summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/rdopt.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/rdopt.c6598
1 files changed, 6598 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/rdopt.c b/third_party/aom/av1/encoder/rdopt.c
new file mode 100644
index 0000000000..c17fbccf8c
--- /dev/null
+++ b/third_party/aom/av1/encoder/rdopt.c
@@ -0,0 +1,6598 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <math.h>
+#include <stdbool.h>
+
+#include "config/aom_config.h"
+#include "config/aom_dsp_rtcd.h"
+#include "config/av1_rtcd.h"
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/blend.h"
+#include "aom_mem/aom_mem.h"
+#include "aom_ports/aom_timer.h"
+#include "aom_ports/mem.h"
+
+#include "av1/common/av1_common_int.h"
+#include "av1/common/cfl.h"
+#include "av1/common/blockd.h"
+#include "av1/common/common.h"
+#include "av1/common/common_data.h"
+#include "av1/common/entropy.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/idct.h"
+#include "av1/common/mvref_common.h"
+#include "av1/common/obmc.h"
+#include "av1/common/pred_common.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/reconintra.h"
+#include "av1/common/scan.h"
+#include "av1/common/seg_common.h"
+#include "av1/common/txb_common.h"
+#include "av1/common/warped_motion.h"
+
+#include "av1/encoder/aq_variance.h"
+#include "av1/encoder/av1_quantize.h"
+#include "av1/encoder/cost.h"
+#include "av1/encoder/compound_type.h"
+#include "av1/encoder/encodemb.h"
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/encodetxb.h"
+#include "av1/encoder/hybrid_fwd_txfm.h"
+#include "av1/encoder/interp_search.h"
+#include "av1/encoder/intra_mode_search.h"
+#include "av1/encoder/intra_mode_search_utils.h"
+#include "av1/encoder/mcomp.h"
+#include "av1/encoder/ml.h"
+#include "av1/encoder/mode_prune_model_weights.h"
+#include "av1/encoder/model_rd.h"
+#include "av1/encoder/motion_search_facade.h"
+#include "av1/encoder/palette.h"
+#include "av1/encoder/pustats.h"
+#include "av1/encoder/random.h"
+#include "av1/encoder/ratectrl.h"
+#include "av1/encoder/rd.h"
+#include "av1/encoder/rdopt.h"
+#include "av1/encoder/reconinter_enc.h"
+#include "av1/encoder/tokenize.h"
+#include "av1/encoder/tpl_model.h"
+#include "av1/encoder/tx_search.h"
+#include "av1/encoder/var_based_part.h"
+
+#define LAST_NEW_MV_INDEX 6
+
+// Mode_threshold multiplication factor table for prune_inter_modes_if_skippable
+// The values are kept in Q12 format and equation used to derive is
+// (2.5 - ((float)x->qindex / MAXQ) * 1.5)
+#define MODE_THRESH_QBITS 12
+static const int mode_threshold_mul_factor[QINDEX_RANGE] = {
+ 10240, 10216, 10192, 10168, 10144, 10120, 10095, 10071, 10047, 10023, 9999,
+ 9975, 9951, 9927, 9903, 9879, 9854, 9830, 9806, 9782, 9758, 9734,
+ 9710, 9686, 9662, 9638, 9614, 9589, 9565, 9541, 9517, 9493, 9469,
+ 9445, 9421, 9397, 9373, 9349, 9324, 9300, 9276, 9252, 9228, 9204,
+ 9180, 9156, 9132, 9108, 9083, 9059, 9035, 9011, 8987, 8963, 8939,
+ 8915, 8891, 8867, 8843, 8818, 8794, 8770, 8746, 8722, 8698, 8674,
+ 8650, 8626, 8602, 8578, 8553, 8529, 8505, 8481, 8457, 8433, 8409,
+ 8385, 8361, 8337, 8312, 8288, 8264, 8240, 8216, 8192, 8168, 8144,
+ 8120, 8096, 8072, 8047, 8023, 7999, 7975, 7951, 7927, 7903, 7879,
+ 7855, 7831, 7806, 7782, 7758, 7734, 7710, 7686, 7662, 7638, 7614,
+ 7590, 7566, 7541, 7517, 7493, 7469, 7445, 7421, 7397, 7373, 7349,
+ 7325, 7301, 7276, 7252, 7228, 7204, 7180, 7156, 7132, 7108, 7084,
+ 7060, 7035, 7011, 6987, 6963, 6939, 6915, 6891, 6867, 6843, 6819,
+ 6795, 6770, 6746, 6722, 6698, 6674, 6650, 6626, 6602, 6578, 6554,
+ 6530, 6505, 6481, 6457, 6433, 6409, 6385, 6361, 6337, 6313, 6289,
+ 6264, 6240, 6216, 6192, 6168, 6144, 6120, 6096, 6072, 6048, 6024,
+ 5999, 5975, 5951, 5927, 5903, 5879, 5855, 5831, 5807, 5783, 5758,
+ 5734, 5710, 5686, 5662, 5638, 5614, 5590, 5566, 5542, 5518, 5493,
+ 5469, 5445, 5421, 5397, 5373, 5349, 5325, 5301, 5277, 5253, 5228,
+ 5204, 5180, 5156, 5132, 5108, 5084, 5060, 5036, 5012, 4987, 4963,
+ 4939, 4915, 4891, 4867, 4843, 4819, 4795, 4771, 4747, 4722, 4698,
+ 4674, 4650, 4626, 4602, 4578, 4554, 4530, 4506, 4482, 4457, 4433,
+ 4409, 4385, 4361, 4337, 4313, 4289, 4265, 4241, 4216, 4192, 4168,
+ 4144, 4120, 4096
+};
+
+static const THR_MODES av1_default_mode_order[MAX_MODES] = {
+ THR_NEARESTMV,
+ THR_NEARESTL2,
+ THR_NEARESTL3,
+ THR_NEARESTB,
+ THR_NEARESTA2,
+ THR_NEARESTA,
+ THR_NEARESTG,
+
+ THR_NEWMV,
+ THR_NEWL2,
+ THR_NEWL3,
+ THR_NEWB,
+ THR_NEWA2,
+ THR_NEWA,
+ THR_NEWG,
+
+ THR_NEARMV,
+ THR_NEARL2,
+ THR_NEARL3,
+ THR_NEARB,
+ THR_NEARA2,
+ THR_NEARA,
+ THR_NEARG,
+
+ THR_GLOBALMV,
+ THR_GLOBALL2,
+ THR_GLOBALL3,
+ THR_GLOBALB,
+ THR_GLOBALA2,
+ THR_GLOBALA,
+ THR_GLOBALG,
+
+ THR_COMP_NEAREST_NEARESTLA,
+ THR_COMP_NEAREST_NEARESTL2A,
+ THR_COMP_NEAREST_NEARESTL3A,
+ THR_COMP_NEAREST_NEARESTGA,
+ THR_COMP_NEAREST_NEARESTLB,
+ THR_COMP_NEAREST_NEARESTL2B,
+ THR_COMP_NEAREST_NEARESTL3B,
+ THR_COMP_NEAREST_NEARESTGB,
+ THR_COMP_NEAREST_NEARESTLA2,
+ THR_COMP_NEAREST_NEARESTL2A2,
+ THR_COMP_NEAREST_NEARESTL3A2,
+ THR_COMP_NEAREST_NEARESTGA2,
+ THR_COMP_NEAREST_NEARESTLL2,
+ THR_COMP_NEAREST_NEARESTLL3,
+ THR_COMP_NEAREST_NEARESTLG,
+ THR_COMP_NEAREST_NEARESTBA,
+
+ THR_COMP_NEAR_NEARLB,
+ THR_COMP_NEW_NEWLB,
+ THR_COMP_NEW_NEARESTLB,
+ THR_COMP_NEAREST_NEWLB,
+ THR_COMP_NEW_NEARLB,
+ THR_COMP_NEAR_NEWLB,
+ THR_COMP_GLOBAL_GLOBALLB,
+
+ THR_COMP_NEAR_NEARLA,
+ THR_COMP_NEW_NEWLA,
+ THR_COMP_NEW_NEARESTLA,
+ THR_COMP_NEAREST_NEWLA,
+ THR_COMP_NEW_NEARLA,
+ THR_COMP_NEAR_NEWLA,
+ THR_COMP_GLOBAL_GLOBALLA,
+
+ THR_COMP_NEAR_NEARL2A,
+ THR_COMP_NEW_NEWL2A,
+ THR_COMP_NEW_NEARESTL2A,
+ THR_COMP_NEAREST_NEWL2A,
+ THR_COMP_NEW_NEARL2A,
+ THR_COMP_NEAR_NEWL2A,
+ THR_COMP_GLOBAL_GLOBALL2A,
+
+ THR_COMP_NEAR_NEARL3A,
+ THR_COMP_NEW_NEWL3A,
+ THR_COMP_NEW_NEARESTL3A,
+ THR_COMP_NEAREST_NEWL3A,
+ THR_COMP_NEW_NEARL3A,
+ THR_COMP_NEAR_NEWL3A,
+ THR_COMP_GLOBAL_GLOBALL3A,
+
+ THR_COMP_NEAR_NEARGA,
+ THR_COMP_NEW_NEWGA,
+ THR_COMP_NEW_NEARESTGA,
+ THR_COMP_NEAREST_NEWGA,
+ THR_COMP_NEW_NEARGA,
+ THR_COMP_NEAR_NEWGA,
+ THR_COMP_GLOBAL_GLOBALGA,
+
+ THR_COMP_NEAR_NEARL2B,
+ THR_COMP_NEW_NEWL2B,
+ THR_COMP_NEW_NEARESTL2B,
+ THR_COMP_NEAREST_NEWL2B,
+ THR_COMP_NEW_NEARL2B,
+ THR_COMP_NEAR_NEWL2B,
+ THR_COMP_GLOBAL_GLOBALL2B,
+
+ THR_COMP_NEAR_NEARL3B,
+ THR_COMP_NEW_NEWL3B,
+ THR_COMP_NEW_NEARESTL3B,
+ THR_COMP_NEAREST_NEWL3B,
+ THR_COMP_NEW_NEARL3B,
+ THR_COMP_NEAR_NEWL3B,
+ THR_COMP_GLOBAL_GLOBALL3B,
+
+ THR_COMP_NEAR_NEARGB,
+ THR_COMP_NEW_NEWGB,
+ THR_COMP_NEW_NEARESTGB,
+ THR_COMP_NEAREST_NEWGB,
+ THR_COMP_NEW_NEARGB,
+ THR_COMP_NEAR_NEWGB,
+ THR_COMP_GLOBAL_GLOBALGB,
+
+ THR_COMP_NEAR_NEARLA2,
+ THR_COMP_NEW_NEWLA2,
+ THR_COMP_NEW_NEARESTLA2,
+ THR_COMP_NEAREST_NEWLA2,
+ THR_COMP_NEW_NEARLA2,
+ THR_COMP_NEAR_NEWLA2,
+ THR_COMP_GLOBAL_GLOBALLA2,
+
+ THR_COMP_NEAR_NEARL2A2,
+ THR_COMP_NEW_NEWL2A2,
+ THR_COMP_NEW_NEARESTL2A2,
+ THR_COMP_NEAREST_NEWL2A2,
+ THR_COMP_NEW_NEARL2A2,
+ THR_COMP_NEAR_NEWL2A2,
+ THR_COMP_GLOBAL_GLOBALL2A2,
+
+ THR_COMP_NEAR_NEARL3A2,
+ THR_COMP_NEW_NEWL3A2,
+ THR_COMP_NEW_NEARESTL3A2,
+ THR_COMP_NEAREST_NEWL3A2,
+ THR_COMP_NEW_NEARL3A2,
+ THR_COMP_NEAR_NEWL3A2,
+ THR_COMP_GLOBAL_GLOBALL3A2,
+
+ THR_COMP_NEAR_NEARGA2,
+ THR_COMP_NEW_NEWGA2,
+ THR_COMP_NEW_NEARESTGA2,
+ THR_COMP_NEAREST_NEWGA2,
+ THR_COMP_NEW_NEARGA2,
+ THR_COMP_NEAR_NEWGA2,
+ THR_COMP_GLOBAL_GLOBALGA2,
+
+ THR_COMP_NEAR_NEARLL2,
+ THR_COMP_NEW_NEWLL2,
+ THR_COMP_NEW_NEARESTLL2,
+ THR_COMP_NEAREST_NEWLL2,
+ THR_COMP_NEW_NEARLL2,
+ THR_COMP_NEAR_NEWLL2,
+ THR_COMP_GLOBAL_GLOBALLL2,
+
+ THR_COMP_NEAR_NEARLL3,
+ THR_COMP_NEW_NEWLL3,
+ THR_COMP_NEW_NEARESTLL3,
+ THR_COMP_NEAREST_NEWLL3,
+ THR_COMP_NEW_NEARLL3,
+ THR_COMP_NEAR_NEWLL3,
+ THR_COMP_GLOBAL_GLOBALLL3,
+
+ THR_COMP_NEAR_NEARLG,
+ THR_COMP_NEW_NEWLG,
+ THR_COMP_NEW_NEARESTLG,
+ THR_COMP_NEAREST_NEWLG,
+ THR_COMP_NEW_NEARLG,
+ THR_COMP_NEAR_NEWLG,
+ THR_COMP_GLOBAL_GLOBALLG,
+
+ THR_COMP_NEAR_NEARBA,
+ THR_COMP_NEW_NEWBA,
+ THR_COMP_NEW_NEARESTBA,
+ THR_COMP_NEAREST_NEWBA,
+ THR_COMP_NEW_NEARBA,
+ THR_COMP_NEAR_NEWBA,
+ THR_COMP_GLOBAL_GLOBALBA,
+
+ THR_DC,
+ THR_PAETH,
+ THR_SMOOTH,
+ THR_SMOOTH_V,
+ THR_SMOOTH_H,
+ THR_H_PRED,
+ THR_V_PRED,
+ THR_D135_PRED,
+ THR_D203_PRED,
+ THR_D157_PRED,
+ THR_D67_PRED,
+ THR_D113_PRED,
+ THR_D45_PRED,
+};
+
+/*!\cond */
+typedef struct SingleInterModeState {
+ int64_t rd;
+ MV_REFERENCE_FRAME ref_frame;
+ int valid;
+} SingleInterModeState;
+
+typedef struct InterModeSearchState {
+ int64_t best_rd;
+ int64_t best_skip_rd[2];
+ MB_MODE_INFO best_mbmode;
+ int best_rate_y;
+ int best_rate_uv;
+ int best_mode_skippable;
+ int best_skip2;
+ THR_MODES best_mode_index;
+ int num_available_refs;
+ int64_t dist_refs[REF_FRAMES];
+ int dist_order_refs[REF_FRAMES];
+ int64_t mode_threshold[MAX_MODES];
+ int64_t best_intra_rd;
+ unsigned int best_pred_sse;
+
+ /*!
+ * \brief Keep track of best intra rd for use in compound mode.
+ */
+ int64_t best_pred_rd[REFERENCE_MODES];
+ // Save a set of single_newmv for each checked ref_mv.
+ int_mv single_newmv[MAX_REF_MV_SEARCH][REF_FRAMES];
+ int single_newmv_rate[MAX_REF_MV_SEARCH][REF_FRAMES];
+ int single_newmv_valid[MAX_REF_MV_SEARCH][REF_FRAMES];
+ int64_t modelled_rd[MB_MODE_COUNT][MAX_REF_MV_SEARCH][REF_FRAMES];
+ // The rd of simple translation in single inter modes
+ int64_t simple_rd[MB_MODE_COUNT][MAX_REF_MV_SEARCH][REF_FRAMES];
+ int64_t best_single_rd[REF_FRAMES];
+ PREDICTION_MODE best_single_mode[REF_FRAMES];
+
+ // Single search results by [directions][modes][reference frames]
+ SingleInterModeState single_state[2][SINGLE_INTER_MODE_NUM][FWD_REFS];
+ int single_state_cnt[2][SINGLE_INTER_MODE_NUM];
+ SingleInterModeState single_state_modelled[2][SINGLE_INTER_MODE_NUM]
+ [FWD_REFS];
+ int single_state_modelled_cnt[2][SINGLE_INTER_MODE_NUM];
+ MV_REFERENCE_FRAME single_rd_order[2][SINGLE_INTER_MODE_NUM][FWD_REFS];
+ IntraModeSearchState intra_search_state;
+ RD_STATS best_y_rdcost;
+} InterModeSearchState;
+/*!\endcond */
+
+void av1_inter_mode_data_init(TileDataEnc *tile_data) {
+ for (int i = 0; i < BLOCK_SIZES_ALL; ++i) {
+ InterModeRdModel *md = &tile_data->inter_mode_rd_models[i];
+ md->ready = 0;
+ md->num = 0;
+ md->dist_sum = 0;
+ md->ld_sum = 0;
+ md->sse_sum = 0;
+ md->sse_sse_sum = 0;
+ md->sse_ld_sum = 0;
+ }
+}
+
+static int get_est_rate_dist(const TileDataEnc *tile_data, BLOCK_SIZE bsize,
+ int64_t sse, int *est_residue_cost,
+ int64_t *est_dist) {
+ const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
+ if (md->ready) {
+ if (sse < md->dist_mean) {
+ *est_residue_cost = 0;
+ *est_dist = sse;
+ } else {
+ *est_dist = (int64_t)round(md->dist_mean);
+ const double est_ld = md->a * sse + md->b;
+ // Clamp estimated rate cost by INT_MAX / 2.
+ // TODO(angiebird@google.com): find better solution than clamping.
+ if (fabs(est_ld) < 1e-2) {
+ *est_residue_cost = INT_MAX / 2;
+ } else {
+ double est_residue_cost_dbl = ((sse - md->dist_mean) / est_ld);
+ if (est_residue_cost_dbl < 0) {
+ *est_residue_cost = 0;
+ } else {
+ *est_residue_cost =
+ (int)AOMMIN((int64_t)round(est_residue_cost_dbl), INT_MAX / 2);
+ }
+ }
+ if (*est_residue_cost <= 0) {
+ *est_residue_cost = 0;
+ *est_dist = sse;
+ }
+ }
+ return 1;
+ }
+ return 0;
+}
+
+void av1_inter_mode_data_fit(TileDataEnc *tile_data, int rdmult) {
+ for (int bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) {
+ const int block_idx = inter_mode_data_block_idx(bsize);
+ InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
+ if (block_idx == -1) continue;
+ if ((md->ready == 0 && md->num < 200) || (md->ready == 1 && md->num < 64)) {
+ continue;
+ } else {
+ if (md->ready == 0) {
+ md->dist_mean = md->dist_sum / md->num;
+ md->ld_mean = md->ld_sum / md->num;
+ md->sse_mean = md->sse_sum / md->num;
+ md->sse_sse_mean = md->sse_sse_sum / md->num;
+ md->sse_ld_mean = md->sse_ld_sum / md->num;
+ } else {
+ const double factor = 3;
+ md->dist_mean =
+ (md->dist_mean * factor + (md->dist_sum / md->num)) / (factor + 1);
+ md->ld_mean =
+ (md->ld_mean * factor + (md->ld_sum / md->num)) / (factor + 1);
+ md->sse_mean =
+ (md->sse_mean * factor + (md->sse_sum / md->num)) / (factor + 1);
+ md->sse_sse_mean =
+ (md->sse_sse_mean * factor + (md->sse_sse_sum / md->num)) /
+ (factor + 1);
+ md->sse_ld_mean =
+ (md->sse_ld_mean * factor + (md->sse_ld_sum / md->num)) /
+ (factor + 1);
+ }
+
+ const double my = md->ld_mean;
+ const double mx = md->sse_mean;
+ const double dx = sqrt(md->sse_sse_mean);
+ const double dxy = md->sse_ld_mean;
+
+ md->a = (dxy - mx * my) / (dx * dx - mx * mx);
+ md->b = my - md->a * mx;
+ md->ready = 1;
+
+ md->num = 0;
+ md->dist_sum = 0;
+ md->ld_sum = 0;
+ md->sse_sum = 0;
+ md->sse_sse_sum = 0;
+ md->sse_ld_sum = 0;
+ }
+ (void)rdmult;
+ }
+}
+
+static AOM_INLINE void inter_mode_data_push(TileDataEnc *tile_data,
+ BLOCK_SIZE bsize, int64_t sse,
+ int64_t dist, int residue_cost) {
+ if (residue_cost == 0 || sse == dist) return;
+ const int block_idx = inter_mode_data_block_idx(bsize);
+ if (block_idx == -1) return;
+ InterModeRdModel *rd_model = &tile_data->inter_mode_rd_models[bsize];
+ if (rd_model->num < INTER_MODE_RD_DATA_OVERALL_SIZE) {
+ const double ld = (sse - dist) * 1. / residue_cost;
+ ++rd_model->num;
+ rd_model->dist_sum += dist;
+ rd_model->ld_sum += ld;
+ rd_model->sse_sum += sse;
+ rd_model->sse_sse_sum += (double)sse * (double)sse;
+ rd_model->sse_ld_sum += sse * ld;
+ }
+}
+
+static AOM_INLINE void inter_modes_info_push(InterModesInfo *inter_modes_info,
+ int mode_rate, int64_t sse,
+ int64_t rd, RD_STATS *rd_cost,
+ RD_STATS *rd_cost_y,
+ RD_STATS *rd_cost_uv,
+ const MB_MODE_INFO *mbmi) {
+ const int num = inter_modes_info->num;
+ assert(num < MAX_INTER_MODES);
+ inter_modes_info->mbmi_arr[num] = *mbmi;
+ inter_modes_info->mode_rate_arr[num] = mode_rate;
+ inter_modes_info->sse_arr[num] = sse;
+ inter_modes_info->est_rd_arr[num] = rd;
+ inter_modes_info->rd_cost_arr[num] = *rd_cost;
+ inter_modes_info->rd_cost_y_arr[num] = *rd_cost_y;
+ inter_modes_info->rd_cost_uv_arr[num] = *rd_cost_uv;
+ ++inter_modes_info->num;
+}
+
+static int compare_rd_idx_pair(const void *a, const void *b) {
+ if (((RdIdxPair *)a)->rd == ((RdIdxPair *)b)->rd) {
+ // To avoid inconsistency in qsort() ordering when two elements are equal,
+ // using idx as tie breaker. Refer aomedia:2928
+ if (((RdIdxPair *)a)->idx == ((RdIdxPair *)b)->idx)
+ return 0;
+ else if (((RdIdxPair *)a)->idx > ((RdIdxPair *)b)->idx)
+ return 1;
+ else
+ return -1;
+ } else if (((const RdIdxPair *)a)->rd > ((const RdIdxPair *)b)->rd) {
+ return 1;
+ } else {
+ return -1;
+ }
+}
+
+static AOM_INLINE void inter_modes_info_sort(
+ const InterModesInfo *inter_modes_info, RdIdxPair *rd_idx_pair_arr) {
+ if (inter_modes_info->num == 0) {
+ return;
+ }
+ for (int i = 0; i < inter_modes_info->num; ++i) {
+ rd_idx_pair_arr[i].idx = i;
+ rd_idx_pair_arr[i].rd = inter_modes_info->est_rd_arr[i];
+ }
+ qsort(rd_idx_pair_arr, inter_modes_info->num, sizeof(rd_idx_pair_arr[0]),
+ compare_rd_idx_pair);
+}
+
+// Similar to get_horver_correlation, but also takes into account first
+// row/column, when computing horizontal/vertical correlation.
