HALFWIN; ++p) {
+ int skip = 0;
+ do {
+ if (plane_wiener->hfilter[p] - s >= tap_min[p]) {
+ plane_wiener->hfilter[p] -= s;
+ plane_wiener->hfilter[WIENER_WIN - p - 1] -= s;
+ plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s;
+ err2 = try_restoration_unit(rsc, limits, rui);
+ if (err2 > err) {
+ plane_wiener->hfilter[p] += s;
+ plane_wiener->hfilter[WIENER_WIN - p - 1] += s;
+ plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s;
+ } else {
+ err = err2;
+ skip = 1;
+ // At the highest step size continue moving in the same direction
+ if (s == start_step) continue;
+ }
+ }
+ break;
+ } while (1);
+ if (skip) break;
+ do {
+ if (plane_wiener->hfilter[p] + s <= tap_max[p]) {
+ plane_wiener->hfilter[p] += s;
+ plane_wiener->hfilter[WIENER_WIN - p - 1] += s;
+ plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s;
+ err2 = try_restoration_unit(rsc, limits, rui);
+ if (err2 > err) {
+ plane_wiener->hfilter[p] -= s;
+ plane_wiener->hfilter[WIENER_WIN - p - 1] -= s;
+ plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s;
+ } else {
+ err = err2;
+ // At the highest step size continue moving in the same direction
+ if (s == start_step) continue;
+ }
+ }
+ break;
+ } while (1);
+ }
+ for (int p = plane_off; p < WIENER_HALFWIN; ++p) {
+ int skip = 0;
+ do {
+ if (plane_wiener->vfilter[p] - s >= tap_min[p]) {
+ plane_wiener->vfilter[p] -= s;
+ plane_wiener->vfilter[WIENER_WIN - p - 1] -= s;
+ plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s;
+ err2 = try_restoration_unit(rsc, limits, rui);
+ if (err2 > err) {
+ plane_wiener->vfilter[p] += s;
+ plane_wiener->vfilter[WIENER_WIN - p - 1] += s;
+ plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s;
+ } else {
+ err = err2;
+ skip = 1;
+ // At the highest step size continue moving in the same direction
+ if (s == start_step) continue;
+ }
+ }
+ break;
+ } while (1);
+ if (skip) break;
+ do {
+ if (plane_wiener->vfilter[p] + s <= tap_max[p]) {
+ plane_wiener->vfilter[p] += s;
+ plane_wiener->vfilter[WIENER_WIN - p - 1] += s;
+ plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s;
+ err2 = try_restoration_unit(rsc, limits, rui);
+ if (err2 > err) {
+ plane_wiener->vfilter[p] -= s;
+ plane_wiener->vfilter[WIENER_WIN - p - 1] -= s;
+ plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s;
+ } else {
+ err = err2;
+ // At the highest step size continue moving in the same direction
+ if (s == start_step) continue;
+ }
+ }
+ break;
+ } while (1);
+ }
+ }
+ // printf("err post = %"PRId64"\n", err);
+ return err;
+}
+
+static AOM_INLINE void search_wiener(
+ const RestorationTileLimits *limits, int rest_unit_idx, void *priv,
+ int32_t *tmpbuf, RestorationLineBuffers *rlbs,
+ struct aom_internal_error_info *error_info) {
+ (void)tmpbuf;
+ (void)rlbs;
+ (void)error_info;
+ RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
+ RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
+
+ const MACROBLOCK *const x = rsc->x;
+ const int64_t bits_none = x->mode_costs.wiener_restore_cost[0];
+
+ // Skip Wiener search for low variance contents
+ if (rsc->lpf_sf->prune_wiener_based_on_src_var) {
+ const int scale[3] = { 0, 1, 2 };
+ // Obtain the normalized Qscale
+ const int qs = av1_dc_quant_QTX(rsc->cm->quant_params.base_qindex, 0,
+ rsc->cm->seq_params->bit_depth) >>
+ 3;
+ // Derive threshold as sqr(normalized Qscale) * scale / 16,