+void av1_get_horver_correlation_full_c(const int16_t *diff, int stride,
+ int width, int height, float *hcorr,
+ float *vcorr) {
+ // The following notation is used:
+ // x - current pixel
+ // y - left neighbor pixel
+ // z - top neighbor pixel
+ int64_t x_sum = 0, x2_sum = 0, xy_sum = 0, xz_sum = 0;
+ int64_t x_firstrow = 0, x_finalrow = 0, x_firstcol = 0, x_finalcol = 0;
+ int64_t x2_firstrow = 0, x2_finalrow = 0, x2_firstcol = 0, x2_finalcol = 0;
+
+ // First, process horizontal correlation on just the first row
+ x_sum += diff[0];
+ x2_sum += diff[0] * diff[0];
+ x_firstrow += diff[0];
+ x2_firstrow += diff[0] * diff[0];
+ for (int j = 1; j < width; ++j) {
+ const int16_t x = diff[j];
+ const int16_t y = diff[j - 1];
+ x_sum += x;
+ x_firstrow += x;
+ x2_sum += x * x;
+ x2_firstrow += x * x;
+ xy_sum += x * y;
+ }
+
+ // Process vertical correlation in the first column
+ x_firstcol += diff[0];
+ x2_firstcol += diff[0] * diff[0];
+ for (int i = 1; i < height; ++i) {
+ const int16_t x = diff[i * stride];
+ const int16_t z = diff[(i - 1) * stride];
+ x_sum += x;
+ x_firstcol += x;
+ x2_sum += x * x;
+ x2_firstcol += x * x;
+ xz_sum += x * z;
+ }
+
+ // Now process horiz and vert correlation through the rest unit
+ for (int i = 1; i < height; ++i) {
+ for (int j = 1; j < width; ++j) {
+ const int16_t x = diff[i * stride + j];
+ const int16_t y = diff[i * stride + j - 1];
+ const int16_t z = diff[(i - 1) * stride + j];
+ x_sum += x;
+ x2_sum += x * x;
+ xy_sum += x * y;
+ xz_sum += x * z;
+ }
+ }
+
+ for (int j = 0; j < width; ++j) {
+ x_finalrow += diff[(height - 1) * stride + j];
+ x2_finalrow +=
+ diff[(height - 1) * stride + j] * diff[(height - 1) * stride + j];
+ }
+ for (int i = 0; i < height; ++i) {
+ x_finalcol += diff[i * stride + width - 1];
+ x2_finalcol += diff[i * stride + width - 1] * diff[i * stride + width - 1];
+ }
+
+ int64_t xhor_sum = x_sum - x_finalcol;
+ int64_t xver_sum = x_sum - x_finalrow;
+ int64_t y_sum = x_sum - x_firstcol;
+ int64_t z_sum = x_sum - x_firstrow;
+ int64_t x2hor_sum = x2_sum - x2_finalcol;
+ int64_t x2ver_sum = x2_sum - x2_finalrow;
+ int64_t y2_sum = x2_sum - x2_firstcol;
+ int64_t z2_sum = x2_sum - x2_firstrow;
+
+ const float num_hor = (float)(height * (width - 1));
+ const float num_ver = (float)((height - 1) * width);
+
+ const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor;
+ const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver;
+
+ const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor;
+ const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver;
+
+ const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor;
+ const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver;
+
+ if (xhor_var_n > 0 && y_var_n > 0) {
+ *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n);
+ *hcorr = *hcorr < 0 ? 0 : *hcorr;
+ } else {
+ *hcorr = 1.0;
+ }
+ if (xver_var_n > 0 && z_var_n > 0) {
+ *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n);
+ *vcorr = *vcorr < 0 ? 0 : *vcorr;
+ } else {
+ *vcorr = 1.0;
+ }
+}
+
+static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x,
+ int64_t *sse_y) {
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const MB_MODE_INFO *mbmi = xd->mi[0];
+ int64_t total_sse = 0;
+ for (int plane = 0; plane < num_planes; ++plane) {
+ if (plane && !xd->is_chroma_ref) break;
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE bs =
+ get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
+ unsigned int sse;
+
+ cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
+ pd->dst.stride, &sse);
+ total_sse += sse;
+ if (!plane && sse_y) *sse_y = sse;
+ }
+ total_sse <<= 4;
+ return total_sse;
+}
+
+int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
+ intptr_t block_size, int64_t *ssz) {
+ int i;
+ int64_t error = 0, sqcoeff = 0;
+
+ for (i = 0; i < block_size; i++) {
+ const int diff = coeff[i] - dqcoeff[i];
+ error += diff * diff;
+ sqcoeff += coeff[i] * coeff[i];
+ }
+
+ *ssz = sqcoeff;
+ return error;
+}
+
+int64_t av1_block_error_lp_c(const int16_t *coeff, const int16_t *dqcoeff,
+ intptr_t block_size) {
+ int64_t error = 0;
+
+ for (int i = 0; i < block_size; i++) {
+ const int diff = coeff[i] - dqcoeff[i];
+ error += diff * diff;
+ }
+
+ return error;
+}
+
+#if CONFIG_AV1_HIGHBITDEPTH
+int64_t av1_highbd_block_error_c(const tran_low_t *coeff,
+ const tran_low_t *dqcoeff, intptr_t block_size,
+ int64_t *ssz, int bd) {
+ int i;
+ int64_t error = 0, sqcoeff = 0;
+ int shift = 2 * (bd - 8);
+ int rounding = shift > 0 ? 1 << (shift - 1) : 0;
+
+ for (i = 0; i < block_size; i++) {
+ const int64_t diff = coeff[i] - dqcoeff[i];
+ error += diff * diff;
+ sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
+ }
+ assert(error >= 0 && sqcoeff >= 0);
+ error = (error + rounding) >> shift;
+ sqcoeff = (sqcoeff + rounding) >> shift;
+
+ *ssz = sqcoeff;
+ return error;
+}
+#endif
+
+static int conditional_skipintra(PREDICTION_MODE mode,
+ PREDICTION_MODE best_intra_mode) {
+ if (mode == D113_PRED && best_intra_mode != V_PRED &&
+ best_intra_mode != D135_PRED)
+ return 1;
+ if (mode == D67_PRED && best_intra_mode != V_PRED &&
+ best_intra_mode != D45_PRED)
+ return 1;
+ if (mode == D203_PRED && best_intra_mode != H_PRED &&
+ best_intra_mode != D45_PRED)
+ return 1;
+ if (mode == D157_PRED && best_intra_mode != H_PRED &&
+ best_intra_mode != D135_PRED)
+ return 1;
+ return 0;
+}
+
+static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode,
+ int16_t mode_context) {
+ if (is_inter_compound_mode(mode)) {
+ return mode_costs
+ ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)];
+ }
+
+ int mode_cost = 0;
+ int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
+
+ assert(is_inter_mode(mode));
+
+ if (mode == NEWMV) {
+ mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0];
+ return mode_cost;
+ } else {
+ mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1];
+ mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
+
+ if (mode == GLOBALMV) {
+ mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0];
+ return mode_cost;
+ } else {
+ mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1];
+ mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
+ mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
+ return mode_cost;
+ }
+ }
+}
+
+static INLINE PREDICTION_MODE get_single_mode(PREDICTION_MODE this_mode,
+ int ref_idx) {
+ return ref_idx ? compound_ref1_mode(this_mode)
+ : compound_ref0_mode(this_mode);
+}
+
+static AOM_INLINE void estimate_ref_frame_costs(
+ const AV1_COMMON *cm, const MACROBLOCKD *xd, const ModeCosts *mode_costs,
+ int segment_id, unsigned int *ref_costs_single,
+ unsigned int (*ref_costs_comp)[REF_FRAMES]) {
+ int seg_ref_active =
+ segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
+ if (seg_ref_active) {
+ memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single));
+ int ref_frame;
+ for (ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame)
+ memset(ref_costs_comp[ref_frame], 0,
+ REF_FRAMES * sizeof((*ref_costs_comp)[0]));
+ } else {
+ int intra_inter_ctx = av1_get_intra_inter_context(xd);
+ ref_costs_single[INTRA_FRAME] =
+ mode_costs->intra_inter_cost[intra_inter_ctx][0];
+ unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1];
+
+ for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
+ ref_costs_single[i] = base_cost;
+
+ const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd);
+ const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd);
+ const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd);
+ const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd);
+ const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd);
+ const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd);
+
+ // Determine cost of a single ref frame, where frame types are represented
+ // by a tree:
+ // Level 0: add cost whether this ref is a forward or backward ref
+ ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
+ ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
+ ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
+ ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
+ ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][1];
+ ref_costs_single[ALTREF2_FRAME] +=
+ mode_costs->single_ref_cost[ctx_p1][0][1];
+ ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][1];
+
+ // Level 1: if this ref is forward ref,
+ // add cost whether it is last/last2 or last3/golden
+ ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][0];
+ ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][0];
+ ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][1];
+ ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][1];
+
+ // Level 1: if this ref is backward ref
+ // then add cost whether this ref is altref or backward ref
+ ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p2][1][0];
+ ref_costs_single[ALTREF2_FRAME] +=
+ mode_costs->single_ref_cost[ctx_p2][1][0];
+ ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[ctx_p2][1][1];
+
+ // Level 2: further add cost whether this ref is last or last2
+ ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p4][3][0];
+ ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p4][3][1];
+
+ // Level 2: last3 or golden
+ ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p5][4][0];
+ ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p5][4][1];
+
+ // Level 2: bwdref or altref2
+ ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p6][5][0];
+ ref_costs_single[ALTREF2_FRAME] +=
+ mode_costs->single_ref_cost[ctx_p6][5][1];
+
+ if (cm->current_frame.reference_mode != SINGLE_REFERENCE) {
+ // Similar to single ref, determine cost of compound ref frames.
+ // cost_compound_refs = cost_first_ref + cost_second_ref
+ const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd);
+ const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd);
+ const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd);
+ const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd);
+ const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd);
+
+ const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd);
+ unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 };
+
+ ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] =
+ ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] =
+ base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][1];
+ ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0;
+ ref_bicomp_costs[ALTREF_FRAME] = 0;
+
+ // cost of first ref frame
+ ref_bicomp_costs[LAST_FRAME] +=
+ mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0];
+ ref_bicomp_costs[LAST2_FRAME] +=
+ mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0];
+ ref_bicomp_costs[LAST3_FRAME] +=
+ mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1];
+ ref_bicomp_costs[GOLDEN_FRAME] +=
+ mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1];
+
+ ref_bicomp_costs[LAST_FRAME] +=
+ mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][0];
+ ref_bicomp_costs[LAST2_FRAME] +=
+ mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][1];
+
+ ref_bicomp_costs[LAST3_FRAME] +=
+ mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][0];
+ ref_bicomp_costs[GOLDEN_FRAME] +=
+ mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][1];
+
+ // cost of second ref frame
+ ref_bicomp_costs[BWDREF_FRAME] +=
+ mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
+ ref_bicomp_costs[ALTREF2_FRAME] +=
+ mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
+ ref_bicomp_costs[ALTREF_FRAME] +=
+ mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][1];
+
+ ref_bicomp_costs[BWDREF_FRAME] +=
+ mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0];
+ ref_bicomp_costs[ALTREF2_FRAME] +=
+ mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1];
+
+ // cost: if one ref frame is forward ref, the other ref is backward ref
+ int ref0, ref1;
+ for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
+ for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) {
+ ref_costs_comp[ref0][ref1] =
+ ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1];
+ }
+ }
+
+ // cost: if both ref frames are the same side.
+ const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd);
+ const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd);
+ const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd);
+ ref_costs_comp[LAST_FRAME][LAST2_FRAME] =
+ base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
+ mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
+ mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0];
+ ref_costs_comp[LAST_FRAME][LAST3_FRAME] =
+ base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
+ mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
+ mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
+ mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0];
+ ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] =
+ base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
+ mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
+ mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
+ mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1];
+ ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] =
+ base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
+ mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1];
+ } else {
+ int ref0, ref1;
+ for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
+ for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1)
+ ref_costs_comp[ref0][ref1] = 512;
+ }
+ ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512;
+ ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512;
+ ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512;
+ ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512;
+ }
+ }
+}
+
+static AOM_INLINE void store_coding_context(
+#if CONFIG_INTERNAL_STATS
+ MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int mode_index,
+#else
+ MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
+#endif // CONFIG_INTERNAL_STATS
+ int skippable) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+
+ // Take a snapshot of the coding context so it can be
+ // restored if we decide to encode this way
+ ctx->rd_stats.skip_txfm = x->txfm_search_info.skip_txfm;
+ ctx->skippable = skippable;
+#if CONFIG_INTERNAL_STATS
+ ctx->best_mode_index = mode_index;
+#endif // CONFIG_INTERNAL_STATS
+ ctx->mic = *xd->mi[0];
+ av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext,
+ av1_ref_frame_type(xd->mi[0]->ref_frame));
+}
+
+static AOM_INLINE void setup_buffer_ref_mvs_inter(
+ const AV1_COMP *const cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame,
+ BLOCK_SIZE block_size, struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) {
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ const YV12_BUFFER_CONFIG *scaled_ref_frame =
+ av1_get_scaled_ref_frame(cpi, ref_frame);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
+ const struct scale_factors *const sf =
+ get_ref_scale_factors_const(cm, ref_frame);
+ const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame);
+ assert(yv12 != NULL);
+
+ if (scaled_ref_frame) {
+ // Setup pred block based on scaled reference, because av1_mv_pred() doesn't
+ // support scaling.
+ av1_setup_pred_block(xd, yv12_mb[ref_frame], scaled_ref_frame, NULL, NULL,
+ num_planes);
+ } else {
+ av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes);
+ }
+
+ // Gets an initial list of candidate vectors from neighbours and orders them
+ av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
+ xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
+ mbmi_ext->mode_context);
+ // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
+ // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
+ av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
+ // Further refinement that is encode side only to test the top few candidates
+ // in full and choose the best as the center point for subsequent searches.
+ // The current implementation doesn't support scaling.
+ av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12_mb[ref_frame][0].stride,
+ ref_frame, block_size);
+
+ // Go back to unscaled reference.
+ if (scaled_ref_frame) {
+ // We had temporarily setup pred block based on scaled reference above. Go
+ // back to unscaled reference now, for subsequent use.
+ av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes);
+ }
+}
+
+#define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
+#define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
+
+// TODO(jingning): this mv clamping function should be block size dependent.
+static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) {
+ const SubpelMvLimits mv_limits = { xd->mb_to_left_edge - LEFT_TOP_MARGIN,
+ xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN,
+ xd->mb_to_top_edge - LEFT_TOP_MARGIN,
+ xd->mb_to_bottom_edge +
+ RIGHT_BOTTOM_MARGIN };
+ clamp_mv(mv, &mv_limits);
+}
+
+/* If the current mode shares the same mv with other modes with higher cost,
+ * skip this mode. */
+static int skip_repeated_mv(const AV1_COMMON *const cm,
+ const MACROBLOCK *const x,
+ PREDICTION_MODE this_mode,
+ const MV_REFERENCE_FRAME ref_frames[2],
+ InterModeSearchState *search_state) {
+ const int is_comp_pred = ref_frames[1] > INTRA_FRAME;
+ const uint8_t ref_frame_type = av1_ref_frame_type(ref_frames);
+ const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
+ const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
+ PREDICTION_MODE compare_mode = MB_MODE_COUNT;
+ if (!is_comp_pred) {
+ if (this_mode == NEARMV) {
+ if (ref_mv_count == 0) {
+ // NEARMV has the same motion vector as NEARESTMV
+ compare_mode = NEARESTMV;
+ }
+ if (ref_mv_count == 1 &&
+ cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) {
+ // NEARMV has the same motion vector as GLOBALMV
+ compare_mode = GLOBALMV;
+ }
+ }
+ if (this_mode == GLOBALMV) {
+ if (ref_mv_count == 0 &&
+ cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) {
+ // GLOBALMV has the same motion vector as NEARESTMV
+ compare_mode = NEARESTMV;
+ }
+ if (ref_mv_count == 1) {
+ // GLOBALMV has the same motion vector as NEARMV
+ compare_mode = NEARMV;
+ }
+ }
+
+ if (compare_mode != MB_MODE_COUNT) {
+ // Use modelled_rd to check whether compare mode was searched
+ if (search_state->modelled_rd[compare_mode][0][ref_frames[0]] !=
+ INT64_MAX) {
+ const int16_t mode_ctx =
+ av1_mode_context_analyzer(mbmi_ext->mode_context, ref_frames);
+ const int compare_cost =
+ cost_mv_ref(&x->mode_costs, compare_mode, mode_ctx);
+ const int this_cost = cost_mv_ref(&x->mode_costs, this_mode, mode_ctx);
+
+ // Only skip if the mode cost is larger than compare mode cost
+ if (this_cost > compare_cost) {
+ search_state->modelled_rd[this_mode][0][ref_frames[0]] =
+ search_state->modelled_rd[compare_mode][0][ref_frames[0]];
+ return 1;
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+static INLINE int clamp_and_check_mv(int_mv *out_mv, int_mv in_mv,
+ const AV1_COMMON *cm,
+ const MACROBLOCK *x) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ *out_mv = in_mv;
+ lower_mv_precision(&out_mv->as_mv, cm->features.allow_high_precision_mv,
+ cm->features.cur_frame_force_integer_mv);
+ clamp_mv2(&out_mv->as_mv, xd);
+ return av1_is_fullmv_in_range(&x->mv_limits,
+ get_fullmv_from_mv(&out_mv->as_mv));
+}
+
+// To use single newmv directly for compound modes, need to clamp the mv to the
+// valid mv range. Without this, encoder would generate out of range mv, and
+// this is seen in 8k encoding.
+static INLINE void clamp_mv_in_range(MACROBLOCK *const x, int_mv *mv,
+ int ref_idx) {
+ const int_mv ref_mv = av1_get_ref_mv(x, ref_idx);
+ SubpelMvLimits mv_limits;
+
+ av1_set_subpel_mv_search_range(&mv_limits, &x->mv_limits, &ref_mv.as_mv);
+ clamp_mv(&mv->as_mv, &mv_limits);
+}
+
+static int64_t handle_newmv(const AV1_COMP *const cpi, MACROBLOCK *const x,
+ const BLOCK_SIZE bsize, int_mv *cur_mv,
+ int *const rate_mv, HandleInterModeArgs *const args,
+ inter_mode_info *mode_info) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int is_comp_pred = has_second_ref(mbmi);
+ const PREDICTION_MODE this_mode = mbmi->mode;
+ const int refs[2] = { mbmi->ref_frame[0],
+ mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] };
+ const int ref_mv_idx = mbmi->ref_mv_idx;
+
+ if (is_comp_pred) {
+ const int valid_mv0 = args->single_newmv_valid[ref_mv_idx][refs[0]];
+ const int valid_mv1 = args->single_newmv_valid[ref_mv_idx][refs[1]];
+ if (this_mode == NEW_NEWMV) {
+ if (valid_mv0) {
+ cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int;
+ clamp_mv_in_range(x, &cur_mv[0], 0);
+ }
+ if (valid_mv1) {
+ cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int;
+ clamp_mv_in_range(x, &cur_mv[1], 1);
+ }
+ *rate_mv = 0;
+ for (int i = 0; i < 2; ++i) {
+ const int_mv ref_mv = av1_get_ref_mv(x, i);
+ *rate_mv += av1_mv_bit_cost(&cur_mv[i].as_mv, &ref_mv.as_mv,
+ x->mv_costs->nmv_joint_cost,
+ x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
+ }
+ } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) {
+ if (valid_mv1) {
+ cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int;
+ clamp_mv_in_range(x, &cur_mv[1], 1);
+ }
+ const int_mv ref_mv = av1_get_ref_mv(x, 1);
+ *rate_mv = av1_mv_bit_cost(&cur_mv[1].as_mv, &ref_mv.as_mv,
+ x->mv_costs->nmv_joint_cost,
+ x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
+ } else {
+ assert(this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV);
+ if (valid_mv0) {
+ cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int;
+ clamp_mv_in_range(x, &cur_mv[0], 0);
+ }
+ const int_mv ref_mv = av1_get_ref_mv(x, 0);
+ *rate_mv = av1_mv_bit_cost(&cur_mv[0].as_mv, &ref_mv.as_mv,
+ x->mv_costs->nmv_joint_cost,
+ x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
+ }
+ } else {
+ // Single ref case.
+ const int ref_idx = 0;
+ int search_range = INT_MAX;
+
+ if (cpi->sf.mv_sf.reduce_search_range && mbmi->ref_mv_idx > 0) {
+ const MV ref_mv = av1_get_ref_mv(x, ref_idx).as_mv;
+ int min_mv_diff = INT_MAX;
+ int best_match = -1;
+ MV prev_ref_mv[2] = { { 0 } };
+ for (int idx = 0; idx < mbmi->ref_mv_idx; ++idx) {
+ prev_ref_mv[idx] = av1_get_ref_mv_from_stack(ref_idx, mbmi->ref_frame,
+ idx, &x->mbmi_ext)
+ .as_mv;
+ const int ref_mv_diff = AOMMAX(abs(ref_mv.row - prev_ref_mv[idx].row),
+ abs(ref_mv.col - prev_ref_mv[idx].col));
+
+ if (min_mv_diff > ref_mv_diff) {
+ min_mv_diff = ref_mv_diff;
+ best_match = idx;
+ }
+ }
+
+ if (min_mv_diff < (16 << 3)) {
+ if (args->single_newmv_valid[best_match][refs[0]]) {
+ search_range = min_mv_diff;
+ search_range +=
+ AOMMAX(abs(args->single_newmv[best_match][refs[0]].as_mv.row -
+ prev_ref_mv[best_match].row),
+ abs(args->single_newmv[best_match][refs[0]].as_mv.col -
+ prev_ref_mv[best_match].col));
+ // Get full pixel search range.
+ search_range = (search_range + 4) >> 3;
+ }
+ }
+ }
+
+ int_mv best_mv;
+ av1_single_motion_search(cpi, x, bsize, ref_idx, rate_mv, search_range,
+ mode_info, &best_mv, args);
+ if (best_mv.as_int == INVALID_MV) return INT64_MAX;
+
+ args->single_newmv[ref_mv_idx][refs[0]] = best_mv;
+ args->single_newmv_rate[ref_mv_idx][refs[0]] = *rate_mv;
+ args->single_newmv_valid[ref_mv_idx][refs[0]] = 1;
+ cur_mv[0].as_int = best_mv.as_int;
+
+ // Return after single_newmv is set.
+ if (mode_info[mbmi->ref_mv_idx].skip) return INT64_MAX;
+ }
+
+ return 0;
+}
+
+static INLINE void update_mode_start_end_index(
+ const AV1_COMP *const cpi, const MB_MODE_INFO *const mbmi,
+ int *mode_index_start, int *mode_index_end, int last_motion_mode_allowed,
+ int interintra_allowed, int eval_motion_mode) {
+ *mode_index_start = (int)SIMPLE_TRANSLATION;
+ *mode_index_end = (int)last_motion_mode_allowed + interintra_allowed;
+ if (cpi->sf.winner_mode_sf.motion_mode_for_winner_cand) {
+ if (!eval_motion_mode) {
+ *mode_index_end = (int)SIMPLE_TRANSLATION;
+ } else {
+ // Set the start index appropriately to process motion modes other than
+ // simple translation
+ *mode_index_start = 1;
+ }
+ }
+ if (cpi->sf.inter_sf.extra_prune_warped && mbmi->bsize > BLOCK_16X16)
+ *mode_index_end = SIMPLE_TRANSLATION;
+}
+
+/*!\brief AV1 motion mode search
+ *
+ * \ingroup inter_mode_search
+ * Function to search over and determine the motion mode. It will update
+ * mbmi->motion_mode to one of SIMPLE_TRANSLATION, OBMC_CAUSAL, or
+ * WARPED_CAUSAL and determine any necessary side information for the selected
+ * motion mode. It will also perform the full transform search, unless the
+ * input parameter do_tx_search indicates to do an estimation of the RD rather
+ * than an RD corresponding to a full transform search. It will return the
+ * RD for the final motion_mode.
+ * Do the RD search for a given inter mode and compute all information relevant
+ * to the input mode. It will compute the best MV,
+ * compound parameters (if the mode is a compound mode) and interpolation filter
+ * parameters.
+ *
+ * \param[in] cpi Top-level encoder structure.
+ * \param[in] tile_data Pointer to struct holding adaptive
+ * data/contexts/models for the tile during
+ * encoding.
+ * \param[in] x Pointer to struct holding all the data for
+ * the current macroblock.
+ * \param[in] bsize Current block size.
+ * \param[in,out] rd_stats Struct to keep track of the overall RD
+ * information.
+ * \param[in,out] rd_stats_y Struct to keep track of the RD information
+ * for only the Y plane.
+ * \param[in,out] rd_stats_uv Struct to keep track of the RD information
+ * for only the UV planes.
+ * \param[in] args HandleInterModeArgs struct holding
+ * miscellaneous arguments for inter mode
+ * search. See the documentation for this
+ * struct for a description of each member.
+ * \param[in] ref_best_rd Best RD found so far for this block.
+ * It is used for early termination of this
+ * search if the RD exceeds this value.