+ const uint64_t thresh =
+ (qs * qs * scale[rsc->lpf_sf->prune_wiener_based_on_src_var]) >> 4;
+ const int highbd = rsc->cm->seq_params->use_highbitdepth;
+ const uint64_t src_var =
+ var_restoration_unit(limits, rsc->src, rsc->plane, highbd);
+ // Do not perform Wiener search if source variance is lower than threshold
+ // or if the reconstruction error is zero
+ int prune_wiener = (src_var < thresh) || (rsc->sse[RESTORE_NONE] == 0);
+ if (prune_wiener) {
+ rsc->total_bits[RESTORE_WIENER] += bits_none;
+ rsc->total_sse[RESTORE_WIENER] += rsc->sse[RESTORE_NONE];
+ rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE;
+ rsc->sse[RESTORE_WIENER] = INT64_MAX;
+ if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rsc->skip_sgr_eval = 1;
+ return;
+ }
+ }
+
+ const int wiener_win =
+ (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;
+
+ int reduced_wiener_win = wiener_win;
+ if (rsc->lpf_sf->reduce_wiener_window_size) {
+ reduced_wiener_win =
+ (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN_REDUCED : WIENER_WIN_CHROMA;
+ }
+
+ int64_t M[WIENER_WIN2];
+ int64_t H[WIENER_WIN2 * WIENER_WIN2];
+ int32_t vfilter[WIENER_WIN], hfilter[WIENER_WIN];
+
+#if CONFIG_AV1_HIGHBITDEPTH
+ const AV1_COMMON *const cm = rsc->cm;
+ if (cm->seq_params->use_highbitdepth) {
+ // TODO(any) : Add support for use_downsampled_wiener_stats SF in HBD
+ // functions. Optimize intrinsics of HBD design similar to LBD (i.e.,
+ // pre-calculate d and s buffers and avoid most of the C operations).
+ av1_compute_stats_highbd(reduced_wiener_win, rsc->dgd_buffer,
+ rsc->src_buffer, limits->h_start, limits->h_end,
+ limits->v_start, limits->v_end, rsc->dgd_stride,
+ rsc->src_stride, M, H, cm->seq_params->bit_depth);
+ } else {
+ av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer,
+ rsc->dgd_avg, rsc->src_avg, limits->h_start,
+ limits->h_end, limits->v_start, limits->v_end,
+ rsc->dgd_stride, rsc->src_stride, M, H,
+ rsc->lpf_sf->use_downsampled_wiener_stats);
+ }
+#else
+ av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer,
+ rsc->dgd_avg, rsc->src_avg, limits->h_start, limits->h_end,
+ limits->v_start, limits->v_end, rsc->dgd_stride,
+ rsc->src_stride, M, H,
+ rsc->lpf_sf->use_downsampled_wiener_stats);
+#endif
+
+ wiener_decompose_sep_sym(reduced_wiener_win, M, H, vfilter, hfilter);
+
+ RestorationUnitInfo rui;
+ memset(&rui, 0, sizeof(rui));
+ rui.restoration_type = RESTORE_WIENER;
+ finalize_sym_filter(reduced_wiener_win, vfilter, rui.wiener_info.vfilter);
+ finalize_sym_filter(reduced_wiener_win, hfilter, rui.wiener_info.hfilter);
+
+ // Filter score computes the value of the function x'*A*x - x'*b for the
+ // learned filter and compares it against identity filer. If there is no
+ // reduction in the function, the filter is reverted back to identity
+ if (compute_score(reduced_wiener_win, M, H, rui.wiener_info.vfilter,
+ rui.wiener_info.hfilter) > 0) {
+ rsc->total_bits[RESTORE_WIENER] += bits_none;
+ rsc->total_sse[RESTORE_WIENER] += rsc->sse[RESTORE_NONE];
+ rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE;
+ rsc->sse[RESTORE_WIENER] = INT64_MAX;
+ if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rsc->skip_sgr_eval = 1;
+ return;
+ }
+
+ rsc->sse[RESTORE_WIENER] =
+ finer_search_wiener(rsc, limits, &rui, reduced_wiener_win);
+ rusi->wiener = rui.wiener_info;
+
+ if (reduced_wiener_win != WIENER_WIN) {
+ assert(rui.wiener_info.vfilter[0] == 0 &&
+ rui.wiener_info.vfilter[WIENER_WIN - 1] == 0);
+ assert(rui.wiener_info.hfilter[0] == 0 &&
+ rui.wiener_info.hfilter[WIENER_WIN - 1] == 0);
+ }
+
+ const int64_t bits_wiener =
+ x->mode_costs.wiener_restore_cost[1] +
+ (count_wiener_bits(wiener_win, &rusi->wiener, &rsc->ref_wiener)
+ << AV1_PROB_COST_SHIFT);
+
+ double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST(
+ x->rdmult, bits_none >> 4, rsc->sse[RESTORE_NONE],
+ rsc->cm->seq_params->bit_depth);
+ double cost_wiener = RDCOST_DBL_WITH_NATIVE_BD_DIST(
+ x->rdmult, bits_wiener >> 4, rsc->sse[RESTORE_WIENER],
+ rsc->cm->seq_params->bit_depth);
+
+ RestorationType rtype =
+ (cost_wiener < cost_none) ? RESTORE_WIENER : RESTORE_NONE;
+ rusi->best_rtype[RESTORE_WIENER - 1] = rtype;
+
+ // Set 'skip_sgr_eval' based on rdcost ratio of RESTORE_WIENER and
+ // RESTORE_NONE or based on best_rtype
+ if (rsc->lpf_sf->prune_sgr_based_on_wiener == 1) {
+ rsc->skip_sgr_eval = cost_wiener > (1.01 * cost_none);
+ } else if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) {
+ rsc->skip_sgr_eval = rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_NONE;
+ }
+
+#if DEBUG_LR_COSTING
+ // Store ref params for later checking
+ lr_ref_params[RESTORE_WIENER][rsc->plane][rest_unit_idx].wiener_info =
+ rsc->ref_wiener;
+#endif // DEBUG_LR_COSTING
+
+ rsc->total_sse[RESTORE_WIENER] += rsc->sse[rtype];
+ rsc->total_bits[RESTORE_WIENER] +=
+ (cost_wiener < cost_none) ? bits_wiener : bits_none;
+ if (cost_wiener < cost_none) rsc->ref_wiener = rusi->wiener;
+}
+
+static AOM_INLINE void search_norestore(
+ const RestorationTileLimits *limits, int rest_unit_idx, void *priv,
+ int32_t *tmpbuf, RestorationLineBuffers *rlbs,
+ struct aom_internal_error_info *error_info) {
+ (void)rest_unit_idx;
+ (void)tmpbuf;
+ (void)rlbs;
+ (void)error_info;
+
+ RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
+
+ const int highbd = rsc->cm->seq_params->use_highbitdepth;
+ rsc->sse[RESTORE_NONE] = sse_restoration_unit(
+ limits, rsc->src, &rsc->cm->cur_frame->buf, rsc->plane, highbd);
+
+ rsc->total_sse[RESTORE_NONE] += rsc->sse[RESTORE_NONE];
+}
+
+static AOM_INLINE void search_switchable(
+ const RestorationTileLimits *limits, int rest_unit_idx, void *priv,
+ int32_t *tmpbuf, RestorationLineBuffers *rlbs,
+ struct aom_internal_error_info *error_info) {
+ (void)limits;
+ (void)tmpbuf;
+ (void)rlbs;
+ (void)error_info;
+ RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
+ RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
+
+ const MACROBLOCK *const x = rsc->x;
+
+ const int wiener_win =
+ (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;
+
+ double best_cost = 0;
+ int64_t best_bits = 0;
+ RestorationType best_rtype = RESTORE_NONE;
+
+ for (RestorationType r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) {
+ // If this restoration mode was skipped, or could not find a solution
+ // that was better than RESTORE_NONE, then we can't select it here either.
+ //
+ // Note: It is possible for the restoration search functions to find a
+ // filter which is better than RESTORE_NONE when looking purely at SSE, but
+ // for it to be rejected overall due to its rate cost. In this case, there
+ // is a chance that it may be have a lower rate cost when looking at
+ // RESTORE_SWITCHABLE, and so it might be acceptable here.