+ * \param[in,out] ref_skip_rd A length 2 array, where skip_rd[0] is the
+ * best total RD for a skip mode so far, and
+ * skip_rd[1] is the best RD for a skip mode so
+ * far in luma. This is used as a speed feature
+ * to skip the transform search if the computed
+ * skip RD for the current mode is not better
+ * than the best skip_rd so far.
+ * \param[in,out] rate_mv The rate associated with the motion vectors.
+ * This will be modified if a motion search is
+ * done in the motion mode search.
+ * \param[in,out] orig_dst A prediction buffer to hold a computed
+ * prediction. This will eventually hold the
+ * final prediction, and the tmp_dst info will
+ * be copied here.
+ * \param[in,out] best_est_rd Estimated RD for motion mode search if
+ * do_tx_search (see below) is 0.
+ * \param[in] do_tx_search Parameter to indicate whether or not to do
+ * a full transform search. This will compute
+ * an estimated RD for the modes without the
+ * transform search and later perform the full
+ * transform search on the best candidates.
+ * \param[in] inter_modes_info InterModesInfo struct to hold inter mode
+ * information to perform a full transform
+ * search only on winning candidates searched
+ * with an estimate for transform coding RD.
+ * \param[in] eval_motion_mode Boolean whether or not to evaluate motion
+ * motion modes other than SIMPLE_TRANSLATION.
+ * \param[out] yrd Stores the rdcost corresponding to encoding
+ * the luma plane.
+ * \return Returns INT64_MAX if the determined motion mode is invalid and the
+ * current motion mode being tested should be skipped. It returns 0 if the
+ * motion mode search is a success.
+ */
+static int64_t motion_mode_rd(
+ const AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *const x,
+ BLOCK_SIZE bsize, RD_STATS *rd_stats, RD_STATS *rd_stats_y,
+ RD_STATS *rd_stats_uv, HandleInterModeArgs *const args, int64_t ref_best_rd,
+ int64_t *ref_skip_rd, int *rate_mv, const BUFFER_SET *orig_dst,
+ int64_t *best_est_rd, int do_tx_search, InterModesInfo *inter_modes_info,
+ int eval_motion_mode, int64_t *yrd) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const FeatureFlags *const features = &cm->features;
+ TxfmSearchInfo *txfm_info = &x->txfm_search_info;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const int is_comp_pred = has_second_ref(mbmi);
+ const PREDICTION_MODE this_mode = mbmi->mode;
+ const int rate2_nocoeff = rd_stats->rate;
+ int best_xskip_txfm = 0;
+ RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv;
+ uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ const int rate_mv0 = *rate_mv;
+ const int interintra_allowed = cm->seq_params->enable_interintra_compound &&
+ is_interintra_allowed(mbmi) &&
+ mbmi->compound_idx;
+ WARP_SAMPLE_INFO *const warp_sample_info =
+ &x->warp_sample_info[mbmi->ref_frame[0]];
+ int *pts0 = warp_sample_info->pts;
+ int *pts_inref0 = warp_sample_info->pts_inref;
+
+ assert(mbmi->ref_frame[1] != INTRA_FRAME);
+ const MV_REFERENCE_FRAME ref_frame_1 = mbmi->ref_frame[1];
+ av1_invalid_rd_stats(&best_rd_stats);
+ mbmi->num_proj_ref = 1; // assume num_proj_ref >=1
+ MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION;
+ *yrd = INT64_MAX;
+ if (features->switchable_motion_mode) {
+ // Determine which motion modes to search if more than SIMPLE_TRANSLATION
+ // is allowed.
+ last_motion_mode_allowed = motion_mode_allowed(
+ xd->global_motion, xd, mbmi, features->allow_warped_motion);
+ }
+
+ if (last_motion_mode_allowed == WARPED_CAUSAL) {
+ // Collect projection samples used in least squares approximation of
+ // the warped motion parameters if WARPED_CAUSAL is going to be searched.
+ if (warp_sample_info->num < 0) {
+ warp_sample_info->num = av1_findSamples(cm, xd, pts0, pts_inref0);
+ }
+ mbmi->num_proj_ref = warp_sample_info->num;
+ }
+ const int total_samples = mbmi->num_proj_ref;
+ if (total_samples == 0) {
+ // Do not search WARPED_CAUSAL if there are no samples to use to determine
+ // warped parameters.
+ last_motion_mode_allowed = OBMC_CAUSAL;
+ }
+
+ const MB_MODE_INFO base_mbmi = *mbmi;
+ MB_MODE_INFO best_mbmi;
+ const int interp_filter = features->interp_filter;
+ const int switchable_rate =
+ av1_is_interp_needed(xd)
+ ? av1_get_switchable_rate(x, xd, interp_filter,
+ cm->seq_params->enable_dual_filter)
+ : 0;
+ int64_t best_rd = INT64_MAX;
+ int best_rate_mv = rate_mv0;
+ const int mi_row = xd->mi_row;
+ const int mi_col = xd->mi_col;
+ int mode_index_start, mode_index_end;
+ const int txfm_rd_gate_level =
+ get_txfm_rd_gate_level(cm->seq_params->enable_masked_compound,
+ cpi->sf.inter_sf.txfm_rd_gate_level, bsize,
+ TX_SEARCH_MOTION_MODE, eval_motion_mode);
+
+ // Modify the start and end index according to speed features. For example,
+ // if SIMPLE_TRANSLATION has already been searched according to
+ // the motion_mode_for_winner_cand speed feature, update the mode_index_start
+ // to avoid searching it again.
+ update_mode_start_end_index(cpi, mbmi, &mode_index_start, &mode_index_end,
+ last_motion_mode_allowed, interintra_allowed,
+ eval_motion_mode);
+ // Main function loop. This loops over all of the possible motion modes and
+ // computes RD to determine the best one. This process includes computing
+ // any necessary side information for the motion mode and performing the
+ // transform search.
+ for (int mode_index = mode_index_start; mode_index <= mode_index_end;
+ mode_index++) {
+ if (args->skip_motion_mode && mode_index) continue;
+ int tmp_rate2 = rate2_nocoeff;
+ const int is_interintra_mode = mode_index > (int)last_motion_mode_allowed;
+ int tmp_rate_mv = rate_mv0;
+
+ *mbmi = base_mbmi;
+ if (is_interintra_mode) {
+ // Only use SIMPLE_TRANSLATION for interintra
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ } else {
+ mbmi->motion_mode = (MOTION_MODE)mode_index;
+ assert(mbmi->ref_frame[1] != INTRA_FRAME);
+ }
+
+ // Do not search OBMC if the probability of selecting it is below a
+ // predetermined threshold for this update_type and block size.
+ const FRAME_UPDATE_TYPE update_type =
+ get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
+ int use_actual_frame_probs = 1;
+ int prune_obmc;
+#if CONFIG_FPMT_TEST
+ use_actual_frame_probs =
+ (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1;
+ if (!use_actual_frame_probs) {
+ prune_obmc = cpi->ppi->temp_frame_probs.obmc_probs[update_type][bsize] <
+ cpi->sf.inter_sf.prune_obmc_prob_thresh;
+ }
+#endif
+ if (use_actual_frame_probs) {
+ prune_obmc = cpi->ppi->frame_probs.obmc_probs[update_type][bsize] <
+ cpi->sf.inter_sf.prune_obmc_prob_thresh;
+ }
+ if ((!cpi->oxcf.motion_mode_cfg.enable_obmc || prune_obmc) &&
+ mbmi->motion_mode == OBMC_CAUSAL)
+ continue;
+
+ if (mbmi->motion_mode == SIMPLE_TRANSLATION && !is_interintra_mode) {
+ // SIMPLE_TRANSLATION mode: no need to recalculate.
+ // The prediction is calculated before motion_mode_rd() is called in
+ // handle_inter_mode()
+ } else if (mbmi->motion_mode == OBMC_CAUSAL) {
+ const uint32_t cur_mv = mbmi->mv[0].as_int;
+ // OBMC_CAUSAL not allowed for compound prediction
+ assert(!is_comp_pred);
+ if (have_newmv_in_inter_mode(this_mode)) {
+ av1_single_motion_search(cpi, x, bsize, 0, &tmp_rate_mv, INT_MAX, NULL,
+ &mbmi->mv[0], NULL);
+ tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv;
+ }
+ if ((mbmi->mv[0].as_int != cur_mv) || eval_motion_mode) {
+ // Build the predictor according to the current motion vector if it has
+ // not already been built
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
+ 0, av1_num_planes(cm) - 1);
+ }
+ // Build the inter predictor by blending the predictor corresponding to
+ // this MV, and the neighboring blocks using the OBMC model
+ av1_build_obmc_inter_prediction(
+ cm, xd, args->above_pred_buf, args->above_pred_stride,
+ args->left_pred_buf, args->left_pred_stride);
+#if !CONFIG_REALTIME_ONLY
+ } else if (mbmi->motion_mode == WARPED_CAUSAL) {
+ int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
+ mbmi->motion_mode = WARPED_CAUSAL;
+ mbmi->wm_params.wmtype = DEFAULT_WMTYPE;
+ mbmi->interp_filters =
+ av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));
+
+ memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0));
+ memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0));
+ // Select the samples according to motion vector difference
+ if (mbmi->num_proj_ref > 1) {
+ mbmi->num_proj_ref = av1_selectSamples(
+ &mbmi->mv[0].as_mv, pts, pts_inref, mbmi->num_proj_ref, bsize);
+ }
+
+ // Compute the warped motion parameters with a least squares fit
+ // using the collected samples
+ if (!av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize,
+ mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col,
+ &mbmi->wm_params, mi_row, mi_col)) {
+ assert(!is_comp_pred);
+ if (have_newmv_in_inter_mode(this_mode)) {
+ // Refine MV for NEWMV mode
+ const int_mv mv0 = mbmi->mv[0];
+ const WarpedMotionParams wm_params0 = mbmi->wm_params;
+ const int num_proj_ref0 = mbmi->num_proj_ref;
+
+ const int_mv ref_mv = av1_get_ref_mv(x, 0);
+ SUBPEL_MOTION_SEARCH_PARAMS ms_params;
+ av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize,
+ &ref_mv.as_mv, NULL);
+
+ // Refine MV in a small range.
+ av1_refine_warped_mv(xd, cm, &ms_params, bsize, pts0, pts_inref0,
+ total_samples, cpi->sf.mv_sf.warp_search_method,
+ cpi->sf.mv_sf.warp_search_iters);
+
+ if (mv0.as_int != mbmi->mv[0].as_int) {
+ // Keep the refined MV and WM parameters.
+ tmp_rate_mv = av1_mv_bit_cost(
+ &mbmi->mv[0].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost,
+ x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
+ tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv;
+ } else {
+ // Restore the old MV and WM parameters.
+ mbmi->mv[0] = mv0;
+ mbmi->wm_params = wm_params0;
+ mbmi->num_proj_ref = num_proj_ref0;
+ }
+ }
+
+ // Build the warped predictor
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
+ av1_num_planes(cm) - 1);
+ } else {
+ continue;
+ }
+#endif // !CONFIG_REALTIME_ONLY
+ } else if (is_interintra_mode) {
+ const int ret =
+ av1_handle_inter_intra_mode(cpi, x, bsize, mbmi, args, ref_best_rd,
+ &tmp_rate_mv, &tmp_rate2, orig_dst);
+ if (ret < 0) continue;
+ }
+
+ // If we are searching newmv and the mv is the same as refmv, skip the
+ // current mode
+ if (!av1_check_newmv_joint_nonzero(cm, x)) continue;
+
+ // Update rd_stats for the current motion mode
+ txfm_info->skip_txfm = 0;
+ rd_stats->dist = 0;
+ rd_stats->sse = 0;
+ rd_stats->skip_txfm = 1;
+ rd_stats->rate = tmp_rate2;
+ const ModeCosts *mode_costs = &x->mode_costs;
+ if (mbmi->motion_mode != WARPED_CAUSAL) rd_stats->rate += switchable_rate;
+ if (interintra_allowed) {
+ rd_stats->rate +=
+ mode_costs->interintra_cost[size_group_lookup[bsize]]
+ [mbmi->ref_frame[1] == INTRA_FRAME];
+ }
+ if ((last_motion_mode_allowed > SIMPLE_TRANSLATION) &&
+ (mbmi->ref_frame[1] != INTRA_FRAME)) {
+ if (last_motion_mode_allowed == WARPED_CAUSAL) {
+ rd_stats->rate +=
+ mode_costs->motion_mode_cost[bsize][mbmi->motion_mode];
+ } else {
+ rd_stats->rate +=
+ mode_costs->motion_mode_cost1[bsize][mbmi->motion_mode];
+ }
+ }
+
+ int64_t this_yrd = INT64_MAX;
+
+ if (!do_tx_search) {
+ // Avoid doing a transform search here to speed up the overall mode
+ // search. It will be done later in the mode search if the current
+ // motion mode seems promising.
+ int64_t curr_sse = -1;
+ int64_t sse_y = -1;
+ int est_residue_cost = 0;
+ int64_t est_dist = 0;
+ int64_t est_rd = 0;
+ if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
+ curr_sse = get_sse(cpi, x, &sse_y);
+ const int has_est_rd = get_est_rate_dist(tile_data, bsize, curr_sse,
+ &est_residue_cost, &est_dist);
+ (void)has_est_rd;
+ assert(has_est_rd);
+ } else if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 2 ||
+ cpi->sf.rt_sf.use_nonrd_pick_mode) {
+ model_rd_sb_fn[MODELRD_TYPE_MOTION_MODE_RD](
+ cpi, bsize, x, xd, 0, num_planes - 1, &est_residue_cost, &est_dist,
+ NULL, &curr_sse, NULL, NULL, NULL);
+ sse_y = x->pred_sse[xd->mi[0]->ref_frame[0]];
+ }
+ est_rd = RDCOST(x->rdmult, rd_stats->rate + est_residue_cost, est_dist);
+ if (est_rd * 0.80 > *best_est_rd) {
+ mbmi->ref_frame[1] = ref_frame_1;
+ continue;
+ }
+ const int mode_rate = rd_stats->rate;
+ rd_stats->rate += est_residue_cost;
+ rd_stats->dist = est_dist;
+ rd_stats->rdcost = est_rd;
+ if (rd_stats->rdcost < *best_est_rd) {
+ *best_est_rd = rd_stats->rdcost;
+ assert(sse_y >= 0);
+ ref_skip_rd[1] = txfm_rd_gate_level
+ ? RDCOST(x->rdmult, mode_rate, (sse_y << 4))
+ : INT64_MAX;
+ }
+ if (cm->current_frame.reference_mode == SINGLE_REFERENCE) {
+ if (!is_comp_pred) {
+ assert(curr_sse >= 0);
+ inter_modes_info_push(inter_modes_info, mode_rate, curr_sse,
+ rd_stats->rdcost, rd_stats, rd_stats_y,
+ rd_stats_uv, mbmi);
+ }
+ } else {
+ assert(curr_sse >= 0);
+ inter_modes_info_push(inter_modes_info, mode_rate, curr_sse,
+ rd_stats->rdcost, rd_stats, rd_stats_y,
+ rd_stats_uv, mbmi);
+ }
+ mbmi->skip_txfm = 0;
+ } else {
+ // Perform full transform search
+ int64_t skip_rd = INT64_MAX;
+ int64_t skip_rdy = INT64_MAX;
+ if (txfm_rd_gate_level) {
+ // Check if the mode is good enough based on skip RD
+ int64_t sse_y = INT64_MAX;
+ int64_t curr_sse = get_sse(cpi, x, &sse_y);
+ skip_rd = RDCOST(x->rdmult, rd_stats->rate, curr_sse);
+ skip_rdy = RDCOST(x->rdmult, rd_stats->rate, (sse_y << 4));
+ int eval_txfm = check_txfm_eval(x, bsize, ref_skip_rd[0], skip_rd,
+ txfm_rd_gate_level, 0);
+ if (!eval_txfm) continue;
+ }
+
+ // Do transform search
+ const int mode_rate = rd_stats->rate;
+ if (!av1_txfm_search(cpi, x, bsize, rd_stats, rd_stats_y, rd_stats_uv,
+ rd_stats->rate, ref_best_rd)) {
+ if (rd_stats_y->rate == INT_MAX && mode_index == 0) {
+ return INT64_MAX;
+ }
+ continue;
+ }
+ const int skip_ctx = av1_get_skip_txfm_context(xd);
+ const int y_rate =
+ rd_stats->skip_txfm
+ ? x->mode_costs.skip_txfm_cost[skip_ctx][1]
+ : (rd_stats_y->rate + x->mode_costs.skip_txfm_cost[skip_ctx][0]);
+ this_yrd = RDCOST(x->rdmult, y_rate + mode_rate, rd_stats_y->dist);
+
+ const int64_t curr_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+ if (curr_rd < ref_best_rd) {
+ ref_best_rd = curr_rd;
+ ref_skip_rd[0] = skip_rd;
+ ref_skip_rd[1] = skip_rdy;
+ }
+ if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
+ inter_mode_data_push(
+ tile_data, mbmi->bsize, rd_stats->sse, rd_stats->dist,
+ rd_stats_y->rate + rd_stats_uv->rate +
+ mode_costs->skip_txfm_cost[skip_ctx][mbmi->skip_txfm]);
+ }
+ }
+
+ if (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV) {
+ if (is_nontrans_global_motion(xd, xd->mi[0])) {
+ mbmi->interp_filters =
+ av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));
+ }
+ }
+
+ const int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+ if (mode_index == 0) {
+ args->simple_rd[this_mode][mbmi->ref_mv_idx][mbmi->ref_frame[0]] = tmp_rd;
+ }
+ if (mode_index == 0 || tmp_rd < best_rd) {
+ // Update best_rd data if this is the best motion mode so far
+ best_mbmi = *mbmi;
+ best_rd = tmp_rd;
+ best_rd_stats = *rd_stats;
+ best_rd_stats_y = *rd_stats_y;
+ best_rate_mv = tmp_rate_mv;
+ *yrd = this_yrd;
+ if (num_planes > 1) best_rd_stats_uv = *rd_stats_uv;
+ memcpy(best_blk_skip, txfm_info->blk_skip,
+ sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
+ av1_copy_array(best_tx_type_map, xd->tx_type_map, xd->height * xd->width);
+ best_xskip_txfm = mbmi->skip_txfm;
+ }
+ }
+ // Update RD and mbmi stats for selected motion mode
+ mbmi->ref_frame[1] = ref_frame_1;
+ *rate_mv = best_rate_mv;
+ if (best_rd == INT64_MAX || !av1_check_newmv_joint_nonzero(cm, x)) {
+ av1_invalid_rd_stats(rd_stats);
+ restore_dst_buf(xd, *orig_dst, num_planes);
+ return INT64_MAX;
+ }
+ *mbmi = best_mbmi;
+ *rd_stats = best_rd_stats;
+ *rd_stats_y = best_rd_stats_y;
+ if (num_planes > 1) *rd_stats_uv = best_rd_stats_uv;
+ memcpy(txfm_info->blk_skip, best_blk_skip,
+ sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
+ av1_copy_array(xd->tx_type_map, best_tx_type_map, xd->height * xd->width);
+ txfm_info->skip_txfm = best_xskip_txfm;
+
+ restore_dst_buf(xd, *orig_dst, num_planes);
+ return 0;
+}
+
+static int64_t skip_mode_rd(RD_STATS *rd_stats, const AV1_COMP *const cpi,
+ MACROBLOCK *const x, BLOCK_SIZE bsize,
+ const BUFFER_SET *const orig_dst, int64_t best_rd) {
+ assert(bsize < BLOCK_SIZES_ALL);
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int mi_row = xd->mi_row;
+ const int mi_col = xd->mi_col;
+ int64_t total_sse = 0;
+ int64_t this_rd = INT64_MAX;
+ const int skip_mode_ctx = av1_get_skip_mode_context(xd);
+ rd_stats->rate = x->mode_costs.skip_mode_cost[skip_mode_ctx][1];
+
+ for (int plane = 0; plane < num_planes; ++plane) {
+ // Call av1_enc_build_inter_predictor() for one plane at a time.
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
+ plane, plane);
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+
+ av1_subtract_plane(x, plane_bsize, plane);
+
+ int64_t sse =
+ av1_pixel_diff_dist(x, plane, 0, 0, plane_bsize, plane_bsize, NULL);
+ if (is_cur_buf_hbd(xd)) sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2);
+ sse <<= 4;
+ total_sse += sse;
+ // When current rd cost is more than the best rd, skip evaluation of
+ // remaining planes.
+ this_rd = RDCOST(x->rdmult, rd_stats->rate, total_sse);
+ if (this_rd > best_rd) break;
+ }
+
+ rd_stats->dist = rd_stats->sse = total_sse;
+ rd_stats->rdcost = this_rd;
+
+ restore_dst_buf(xd, *orig_dst, num_planes);
+ return 0;
+}
+
+// Check NEARESTMV, NEARMV, GLOBALMV ref mvs for duplicate and skip the relevant
+// mode
+// Note(rachelbarker): This speed feature currently does not interact correctly
+// with global motion. The issue is that, when global motion is used, GLOBALMV
+// produces a different prediction to NEARESTMV/NEARMV even if the motion
+// vectors are the same. Thus GLOBALMV should not be pruned in this case.
+static INLINE int check_repeat_ref_mv(const MB_MODE_INFO_EXT *mbmi_ext,
+ int ref_idx,
+ const MV_REFERENCE_FRAME *ref_frame,
+ PREDICTION_MODE single_mode) {
+ const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame);
+ const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
+ assert(single_mode != NEWMV);
+ if (single_mode == NEARESTMV) {
+ return 0;
+ } else if (single_mode == NEARMV) {
+ // when ref_mv_count = 0, NEARESTMV and NEARMV are same as GLOBALMV
+ // when ref_mv_count = 1, NEARMV is same as GLOBALMV
+ if (ref_mv_count < 2) return 1;
+ } else if (single_mode == GLOBALMV) {
+ // when ref_mv_count == 0, GLOBALMV is same as NEARESTMV
+ if (ref_mv_count == 0) return 1;
+ // when ref_mv_count == 1, NEARMV is same as GLOBALMV
+ else if (ref_mv_count == 1)
+ return 0;
+
+ int stack_size = AOMMIN(USABLE_REF_MV_STACK_SIZE, ref_mv_count);
+ // Check GLOBALMV is matching with any mv in ref_mv_stack
+ for (int ref_mv_idx = 0; ref_mv_idx < stack_size; ref_mv_idx++) {
+ int_mv this_mv;
+
+ if (ref_idx == 0)
+ this_mv = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv;
+ else
+ this_mv = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv;
+
+ if (this_mv.as_int == mbmi_ext->global_mvs[ref_frame[ref_idx]].as_int)
+ return 1;
+ }
+ }
+ return 0;
+}
+
+static INLINE int get_this_mv(int_mv *this_mv, PREDICTION_MODE this_mode,
+ int ref_idx, int ref_mv_idx,
+ int skip_repeated_ref_mv,
+ const MV_REFERENCE_FRAME *ref_frame,
+ const MB_MODE_INFO_EXT *mbmi_ext) {
+ const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx);
+ assert(is_inter_singleref_mode(single_mode));
+ if (single_mode == NEWMV) {
+ this_mv->as_int = INVALID_MV;
+ } else if (single_mode == GLOBALMV) {
+ if (skip_repeated_ref_mv &&
+ check_repeat_ref_mv(mbmi_ext, ref_idx, ref_frame, single_mode))
+ return 0;
+ *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]];
+ } else {
+ assert(single_mode == NEARMV || single_mode == NEARESTMV);
+ const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame);
+ const int ref_mv_offset = single_mode == NEARESTMV ? 0 : ref_mv_idx + 1;
+ if (ref_mv_offset < mbmi_ext->ref_mv_count[ref_frame_type]) {
+ assert(ref_mv_offset >= 0);
+ if (ref_idx == 0) {
+ *this_mv =
+ mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].this_mv;
+ } else {
+ *this_mv =
+ mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].comp_mv;
+ }
+ } else {
+ if (skip_repeated_ref_mv &&
+ check_repeat_ref_mv(mbmi_ext, ref_idx, ref_frame, single_mode))
+ return 0;
+ *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]];
+ }
+ }
+ return 1;
+}
+
+// Skip NEARESTMV and NEARMV modes based on refmv weight computed in ref mv list
+// population
+static INLINE int skip_nearest_near_mv_using_refmv_weight(
+ const MACROBLOCK *const x, const PREDICTION_MODE this_mode,
+ const int8_t ref_frame_type, PREDICTION_MODE best_mode) {
+ if (this_mode != NEARESTMV && this_mode != NEARMV) return 0;
+ // Do not skip the mode if the current block has not yet obtained a valid
+ // inter mode.