+ //
+ // Therefore we prune based on SSE, rather than on whether or not the
+ // previous search function selected this mode.
+ if (r > RESTORE_NONE) {
+ if (rsc->sse[r] > rsc->sse[RESTORE_NONE]) continue;
+ }
+
+ const int64_t sse = rsc->sse[r];
+ int64_t coeff_pcost = 0;
+ switch (r) {
+ case RESTORE_NONE: coeff_pcost = 0; break;
+ case RESTORE_WIENER:
+ coeff_pcost = count_wiener_bits(wiener_win, &rusi->wiener,
+ &rsc->switchable_ref_wiener);
+ break;
+ case RESTORE_SGRPROJ:
+ coeff_pcost =
+ count_sgrproj_bits(&rusi->sgrproj, &rsc->switchable_ref_sgrproj);
+ break;
+ default: assert(0); break;
+ }
+ const int64_t coeff_bits = coeff_pcost << AV1_PROB_COST_SHIFT;
+ const int64_t bits = x->mode_costs.switchable_restore_cost[r] + coeff_bits;
+ double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(
+ x->rdmult, bits >> 4, sse, rsc->cm->seq_params->bit_depth);
+ if (r == RESTORE_SGRPROJ && rusi->sgrproj.ep < 10)
+ cost *= (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level);
+ if (r == 0 || cost < best_cost) {
+ best_cost = cost;
+ best_bits = bits;
+ best_rtype = r;
+ }
+ }
+
+ rusi->best_rtype[RESTORE_SWITCHABLE - 1] = best_rtype;
+
+#if DEBUG_LR_COSTING
+ // Store ref params for later checking
+ lr_ref_params[RESTORE_SWITCHABLE][rsc->plane][rest_unit_idx].wiener_info =
+ rsc->switchable_ref_wiener;
+ lr_ref_params[RESTORE_SWITCHABLE][rsc->plane][rest_unit_idx].sgrproj_info =
+ rsc->switchable_ref_sgrproj;
+#endif // DEBUG_LR_COSTING
+
+ rsc->total_sse[RESTORE_SWITCHABLE] += rsc->sse[best_rtype];
+ rsc->total_bits[RESTORE_SWITCHABLE] += best_bits;
+ if (best_rtype == RESTORE_WIENER) rsc->switchable_ref_wiener = rusi->wiener;
+ if (best_rtype == RESTORE_SGRPROJ)
+ rsc->switchable_ref_sgrproj = rusi->sgrproj;
+}
+
+static AOM_INLINE void copy_unit_info(RestorationType frame_rtype,
+ const RestUnitSearchInfo *rusi,
+ RestorationUnitInfo *rui) {
+ assert(frame_rtype > 0);
+ rui->restoration_type = rusi->best_rtype[frame_rtype - 1];
+ if (rui->restoration_type == RESTORE_WIENER)
+ rui->wiener_info = rusi->wiener;
+ else
+ rui->sgrproj_info = rusi->sgrproj;
+}
+
+static void restoration_search(AV1_COMMON *cm, int plane, RestSearchCtxt *rsc,
+ bool *disable_lr_filter) {
+ const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
+ const int mib_size_log2 = cm->seq_params->mib_size_log2;
+ const CommonTileParams *tiles = &cm->tiles;
+ const int is_uv = plane > 0;
+ const int ss_y = is_uv && cm->seq_params->subsampling_y;
+ RestorationInfo *rsi = &cm->rst_info[plane];
+ const int ru_size = rsi->restoration_unit_size;
+ const int ext_size = ru_size * 3 / 2;
+
+ int plane_w, plane_h;
+ av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
+
+ static const rest_unit_visitor_t funs[RESTORE_TYPES] = {
+ search_norestore, search_wiener, search_sgrproj, search_switchable
+ };
+
+ const int plane_num_units = rsi->num_rest_units;
+ const RestorationType num_rtypes =
+ (plane_num_units > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES;
+
+ reset_rsc(rsc);
+
+ // Iterate over restoration units in encoding order, so that each RU gets
+ // the correct reference parameters when we cost it up. This is effectively
+ // a nested iteration over:
+ // * Each tile, order does not matter
+ // * Each superblock within that tile, in raster order
+ // * Each LR unit which is coded within that superblock, in raster order
+ for (int tile_row = 0; tile_row < tiles->rows; tile_row++) {
+ int sb_row_start = tiles->row_start_sb[tile_row];
+ int sb_row_end = tiles->row_start_sb[tile_row + 1];
+ for (int tile_col = 0; tile_col < tiles->cols; tile_col++) {
+ int sb_col_start = tiles->col_start_sb[tile_col];
+ int sb_col_end = tiles->col_start_sb[tile_col + 1];
+
+ // Reset reference parameters for delta-coding at the start of each tile
+ rsc_on_tile(rsc);
+
+ for (int sb_row = sb_row_start; sb_row < sb_row_end; sb_row++) {
+ int mi_row = sb_row << mib_size_log2;
+ for (int sb_col = sb_col_start; sb_col < sb_col_end; sb_col++) {
+ int mi_col = sb_col << mib_size_log2;
+
+ int rcol0, rcol1, rrow0, rrow1;
+ int has_lr_info = av1_loop_restoration_corners_in_sb(
+ cm, plane, mi_row, mi_col, sb_size, &rcol0, &rcol1, &rrow0,
+ &rrow1);
+
+ if (!has_lr_info) continue;
+
+ RestorationTileLimits limits;
+ for (int rrow = rrow0; rrow < rrow1; rrow++) {
+ int y0 = rrow * ru_size;
+ int remaining_h = plane_h - y0;
+ int h = (remaining_h < ext_size) ? remaining_h : ru_size;
+
+ limits.v_start = y0;
+ limits.v_end = y0 + h;
+ assert(limits.v_end <= plane_h);
+ // Offset upwards to align with the restoration processing stripe
+ const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
+ limits.v_start = AOMMAX(0, limits.v_start - voffset);
+ if (limits.v_end < plane_h) limits.v_end -= voffset;
+
+ for (int rcol = rcol0; rcol < rcol1; rcol++) {
+ int x0 = rcol * ru_size;
+ int remaining_w = plane_w - x0;
+ int w = (remaining_w < ext_size) ? remaining_w : ru_size;
+
+ limits.h_start = x0;
+ limits.h_end = x0 + w;
+ assert(limits.h_end <= plane_w);
+
+ const int unit_idx = rrow * rsi->horz_units + rcol;
+
+ rsc->skip_sgr_eval = 0;
+ for (RestorationType r = RESTORE_NONE; r < num_rtypes; r++) {
+ if (disable_lr_filter[r]) continue;
+
+ funs[r](&limits, unit_idx, rsc, rsc->cm->rst_tmpbuf, NULL,
+ cm->error);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+static INLINE void av1_derive_flags_for_lr_processing(
+ const LOOP_FILTER_SPEED_FEATURES *lpf_sf, bool *disable_lr_filter) {
+ const bool is_wiener_disabled = lpf_sf->disable_wiener_filter;
+ const bool is_sgr_disabled = lpf_sf->disable_sgr_filter;
+
+ // Enable None Loop restoration filter if either of Wiener or Self-guided is
+ // enabled.
+ disable_lr_filter[RESTORE_NONE] = (is_wiener_disabled && is_sgr_disabled);
+
+ disable_lr_filter[RESTORE_WIENER] = is_wiener_disabled;
+ disable_lr_filter[RESTORE_SGRPROJ] = is_sgr_disabled;
+
+ // Enable Swicthable Loop restoration filter if both of the Wiener and
+ // Self-guided are enabled.
+ disable_lr_filter[RESTORE_SWITCHABLE] =
+ (is_wiener_disabled || is_sgr_disabled);
+}
+
+#define COUPLED_CHROMA_FROM_LUMA_RESTORATION 0
+// Allocate both decoder-side and encoder-side info structs for a single plane.
+// The unit size passed in should be the minimum size which we are going to
+// search; before each search, set_restoration_unit_size() must be called to
+// configure the actual size.