+ if (!is_inter_mode(best_mode)) return 0;
+
+ const MACROBLOCKD *xd = &x->e_mbd;
+ // Do not skip the mode if both the top and left neighboring blocks are not
+ // available.
+ if (!xd->left_available || !xd->up_available) return 0;
+ const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
+ const uint16_t *const ref_mv_weight = mbmi_ext->weight[ref_frame_type];
+ const int ref_mv_count =
+ AOMMIN(MAX_REF_MV_SEARCH, mbmi_ext->ref_mv_count[ref_frame_type]);
+
+ if (ref_mv_count == 0) return 0;
+ // If ref mv list has at least one nearest candidate do not prune NEARESTMV
+ if (this_mode == NEARESTMV && ref_mv_weight[0] >= REF_CAT_LEVEL) return 0;
+
+ // Count number of ref mvs populated from nearest candidates
+ int nearest_refmv_count = 0;
+ for (int ref_mv_idx = 0; ref_mv_idx < ref_mv_count; ref_mv_idx++) {
+ if (ref_mv_weight[ref_mv_idx] >= REF_CAT_LEVEL) nearest_refmv_count++;
+ }
+
+ // nearest_refmv_count indicates the closeness of block motion characteristics
+ // with respect to its spatial neighbor. Smaller value of nearest_refmv_count
+ // w.r.t to ref_mv_count means less correlation with its spatial neighbors.
+ // Hence less possibility for NEARESTMV and NEARMV modes becoming the best
+ // mode since these modes work well for blocks that shares similar motion
+ // characteristics with its neighbor. Thus, NEARMV mode is pruned when
+ // nearest_refmv_count is relatively smaller than ref_mv_count and NEARESTMV
+ // mode is pruned if none of the ref mvs are populated from nearest candidate.
+ const int prune_thresh = 1 + (ref_mv_count >= 2);
+ if (nearest_refmv_count < prune_thresh) return 1;
+ return 0;
+}
+
+// This function update the non-new mv for the current prediction mode
+static INLINE int build_cur_mv(int_mv *cur_mv, PREDICTION_MODE this_mode,
+ const AV1_COMMON *cm, const MACROBLOCK *x,
+ int skip_repeated_ref_mv) {
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const MB_MODE_INFO *mbmi = xd->mi[0];
+ const int is_comp_pred = has_second_ref(mbmi);
+
+ int ret = 1;
+ for (int i = 0; i < is_comp_pred + 1; ++i) {
+ int_mv this_mv;
+ this_mv.as_int = INVALID_MV;
+ ret = get_this_mv(&this_mv, this_mode, i, mbmi->ref_mv_idx,
+ skip_repeated_ref_mv, mbmi->ref_frame, &x->mbmi_ext);
+ if (!ret) return 0;
+ const PREDICTION_MODE single_mode = get_single_mode(this_mode, i);
+ if (single_mode == NEWMV) {
+ const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
+ cur_mv[i] =
+ (i == 0) ? x->mbmi_ext.ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx]
+ .this_mv
+ : x->mbmi_ext.ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx]
+ .comp_mv;
+ } else {
+ ret &= clamp_and_check_mv(cur_mv + i, this_mv, cm, x);
+ }
+ }
+ return ret;
+}
+
+static INLINE int get_drl_cost(const MB_MODE_INFO *mbmi,
+ const MB_MODE_INFO_EXT *mbmi_ext,
+ const int (*const drl_mode_cost0)[2],
+ int8_t ref_frame_type) {
+ int cost = 0;
+ if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) {
+ for (int idx = 0; idx < 2; ++idx) {
+ if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
+ uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
+ cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != idx];
+ if (mbmi->ref_mv_idx == idx) return cost;
+ }
+ }
+ return cost;
+ }
+
+ if (have_nearmv_in_inter_mode(mbmi->mode)) {
+ for (int idx = 1; idx < 3; ++idx) {
+ if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
+ uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
+ cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != (idx - 1)];
+ if (mbmi->ref_mv_idx == (idx - 1)) return cost;
+ }
+ }
+ return cost;
+ }
+ return cost;
+}
+
+static INLINE int is_single_newmv_valid(const HandleInterModeArgs *const args,
+ const MB_MODE_INFO *const mbmi,
+ PREDICTION_MODE this_mode) {
+ for (int ref_idx = 0; ref_idx < 2; ++ref_idx) {
+ const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx);
+ const MV_REFERENCE_FRAME ref = mbmi->ref_frame[ref_idx];
+ if (single_mode == NEWMV &&
+ args->single_newmv_valid[mbmi->ref_mv_idx][ref] == 0) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+static int get_drl_refmv_count(const MACROBLOCK *const x,
+ const MV_REFERENCE_FRAME *ref_frame,
+ PREDICTION_MODE mode) {
+ const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
+ const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
+ const int has_nearmv = have_nearmv_in_inter_mode(mode) ? 1 : 0;
+ const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
+ const int only_newmv = (mode == NEWMV || mode == NEW_NEWMV);
+ const int has_drl =
+ (has_nearmv && ref_mv_count > 2) || (only_newmv && ref_mv_count > 1);
+ const int ref_set =
+ has_drl ? AOMMIN(MAX_REF_MV_SEARCH, ref_mv_count - has_nearmv) : 1;
+
+ return ref_set;
+}
+
+// Checks if particular ref_mv_idx should be pruned.
+static int prune_ref_mv_idx_using_qindex(const int reduce_inter_modes,
+ const int qindex,
+ const int ref_mv_idx) {
+ if (reduce_inter_modes >= 3) return 1;
+ // Q-index logic based pruning is enabled only for
+ // reduce_inter_modes = 2.
+ assert(reduce_inter_modes == 2);
+ // When reduce_inter_modes=2, pruning happens as below based on q index.
+ // For q index range between 0 and 85: prune if ref_mv_idx >= 1.
+ // For q index range between 86 and 170: prune if ref_mv_idx == 2.
+ // For q index range between 171 and 255: no pruning.
+ const int min_prune_ref_mv_idx = (qindex * 3 / QINDEX_RANGE) + 1;
+ return (ref_mv_idx >= min_prune_ref_mv_idx);
+}
+
+// Whether this reference motion vector can be skipped, based on initial
+// heuristics.
+static bool ref_mv_idx_early_breakout(
+ const SPEED_FEATURES *const sf,
+ const RefFrameDistanceInfo *const ref_frame_dist_info, MACROBLOCK *x,
+ const HandleInterModeArgs *const args, int64_t ref_best_rd,
+ int ref_mv_idx) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
+ const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
+ const int is_comp_pred = has_second_ref(mbmi);
+ if (sf->inter_sf.reduce_inter_modes && ref_mv_idx > 0) {
+ if (mbmi->ref_frame[0] == LAST2_FRAME ||
+ mbmi->ref_frame[0] == LAST3_FRAME ||
+ mbmi->ref_frame[1] == LAST2_FRAME ||
+ mbmi->ref_frame[1] == LAST3_FRAME) {
+ const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0;
+ if (mbmi_ext->weight[ref_frame_type][ref_mv_idx + has_nearmv] <
+ REF_CAT_LEVEL) {
+ return true;
+ }
+ }
+ // TODO(any): Experiment with reduce_inter_modes for compound prediction
+ if (sf->inter_sf.reduce_inter_modes >= 2 && !is_comp_pred &&
+ have_newmv_in_inter_mode(mbmi->mode)) {
+ if (mbmi->ref_frame[0] != ref_frame_dist_info->nearest_past_ref &&
+ mbmi->ref_frame[0] != ref_frame_dist_info->nearest_future_ref) {
+ const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0;
+ const int do_prune = prune_ref_mv_idx_using_qindex(
+ sf->inter_sf.reduce_inter_modes, x->qindex, ref_mv_idx);
+ if (do_prune &&
+ (mbmi_ext->weight[ref_frame_type][ref_mv_idx + has_nearmv] <
+ REF_CAT_LEVEL)) {
+ return true;
+ }
+ }
+ }
+ }
+
+ mbmi->ref_mv_idx = ref_mv_idx;
+ if (is_comp_pred && (!is_single_newmv_valid(args, mbmi, mbmi->mode))) {
+ return true;
+ }
+ size_t est_rd_rate = args->ref_frame_cost + args->single_comp_cost;
+ const int drl_cost = get_drl_cost(
+ mbmi, mbmi_ext, x->mode_costs.drl_mode_cost0, ref_frame_type);
+ est_rd_rate += drl_cost;
+ if (RDCOST(x->rdmult, est_rd_rate, 0) > ref_best_rd &&
+ mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) {
+ return true;
+ }
+ return false;
+}
+
+// Compute the estimated RD cost for the motion vector with simple translation.
+static int64_t simple_translation_pred_rd(AV1_COMP *const cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats,
+ HandleInterModeArgs *args,
+ int ref_mv_idx, int64_t ref_best_rd,
+ BLOCK_SIZE bsize) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
+ const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
+ const AV1_COMMON *cm = &cpi->common;
+ const int is_comp_pred = has_second_ref(mbmi);
+ const ModeCosts *mode_costs = &x->mode_costs;
+
+ struct macroblockd_plane *p = xd->plane;
+ const BUFFER_SET orig_dst = {
+ { p[0].dst.buf, p[1].dst.buf, p[2].dst.buf },
+ { p[0].dst.stride, p[1].dst.stride, p[2].dst.stride },
+ };
+ av1_init_rd_stats(rd_stats);
+
+ mbmi->interinter_comp.type = COMPOUND_AVERAGE;
+ mbmi->comp_group_idx = 0;
+ mbmi->compound_idx = 1;
+ if (mbmi->ref_frame[1] == INTRA_FRAME) {
+ mbmi->ref_frame[1] = NONE_FRAME;
+ }
+ int16_t mode_ctx =
+ av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
+
+ mbmi->num_proj_ref = 0;
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ mbmi->ref_mv_idx = ref_mv_idx;
+
+ rd_stats->rate += args->ref_frame_cost + args->single_comp_cost;
+ const int drl_cost =
+ get_drl_cost(mbmi, mbmi_ext, mode_costs->drl_mode_cost0, ref_frame_type);
+ rd_stats->rate += drl_cost;
+
+ int_mv cur_mv[2];
+ if (!build_cur_mv(cur_mv, mbmi->mode, cm, x, 0)) {
+ return INT64_MAX;
+ }
+ assert(have_nearmv_in_inter_mode(mbmi->mode));
+ for (int i = 0; i < is_comp_pred + 1; ++i) {
+ mbmi->mv[i].as_int = cur_mv[i].as_int;
+ }
+ const int ref_mv_cost = cost_mv_ref(mode_costs, mbmi->mode, mode_ctx);
+ rd_stats->rate += ref_mv_cost;
+
+ if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd) {
+ return INT64_MAX;
+ }
+
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ mbmi->num_proj_ref = 0;
+ if (is_comp_pred) {
+ // Only compound_average
+ mbmi->interinter_comp.type = COMPOUND_AVERAGE;
+ mbmi->comp_group_idx = 0;
+ mbmi->compound_idx = 1;
+ }
+ set_default_interp_filters(mbmi, cm->features.interp_filter);
+
+ const int mi_row = xd->mi_row;
+ const int mi_col = xd->mi_col;
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize,
+ AOM_PLANE_Y, AOM_PLANE_Y);
+ int est_rate;
+ int64_t est_dist;
+ model_rd_sb_fn[MODELRD_CURVFIT](cpi, bsize, x, xd, 0, 0, &est_rate, &est_dist,
+ NULL, NULL, NULL, NULL, NULL);
+ return RDCOST(x->rdmult, rd_stats->rate + est_rate, est_dist);
+}
+
+// Represents a set of integers, from 0 to sizeof(int) * 8, as bits in
+// an integer. 0 for the i-th bit means that integer is excluded, 1 means
+// it is included.
+static INLINE void mask_set_bit(int *mask, int index) { *mask |= (1 << index); }
+
+static INLINE bool mask_check_bit(int mask, int index) {
+ return (mask >> index) & 0x1;
+}
+
+// Before performing the full MV search in handle_inter_mode, do a simple
+// translation search and see if we can eliminate any motion vectors.
+// Returns an integer where, if the i-th bit is set, it means that the i-th
+// motion vector should be searched. This is only set for NEAR_MV.
+static int ref_mv_idx_to_search(AV1_COMP *const cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats,
+ HandleInterModeArgs *const args,
+ int64_t ref_best_rd, BLOCK_SIZE bsize,
+ const int ref_set) {
+ // If the number of ref mv count is equal to 1, do not prune the same. It
+ // is better to evaluate the same than to prune it.
+ if (ref_set == 1) return 1;
+ AV1_COMMON *const cm = &cpi->common;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const PREDICTION_MODE this_mode = mbmi->mode;
+
+ // Only search indices if they have some chance of being good.
+ int good_indices = 0;
+ for (int i = 0; i < ref_set; ++i) {
+ if (ref_mv_idx_early_breakout(&cpi->sf, &cpi->ref_frame_dist_info, x, args,
+ ref_best_rd, i)) {
+ continue;
+ }
+ mask_set_bit(&good_indices, i);
+ }
+
+ // Only prune in NEARMV mode, if the speed feature is set, and the block size
+ // is large enough. If these conditions are not met, return all good indices
+ // found so far.
+ if (!cpi->sf.inter_sf.prune_mode_search_simple_translation)
+ return good_indices;
+ if (!have_nearmv_in_inter_mode(this_mode)) return good_indices;
+ if (num_pels_log2_lookup[bsize] <= 6) return good_indices;
+ // Do not prune when there is internal resizing. TODO(elliottk) fix this
+ // so b/2384 can be resolved.
+ if (av1_is_scaled(get_ref_scale_factors(cm, mbmi->ref_frame[0])) ||
+ (mbmi->ref_frame[1] > 0 &&
+ av1_is_scaled(get_ref_scale_factors(cm, mbmi->ref_frame[1])))) {
+ return good_indices;
+ }
+
+ // Calculate the RD cost for the motion vectors using simple translation.
+ int64_t idx_rdcost[] = { INT64_MAX, INT64_MAX, INT64_MAX };
+ for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) {
+ // If this index is bad, ignore it.
+ if (!mask_check_bit(good_indices, ref_mv_idx)) {
+ continue;
+ }
+ idx_rdcost[ref_mv_idx] = simple_translation_pred_rd(
+ cpi, x, rd_stats, args, ref_mv_idx, ref_best_rd, bsize);
+ }
+ // Find the index with the best RD cost.
+ int best_idx = 0;
+ for (int i = 1; i < MAX_REF_MV_SEARCH; ++i) {
+ if (idx_rdcost[i] < idx_rdcost[best_idx]) {
+ best_idx = i;
+ }
+ }
+ // Only include indices that are good and within a % of the best.
+ const double dth = has_second_ref(mbmi) ? 1.05 : 1.001;
+ // If the simple translation cost is not within this multiple of the
+ // best RD, skip it. Note that the cutoff is derived experimentally.
+ const double ref_dth = 5;
+ int result = 0;
+ for (int i = 0; i < ref_set; ++i) {
+ if (mask_check_bit(good_indices, i) &&
+ (1.0 * idx_rdcost[i]) / idx_rdcost[best_idx] < dth &&
+ (1.0 * idx_rdcost[i]) / ref_best_rd < ref_dth) {
+ mask_set_bit(&result, i);
+ }
+ }
+ return result;
+}
+
+/*!\brief Motion mode information for inter mode search speedup.
+ *
+ * Used in a speed feature to search motion modes other than
+ * SIMPLE_TRANSLATION only on winning candidates.
+ */
+typedef struct motion_mode_candidate {
+ /*!
+ * Mode info for the motion mode candidate.
+ */
+ MB_MODE_INFO mbmi;
+ /*!
+ * Rate describing the cost of the motion vectors for this candidate.
+ */
+ int rate_mv;
+ /*!
+ * Rate before motion mode search and transform coding is applied.
+ */
+ int rate2_nocoeff;
+ /*!
+ * An integer value 0 or 1 which indicates whether or not to skip the motion
+ * mode search and default to SIMPLE_TRANSLATION as a speed feature for this
+ * candidate.
+ */
+ int skip_motion_mode;
+ /*!
+ * Total RD cost for this candidate.
+ */
+ int64_t rd_cost;
+} motion_mode_candidate;
+
+/*!\cond */
+typedef struct motion_mode_best_st_candidate {
+ motion_mode_candidate motion_mode_cand[MAX_WINNER_MOTION_MODES];
+ int num_motion_mode_cand;
+} motion_mode_best_st_candidate;
+
+// Checks if the current reference frame matches with neighbouring block's
+// (top/left) reference frames
+static AOM_INLINE int ref_match_found_in_nb_blocks(MB_MODE_INFO *cur_mbmi,
+ MB_MODE_INFO *nb_mbmi) {
+ MV_REFERENCE_FRAME nb_ref_frames[2] = { nb_mbmi->ref_frame[0],
+ nb_mbmi->ref_frame[1] };
+ MV_REFERENCE_FRAME cur_ref_frames[2] = { cur_mbmi->ref_frame[0],
+ cur_mbmi->ref_frame[1] };
+ const int is_cur_comp_pred = has_second_ref(cur_mbmi);
+ int match_found = 0;
+
+ for (int i = 0; i < (is_cur_comp_pred + 1); i++) {
+ if ((cur_ref_frames[i] == nb_ref_frames[0]) ||
+ (cur_ref_frames[i] == nb_ref_frames[1]))
+ match_found = 1;
+ }
+ return match_found;
+}
+
+static AOM_INLINE int find_ref_match_in_above_nbs(const int total_mi_cols,
+ MACROBLOCKD *xd) {
+ if (!xd->up_available) return 1;
+ const int mi_col = xd->mi_col;
+ MB_MODE_INFO **cur_mbmi = xd->mi;
+ // prev_row_mi points into the mi array, starting at the beginning of the
+ // previous row.
+ MB_MODE_INFO **prev_row_mi = xd->mi - mi_col - 1 * xd->mi_stride;
+ const int end_col = AOMMIN(mi_col + xd->width, total_mi_cols);
+ uint8_t mi_step;
+ for (int above_mi_col = mi_col; above_mi_col < end_col;
+ above_mi_col += mi_step) {
+ MB_MODE_INFO **above_mi = prev_row_mi + above_mi_col;
+ mi_step = mi_size_wide[above_mi[0]->bsize];
+ int match_found = 0;
+ if (is_inter_block(*above_mi))
+ match_found = ref_match_found_in_nb_blocks(*cur_mbmi, *above_mi);
+ if (match_found) return 1;
+ }
+ return 0;
+}
+
+static AOM_INLINE int find_ref_match_in_left_nbs(const int total_mi_rows,
+ MACROBLOCKD *xd) {
+ if (!xd->left_available) return 1;
+ const int mi_row = xd->mi_row;
+ MB_MODE_INFO **cur_mbmi = xd->mi;
+ // prev_col_mi points into the mi array, starting at the top of the
+ // previous column
+ MB_MODE_INFO **prev_col_mi = xd->mi - 1 - mi_row * xd->mi_stride;
+ const int end_row = AOMMIN(mi_row + xd->height, total_mi_rows);
+ uint8_t mi_step;
+ for (int left_mi_row = mi_row; left_mi_row < end_row;
+ left_mi_row += mi_step) {
+ MB_MODE_INFO **left_mi = prev_col_mi + left_mi_row * xd->mi_stride;
+ mi_step = mi_size_high[left_mi[0]->bsize];
+ int match_found = 0;
+ if (is_inter_block(*left_mi))
+ match_found = ref_match_found_in_nb_blocks(*cur_mbmi, *left_mi);
+ if (match_found) return 1;
+ }
+ return 0;
+}
+/*!\endcond */
+
+/*! \brief Struct used to hold TPL data to
+ * narrow down parts of the inter mode search.
+ */
+typedef struct {
+ /*!
+ * The best inter cost out of all of the reference frames.
+ */
+ int64_t best_inter_cost;
+ /*!
+ * The inter cost for each reference frame.
+ */
+ int64_t ref_inter_cost[INTER_REFS_PER_FRAME];
+} PruneInfoFromTpl;
+
+#if !CONFIG_REALTIME_ONLY
+// TODO(Remya): Check if get_tpl_stats_b() can be reused
+static AOM_INLINE void get_block_level_tpl_stats(
+ AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, int mi_col, int *valid_refs,
+ PruneInfoFromTpl *inter_cost_info_from_tpl) {
+ AV1_COMMON *const cm = &cpi->common;
+
+ assert(IMPLIES(cpi->ppi->gf_group.size > 0,
+ cpi->gf_frame_index < cpi->ppi->gf_group.size));
+ const int tpl_idx = cpi->gf_frame_index;
+ TplParams *const tpl_data = &cpi->ppi->tpl_data;
+ if (!av1_tpl_stats_ready(tpl_data, tpl_idx)) return;
+ const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
+ const TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+ const int mi_wide = mi_size_wide[bsize];
+ const int mi_high = mi_size_high[bsize];
+ const int tpl_stride = tpl_frame->stride;
+ const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
+ const int mi_col_sr =
+ coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
+ const int mi_col_end_sr =
+ coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
+ const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
+
+ const int row_step = step;
+ const int col_step_sr =
+ coded_to_superres_mi(step, cm->superres_scale_denominator);
+ for (int row = mi_row; row < AOMMIN(mi_row + mi_high, cm->mi_params.mi_rows);
+ row += row_step) {
+ for (int col = mi_col_sr; col < AOMMIN(mi_col_end_sr, mi_cols_sr);
+ col += col_step_sr) {
+ const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
+ row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
+
+ // Sums up the inter cost of corresponding ref frames
+ for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ref_idx++) {
+ inter_cost_info_from_tpl->ref_inter_cost[ref_idx] +=
+ this_stats->pred_error[ref_idx];
+ }
+ }
+ }
+
+ // Computes the best inter cost (minimum inter_cost)
+ int64_t best_inter_cost = INT64_MAX;
+ for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ref_idx++) {
+ const int64_t cur_inter_cost =
+ inter_cost_info_from_tpl->ref_inter_cost[ref_idx];
+ // For invalid ref frames, cur_inter_cost = 0 and has to be handled while
+ // calculating the minimum inter_cost
+ if (cur_inter_cost != 0 && (cur_inter_cost < best_inter_cost) &&
+ valid_refs[ref_idx])
+ best_inter_cost = cur_inter_cost;
+ }
+ inter_cost_info_from_tpl->best_inter_cost = best_inter_cost;
+}
+#endif
+
+static AOM_INLINE int prune_modes_based_on_tpl_stats(
+ PruneInfoFromTpl *inter_cost_info_from_tpl, const int *refs, int ref_mv_idx,
+ const PREDICTION_MODE this_mode, int prune_mode_level) {
+ const int have_newmv = have_newmv_in_inter_mode(this_mode);
+ if ((prune_mode_level < 2) && have_newmv) return 0;
+
+ const int64_t best_inter_cost = inter_cost_info_from_tpl->best_inter_cost;
+ if (best_inter_cost == INT64_MAX) return 0;
+
+ const int prune_level = prune_mode_level - 1;
+ int64_t cur_inter_cost;
+
+ const int is_globalmv =
+ (this_mode == GLOBALMV) || (this_mode == GLOBAL_GLOBALMV);
+ const int prune_index = is_globalmv ? MAX_REF_MV_SEARCH : ref_mv_idx;
+
+ // Thresholds used for pruning:
+ // Lower value indicates aggressive pruning and higher value indicates
+ // conservative pruning which is set based on ref_mv_idx and speed feature.