+static RestUnitSearchInfo *allocate_search_structs(AV1_COMMON *cm,
+ RestorationInfo *rsi,
+ int is_uv,
+ int min_luma_unit_size) {
+#if COUPLED_CHROMA_FROM_LUMA_RESTORATION
+ int sx = cm->seq_params.subsampling_x;
+ int sy = cm->seq_params.subsampling_y;
+ int s = (p > 0) ? AOMMIN(sx, sy) : 0;
+#else
+ int s = 0;
+#endif // !COUPLED_CHROMA_FROM_LUMA_RESTORATION
+ int min_unit_size = min_luma_unit_size >> s;
+
+ int plane_w, plane_h;
+ av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
+
+ const int max_horz_units = av1_lr_count_units(min_unit_size, plane_w);
+ const int max_vert_units = av1_lr_count_units(min_unit_size, plane_h);
+ const int max_num_units = max_horz_units * max_vert_units;
+
+ aom_free(rsi->unit_info);
+ CHECK_MEM_ERROR(cm, rsi->unit_info,
+ (RestorationUnitInfo *)aom_memalign(
+ 16, sizeof(*rsi->unit_info) * max_num_units));
+
+ RestUnitSearchInfo *rusi;
+ CHECK_MEM_ERROR(
+ cm, rusi,
+ (RestUnitSearchInfo *)aom_memalign(16, sizeof(*rusi) * max_num_units));
+
+ // If the restoration unit dimensions are not multiples of
+ // rsi->restoration_unit_size then some elements of the rusi array may be
+ // left uninitialised when we reach copy_unit_info(...). This is not a
+ // problem, as these elements are ignored later, but in order to quiet
+ // Valgrind's warnings we initialise the array below.
+ memset(rusi, 0, sizeof(*rusi) * max_num_units);
+
+ return rusi;
+}
+
+static void set_restoration_unit_size(AV1_COMMON *cm, RestorationInfo *rsi,
+ int is_uv, int luma_unit_size) {
+#if COUPLED_CHROMA_FROM_LUMA_RESTORATION
+ int sx = cm->seq_params.subsampling_x;
+ int sy = cm->seq_params.subsampling_y;
+ int s = (p > 0) ? AOMMIN(sx, sy) : 0;
+#else
+ int s = 0;
+#endif // !COUPLED_CHROMA_FROM_LUMA_RESTORATION
+ int unit_size = luma_unit_size >> s;
+
+ int plane_w, plane_h;
+ av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
+
+ const int horz_units = av1_lr_count_units(unit_size, plane_w);
+ const int vert_units = av1_lr_count_units(unit_size, plane_h);
+
+ rsi->restoration_unit_size = unit_size;
+ rsi->num_rest_units = horz_units * vert_units;
+ rsi->horz_units = horz_units;
+ rsi->vert_units = vert_units;
+}
+
+void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->td.mb;
+ const SequenceHeader *const seq_params = cm->seq_params;
+ const LOOP_FILTER_SPEED_FEATURES *lpf_sf = &cpi->sf.lpf_sf;
+ const int num_planes = av1_num_planes(cm);
+ const int highbd = cm->seq_params->use_highbitdepth;
+ assert(!cm->features.all_lossless);
+
+ av1_fill_lr_rates(&x->mode_costs, x->e_mbd.tile_ctx);
+
+ // Select unit size based on speed feature settings, and allocate
+ // rui structs based on this size
+ int min_lr_unit_size = cpi->sf.lpf_sf.min_lr_unit_size;
+ int max_lr_unit_size = cpi->sf.lpf_sf.max_lr_unit_size;
+
+ // The minimum allowed unit size at a syntax level is 1 superblock.
+ // Apply this constraint here so that the speed features code which sets
+ // cpi->sf.lpf_sf.min_lr_unit_size does not need to know the superblock size
+ min_lr_unit_size =
+ AOMMAX(min_lr_unit_size, block_size_wide[cm->seq_params->sb_size]);
+
+ for (int plane = 0; plane < num_planes; ++plane) {
+ cpi->pick_lr_ctxt.rusi[plane] = allocate_search_structs(
+ cm, &cm->rst_info[plane], plane > 0, min_lr_unit_size);
+ }
+
+ x->rdmult = cpi->rd.RDMULT;
+
+ // Allocate the frame buffer trial_frame_rst, which is used to temporarily
+ // store the loop restored frame.
+ if (aom_realloc_frame_buffer(
+ &cpi->trial_frame_rst, cm->superres_upscaled_width,
+ cm->superres_upscaled_height, seq_params->subsampling_x,
+ seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER,
+ cm->features.byte_alignment, NULL, NULL, NULL, 0, 0))
+ aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate trial restored frame buffer");
+
+ RestSearchCtxt rsc;
+
+ // The buffers 'src_avg' and 'dgd_avg' are used to compute H and M buffers.
+ // These buffers are only required for the AVX2 and NEON implementations of
+ // av1_compute_stats. The buffer size required is calculated based on maximum
+ // width and height of the LRU (i.e., from foreach_rest_unit_in_plane() 1.5
+ // times the RESTORATION_UNITSIZE_MAX) allowed for Wiener filtering. The width
+ // and height aligned to multiple of 16 is considered for intrinsic purpose.
+ rsc.dgd_avg = NULL;
+ rsc.src_avg = NULL;
+#if HAVE_AVX2 || HAVE_NEON
+ // The buffers allocated below are used during Wiener filter processing of low
+ // bitdepth path. Hence, allocate the same when Wiener filter is enabled in
+ // low bitdepth path.
+ if (!cpi->sf.lpf_sf.disable_wiener_filter && !highbd) {
+ const int buf_size = sizeof(*cpi->pick_lr_ctxt.dgd_avg) * 6 *
+ RESTORATION_UNITSIZE_MAX * RESTORATION_UNITSIZE_MAX;
+ CHECK_MEM_ERROR(cm, cpi->pick_lr_ctxt.dgd_avg,
+ (int16_t *)aom_memalign(32, buf_size));
+
+ rsc.dgd_avg = cpi->pick_lr_ctxt.dgd_avg;
+ // When LRU width isn't multiple of 16, the 256 bits load instruction used
+ // in AVX2 intrinsic can read data beyond valid LRU. Hence, in order to
+ // silence Valgrind warning this buffer is initialized with zero. Overhead
+ // due to this initialization is negligible since it is done at frame level.
+ memset(rsc.dgd_avg, 0, buf_size);
+ rsc.src_avg =
+ rsc.dgd_avg + 3 * RESTORATION_UNITSIZE_MAX * RESTORATION_UNITSIZE_MAX;
+ // Asserts the starting address of src_avg is always 32-bytes aligned.
+ assert(!((intptr_t)rsc.src_avg % 32));
+ }
+#endif
+
+ // Initialize all planes, so that any planes we skip searching will still have
+ // valid data
+ for (int plane = 0; plane < num_planes; plane++) {
+ cm->rst_info[plane].frame_restoration_type = RESTORE_NONE;
+ }
+
+ // Decide which planes to search
+ int plane_start, plane_end;
+
+ if (lpf_sf->disable_loop_restoration_luma) {
+ plane_start = AOM_PLANE_U;
+ } else {
+ plane_start = AOM_PLANE_Y;
+ }
+
+ if (num_planes == 1 || lpf_sf->disable_loop_restoration_chroma) {
+ plane_end = AOM_PLANE_Y;
+ } else {
+ plane_end = AOM_PLANE_V;
+ }
+
+ // Derive the flags to enable/disable Loop restoration filters based on the
+ // speed features 'disable_wiener_filter' and 'disable_sgr_filter'.