+ // 'prune_index' 0, 1, 2 corresponds to ref_mv indices 0, 1 and 2. prune_index
+ // 3 corresponds to GLOBALMV/GLOBAL_GLOBALMV
+ static const int tpl_inter_mode_prune_mul_factor[3][MAX_REF_MV_SEARCH + 1] = {
+ { 6, 6, 6, 4 }, { 6, 4, 4, 4 }, { 5, 4, 4, 4 }
+ };
+
+ const int is_comp_pred = (refs[1] > INTRA_FRAME);
+ if (!is_comp_pred) {
+ cur_inter_cost = inter_cost_info_from_tpl->ref_inter_cost[refs[0] - 1];
+ } else {
+ const int64_t inter_cost_ref0 =
+ inter_cost_info_from_tpl->ref_inter_cost[refs[0] - 1];
+ const int64_t inter_cost_ref1 =
+ inter_cost_info_from_tpl->ref_inter_cost[refs[1] - 1];
+ // Choose maximum inter_cost among inter_cost_ref0 and inter_cost_ref1 for
+ // more aggressive pruning
+ cur_inter_cost = AOMMAX(inter_cost_ref0, inter_cost_ref1);
+ }
+
+ // Prune the mode if cur_inter_cost is greater than threshold times
+ // best_inter_cost
+ if (cur_inter_cost >
+ ((tpl_inter_mode_prune_mul_factor[prune_level][prune_index] *
+ best_inter_cost) >>
+ 2))
+ return 1;
+ return 0;
+}
+
+/*!\brief High level function to select parameters for compound mode.
+ *
+ * \ingroup inter_mode_search
+ * The main search functionality is done in the call to av1_compound_type_rd().
+ *
+ * \param[in] cpi Top-level encoder structure.
+ * \param[in] x Pointer to struct holding all the data for
+ * the current macroblock.
+ * \param[in] args HandleInterModeArgs struct holding
+ * miscellaneous arguments for inter mode
+ * search. See the documentation for this
+ * struct for a description of each member.
+ * \param[in] ref_best_rd Best RD found so far for this block.
+ * It is used for early termination of this
+ * search if the RD exceeds this value.
+ * \param[in,out] cur_mv Current motion vector.
+ * \param[in] bsize Current block size.
+ * \param[in,out] compmode_interinter_cost RD of the selected interinter
+ compound mode.
+ * \param[in,out] rd_buffers CompoundTypeRdBuffers struct to hold all
+ * allocated buffers for the compound
+ * predictors and masks in the compound type
+ * search.
+ * \param[in,out] orig_dst A prediction buffer to hold a computed
+ * prediction. This will eventually hold the
+ * final prediction, and the tmp_dst info will
+ * be copied here.
+ * \param[in] tmp_dst A temporary prediction buffer to hold a
+ * computed prediction.
+ * \param[in,out] rate_mv The rate associated with the motion vectors.
+ * This will be modified if a motion search is
+ * done in the motion mode search.
+ * \param[in,out] rd_stats Struct to keep track of the overall RD
+ * information.
+ * \param[in,out] skip_rd An array of length 2 where skip_rd[0] is the
+ * best total RD for a skip mode so far, and
+ * skip_rd[1] is the best RD for a skip mode so
+ * far in luma. This is used as a speed feature
+ * to skip the transform search if the computed
+ * skip RD for the current mode is not better
+ * than the best skip_rd so far.
+ * \param[in,out] skip_build_pred Indicates whether or not to build the inter
+ * predictor. If this is 0, the inter predictor
+ * has already been built and thus we can avoid
+ * repeating computation.
+ * \return Returns 1 if this mode is worse than one already seen and 0 if it is
+ * a viable candidate.
+ */
+static int process_compound_inter_mode(
+ AV1_COMP *const cpi, MACROBLOCK *x, HandleInterModeArgs *args,
+ int64_t ref_best_rd, int_mv *cur_mv, BLOCK_SIZE bsize,
+ int *compmode_interinter_cost, const CompoundTypeRdBuffers *rd_buffers,
+ const BUFFER_SET *orig_dst, const BUFFER_SET *tmp_dst, int *rate_mv,
+ RD_STATS *rd_stats, int64_t *skip_rd, int *skip_build_pred) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const AV1_COMMON *cm = &cpi->common;
+ const int masked_compound_used = is_any_masked_compound_used(bsize) &&
+ cm->seq_params->enable_masked_compound;
+ int mode_search_mask = (1 << COMPOUND_AVERAGE) | (1 << COMPOUND_DISTWTD) |
+ (1 << COMPOUND_WEDGE) | (1 << COMPOUND_DIFFWTD);
+
+ const int num_planes = av1_num_planes(cm);
+ const int mi_row = xd->mi_row;
+ const int mi_col = xd->mi_col;
+ int is_luma_interp_done = 0;
+ set_default_interp_filters(mbmi, cm->features.interp_filter);
+
+ int64_t best_rd_compound;
+ int64_t rd_thresh;
+ const int comp_type_rd_shift = COMP_TYPE_RD_THRESH_SHIFT;
+ const int comp_type_rd_scale = COMP_TYPE_RD_THRESH_SCALE;
+ rd_thresh = get_rd_thresh_from_best_rd(ref_best_rd, (1 << comp_type_rd_shift),
+ comp_type_rd_scale);
+ // Select compound type and any parameters related to that type
+ // (for example, the mask parameters if it is a masked mode) and compute
+ // the RD
+ *compmode_interinter_cost = av1_compound_type_rd(
+ cpi, x, args, bsize, cur_mv, mode_search_mask, masked_compound_used,
+ orig_dst, tmp_dst, rd_buffers, rate_mv, &best_rd_compound, rd_stats,
+ ref_best_rd, skip_rd[1], &is_luma_interp_done, rd_thresh);
+ if (ref_best_rd < INT64_MAX &&
+ (best_rd_compound >> comp_type_rd_shift) * comp_type_rd_scale >
+ ref_best_rd) {
+ restore_dst_buf(xd, *orig_dst, num_planes);
+ return 1;
+ }
+
+ // Build only uv predictor for COMPOUND_AVERAGE.
+ // Note there is no need to call av1_enc_build_inter_predictor
+ // for luma if COMPOUND_AVERAGE is selected because it is the first
+ // candidate in av1_compound_type_rd, which means it used the dst_buf
+ // rather than the tmp_buf.
+ if (mbmi->interinter_comp.type == COMPOUND_AVERAGE && is_luma_interp_done) {
+ if (num_planes > 1) {
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
+ AOM_PLANE_U, num_planes - 1);
+ }
+ *skip_build_pred = 1;
+ }
+ return 0;
+}
+
+// Speed feature to prune out MVs that are similar to previous MVs if they
+// don't achieve the best RD advantage.
+static int prune_ref_mv_idx_search(int ref_mv_idx, int best_ref_mv_idx,
+ int_mv save_mv[MAX_REF_MV_SEARCH - 1][2],
+ MB_MODE_INFO *mbmi, int pruning_factor) {
+ int i;
+ const int is_comp_pred = has_second_ref(mbmi);
+ const int thr = (1 + is_comp_pred) << (pruning_factor + 1);
+
+ // Skip the evaluation if an MV match is found.
+ if (ref_mv_idx > 0) {
+ for (int idx = 0; idx < ref_mv_idx; ++idx) {
+ if (save_mv[idx][0].as_int == INVALID_MV) continue;
+
+ int mv_diff = 0;
+ for (i = 0; i < 1 + is_comp_pred; ++i) {
+ mv_diff += abs(save_mv[idx][i].as_mv.row - mbmi->mv[i].as_mv.row) +
+ abs(save_mv[idx][i].as_mv.col - mbmi->mv[i].as_mv.col);
+ }
+
+ // If this mode is not the best one, and current MV is similar to
+ // previous stored MV, terminate this ref_mv_idx evaluation.
+ if (best_ref_mv_idx == -1 && mv_diff <= thr) return 1;
+ }
+ }
+
+ if (ref_mv_idx < MAX_REF_MV_SEARCH - 1) {
+ for (i = 0; i < is_comp_pred + 1; ++i)
+ save_mv[ref_mv_idx][i].as_int = mbmi->mv[i].as_int;
+ }
+
+ return 0;
+}
+
+/*!\brief Prunes ZeroMV Search Using Best NEWMV's SSE
+ *
+ * \ingroup inter_mode_search
+ *
+ * Compares the sse of zero mv and the best sse found in single new_mv. If the
+ * sse of the zero_mv is higher, returns 1 to signal zero_mv can be skipped.
+ * Else returns 0.
+ *
+ * Note that the sse of here comes from single_motion_search. So it is
+ * interpolated with the filter in motion search, not the actual interpolation
+ * filter used in encoding.
+ *
+ * \param[in] fn_ptr A table of function pointers to compute SSE.
+ * \param[in] x Pointer to struct holding all the data for
+ * the current macroblock.
+ * \param[in] bsize The current block_size.
+ * \param[in] args The args to handle_inter_mode, used to track
+ * the best SSE.
+ * \param[in] prune_zero_mv_with_sse The argument holds speed feature
+ * prune_zero_mv_with_sse value
+ * \return Returns 1 if zero_mv is pruned, 0 otherwise.
+ */
+static AOM_INLINE int prune_zero_mv_with_sse(
+ const aom_variance_fn_ptr_t *fn_ptr, const MACROBLOCK *x, BLOCK_SIZE bsize,
+ const HandleInterModeArgs *args, int prune_zero_mv_with_sse) {
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const MB_MODE_INFO *mbmi = xd->mi[0];
+
+ const int is_comp_pred = has_second_ref(mbmi);
+ const MV_REFERENCE_FRAME *refs = mbmi->ref_frame;
+
+ for (int idx = 0; idx < 1 + is_comp_pred; idx++) {
+ if (xd->global_motion[refs[idx]].wmtype != IDENTITY) {
+ // Pruning logic only works for IDENTITY type models
+ // Note: In theory we could apply similar logic for TRANSLATION
+ // type models, but we do not code these due to a spec bug
+ // (see comments in gm_get_motion_vector() in av1/common/mv.h)
+ assert(xd->global_motion[refs[idx]].wmtype != TRANSLATION);
+ return 0;
+ }
+
+ // Don't prune if we have invalid data
+ assert(mbmi->mv[idx].as_int == 0);
+ if (args->best_single_sse_in_refs[refs[idx]] == INT32_MAX) {
+ return 0;
+ }
+ }
+
+ // Sum up the sse of ZEROMV and best NEWMV
+ unsigned int this_sse_sum = 0;
+ unsigned int best_sse_sum = 0;
+ for (int idx = 0; idx < 1 + is_comp_pred; idx++) {
+ const struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
+ const struct macroblockd_plane *pd = xd->plane;
+ const struct buf_2d *src_buf = &p->src;
+ const struct buf_2d *ref_buf = &pd->pre[idx];
+ const uint8_t *src = src_buf->buf;
+ const uint8_t *ref = ref_buf->buf;
+ const int src_stride = src_buf->stride;
+ const int ref_stride = ref_buf->stride;
+
+ unsigned int this_sse;
+ fn_ptr[bsize].vf(ref, ref_stride, src, src_stride, &this_sse);
+ this_sse_sum += this_sse;
+
+ const unsigned int best_sse = args->best_single_sse_in_refs[refs[idx]];
+ best_sse_sum += best_sse;
+ }
+
+ const double mul = prune_zero_mv_with_sse > 1 ? 1.00 : 1.25;
+ if ((double)this_sse_sum > (mul * (double)best_sse_sum)) {
+ return 1;
+ }
+
+ return 0;
+}
+
+/*!\brief Searches for interpolation filter in realtime mode during winner eval
+ *
+ * \ingroup inter_mode_search
+ *
+ * Does a simple interpolation filter search during winner mode evaluation. This
+ * is currently only used by realtime mode as \ref
+ * av1_interpolation_filter_search is not called during realtime encoding.
+ *
+ * This function only searches over two possible filters. EIGHTTAP_REGULAR is
+ * always search. For lowres clips (<= 240p), MULTITAP_SHARP is also search. For
+ * higher res slips (>240p), EIGHTTAP_SMOOTH is also searched.
+ * *
+ * \param[in] cpi Pointer to the compressor. Used for feature
+ * flags.
+ * \param[in,out] x Pointer to macroblock. This is primarily
+ * used to access the buffers.
+ * \param[in] mi_row The current row in mi unit (4X4 pixels).
+ * \param[in] mi_col The current col in mi unit (4X4 pixels).
+ * \param[in] bsize The current block_size.
+ * \return Returns true if a predictor is built in xd->dst, false otherwise.
+ */
+static AOM_INLINE bool fast_interp_search(const AV1_COMP *cpi, MACROBLOCK *x,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ static const InterpFilters filters_ref_set[3] = {
+ { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR },
+ { EIGHTTAP_SMOOTH, EIGHTTAP_SMOOTH },
+ { MULTITAP_SHARP, MULTITAP_SHARP }
+ };
+
+ const AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mi = xd->mi[0];
+ int64_t best_cost = INT64_MAX;
+ int best_filter_index = -1;
+ // dst_bufs[0] sores the new predictor, and dist_bifs[1] stores the best
+ const int num_planes = av1_num_planes(cm);
+ const int is_240p_or_lesser = AOMMIN(cm->width, cm->height) <= 240;
+ assert(is_inter_mode(mi->mode));
+ assert(mi->motion_mode == SIMPLE_TRANSLATION);
+ assert(!is_inter_compound_mode(mi->mode));
+
+ if (!av1_is_interp_needed(xd)) {
+ return false;
+ }
+
+ struct macroblockd_plane *pd = xd->plane;
+ const BUFFER_SET orig_dst = {
+ { pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf },
+ { pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride },
+ };
+ uint8_t *const tmp_buf = get_buf_by_bd(xd, x->tmp_pred_bufs[0]);
+ const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE,
+ tmp_buf + 2 * MAX_SB_SQUARE },
+ { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } };
+ const BUFFER_SET *dst_bufs[2] = { &orig_dst, &tmp_dst };
+
+ for (int i = 0; i < 3; ++i) {
+ if (is_240p_or_lesser) {
+ if (filters_ref_set[i].x_filter == EIGHTTAP_SMOOTH) {
+ continue;
+ }
+ } else {
+ if (filters_ref_set[i].x_filter == MULTITAP_SHARP) {
+ continue;
+ }
+ }
+ int64_t cost;
+ RD_STATS tmp_rd = { 0 };
+
+ mi->interp_filters.as_filters = filters_ref_set[i];
+ av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
+
+ model_rd_sb_fn[cpi->sf.rt_sf.use_simple_rd_model
+ ? MODELRD_LEGACY
+ : MODELRD_TYPE_INTERP_FILTER](
+ cpi, bsize, x, xd, AOM_PLANE_Y, AOM_PLANE_Y, &tmp_rd.rate, &tmp_rd.dist,
+ &tmp_rd.skip_txfm, &tmp_rd.sse, NULL, NULL, NULL);
+
+ tmp_rd.rate += av1_get_switchable_rate(x, xd, cm->features.interp_filter,
+ cm->seq_params->enable_dual_filter);
+ cost = RDCOST(x->rdmult, tmp_rd.rate, tmp_rd.dist);
+ if (cost < best_cost) {
+ best_filter_index = i;
+ best_cost = cost;
+ swap_dst_buf(xd, dst_bufs, num_planes);
+ }
+ }
+ assert(best_filter_index >= 0);
+
+ mi->interp_filters.as_filters = filters_ref_set[best_filter_index];
+
+ const bool is_best_pred_in_orig = &orig_dst == dst_bufs[1];
+
+ if (is_best_pred_in_orig) {
+ swap_dst_buf(xd, dst_bufs, num_planes);
+ } else {
+ // Note that xd->pd's bufers are kept in sync with dst_bufs[0]. So if
+ // is_best_pred_in_orig is false, that means the current buffer is the
+ // original one.
+ assert(&orig_dst == dst_bufs[0]);
+ assert(xd->plane[AOM_PLANE_Y].dst.buf == orig_dst.plane[AOM_PLANE_Y]);
+ const int width = block_size_wide[bsize];
+ const int height = block_size_high[bsize];
+#if CONFIG_AV1_HIGHBITDEPTH
+ const bool is_hbd = is_cur_buf_hbd(xd);
+ if (is_hbd) {
+ aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(tmp_dst.plane[AOM_PLANE_Y]),
+ tmp_dst.stride[AOM_PLANE_Y],
+ CONVERT_TO_SHORTPTR(orig_dst.plane[AOM_PLANE_Y]),
+ orig_dst.stride[AOM_PLANE_Y], width, height);
+ } else {
+ aom_convolve_copy(tmp_dst.plane[AOM_PLANE_Y], tmp_dst.stride[AOM_PLANE_Y],
+ orig_dst.plane[AOM_PLANE_Y],
+ orig_dst.stride[AOM_PLANE_Y], width, height);
+ }
+#else
+ aom_convolve_copy(tmp_dst.plane[AOM_PLANE_Y], tmp_dst.stride[AOM_PLANE_Y],
+ orig_dst.plane[AOM_PLANE_Y], orig_dst.stride[AOM_PLANE_Y],
+ width, height);
+#endif
+ }
+
+ // Build the YUV predictor.
+ if (num_planes > 1) {
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
+ AOM_PLANE_U, AOM_PLANE_V);
+ }
+
+ return true;
+}
+
+/*!\brief AV1 inter mode RD computation
+ *
+ * \ingroup inter_mode_search
+ * Do the RD search for a given inter mode and compute all information relevant
+ * to the input mode. It will compute the best MV,
+ * compound parameters (if the mode is a compound mode) and interpolation filter
+ * parameters.
+ *
+ * \param[in] cpi Top-level encoder structure.
+ * \param[in] tile_data Pointer to struct holding adaptive
+ * data/contexts/models for the tile during
+ * encoding.
+ * \param[in] x Pointer to structure holding all the data
+ * for the current macroblock.
+ * \param[in] bsize Current block size.
+ * \param[in,out] rd_stats Struct to keep track of the overall RD
+ * information.
+ * \param[in,out] rd_stats_y Struct to keep track of the RD information
+ * for only the Y plane.
+ * \param[in,out] rd_stats_uv Struct to keep track of the RD information
+ * for only the UV planes.
+ * \param[in] args HandleInterModeArgs struct holding
+ * miscellaneous arguments for inter mode
+ * search. See the documentation for this
+ * struct for a description of each member.
+ * \param[in] ref_best_rd Best RD found so far for this block.
+ * It is used for early termination of this
+ * search if the RD exceeds this value.
+ * \param[in] tmp_buf Temporary buffer used to hold predictors
+ * built in this search.
+ * \param[in,out] rd_buffers CompoundTypeRdBuffers struct to hold all
+ * allocated buffers for the compound
+ * predictors and masks in the compound type
+ * search.
+ * \param[in,out] best_est_rd Estimated RD for motion mode search if
+ * do_tx_search (see below) is 0.
+ * \param[in] do_tx_search Parameter to indicate whether or not to do
+ * a full transform search. This will compute
+ * an estimated RD for the modes without the
+ * transform search and later perform the full
+ * transform search on the best candidates.
+ * \param[in,out] inter_modes_info InterModesInfo struct to hold inter mode
+ * information to perform a full transform
+ * search only on winning candidates searched
+ * with an estimate for transform coding RD.
+ * \param[in,out] motion_mode_cand A motion_mode_candidate struct to store
+ * motion mode information used in a speed
+ * feature to search motion modes other than
+ * SIMPLE_TRANSLATION only on winning
+ * candidates.
+ * \param[in,out] skip_rd A length 2 array, where skip_rd[0] is the
+ * best total RD for a skip mode so far, and
+ * skip_rd[1] is the best RD for a skip mode so
+ * far in luma. This is used as a speed feature
+ * to skip the transform search if the computed
+ * skip RD for the current mode is not better
+ * than the best skip_rd so far.
+ * \param[in] inter_cost_info_from_tpl A PruneInfoFromTpl struct used to
+ * narrow down the search based on data
+ * collected in the TPL model.
+ * \param[out] yrd Stores the rdcost corresponding to encoding
+ * the luma plane.
+ *
+ * \return The RD cost for the mode being searched.
+ */
+static int64_t handle_inter_mode(
+ AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *x,
+ BLOCK_SIZE bsize, RD_STATS *rd_stats, RD_STATS *rd_stats_y,
+ RD_STATS *rd_stats_uv, HandleInterModeArgs *args, int64_t ref_best_rd,
+ uint8_t *const tmp_buf, const CompoundTypeRdBuffers *rd_buffers,
+ int64_t *best_est_rd, const int do_tx_search,
+ InterModesInfo *inter_modes_info, motion_mode_candidate *motion_mode_cand,
+ int64_t *skip_rd, PruneInfoFromTpl *inter_cost_info_from_tpl,
+ int64_t *yrd) {
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
+ TxfmSearchInfo *txfm_info = &x->txfm_search_info;
+ const int is_comp_pred = has_second_ref(mbmi);
+ const PREDICTION_MODE this_mode = mbmi->mode;
+
+#if CONFIG_REALTIME_ONLY
+ const int prune_modes_based_on_tpl = 0;
+#else // CONFIG_REALTIME_ONLY
+ const TplParams *const tpl_data = &cpi->ppi->tpl_data;
+ const int prune_modes_based_on_tpl =
+ cpi->sf.inter_sf.prune_inter_modes_based_on_tpl &&
+ av1_tpl_stats_ready(tpl_data, cpi->gf_frame_index);
+#endif // CONFIG_REALTIME_ONLY
+ int i;
+ // Reference frames for this mode
+ const int refs[2] = { mbmi->ref_frame[0],
+ (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
+ int rate_mv = 0;
+ int64_t rd = INT64_MAX;
+ // Do first prediction into the destination buffer. Do the next
+ // prediction into a temporary buffer. Then keep track of which one
+ // of these currently holds the best predictor, and use the other
+ // one for future predictions. In the end, copy from tmp_buf to
+ // dst if necessary.
+ struct macroblockd_plane *pd = xd->plane;
+ const BUFFER_SET orig_dst = {
+ { pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf },
+ { pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride },
+ };
+ const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE,
+ tmp_buf + 2 * MAX_SB_SQUARE },
+ { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } };
+
+ int64_t ret_val = INT64_MAX;
+ const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
+ RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv;
+ int64_t best_rd = INT64_MAX;
+ uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ int64_t best_yrd = INT64_MAX;
+ MB_MODE_INFO best_mbmi = *mbmi;
+ int best_xskip_txfm = 0;
+ int64_t newmv_ret_val = INT64_MAX;
+ inter_mode_info mode_info[MAX_REF_MV_SEARCH];
+
+ // Do not prune the mode based on inter cost from tpl if the current ref frame
+ // is the winner ref in neighbouring blocks.
+ int ref_match_found_in_above_nb = 0;
+ int ref_match_found_in_left_nb = 0;
+ if (prune_modes_based_on_tpl) {
+ ref_match_found_in_above_nb =
+ find_ref_match_in_above_nbs(cm->mi_params.mi_cols, xd);
+ ref_match_found_in_left_nb =
+ find_ref_match_in_left_nbs(cm->mi_params.mi_rows, xd);
+ }
+
+ // First, perform a simple translation search for each of the indices. If
+ // an index performs well, it will be fully searched in the main loop
+ // of this function.
+ const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode);
+ // Save MV results from first 2 ref_mv_idx.
+ int_mv save_mv[MAX_REF_MV_SEARCH - 1][2];
+ int best_ref_mv_idx = -1;
+ const int idx_mask =
+ ref_mv_idx_to_search(cpi, x, rd_stats, args, ref_best_rd, bsize, ref_set);
+ const int16_t mode_ctx =
+ av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
+ const ModeCosts *mode_costs = &x->mode_costs;
+ const int ref_mv_cost = cost_mv_ref(mode_costs, this_mode, mode_ctx);
+ const int base_rate =
+ args->ref_frame_cost + args->single_comp_cost + ref_mv_cost;
+
+ for (i = 0; i < MAX_REF_MV_SEARCH - 1; ++i) {
+ save_mv[i][0].as_int = INVALID_MV;
+ save_mv[i][1].as_int = INVALID_MV;
+ }
+ args->start_mv_cnt = 0;
+
+ // Main loop of this function. This will iterate over all of the ref mvs
+ // in the dynamic reference list and do the following:
+ // 1.) Get the current MV. Create newmv MV if necessary
+ // 2.) Search compound type and parameters if applicable
+ // 3.) Do interpolation filter search
+ // 4.) Build the inter predictor
+ // 5.) Pick the motion mode (SIMPLE_TRANSLATION, OBMC_CAUSAL,
+ // WARPED_CAUSAL)
+ // 6.) Update stats if best so far
+ for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) {
+ mbmi->ref_mv_idx = ref_mv_idx;
+
+ mode_info[ref_mv_idx].full_search_mv.as_int = INVALID_MV;
+ mode_info[ref_mv_idx].full_mv_bestsme = INT_MAX;
+ const int drl_cost = get_drl_cost(
+ mbmi, mbmi_ext, mode_costs->drl_mode_cost0, ref_frame_type);
+ mode_info[ref_mv_idx].drl_cost = drl_cost;
+ mode_info[ref_mv_idx].skip = 0;
+
+ if (!mask_check_bit(idx_mask, ref_mv_idx)) {
+ // MV did not perform well in simple translation search. Skip it.
+ continue;
+ }
+ if (prune_modes_based_on_tpl && !ref_match_found_in_above_nb &&
+ !ref_match_found_in_left_nb && (ref_best_rd != INT64_MAX)) {
+ // Skip mode if TPL model indicates it will not be beneficial.
+ if (prune_modes_based_on_tpl_stats(
+ inter_cost_info_from_tpl, refs, ref_mv_idx, this_mode,
+ cpi->sf.inter_sf.prune_inter_modes_based_on_tpl))
+ continue;
+ }
+ av1_init_rd_stats(rd_stats);
+
+ // Initialize compound mode data
+ mbmi->interinter_comp.type = COMPOUND_AVERAGE;
+ mbmi->comp_group_idx = 0;
+ mbmi->compound_idx = 1;
+ if (mbmi->ref_frame[1] == INTRA_FRAME) mbmi->ref_frame[1] = NONE_FRAME;
+
+ mbmi->num_proj_ref = 0;
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+
+ // Compute cost for signalling this DRL index
+ rd_stats->rate = base_rate;
+ rd_stats->rate += drl_cost;
+
+ int rs = 0;
+ int compmode_interinter_cost = 0;
+
+ int_mv cur_mv[2];
+
+ // TODO(Cherma): Extend this speed feature to support compound mode
+ int skip_repeated_ref_mv =
+ is_comp_pred ? 0 : cpi->sf.inter_sf.skip_repeated_ref_mv;
+ // Generate the current mv according to the prediction mode
+ if (!build_cur_mv(cur_mv, this_mode, cm, x, skip_repeated_ref_mv)) {
+ continue;
+ }
+
+ // The above call to build_cur_mv does not handle NEWMV modes. Build
+ // the mv here if we have NEWMV for any predictors.
+ if (have_newmv_in_inter_mode(this_mode)) {
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, handle_newmv_time);
+#endif
+ newmv_ret_val =
+ handle_newmv(cpi, x, bsize, cur_mv, &rate_mv, args, mode_info);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, handle_newmv_time);
+#endif
+
+ if (newmv_ret_val != 0) continue;
+
+ if (is_inter_singleref_mode(this_mode) &&
+ cur_mv[0].as_int != INVALID_MV) {
+ const MV_REFERENCE_FRAME ref = refs[0];
+ const unsigned int this_sse = x->pred_sse[ref];
+ if (this_sse < args->best_single_sse_in_refs[ref]) {
+ args->best_single_sse_in_refs[ref] = this_sse;
+ }
+
+ if (cpi->sf.rt_sf.skip_newmv_mode_based_on_sse) {
+ const int th_idx = cpi->sf.rt_sf.skip_newmv_mode_based_on_sse - 1;
+ const int pix_idx = num_pels_log2_lookup[bsize] - 4;
+ const double scale_factor[3][11] = {
+ { 0.7, 0.7, 0.7, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9, 0.9, 0.9 },
+ { 0.7, 0.7, 0.7, 0.7, 0.8, 0.8, 1, 1, 1, 1, 1 },
+ { 0.7, 0.7, 0.7, 0.7, 1, 1, 1, 1, 1, 1, 1 }
+ };
+ assert(pix_idx >= 0);
+ assert(th_idx <= 2);
+ if (args->best_pred_sse < scale_factor[th_idx][pix_idx] * this_sse)
+ continue;
+ }
+ }
+
+ rd_stats->rate += rate_mv;
+ }
+ // Copy the motion vector for this mode into mbmi struct
+ for (i = 0; i < is_comp_pred + 1; ++i) {
+ mbmi->mv[i].as_int = cur_mv[i].as_int;
+ }
+
+ if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd &&
+ mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) {
+ continue;
+ }
+
+ // Skip the rest of the search if prune_ref_mv_idx_search speed feature
+ // is enabled, and the current MV is similar to a previous one.
+ if (cpi->sf.inter_sf.prune_ref_mv_idx_search && is_comp_pred &&
+ prune_ref_mv_idx_search(ref_mv_idx, best_ref_mv_idx, save_mv, mbmi,
+ cpi->sf.inter_sf.prune_ref_mv_idx_search))
+ continue;
+
+ if (cpi->sf.gm_sf.prune_zero_mv_with_sse &&
+ (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV)) {
+ if (prune_zero_mv_with_sse(cpi->ppi->fn_ptr, x, bsize, args,
+ cpi->sf.gm_sf.prune_zero_mv_with_sse)) {
+ continue;
+ }
+ }
+
+ int skip_build_pred = 0;
+ const int mi_row = xd->mi_row;
+ const int mi_col = xd->mi_col;
+
+ // Handle a compound predictor, continue if it is determined this
+ // cannot be the best compound mode
+ if (is_comp_pred) {
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, compound_type_rd_time);
+#endif
+ const int not_best_mode = process_compound_inter_mode(
+ cpi, x, args, ref_best_rd, cur_mv, bsize, &compmode_interinter_cost,
+ rd_buffers, &orig_dst, &tmp_dst, &rate_mv, rd_stats, skip_rd,
+ &skip_build_pred);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, compound_type_rd_time);
+#endif
+ if (not_best_mode) continue;
+ }
+
+ if (!args->skip_ifs) {
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, interpolation_filter_search_time);
+#endif
+ // Determine the interpolation filter for this mode
+ ret_val = av1_interpolation_filter_search(
+ x, cpi, tile_data, bsize, &tmp_dst, &orig_dst, &rd, &rs,
+ &skip_build_pred, args, ref_best_rd);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, interpolation_filter_search_time);
+#endif
+ if (args->modelled_rd != NULL && !is_comp_pred) {
+ args->modelled_rd[this_mode][ref_mv_idx][refs[0]] = rd;
+ }
+ if (ret_val != 0) {
+ restore_dst_buf(xd, orig_dst, num_planes);
+ continue;
+ } else if (cpi->sf.inter_sf.model_based_post_interp_filter_breakout &&
+ ref_best_rd != INT64_MAX && (rd >> 3) * 3 > ref_best_rd) {
+ restore_dst_buf(xd, orig_dst, num_planes);
+ continue;
+ }
+
+ // Compute modelled RD if enabled
+ if (args->modelled_rd != NULL) {
+ if (is_comp_pred) {
+ const int mode0 = compound_ref0_mode(this_mode);
+ const int mode1 = compound_ref1_mode(this_mode);
+ const int64_t mrd =
+ AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]],
+ args->modelled_rd[mode1][ref_mv_idx][refs[1]]);
+ if ((rd >> 3) * 6 > mrd && ref_best_rd < INT64_MAX) {
+ restore_dst_buf(xd, orig_dst, num_planes);
+ continue;
+ }
+ }
+ }
+ }
+
+ rd_stats->rate += compmode_interinter_cost;
+ if (skip_build_pred != 1) {
+ // Build this inter predictor if it has not been previously built
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize, 0,
+ av1_num_planes(cm) - 1);
+ }
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, motion_mode_rd_time);
+#endif
+ int rate2_nocoeff = rd_stats->rate;
+ // Determine the motion mode. This will be one of SIMPLE_TRANSLATION,
+ // OBMC_CAUSAL or WARPED_CAUSAL
+ int64_t this_yrd;
+ ret_val = motion_mode_rd(cpi, tile_data, x, bsize, rd_stats, rd_stats_y,
+ rd_stats_uv, args, ref_best_rd, skip_rd, &rate_mv,
+ &orig_dst, best_est_rd, do_tx_search,
+ inter_modes_info, 0, &this_yrd);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, motion_mode_rd_time);
+#endif
+ assert(
+ IMPLIES(!av1_check_newmv_joint_nonzero(cm, x), ret_val == INT64_MAX));
+
+ if (ret_val != INT64_MAX) {
+ int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+ const THR_MODES mode_enum = get_prediction_mode_idx(
+ mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ // Collect mode stats for multiwinner mode processing
+ store_winner_mode_stats(&cpi->common, x, mbmi, rd_stats, rd_stats_y,
+ rd_stats_uv, mode_enum, NULL, bsize, tmp_rd,
+ cpi->sf.winner_mode_sf.multi_winner_mode_type,
+ do_tx_search);
+ if (tmp_rd < best_rd) {
+ best_yrd = this_yrd;
+ // Update the best rd stats if we found the best mode so far
+ best_rd_stats = *rd_stats;
+ best_rd_stats_y = *rd_stats_y;
+ best_rd_stats_uv = *rd_stats_uv;
+ best_rd = tmp_rd;
+ best_mbmi = *mbmi;
+ best_xskip_txfm = txfm_info->skip_txfm;
+ memcpy(best_blk_skip, txfm_info->blk_skip,
+ sizeof(best_blk_skip[0]) * xd->height * xd->width);
+ av1_copy_array(best_tx_type_map, xd->tx_type_map,
+ xd->height * xd->width);
+ motion_mode_cand->rate_mv = rate_mv;
+ motion_mode_cand->rate2_nocoeff = rate2_nocoeff;
+ }
+
+ if (tmp_rd < ref_best_rd) {
+ ref_best_rd = tmp_rd;
+ best_ref_mv_idx = ref_mv_idx;
+ }
+ }
+ restore_dst_buf(xd, orig_dst, num_planes);
+ }
+
+ if (best_rd == INT64_MAX) return INT64_MAX;
+
+ // re-instate status of the best choice
+ *rd_stats = best_rd_stats;
+ *rd_stats_y = best_rd_stats_y;
+ *rd_stats_uv = best_rd_stats_uv;
+ *yrd = best_yrd;
+ *mbmi = best_mbmi;
+ txfm_info->skip_txfm = best_xskip_txfm;
+ assert(IMPLIES(mbmi->comp_group_idx == 1,
+ mbmi->interinter_comp.type != COMPOUND_AVERAGE));
+ memcpy(txfm_info->blk_skip, best_blk_skip,
+ sizeof(best_blk_skip[0]) * xd->height * xd->width);
+ av1_copy_array(xd->tx_type_map, best_tx_type_map, xd->height * xd->width);
+
+ rd_stats->rdcost = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+
+ return rd_stats->rdcost;
+}
+
+/*!\brief Search for the best intrabc predictor
+ *
+ * \ingroup intra_mode_search
+ * \callergraph
+ * This function performs a motion search to find the best intrabc predictor.
+ *
+ * \returns Returns the best overall rdcost (including the non-intrabc modes
+ * search before this function).
+ */
+static int64_t rd_pick_intrabc_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x,
+ PICK_MODE_CONTEXT *ctx,
+ RD_STATS *rd_stats, BLOCK_SIZE bsize,
+ int64_t best_rd) {
+ const AV1_COMMON *const cm = &cpi->common;
+ if (!av1_allow_intrabc(cm) || !cpi->oxcf.kf_cfg.enable_intrabc ||
+ !cpi->sf.mv_sf.use_intrabc || cpi->sf.rt_sf.use_nonrd_pick_mode)
+ return INT64_MAX;
+ const int num_planes = av1_num_planes(cm);
+
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const TileInfo *tile = &xd->tile;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ TxfmSearchInfo *txfm_info = &x->txfm_search_info;
+
+ const int mi_row = xd->mi_row;
+ const int mi_col = xd->mi_col;
+ const int w = block_size_wide[bsize];
+ const int h = block_size_high[bsize];
+ const int sb_row = mi_row >> cm->seq_params->mib_size_log2;
+ const int sb_col = mi_col >> cm->seq_params->mib_size_log2;
+
+ MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
+ const MV_REFERENCE_FRAME ref_frame = INTRA_FRAME;
+ av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
+ xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
+ mbmi_ext->mode_context);
+ // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
+ // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
+ av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
+ int_mv nearestmv, nearmv;
+ av1_find_best_ref_mvs_from_stack(0, mbmi_ext, ref_frame, &nearestmv, &nearmv,
+ 0);
+
+ if (nearestmv.as_int == INVALID_MV) {
+ nearestmv.as_int = 0;
+ }
+ if (nearmv.as_int == INVALID_MV) {
+ nearmv.as_int = 0;
+ }
+
+ int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv;
+ if (dv_ref.as_int == 0) {
+ av1_find_ref_dv(&dv_ref, tile, cm->seq_params->mib_size, mi_row);
+ }
+ // Ref DV should not have sub-pel.
+ assert((dv_ref.as_mv.col & 7) == 0);
+ assert((dv_ref.as_mv.row & 7) == 0);
+ mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv = dv_ref;
+
+ struct buf_2d yv12_mb[MAX_MB_PLANE];
+ av1_setup_pred_block(xd, yv12_mb, xd->cur_buf, NULL, NULL, num_planes);
+ for (int i = 0; i < num_planes; ++i) {
+ xd->plane[i].pre[0] = yv12_mb[i];
+ }
+
+ enum IntrabcMotionDirection {
+ IBC_MOTION_ABOVE,
+ IBC_MOTION_LEFT,
+ IBC_MOTION_DIRECTIONS
+ };
+
+ MB_MODE_INFO best_mbmi = *mbmi;
+ RD_STATS best_rdstats = *rd_stats;
+ uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 };
+ uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
+
+ FULLPEL_MOTION_SEARCH_PARAMS fullms_params;
+ const SEARCH_METHODS search_method =
+ av1_get_default_mv_search_method(x, &cpi->sf.mv_sf, bsize);
+ const search_site_config *lookahead_search_sites =
+ cpi->mv_search_params.search_site_cfg[SS_CFG_LOOKAHEAD];
+ const FULLPEL_MV start_mv = get_fullmv_from_mv(&dv_ref.as_mv);
+ av1_make_default_fullpel_ms_params(&fullms_params, cpi, x, bsize,
+ &dv_ref.as_mv, start_mv,
+ lookahead_search_sites, search_method,
+ /*fine_search_interval=*/0);
+ const IntraBCMVCosts *const dv_costs = x->dv_costs;
+ av1_set_ms_to_intra_mode(&fullms_params, dv_costs);
+
+ for (enum IntrabcMotionDirection dir = IBC_MOTION_ABOVE;
+ dir < IBC_MOTION_DIRECTIONS; ++dir) {
+ switch (dir) {
+ case IBC_MOTION_ABOVE:
+ fullms_params.mv_limits.col_min =
+ (tile->mi_col_start - mi_col) * MI_SIZE;
+ fullms_params.mv_limits.col_max =
+ (tile->mi_col_end - mi_col) * MI_SIZE - w;
+ fullms_params.mv_limits.row_min =
+ (tile->mi_row_start - mi_row) * MI_SIZE;
+ fullms_params.mv_limits.row_max =
+ (sb_row * cm->seq_params->mib_size - mi_row) * MI_SIZE - h;
+ break;
+ case IBC_MOTION_LEFT:
+ fullms_params.mv_limits.col_min =
+ (tile->mi_col_start - mi_col) * MI_SIZE;
+ fullms_params.mv_limits.col_max =
+ (sb_col * cm->seq_params->mib_size - mi_col) * MI_SIZE - w;
+ // TODO(aconverse@google.com): Minimize the overlap between above and
+ // left areas.
+ fullms_params.mv_limits.row_min =
+ (tile->mi_row_start - mi_row) * MI_SIZE;
+ int bottom_coded_mi_edge =
+ AOMMIN((sb_row + 1) * cm->seq_params->mib_size, tile->mi_row_end);
+ fullms_params.mv_limits.row_max =
+ (bottom_coded_mi_edge - mi_row) * MI_SIZE - h;
+ break;
+ default: assert(0);
+ }
+ assert(fullms_params.mv_limits.col_min >= fullms_params.mv_limits.col_min);
+ assert(fullms_params.mv_limits.col_max <= fullms_params.mv_limits.col_max);
+ assert(fullms_params.mv_limits.row_min >= fullms_params.mv_limits.row_min);
+ assert(fullms_params.mv_limits.row_max <= fullms_params.mv_limits.row_max);
+
+ av1_set_mv_search_range(&fullms_params.mv_limits, &dv_ref.as_mv);
+
+ if (fullms_params.mv_limits.col_max < fullms_params.mv_limits.col_min ||
+ fullms_params.mv_limits.row_max < fullms_params.mv_limits.row_min) {
+ continue;
+ }
+
+ const int step_param = cpi->mv_search_params.mv_step_param;
+ IntraBCHashInfo *intrabc_hash_info = &x->intrabc_hash_info;
+ int_mv best_mv, best_hash_mv;
+ FULLPEL_MV_STATS best_mv_stats;
+
+ int bestsme =
+ av1_full_pixel_search(start_mv, &fullms_params, step_param, NULL,
+ &best_mv.as_fullmv, &best_mv_stats, NULL);
+ const int hashsme = av1_intrabc_hash_search(
+ cpi, xd, &fullms_params, intrabc_hash_info, &best_hash_mv.as_fullmv);
+ if (hashsme < bestsme) {
+ best_mv = best_hash_mv;
+ bestsme = hashsme;
+ }
+
+ if (bestsme == INT_MAX) continue;
+ const MV dv = get_mv_from_fullmv(&best_mv.as_fullmv);
+ if (!av1_is_fullmv_in_range(&fullms_params.mv_limits,
+ get_fullmv_from_mv(&dv)))
+ continue;
+ if (!av1_is_dv_valid(dv, cm, xd, mi_row, mi_col, bsize,
+ cm->seq_params->mib_size_log2))
+ continue;
+
+ // DV should not have sub-pel.
+ assert((dv.col & 7) == 0);
+ assert((dv.row & 7) == 0);
+ memset(&mbmi->palette_mode_info, 0, sizeof(mbmi->palette_mode_info));
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ mbmi->use_intrabc = 1;
+ mbmi->mode = DC_PRED;
+ mbmi->uv_mode = UV_DC_PRED;
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ mbmi->mv[0].as_mv = dv;
+ mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
+ mbmi->skip_txfm = 0;
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
+ av1_num_planes(cm) - 1);
+
+ // TODO(aconverse@google.com): The full motion field defining discount
+ // in MV_COST_WEIGHT is too large. Explore other values.
+ const int rate_mv = av1_mv_bit_cost(&dv, &dv_ref.as_mv, dv_costs->joint_mv,
+ dv_costs->dv_costs, MV_COST_WEIGHT_SUB);
+ const int rate_mode = x->mode_costs.intrabc_cost[1];
+ RD_STATS rd_stats_yuv, rd_stats_y, rd_stats_uv;
+ if (!av1_txfm_search(cpi, x, bsize, &rd_stats_yuv, &rd_stats_y,
+ &rd_stats_uv, rate_mode + rate_mv, INT64_MAX))
+ continue;
+ rd_stats_yuv.rdcost =
+ RDCOST(x->rdmult, rd_stats_yuv.rate, rd_stats_yuv.dist);
+ if (rd_stats_yuv.rdcost < best_rd) {
+ best_rd = rd_stats_yuv.rdcost;
+ best_mbmi = *mbmi;
+ best_rdstats = rd_stats_yuv;
+ memcpy(best_blk_skip, txfm_info->blk_skip,
+ sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
+ av1_copy_array(best_tx_type_map, xd->tx_type_map, xd->height * xd->width);
+ }
+ }
+ *mbmi = best_mbmi;
+ *rd_stats = best_rdstats;
+ memcpy(txfm_info->blk_skip, best_blk_skip,
+ sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
+ av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
+#if CONFIG_RD_DEBUG
+ mbmi->rd_stats = *rd_stats;
+#endif
+ return best_rd;
+}
+
+// TODO(chiyotsai@google.com): We are using struct $struct_name instead of their
+// typedef here because Doxygen doesn't know about the typedefs yet. So using
+// the typedef will prevent doxygen from finding this function and generating
+// the callgraph. Once documents for AV1_COMP and MACROBLOCK are added to
+// doxygen, we can revert back to using the typedefs.
+void av1_rd_pick_intra_mode_sb(const struct AV1_COMP *cpi, struct macroblock *x,
+ struct RD_STATS *rd_cost, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
+ const AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int num_planes = av1_num_planes(cm);
+ TxfmSearchInfo *txfm_info = &x->txfm_search_info;
+ int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
+ uint8_t y_skip_txfm = 0, uv_skip_txfm = 0;
+ int64_t dist_y = 0, dist_uv = 0;
+
+ ctx->rd_stats.skip_txfm = 0;
+ mbmi->ref_frame[0] = INTRA_FRAME;
+ mbmi->ref_frame[1] = NONE_FRAME;
+ mbmi->use_intrabc = 0;
+ mbmi->mv[0].as_int = 0;
+ mbmi->skip_mode = 0;
+
+ const int64_t intra_yrd =
+ av1_rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y,
+ &y_skip_txfm, bsize, best_rd, ctx);
+
+ // Initialize default mode evaluation params
+ set_mode_eval_params(cpi, x, DEFAULT_EVAL);
+
+ if (intra_yrd < best_rd) {
+ // Search intra modes for uv planes if needed
+ if (num_planes > 1) {
+ // Set up the tx variables for reproducing the y predictions in case we
+ // need it for chroma-from-luma.
+ if (xd->is_chroma_ref && store_cfl_required_rdo(cm, x)) {
+ memcpy(txfm_info->blk_skip, ctx->blk_skip,
+ sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
+ av1_copy_array(xd->tx_type_map, ctx->tx_type_map, ctx->num_4x4_blk);
+ }
+ const TX_SIZE max_uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
+ av1_rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
+ &dist_uv, &uv_skip_txfm, bsize,
+ max_uv_tx_size);
+ }
+
+ // Intra block is always coded as non-skip
+ rd_cost->rate =
+ rate_y + rate_uv +
+ x->mode_costs.skip_txfm_cost[av1_get_skip_txfm_context(xd)][0];
+ rd_cost->dist = dist_y + dist_uv;
+ rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist);
+ rd_cost->skip_txfm = 0;
+ } else {
+ rd_cost->rate = INT_MAX;
+ }
+
+ if (rd_cost->rate != INT_MAX && rd_cost->rdcost < best_rd)
+ best_rd = rd_cost->rdcost;
+ if (rd_pick_intrabc_mode_sb(cpi, x, ctx, rd_cost, bsize, best_rd) < best_rd) {
+ ctx->rd_stats.skip_txfm = mbmi->skip_txfm;
+ memcpy(ctx->blk_skip, txfm_info->blk_skip,
+ sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
+ assert(rd_cost->rate != INT_MAX);
+ }
+ if (rd_cost->rate == INT_MAX) return;
+
+ ctx->mic = *xd->mi[0];
+ av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext,
+ av1_ref_frame_type(xd->mi[0]->ref_frame));
+ av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
+}
+
+static AOM_INLINE void calc_target_weighted_pred(
+ const AV1_COMMON *cm, const MACROBLOCK *x, const MACROBLOCKD *xd,
+ const uint8_t *above, int above_stride, const uint8_t *left,
+ int left_stride);
+
+static AOM_INLINE void rd_pick_skip_mode(
+ RD_STATS *rd_cost, InterModeSearchState *search_state,
+ const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
+ struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+
+ x->compound_idx = 1; // COMPOUND_AVERAGE
+ RD_STATS skip_mode_rd_stats;
+ av1_invalid_rd_stats(&skip_mode_rd_stats);
+
+ if (skip_mode_info->ref_frame_idx_0 == INVALID_IDX ||
+ skip_mode_info->ref_frame_idx_1 == INVALID_IDX) {
+ return;
+ }
+
+ const MV_REFERENCE_FRAME ref_frame =
+ LAST_FRAME + skip_mode_info->ref_frame_idx_0;
+ const MV_REFERENCE_FRAME second_ref_frame =
+ LAST_FRAME + skip_mode_info->ref_frame_idx_1;
+ const PREDICTION_MODE this_mode = NEAREST_NEARESTMV;
+ const THR_MODES mode_index =
+ get_prediction_mode_idx(this_mode, ref_frame, second_ref_frame);
+
+ if (mode_index == THR_INVALID) {
+ return;
+ }
+
+ if ((!cpi->oxcf.ref_frm_cfg.enable_onesided_comp ||
+ cpi->sf.inter_sf.disable_onesided_comp) &&
+ cpi->all_one_sided_refs) {
+ return;
+ }
+
+ mbmi->mode = this_mode;
+ mbmi->uv_mode = UV_DC_PRED;
+ mbmi->ref_frame[0] = ref_frame;
+ mbmi->ref_frame[1] = second_ref_frame;
+ const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
+ if (x->mbmi_ext.ref_mv_count[ref_frame_type] == UINT8_MAX) {
+ MB_MODE_INFO_EXT *mbmi_ext = &x->mbmi_ext;
+ if (mbmi_ext->ref_mv_count[ref_frame] == UINT8_MAX ||
+ mbmi_ext->ref_mv_count[second_ref_frame] == UINT8_MAX) {
+ return;
+ }
+ av1_find_mv_refs(cm, xd, mbmi, ref_frame_type, mbmi_ext->ref_mv_count,
+ xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
+ mbmi_ext->mode_context);
+ // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
+ // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
+ av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame_type);
+ }
+
+ assert(this_mode == NEAREST_NEARESTMV);
+ if (!build_cur_mv(mbmi->mv, this_mode, cm, x, 0)) {
+ return;
+ }
+
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1);
+ mbmi->comp_group_idx = 0;
+ mbmi->compound_idx = x->compound_idx;
+ mbmi->interinter_comp.type = COMPOUND_AVERAGE;
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ mbmi->ref_mv_idx = 0;
+ mbmi->skip_mode = mbmi->skip_txfm = 1;
+ mbmi->palette_mode_info.palette_size[0] = 0;
+ mbmi->palette_mode_info.palette_size[1] = 0;
+
+ set_default_interp_filters(mbmi, cm->features.interp_filter);
+
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ for (int i = 0; i < num_planes; i++) {
+ xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
+ xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
+ }
+
+ BUFFER_SET orig_dst;
+ for (int i = 0; i < num_planes; i++) {
+ orig_dst.plane[i] = xd->plane[i].dst.buf;
+ orig_dst.stride[i] = xd->plane[i].dst.stride;
+ }
+
+ // Compare the use of skip_mode with the best intra/inter mode obtained.