+ bool disable_lr_filter[RESTORE_TYPES] = { false };
+ av1_derive_flags_for_lr_processing(lpf_sf, disable_lr_filter);
+
+ for (int plane = plane_start; plane <= plane_end; plane++) {
+ const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf;
+ const int is_uv = plane != AOM_PLANE_Y;
+ int plane_w, plane_h;
+ av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
+ av1_extend_frame(dgd->buffers[plane], plane_w, plane_h, dgd->strides[is_uv],
+ RESTORATION_BORDER, RESTORATION_BORDER, highbd);
+ }
+
+ double best_cost = DBL_MAX;
+ int best_luma_unit_size = max_lr_unit_size;
+ for (int luma_unit_size = max_lr_unit_size;
+ luma_unit_size >= min_lr_unit_size; luma_unit_size >>= 1) {
+ int64_t bits_this_size = 0;
+ int64_t sse_this_size = 0;
+ RestorationType best_rtype[MAX_MB_PLANE] = { RESTORE_NONE, RESTORE_NONE,
+ RESTORE_NONE };
+ for (int plane = plane_start; plane <= plane_end; ++plane) {
+ set_restoration_unit_size(cm, &cm->rst_info[plane], plane > 0,
+ luma_unit_size);
+ init_rsc(src, &cpi->common, x, lpf_sf, plane,
+ cpi->pick_lr_ctxt.rusi[plane], &cpi->trial_frame_rst, &rsc);
+
+ restoration_search(cm, plane, &rsc, disable_lr_filter);
+
+ const int plane_num_units = cm->rst_info[plane].num_rest_units;
+ const RestorationType num_rtypes =
+ (plane_num_units > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES;
+ double best_cost_this_plane = DBL_MAX;
+ for (RestorationType r = 0; r < num_rtypes; ++r) {
+ // Disable Loop restoration filter based on the flags set using speed
+ // feature 'disable_wiener_filter' and 'disable_sgr_filter'.
+ if (disable_lr_filter[r]) continue;
+
+ double cost_this_plane = RDCOST_DBL_WITH_NATIVE_BD_DIST(
+ x->rdmult, rsc.total_bits[r] >> 4, rsc.total_sse[r],
+ cm->seq_params->bit_depth);
+
+ if (cost_this_plane < best_cost_this_plane) {
+ best_cost_this_plane = cost_this_plane;
+ best_rtype[plane] = r;
+ }
+ }
+
+ bits_this_size += rsc.total_bits[best_rtype[plane]];
+ sse_this_size += rsc.total_sse[best_rtype[plane]];
+ }
+
+ double cost_this_size = RDCOST_DBL_WITH_NATIVE_BD_DIST(
+ x->rdmult, bits_this_size >> 4, sse_this_size,
+ cm->seq_params->bit_depth);
+
+ if (cost_this_size < best_cost) {
+ best_cost = cost_this_size;
+ best_luma_unit_size = luma_unit_size;
+ // Copy parameters out of rusi struct, before we overwrite it at
+ // the start of the next iteration
+ bool all_none = true;
+ for (int plane = plane_start; plane <= plane_end; ++plane) {
+ cm->rst_info[plane].frame_restoration_type = best_rtype[plane];
+ if (best_rtype[plane] != RESTORE_NONE) {
+ all_none = false;
+ const int plane_num_units = cm->rst_info[plane].num_rest_units;
+ for (int u = 0; u < plane_num_units; ++u) {
+ copy_unit_info(best_rtype[plane], &cpi->pick_lr_ctxt.rusi[plane][u],
+ &cm->rst_info[plane].unit_info[u]);
+ }
+ }
+ }
+ // Heuristic: If all best_rtype entries are RESTORE_NONE, this means we
+ // couldn't find any good filters at this size. So we likely won't find
+ // any good filters at a smaller size either, so skip
+ if (all_none) {
+ break;
+ }
+ } else {
+ // Heuristic: If this size is worse than the previous (larger) size, then
+ // the next size down will likely be even worse, so skip
+ break;
+ }
+ }
+
+ // Final fixup to set the correct unit size
+ // We set this for all planes, even ones we have skipped searching,
+ // so that other code does not need to care which planes were and weren't
+ // searched
+ for (int plane = 0; plane < num_planes; ++plane) {
+ set_restoration_unit_size(cm, &cm->rst_info[plane], plane > 0,
+ best_luma_unit_size);
+ }
+
+#if HAVE_AVX || HAVE_NEON
+ if (!cpi->sf.lpf_sf.disable_wiener_filter && !highbd) {
+ aom_free(cpi->pick_lr_ctxt.dgd_avg);
+ cpi->pick_lr_ctxt.dgd_avg = NULL;
+ }
+#endif
+ for (int plane = 0; plane < num_planes; plane++) {
+ aom_free(cpi->pick_lr_ctxt.rusi[plane]);
+ cpi->pick_lr_ctxt.rusi[plane] = NULL;
+ }
+}