+ const int skip_mode_ctx = av1_get_skip_mode_context(xd);
+ int64_t best_intra_inter_mode_cost = INT64_MAX;
+ if (rd_cost->dist < INT64_MAX && rd_cost->rate < INT32_MAX) {
+ const ModeCosts *mode_costs = &x->mode_costs;
+ best_intra_inter_mode_cost = RDCOST(
+ x->rdmult, rd_cost->rate + mode_costs->skip_mode_cost[skip_mode_ctx][0],
+ rd_cost->dist);
+ // Account for non-skip mode rate in total rd stats
+ rd_cost->rate += mode_costs->skip_mode_cost[skip_mode_ctx][0];
+ av1_rd_cost_update(x->rdmult, rd_cost);
+ }
+
+ // Obtain the rdcost for skip_mode.
+ skip_mode_rd(&skip_mode_rd_stats, cpi, x, bsize, &orig_dst,
+ best_intra_inter_mode_cost);
+
+ if (skip_mode_rd_stats.rdcost <= best_intra_inter_mode_cost &&
+ (!xd->lossless[mbmi->segment_id] || skip_mode_rd_stats.dist == 0)) {
+ assert(mode_index != THR_INVALID);
+ search_state->best_mbmode.skip_mode = 1;
+ search_state->best_mbmode = *mbmi;
+ memset(search_state->best_mbmode.inter_tx_size,
+ search_state->best_mbmode.tx_size,
+ sizeof(search_state->best_mbmode.inter_tx_size));
+ set_txfm_ctxs(search_state->best_mbmode.tx_size, xd->width, xd->height,
+ search_state->best_mbmode.skip_txfm && is_inter_block(mbmi),
+ xd);
+ search_state->best_mode_index = mode_index;
+
+ // Update rd_cost
+ rd_cost->rate = skip_mode_rd_stats.rate;
+ rd_cost->dist = rd_cost->sse = skip_mode_rd_stats.dist;
+ rd_cost->rdcost = skip_mode_rd_stats.rdcost;
+
+ search_state->best_rd = rd_cost->rdcost;
+ search_state->best_skip2 = 1;
+ search_state->best_mode_skippable = 1;
+
+ x->txfm_search_info.skip_txfm = 1;
+ }
+}
+
+// Get winner mode stats of given mode index
+static AOM_INLINE MB_MODE_INFO *get_winner_mode_stats(
+ MACROBLOCK *x, MB_MODE_INFO *best_mbmode, RD_STATS *best_rd_cost,
+ int best_rate_y, int best_rate_uv, THR_MODES *best_mode_index,
+ RD_STATS **winner_rd_cost, int *winner_rate_y, int *winner_rate_uv,
+ THR_MODES *winner_mode_index, MULTI_WINNER_MODE_TYPE multi_winner_mode_type,
+ int mode_idx) {
+ MB_MODE_INFO *winner_mbmi;
+ if (multi_winner_mode_type) {
+ assert(mode_idx >= 0 && mode_idx < x->winner_mode_count);
+ WinnerModeStats *winner_mode_stat = &x->winner_mode_stats[mode_idx];
+ winner_mbmi = &winner_mode_stat->mbmi;
+
+ *winner_rd_cost = &winner_mode_stat->rd_cost;
+ *winner_rate_y = winner_mode_stat->rate_y;
+ *winner_rate_uv = winner_mode_stat->rate_uv;
+ *winner_mode_index = winner_mode_stat->mode_index;
+ } else {
+ winner_mbmi = best_mbmode;
+ *winner_rd_cost = best_rd_cost;
+ *winner_rate_y = best_rate_y;
+ *winner_rate_uv = best_rate_uv;
+ *winner_mode_index = *best_mode_index;
+ }
+ return winner_mbmi;
+}
+
+// speed feature: fast intra/inter transform type search
+// Used for speed >= 2
+// When this speed feature is on, in rd mode search, only DCT is used.
+// After the mode is determined, this function is called, to select
+// transform types and get accurate rdcost.
+static AOM_INLINE void refine_winner_mode_tx(
+ const AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx, THR_MODES *best_mode_index,
+ MB_MODE_INFO *best_mbmode, struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE],
+ int best_rate_y, int best_rate_uv, int *best_skip2, int winner_mode_count) {
+ const AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ TxfmSearchParams *txfm_params = &x->txfm_search_params;
+ TxfmSearchInfo *txfm_info = &x->txfm_search_info;
+ int64_t best_rd;
+ const int num_planes = av1_num_planes(cm);
+
+ if (!is_winner_mode_processing_enabled(cpi, x, best_mbmode,
+ rd_cost->skip_txfm))
+ return;
+
+ // Set params for winner mode evaluation
+ set_mode_eval_params(cpi, x, WINNER_MODE_EVAL);
+
+ // No best mode identified so far
+ if (*best_mode_index == THR_INVALID) return;
+
+ best_rd = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist);
+ for (int mode_idx = 0; mode_idx < winner_mode_count; mode_idx++) {
+ RD_STATS *winner_rd_stats = NULL;
+ int winner_rate_y = 0, winner_rate_uv = 0;
+ THR_MODES winner_mode_index = 0;
+
+ // TODO(any): Combine best mode and multi-winner mode processing paths
+ // Get winner mode stats for current mode index
+ MB_MODE_INFO *winner_mbmi = get_winner_mode_stats(
+ x, best_mbmode, rd_cost, best_rate_y, best_rate_uv, best_mode_index,
+ &winner_rd_stats, &winner_rate_y, &winner_rate_uv, &winner_mode_index,
+ cpi->sf.winner_mode_sf.multi_winner_mode_type, mode_idx);
+
+ if (xd->lossless[winner_mbmi->segment_id] == 0 &&
+ winner_mode_index != THR_INVALID &&
+ is_winner_mode_processing_enabled(cpi, x, winner_mbmi,
+ rd_cost->skip_txfm)) {
+ RD_STATS rd_stats = *winner_rd_stats;
+ int skip_blk = 0;
+ RD_STATS rd_stats_y, rd_stats_uv;
+ const int skip_ctx = av1_get_skip_txfm_context(xd);
+
+ *mbmi = *winner_mbmi;
+
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+
+ // Select prediction reference frames.
+ for (int i = 0; i < num_planes; i++) {
+ xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
+ if (has_second_ref(mbmi))
+ xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
+ }
+
+ if (is_inter_mode(mbmi->mode)) {
+ const int mi_row = xd->mi_row;
+ const int mi_col = xd->mi_col;
+ bool is_predictor_built = false;
+ const PREDICTION_MODE prediction_mode = mbmi->mode;
+ // Do interpolation filter search for realtime mode if applicable.
+ if (cpi->sf.winner_mode_sf.winner_mode_ifs &&
+ cpi->oxcf.mode == REALTIME &&
+ cm->current_frame.reference_mode == SINGLE_REFERENCE &&
+ is_inter_mode(prediction_mode) &&
+ mbmi->motion_mode == SIMPLE_TRANSLATION &&
+ !is_inter_compound_mode(prediction_mode)) {
+ is_predictor_built =
+ fast_interp_search(cpi, x, mi_row, mi_col, bsize);
+ }
+ if (!is_predictor_built) {
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
+ av1_num_planes(cm) - 1);
+ }
+ if (mbmi->motion_mode == OBMC_CAUSAL)
+ av1_build_obmc_inter_predictors_sb(cm, xd);
+
+ av1_subtract_plane(x, bsize, 0);
+ if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
+ !xd->lossless[mbmi->segment_id]) {
+ av1_pick_recursive_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize,
+ INT64_MAX);
+ assert(rd_stats_y.rate != INT_MAX);
+ } else {
+ av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize,
+ INT64_MAX);
+ memset(mbmi->inter_tx_size, mbmi->tx_size,
+ sizeof(mbmi->inter_tx_size));
+ for (int i = 0; i < xd->height * xd->width; ++i)
+ set_blk_skip(txfm_info->blk_skip, 0, i, rd_stats_y.skip_txfm);
+ }
+ } else {
+ av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize,
+ INT64_MAX);
+ }
+
+ if (num_planes > 1) {
+ av1_txfm_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX);
+ } else {
+ av1_init_rd_stats(&rd_stats_uv);
+ }
+
+ const ModeCosts *mode_costs = &x->mode_costs;
+ if (is_inter_mode(mbmi->mode) &&
+ RDCOST(x->rdmult,
+ mode_costs->skip_txfm_cost[skip_ctx][0] + rd_stats_y.rate +
+ rd_stats_uv.rate,
+ (rd_stats_y.dist + rd_stats_uv.dist)) >
+ RDCOST(x->rdmult, mode_costs->skip_txfm_cost[skip_ctx][1],
+ (rd_stats_y.sse + rd_stats_uv.sse))) {
+ skip_blk = 1;
+ rd_stats_y.rate = mode_costs->skip_txfm_cost[skip_ctx][1];
+ rd_stats_uv.rate = 0;
+ rd_stats_y.dist = rd_stats_y.sse;
+ rd_stats_uv.dist = rd_stats_uv.sse;
+ } else {
+ skip_blk = 0;
+ rd_stats_y.rate += mode_costs->skip_txfm_cost[skip_ctx][0];
+ }
+ int this_rate = rd_stats.rate + rd_stats_y.rate + rd_stats_uv.rate -
+ winner_rate_y - winner_rate_uv;
+ int64_t this_rd =
+ RDCOST(x->rdmult, this_rate, (rd_stats_y.dist + rd_stats_uv.dist));
+ if (best_rd > this_rd) {
+ *best_mbmode = *mbmi;
+ *best_mode_index = winner_mode_index;
+ av1_copy_array(ctx->blk_skip, txfm_info->blk_skip, ctx->num_4x4_blk);
+ av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
+ rd_cost->rate = this_rate;
+ rd_cost->dist = rd_stats_y.dist + rd_stats_uv.dist;
+ rd_cost->sse = rd_stats_y.sse + rd_stats_uv.sse;
+ rd_cost->rdcost = this_rd;
+ best_rd = this_rd;
+ *best_skip2 = skip_blk;
+ }
+ }
+ }
+}
+
+/*!\cond */
+typedef struct {
+ // Mask for each reference frame, specifying which prediction modes to NOT try
+ // during search.
+ uint32_t pred_modes[REF_FRAMES];
+ // If ref_combo[i][j + 1] is true, do NOT try prediction using combination of
+ // reference frames (i, j).
+ // Note: indexing with 'j + 1' is due to the fact that 2nd reference can be -1
+ // (NONE_FRAME).
+ bool ref_combo[REF_FRAMES][REF_FRAMES + 1];
+} mode_skip_mask_t;
+/*!\endcond */
+
+// Update 'ref_combo' mask to disable given 'ref' in single and compound modes.
+static AOM_INLINE void disable_reference(
+ MV_REFERENCE_FRAME ref, bool ref_combo[REF_FRAMES][REF_FRAMES + 1]) {
+ for (MV_REFERENCE_FRAME ref2 = NONE_FRAME; ref2 < REF_FRAMES; ++ref2) {
+ ref_combo[ref][ref2 + 1] = true;
+ }
+}
+
+// Update 'ref_combo' mask to disable all inter references except ALTREF.
+static AOM_INLINE void disable_inter_references_except_altref(
+ bool ref_combo[REF_FRAMES][REF_FRAMES + 1]) {
+ disable_reference(LAST_FRAME, ref_combo);
+ disable_reference(LAST2_FRAME, ref_combo);
+ disable_reference(LAST3_FRAME, ref_combo);
+ disable_reference(GOLDEN_FRAME, ref_combo);
+ disable_reference(BWDREF_FRAME, ref_combo);
+ disable_reference(ALTREF2_FRAME, ref_combo);
+}
+
+static const MV_REFERENCE_FRAME reduced_ref_combos[][2] = {
+ { LAST_FRAME, NONE_FRAME }, { ALTREF_FRAME, NONE_FRAME },
+ { LAST_FRAME, ALTREF_FRAME }, { GOLDEN_FRAME, NONE_FRAME },
+ { INTRA_FRAME, NONE_FRAME }, { GOLDEN_FRAME, ALTREF_FRAME },
+ { LAST_FRAME, GOLDEN_FRAME }, { LAST_FRAME, INTRA_FRAME },
+ { LAST_FRAME, BWDREF_FRAME }, { LAST_FRAME, LAST3_FRAME },
+ { GOLDEN_FRAME, BWDREF_FRAME }, { GOLDEN_FRAME, INTRA_FRAME },
+ { BWDREF_FRAME, NONE_FRAME }, { BWDREF_FRAME, ALTREF_FRAME },
+ { ALTREF_FRAME, INTRA_FRAME }, { BWDREF_FRAME, INTRA_FRAME },
+};
+
+typedef enum { REF_SET_FULL, REF_SET_REDUCED, REF_SET_REALTIME } REF_SET;
+
+static AOM_INLINE void default_skip_mask(mode_skip_mask_t *mask,
+ REF_SET ref_set) {
+ if (ref_set == REF_SET_FULL) {
+ // Everything available by default.
+ memset(mask, 0, sizeof(*mask));
+ } else {
+ // All modes available by default.
+ memset(mask->pred_modes, 0, sizeof(mask->pred_modes));
+ // All references disabled first.
+ for (MV_REFERENCE_FRAME ref1 = INTRA_FRAME; ref1 < REF_FRAMES; ++ref1) {
+ for (MV_REFERENCE_FRAME ref2 = NONE_FRAME; ref2 < REF_FRAMES; ++ref2) {
+ mask->ref_combo[ref1][ref2 + 1] = true;
+ }
+ }
+ const MV_REFERENCE_FRAME(*ref_set_combos)[2];
+ int num_ref_combos;
+
+ // Then enable reduced set of references explicitly.
+ switch (ref_set) {
+ case REF_SET_REDUCED:
+ ref_set_combos = reduced_ref_combos;
+ num_ref_combos =
+ (int)sizeof(reduced_ref_combos) / sizeof(reduced_ref_combos[0]);
+ break;
+ case REF_SET_REALTIME:
+ ref_set_combos = real_time_ref_combos;
+ num_ref_combos =
+ (int)sizeof(real_time_ref_combos) / sizeof(real_time_ref_combos[0]);
+ break;
+ default: assert(0); num_ref_combos = 0;
+ }
+
+ for (int i = 0; i < num_ref_combos; ++i) {
+ const MV_REFERENCE_FRAME *const this_combo = ref_set_combos[i];
+ mask->ref_combo[this_combo[0]][this_combo[1] + 1] = false;
+ }
+ }
+}
+
+static AOM_INLINE void init_mode_skip_mask(mode_skip_mask_t *mask,
+ const AV1_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const struct segmentation *const seg = &cm->seg;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ unsigned char segment_id = mbmi->segment_id;
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ const INTER_MODE_SPEED_FEATURES *const inter_sf = &sf->inter_sf;
+ REF_SET ref_set = REF_SET_FULL;
+
+ if (sf->rt_sf.use_real_time_ref_set)
+ ref_set = REF_SET_REALTIME;
+ else if (cpi->oxcf.ref_frm_cfg.enable_reduced_reference_set)
+ ref_set = REF_SET_REDUCED;
+
+ default_skip_mask(mask, ref_set);
+
+ int min_pred_mv_sad = INT_MAX;
+ MV_REFERENCE_FRAME ref_frame;
+ if (ref_set == REF_SET_REALTIME) {
+ // For real-time encoding, we only look at a subset of ref frames. So the
+ // threshold for pruning should be computed from this subset as well.
+ const int num_rt_refs =
+ sizeof(real_time_ref_combos) / sizeof(*real_time_ref_combos);
+ for (int r_idx = 0; r_idx < num_rt_refs; r_idx++) {
+ const MV_REFERENCE_FRAME ref = real_time_ref_combos[r_idx][0];
+ if (ref != INTRA_FRAME) {
+ min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref]);
+ }
+ }
+ } else {
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame)
+ min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref_frame]);
+ }
+
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame])) {
+ // Skip checking missing reference in both single and compound reference
+ // modes.
+ disable_reference(ref_frame, mask->ref_combo);
+ } else {
+ // Skip fixed mv modes for poor references
+ if ((x->pred_mv_sad[ref_frame] >> 2) > min_pred_mv_sad) {
+ mask->pred_modes[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
+ }
+ }
+ if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
+ get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
+ // Reference not used for the segment.
+ disable_reference(ref_frame, mask->ref_combo);
+ }
+ }
+ // Note: We use the following drop-out only if the SEG_LVL_REF_FRAME feature
+ // is disabled for this segment. This is to prevent the possibility that we
+ // end up unable to pick any mode.
+ if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
+ // Only consider GLOBALMV/ALTREF_FRAME for alt ref frame,
+ // unless ARNR filtering is enabled in which case we want
+ // an unfiltered alternative. We allow near/nearest as well
+ // because they may result in zero-zero MVs but be cheaper.
+ if (cpi->rc.is_src_frame_alt_ref &&
+ (cpi->oxcf.algo_cfg.arnr_max_frames == 0)) {
+ disable_inter_references_except_altref(mask->ref_combo);
+
+ mask->pred_modes[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO;
+ const MV_REFERENCE_FRAME tmp_ref_frames[2] = { ALTREF_FRAME, NONE_FRAME };
+ int_mv near_mv, nearest_mv, global_mv;
+ get_this_mv(&nearest_mv, NEARESTMV, 0, 0, 0, tmp_ref_frames,
+ &x->mbmi_ext);
+ get_this_mv(&near_mv, NEARMV, 0, 0, 0, tmp_ref_frames, &x->mbmi_ext);
+ get_this_mv(&global_mv, GLOBALMV, 0, 0, 0, tmp_ref_frames, &x->mbmi_ext);
+
+ if (near_mv.as_int != global_mv.as_int)
+ mask->pred_modes[ALTREF_FRAME] |= (1 << NEARMV);
+ if (nearest_mv.as_int != global_mv.as_int)
+ mask->pred_modes[ALTREF_FRAME] |= (1 << NEARESTMV);
+ }
+ }
+
+ if (cpi->rc.is_src_frame_alt_ref) {
+ if (inter_sf->alt_ref_search_fp &&
+ (cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME])) {
+ mask->pred_modes[ALTREF_FRAME] = 0;
+ disable_inter_references_except_altref(mask->ref_combo);
+ disable_reference(INTRA_FRAME, mask->ref_combo);
+ }
+ }
+
+ if (inter_sf->alt_ref_search_fp) {
+ if (!cm->show_frame && x->best_pred_mv_sad[0] < INT_MAX) {
+ int sad_thresh = x->best_pred_mv_sad[0] + (x->best_pred_mv_sad[0] >> 3);
+ // Conservatively skip the modes w.r.t. BWDREF, ALTREF2 and ALTREF, if
+ // those are past frames
+ MV_REFERENCE_FRAME start_frame =
+ inter_sf->alt_ref_search_fp == 1 ? ALTREF2_FRAME : BWDREF_FRAME;
+ for (ref_frame = start_frame; ref_frame <= ALTREF_FRAME; ref_frame++) {
+ if (cpi->ref_frame_dist_info.ref_relative_dist[ref_frame - LAST_FRAME] <
+ 0) {
+ // Prune inter modes when relative dist of ALTREF2 and ALTREF is close
+ // to the relative dist of LAST_FRAME.
+ if (inter_sf->alt_ref_search_fp == 1 &&
+ (abs(cpi->ref_frame_dist_info
+ .ref_relative_dist[ref_frame - LAST_FRAME]) >
+ 1.5 * abs(cpi->ref_frame_dist_info
+ .ref_relative_dist[LAST_FRAME - LAST_FRAME]))) {
+ continue;
+ }
+ if (x->pred_mv_sad[ref_frame] > sad_thresh)
+ mask->pred_modes[ref_frame] |= INTER_ALL;
+ }
+ }
+ }
+ }
+
+ if (sf->rt_sf.prune_inter_modes_wrt_gf_arf_based_on_sad) {
+ if (x->best_pred_mv_sad[0] < INT_MAX) {
+ int sad_thresh = x->best_pred_mv_sad[0] + (x->best_pred_mv_sad[0] >> 1);
+ const int prune_ref_list[2] = { GOLDEN_FRAME, ALTREF_FRAME };
+
+ // Conservatively skip the modes w.r.t. GOLDEN and ALTREF references
+ for (int ref_idx = 0; ref_idx < 2; ref_idx++) {
+ ref_frame = prune_ref_list[ref_idx];
+ if (x->pred_mv_sad[ref_frame] > sad_thresh)
+ mask->pred_modes[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
+ }
+ }
+ }
+
+ if (bsize > sf->part_sf.max_intra_bsize) {
+ disable_reference(INTRA_FRAME, mask->ref_combo);
+ }
+
+ if (!cpi->oxcf.tool_cfg.enable_global_motion) {
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ mask->pred_modes[ref_frame] |= (1 << GLOBALMV);
+ mask->pred_modes[ref_frame] |= (1 << GLOBAL_GLOBALMV);
+ }
+ }
+
+ mask->pred_modes[INTRA_FRAME] |=
+ ~(uint32_t)sf->intra_sf.intra_y_mode_mask[max_txsize_lookup[bsize]];
+
+ // Prune reference frames which are not the closest to the current
+ // frame and with large pred_mv_sad.
+ if (inter_sf->prune_single_ref) {
+ assert(inter_sf->prune_single_ref > 0 && inter_sf->prune_single_ref < 3);
+ const double prune_threshes[2] = { 1.20, 1.05 };
+
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ const RefFrameDistanceInfo *const ref_frame_dist_info =
+ &cpi->ref_frame_dist_info;
+ const int is_closest_ref =
+ (ref_frame == ref_frame_dist_info->nearest_past_ref) ||
+ (ref_frame == ref_frame_dist_info->nearest_future_ref);
+
+ if (!is_closest_ref) {
+ const int dir =
+ (ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] < 0)
+ ? 0
+ : 1;
+ if (x->best_pred_mv_sad[dir] < INT_MAX &&
+ x->pred_mv_sad[ref_frame] >
+ prune_threshes[inter_sf->prune_single_ref - 1] *
+ x->best_pred_mv_sad[dir])
+ mask->pred_modes[ref_frame] |= INTER_SINGLE_ALL;
+ }
+ }
+ }
+}
+
+static AOM_INLINE void init_neighbor_pred_buf(
+ const OBMCBuffer *const obmc_buffer, HandleInterModeArgs *const args,
+ int is_hbd) {
+ if (is_hbd) {
+ const int len = sizeof(uint16_t);
+ args->above_pred_buf[0] = CONVERT_TO_BYTEPTR(obmc_buffer->above_pred);
+ args->above_pred_buf[1] = CONVERT_TO_BYTEPTR(obmc_buffer->above_pred +
+ (MAX_SB_SQUARE >> 1) * len);
+ args->above_pred_buf[2] =
+ CONVERT_TO_BYTEPTR(obmc_buffer->above_pred + MAX_SB_SQUARE * len);
+ args->left_pred_buf[0] = CONVERT_TO_BYTEPTR(obmc_buffer->left_pred);
+ args->left_pred_buf[1] =
+ CONVERT_TO_BYTEPTR(obmc_buffer->left_pred + (MAX_SB_SQUARE >> 1) * len);
+ args->left_pred_buf[2] =
+ CONVERT_TO_BYTEPTR(obmc_buffer->left_pred + MAX_SB_SQUARE * len);
+ } else {
+ args->above_pred_buf[0] = obmc_buffer->above_pred;
+ args->above_pred_buf[1] = obmc_buffer->above_pred + (MAX_SB_SQUARE >> 1);
+ args->above_pred_buf[2] = obmc_buffer->above_pred + MAX_SB_SQUARE;
+ args->left_pred_buf[0] = obmc_buffer->left_pred;
+ args->left_pred_buf[1] = obmc_buffer->left_pred + (MAX_SB_SQUARE >> 1);
+ args->left_pred_buf[2] = obmc_buffer->left_pred + MAX_SB_SQUARE;
+ }
+}
+
+static AOM_INLINE int prune_ref_frame(const AV1_COMP *cpi, const MACROBLOCK *x,
+ MV_REFERENCE_FRAME ref_frame) {
+ const AV1_COMMON *const cm = &cpi->common;
+ MV_REFERENCE_FRAME rf[2];
+ av1_set_ref_frame(rf, ref_frame);
+
+ if ((cpi->prune_ref_frame_mask >> ref_frame) & 1) return 1;
+
+ if (prune_ref_by_selective_ref_frame(cpi, x, rf,
+ cm->cur_frame->ref_display_order_hint)) {
+ return 1;
+ }
+
+ return 0;
+}
+
+static AOM_INLINE int is_ref_frame_used_by_compound_ref(
+ int ref_frame, int skip_ref_frame_mask) {
+ for (int r = ALTREF_FRAME + 1; r < MODE_CTX_REF_FRAMES; ++r) {
+ if (!(skip_ref_frame_mask & (1 << r))) {
+ const MV_REFERENCE_FRAME *rf = ref_frame_map[r - REF_FRAMES];
+ if (rf[0] == ref_frame || rf[1] == ref_frame) {
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+static AOM_INLINE int is_ref_frame_used_in_cache(MV_REFERENCE_FRAME ref_frame,
+ const MB_MODE_INFO *mi_cache) {
+ if (!mi_cache) {
+ return 0;
+ }
+
+ if (ref_frame < REF_FRAMES) {
+ return (ref_frame == mi_cache->ref_frame[0] ||
+ ref_frame == mi_cache->ref_frame[1]);
+ }
+
+ // if we are here, then the current mode is compound.
+ MV_REFERENCE_FRAME cached_ref_type = av1_ref_frame_type(mi_cache->ref_frame);
+ return ref_frame == cached_ref_type;
+}
+
+// Please add/modify parameter setting in this function, making it consistent
+// and easy to read and maintain.
+static AOM_INLINE void set_params_rd_pick_inter_mode(
+ const AV1_COMP *cpi, MACROBLOCK *x, HandleInterModeArgs *args,
+ BLOCK_SIZE bsize, mode_skip_mask_t *mode_skip_mask, int skip_ref_frame_mask,
+ unsigned int *ref_costs_single, unsigned int (*ref_costs_comp)[REF_FRAMES],
+ struct buf_2d (*yv12_mb)[MAX_MB_PLANE]) {
+ const AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
+ unsigned char segment_id = mbmi->segment_id;
+
+ init_neighbor_pred_buf(&x->obmc_buffer, args, is_cur_buf_hbd(&x->e_mbd));
+ av1_collect_neighbors_ref_counts(xd);
+ estimate_ref_frame_costs(cm, xd, &x->mode_costs, segment_id, ref_costs_single,
+ ref_costs_comp);
+
+ const int mi_row = xd->mi_row;
+ const int mi_col = xd->mi_col;
+ x->best_pred_mv_sad[0] = INT_MAX;
+ x->best_pred_mv_sad[1] = INT_MAX;
+
+ for (MV_REFERENCE_FRAME ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME;
+ ++ref_frame) {
+ x->pred_mv_sad[ref_frame] = INT_MAX;
+ mbmi_ext->mode_context[ref_frame] = 0;
+ mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX;
+ if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) {
+ // Skip the ref frame if the mask says skip and the ref is not used by
+ // compound ref.
+ if (skip_ref_frame_mask & (1 << ref_frame) &&
+ !is_ref_frame_used_by_compound_ref(ref_frame, skip_ref_frame_mask) &&
+ !is_ref_frame_used_in_cache(ref_frame, x->mb_mode_cache)) {
+ continue;
+ }
+ assert(get_ref_frame_yv12_buf(cm, ref_frame) != NULL);
+ setup_buffer_ref_mvs_inter(cpi, x, ref_frame, bsize, yv12_mb);
+ }
+ if (cpi->sf.inter_sf.alt_ref_search_fp ||
+ cpi->sf.inter_sf.prune_single_ref ||
+ cpi->sf.rt_sf.prune_inter_modes_wrt_gf_arf_based_on_sad) {
+ // Store the best pred_mv_sad across all past frames
+ if (cpi->ref_frame_dist_info.ref_relative_dist[ref_frame - LAST_FRAME] <
+ 0)
+ x->best_pred_mv_sad[0] =
+ AOMMIN(x->best_pred_mv_sad[0], x->pred_mv_sad[ref_frame]);
+ else
+ // Store the best pred_mv_sad across all future frames
+ x->best_pred_mv_sad[1] =
+ AOMMIN(x->best_pred_mv_sad[1], x->pred_mv_sad[ref_frame]);
+ }
+ }
+
+ if (!cpi->sf.rt_sf.use_real_time_ref_set && is_comp_ref_allowed(bsize)) {
+ // No second reference on RT ref set, so no need to initialize
+ for (MV_REFERENCE_FRAME ref_frame = EXTREF_FRAME;
+ ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) {
+ mbmi_ext->mode_context[ref_frame] = 0;
+ mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX;
+ const MV_REFERENCE_FRAME *rf = ref_frame_map[ref_frame - REF_FRAMES];
+ if (!((cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[0]]) &&
+ (cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[1]]))) {
+ continue;
+ }
+
+ if (skip_ref_frame_mask & (1 << ref_frame) &&
+ !is_ref_frame_used_in_cache(ref_frame, x->mb_mode_cache)) {
+ continue;
+ }
+ // Ref mv list population is not required, when compound references are
+ // pruned.
+ if (prune_ref_frame(cpi, x, ref_frame)) continue;
+
+ av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
+ xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
+ mbmi_ext->mode_context);
+ // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
+ // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
+ av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
+ }
+ }
+
+ av1_count_overlappable_neighbors(cm, xd);
+ const FRAME_UPDATE_TYPE update_type =
+ get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
+ int use_actual_frame_probs = 1;
+ int prune_obmc;
+#if CONFIG_FPMT_TEST
+ use_actual_frame_probs =
+ (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1;
+ if (!use_actual_frame_probs) {
+ prune_obmc = cpi->ppi->temp_frame_probs.obmc_probs[update_type][bsize] <
+ cpi->sf.inter_sf.prune_obmc_prob_thresh;
+ }
+#endif
+ if (use_actual_frame_probs) {
+ prune_obmc = cpi->ppi->frame_probs.obmc_probs[update_type][bsize] <
+ cpi->sf.inter_sf.prune_obmc_prob_thresh;
+ }
+ if (cpi->oxcf.motion_mode_cfg.enable_obmc && !prune_obmc) {
+ if (check_num_overlappable_neighbors(mbmi) &&
+ is_motion_variation_allowed_bsize(bsize)) {
+ int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
+ int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
+ MAX_SB_SIZE >> 1 };
+ int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
+ MAX_SB_SIZE >> 1 };
+ int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
+ av1_build_prediction_by_above_preds(cm, xd, args->above_pred_buf,
+ dst_width1, dst_height1,
+ args->above_pred_stride);
+ av1_build_prediction_by_left_preds(cm, xd, args->left_pred_buf,
+ dst_width2, dst_height2,
+ args->left_pred_stride);
+ const int num_planes = av1_num_planes(cm);
+ av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row,
+ mi_col, 0, num_planes);
+ calc_target_weighted_pred(
+ cm, x, xd, args->above_pred_buf[0], args->above_pred_stride[0],
+ args->left_pred_buf[0], args->left_pred_stride[0]);
+ }
+ }
+
+ init_mode_skip_mask(mode_skip_mask, cpi, x, bsize);
+
+ // Set params for mode evaluation
+ set_mode_eval_params(cpi, x, MODE_EVAL);
+
+ x->comp_rd_stats_idx = 0;
+
+ for (int idx = 0; idx < REF_FRAMES; idx++) {
+ args->best_single_sse_in_refs[idx] = INT32_MAX;
+ }
+}
+
+static AOM_INLINE void init_single_inter_mode_search_state(
+ InterModeSearchState *search_state) {
+ for (int dir = 0; dir < 2; ++dir) {
+ for (int mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
+ for (int ref_frame = 0; ref_frame < FWD_REFS; ++ref_frame) {
+ SingleInterModeState *state;
+
+ state = &search_state->single_state[dir][mode][ref_frame];
+ state->ref_frame = NONE_FRAME;
+ state->rd = INT64_MAX;
+
+ state = &search_state->single_state_modelled[dir][mode][ref_frame];
+ state->ref_frame = NONE_FRAME;
+ state->rd = INT64_MAX;
+
+ search_state->single_rd_order[dir][mode][ref_frame] = NONE_FRAME;
+ }
+ }
+ }
+
+ for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
+ search_state->best_single_rd[ref_frame] = INT64_MAX;
+ search_state->best_single_mode[ref_frame] = PRED_MODE_INVALID;
+ }
+ av1_zero(search_state->single_state_cnt);
+ av1_zero(search_state->single_state_modelled_cnt);
+}
+
+static AOM_INLINE void init_inter_mode_search_state(
+ InterModeSearchState *search_state, const AV1_COMP *cpi,
+ const MACROBLOCK *x, BLOCK_SIZE bsize, int64_t best_rd_so_far) {
+ init_intra_mode_search_state(&search_state->intra_search_state);
+ av1_invalid_rd_stats(&search_state->best_y_rdcost);
+
+ search_state->best_rd = best_rd_so_far;
+ search_state->best_skip_rd[0] = INT64_MAX;
+ search_state->best_skip_rd[1] = INT64_MAX;
+
+ av1_zero(search_state->best_mbmode);
+
+ search_state->best_rate_y = INT_MAX;
+
+ search_state->best_rate_uv = INT_MAX;
+
+ search_state->best_mode_skippable = 0;
+
+ search_state->best_skip2 = 0;
+
+ search_state->best_mode_index = THR_INVALID;
+
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const unsigned char segment_id = mbmi->segment_id;
+
+ search_state->num_available_refs = 0;
+ memset(search_state->dist_refs, -1, sizeof(search_state->dist_refs));
+ memset(search_state->dist_order_refs, -1,
+ sizeof(search_state->dist_order_refs));
+
+ for (int i = 0; i <= LAST_NEW_MV_INDEX; ++i)
+ search_state->mode_threshold[i] = 0;
+ const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
+ for (int i = LAST_NEW_MV_INDEX + 1; i < SINGLE_REF_MODE_END; ++i)
+ search_state->mode_threshold[i] =
+ ((int64_t)rd_threshes[i] * x->thresh_freq_fact[bsize][i]) >>
+ RD_THRESH_FAC_FRAC_BITS;
+
+ search_state->best_intra_rd = INT64_MAX;
+
+ search_state->best_pred_sse = UINT_MAX;
+
+ av1_zero(search_state->single_newmv);
+ av1_zero(search_state->single_newmv_rate);
+ av1_zero(search_state->single_newmv_valid);
+ for (int i = SINGLE_INTER_MODE_START; i < SINGLE_INTER_MODE_END; ++i) {
+ for (int j = 0; j < MAX_REF_MV_SEARCH; ++j) {
+ for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
+ search_state->modelled_rd[i][j][ref_frame] = INT64_MAX;
+ search_state->simple_rd[i][j][ref_frame] = INT64_MAX;
+ }
+ }
+ }
+
+ for (int i = 0; i < REFERENCE_MODES; ++i) {
+ search_state->best_pred_rd[i] = INT64_MAX;
+ }
+
+ if (cpi->common.current_frame.reference_mode != SINGLE_REFERENCE) {
+ for (int i = SINGLE_REF_MODE_END; i < THR_INTER_MODE_END; ++i)
+ search_state->mode_threshold[i] =
+ ((int64_t)rd_threshes[i] * x->thresh_freq_fact[bsize][i]) >>
+ RD_THRESH_FAC_FRAC_BITS;
+
+ for (int i = COMP_INTER_MODE_START; i < COMP_INTER_MODE_END; ++i) {
+ for (int j = 0; j < MAX_REF_MV_SEARCH; ++j) {
+ for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
+ search_state->modelled_rd[i][j][ref_frame] = INT64_MAX;
+ search_state->simple_rd[i][j][ref_frame] = INT64_MAX;
+ }
+ }
+ }
+
+ init_single_inter_mode_search_state(search_state);
+ }
+}
+
+static bool mask_says_skip(const mode_skip_mask_t *mode_skip_mask,
+ const MV_REFERENCE_FRAME *ref_frame,
+ const PREDICTION_MODE this_mode) {
+ if (mode_skip_mask->pred_modes[ref_frame[0]] & (1 << this_mode)) {
+ return true;
+ }
+
+ return mode_skip_mask->ref_combo[ref_frame[0]][ref_frame[1] + 1];
+}
+
+static int inter_mode_compatible_skip(const AV1_COMP *cpi, const MACROBLOCK *x,
+ BLOCK_SIZE bsize,
+ PREDICTION_MODE curr_mode,
+ const MV_REFERENCE_FRAME *ref_frames) {
+ const int comp_pred = ref_frames[1] > INTRA_FRAME;
+ if (comp_pred) {
+ if (!is_comp_ref_allowed(bsize)) return 1;
+ if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frames[1]])) {
+ return 1;
+ }
+
+ const AV1_COMMON *const cm = &cpi->common;
+ if (frame_is_intra_only(cm)) return 1;
+
+ const CurrentFrame *const current_frame = &cm->current_frame;
+ if (current_frame->reference_mode == SINGLE_REFERENCE) return 1;
+
+ const struct segmentation *const seg = &cm->seg;
+ const unsigned char segment_id = x->e_mbd.mi[0]->segment_id;
+ // Do not allow compound prediction if the segment level reference frame
+ // feature is in use as in this case there can only be one reference.
+ if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) return 1;
+ }
+
+ if (ref_frames[0] > INTRA_FRAME && ref_frames[1] == INTRA_FRAME) {
+ // Mode must be compatible
+ if (!is_interintra_allowed_bsize(bsize)) return 1;
+ if (!is_interintra_allowed_mode(curr_mode)) return 1;
+ }
+
+ return 0;
+}
+
+static int fetch_picked_ref_frames_mask(const MACROBLOCK *const x,
+ BLOCK_SIZE bsize, int mib_size) {
+ const int sb_size_mask = mib_size - 1;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const int mi_row = xd->mi_row;
+ const int mi_col = xd->mi_col;
+ const int mi_row_in_sb = mi_row & sb_size_mask;
+ const int mi_col_in_sb = mi_col & sb_size_mask;
+ const int mi_w = mi_size_wide[bsize];
+ const int mi_h = mi_size_high[bsize];
+ int picked_ref_frames_mask = 0;
+ for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_h; ++i) {
+ for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_w; ++j) {
+ picked_ref_frames_mask |= x->picked_ref_frames_mask[i * 32 + j];
+ }
+ }
+ return picked_ref_frames_mask;
+}
+
+// Check if reference frame pair of the current block matches with the given
+// block.
+static INLINE int match_ref_frame_pair(const MB_MODE_INFO *mbmi,
+ const MV_REFERENCE_FRAME *ref_frames) {
+ return ((ref_frames[0] == mbmi->ref_frame[0]) &&
+ (ref_frames[1] == mbmi->ref_frame[1]));
+}
+
+// Case 1: return 0, means don't skip this mode
+// Case 2: return 1, means skip this mode completely
+// Case 3: return 2, means skip compound only, but still try single motion modes
+static int inter_mode_search_order_independent_skip(
+ const AV1_COMP *cpi, const MACROBLOCK *x, mode_skip_mask_t *mode_skip_mask,
+ InterModeSearchState *search_state, int skip_ref_frame_mask,
+ PREDICTION_MODE mode, const MV_REFERENCE_FRAME *ref_frame) {
+ if (mask_says_skip(mode_skip_mask, ref_frame, mode)) {
+ return 1;
+ }
+
+ const int ref_type = av1_ref_frame_type(ref_frame);
+ if (!cpi->sf.rt_sf.use_real_time_ref_set)
+ if (prune_ref_frame(cpi, x, ref_type)) return 1;
+
+ // This is only used in motion vector unit test.
+ if (cpi->oxcf.unit_test_cfg.motion_vector_unit_test &&
+ ref_frame[0] == INTRA_FRAME)
+ return 1;
+
+ const AV1_COMMON *const cm = &cpi->common;
+ if (skip_repeated_mv(cm, x, mode, ref_frame, search_state)) {
+ return 1;
+ }
+
+ // Reuse the prediction mode in cache
+ if (x->use_mb_mode_cache) {
+ const MB_MODE_INFO *cached_mi = x->mb_mode_cache;
+ const PREDICTION_MODE cached_mode = cached_mi->mode;
+ const MV_REFERENCE_FRAME *cached_frame = cached_mi->ref_frame;
+ const int cached_mode_is_single = cached_frame[1] <= INTRA_FRAME;
+
+ // If the cached mode is intra, then we just need to match the mode.
+ if (is_mode_intra(cached_mode) && mode != cached_mode) {
+ return 1;
+ }
+
+ // If the cached mode is single inter mode, then we match the mode and
+ // reference frame.
+ if (cached_mode_is_single) {
+ if (mode != cached_mode || ref_frame[0] != cached_frame[0]) {
+ return 1;
+ }
+ } else {
+ // If the cached mode is compound, then we need to consider several cases.
+ const int mode_is_single = ref_frame[1] <= INTRA_FRAME;
+ if (mode_is_single) {
+ // If the mode is single, we know the modes can't match. But we might
+ // still want to search it if compound mode depends on the current mode.
+ int skip_motion_mode_only = 0;
+ if (cached_mode == NEW_NEARMV || cached_mode == NEW_NEARESTMV) {
+ skip_motion_mode_only = (ref_frame[0] == cached_frame[0]);
+ } else if (cached_mode == NEAR_NEWMV || cached_mode == NEAREST_NEWMV) {
+ skip_motion_mode_only = (ref_frame[0] == cached_frame[1]);
+ } else if (cached_mode == NEW_NEWMV) {
+ skip_motion_mode_only = (ref_frame[0] == cached_frame[0] ||
+ ref_frame[0] == cached_frame[1]);
+ }
+
+ return 1 + skip_motion_mode_only;
+ } else {
+ // If both modes are compound, then everything must match.
+ if (mode != cached_mode || ref_frame[0] != cached_frame[0] ||
+ ref_frame[1] != cached_frame[1]) {
+ return 1;
+ }
+ }
+ }
+ }
+
+ const MB_MODE_INFO *const mbmi = x->e_mbd.mi[0];
+ // If no valid mode has been found so far in PARTITION_NONE when finding a
+ // valid partition is required, do not skip mode.
+ if (search_state->best_rd == INT64_MAX && mbmi->partition == PARTITION_NONE &&
+ x->must_find_valid_partition)
+ return 0;
+
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ // Prune NEARMV and NEAR_NEARMV based on q index and neighbor's reference
+ // frames
+ if (sf->inter_sf.prune_nearmv_using_neighbors &&
+ (mode == NEAR_NEARMV || mode == NEARMV)) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ if (search_state->best_rd != INT64_MAX && xd->left_available &&
+ xd->up_available) {
+ const int thresholds[PRUNE_NEARMV_MAX][3] = { { 1, 0, 0 },
+ { 1, 1, 0 },
+ { 2, 1, 0 } };
+ const int qindex_sub_range = x->qindex * 3 / QINDEX_RANGE;
+
+ assert(sf->inter_sf.prune_nearmv_using_neighbors <= PRUNE_NEARMV_MAX &&
+ qindex_sub_range < 3);
+ const int num_ref_frame_pair_match_thresh =
+ thresholds[sf->inter_sf.prune_nearmv_using_neighbors - 1]
+ [qindex_sub_range];
+
+ assert(num_ref_frame_pair_match_thresh <= 2 &&
+ num_ref_frame_pair_match_thresh >= 0);
+ int num_ref_frame_pair_match = 0;
+
+ num_ref_frame_pair_match = match_ref_frame_pair(xd->left_mbmi, ref_frame);
+ num_ref_frame_pair_match +=
+ match_ref_frame_pair(xd->above_mbmi, ref_frame);
+
+ // Pruning based on ref frame pair match with neighbors.
+ if (num_ref_frame_pair_match < num_ref_frame_pair_match_thresh) return 1;
+ }
+ }
+
+ int skip_motion_mode = 0;
+ if (mbmi->partition != PARTITION_NONE) {
+ int skip_ref = skip_ref_frame_mask & (1 << ref_type);
+ if (ref_type <= ALTREF_FRAME && skip_ref) {
+ // Since the compound ref modes depends on the motion estimation result of
+ // two single ref modes (best mv of single ref modes as the start point),
+ // if current single ref mode is marked skip, we need to check if it will
+ // be used in compound ref modes.
+ if (is_ref_frame_used_by_compound_ref(ref_type, skip_ref_frame_mask)) {
+ // Found a not skipped compound ref mode which contains current
+ // single ref. So this single ref can't be skipped completely
+ // Just skip its motion mode search, still try its simple
+ // transition mode.
+ skip_motion_mode = 1;
+ skip_ref = 0;
+ }
+ }
+ // If we are reusing the prediction from cache, and the current frame is
+ // required by the cache, then we cannot prune it.
+ if (is_ref_frame_used_in_cache(ref_type, x->mb_mode_cache)) {
+ skip_ref = 0;
+ // If the cache only needs the current reference type for compound
+ // prediction, then we can skip motion mode search.
+ skip_motion_mode = (ref_type <= ALTREF_FRAME &&
+ x->mb_mode_cache->ref_frame[1] > INTRA_FRAME);
+ }
+ if (skip_ref) return 1;
+ }
+
+ if (ref_frame[0] == INTRA_FRAME) {
+ if (mode != DC_PRED) {
+ // Disable intra modes other than DC_PRED for blocks with low variance
+ // Threshold for intra skipping based on source variance
+ // TODO(debargha): Specialize the threshold for super block sizes
+ const unsigned int skip_intra_var_thresh = 64;
+ if ((sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
+ x->source_variance < skip_intra_var_thresh)
+ return 1;
+ }
+ }
+
+ if (skip_motion_mode) return 2;
+
+ return 0;
+}
+
+static INLINE void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE curr_mode,
+ const MV_REFERENCE_FRAME *ref_frames,
+ const AV1_COMMON *cm) {
+ PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ mbmi->ref_mv_idx = 0;
+ mbmi->mode = curr_mode;
+ mbmi->uv_mode = UV_DC_PRED;
+ mbmi->ref_frame[0] = ref_frames[0];
+ mbmi->ref_frame[1] = ref_frames[1];
+ pmi->palette_size[0] = 0;
+ pmi->palette_size[1] = 0;
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1);
+ set_default_interp_filters(mbmi, cm->features.interp_filter);
+}
+
+static AOM_INLINE void collect_single_states(MACROBLOCK *x,
+ InterModeSearchState *search_state,
+ const MB_MODE_INFO *const mbmi) {
+ int i, j;
+ const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0];
+ const PREDICTION_MODE this_mode = mbmi->mode;
+ const int dir = ref_frame <= GOLDEN_FRAME ? 0 : 1;
+ const int mode_offset = INTER_OFFSET(this_mode);
+ const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode);
+
+ // Simple rd
+ int64_t simple_rd = search_state->simple_rd[this_mode][0][ref_frame];
+ for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) {
+ const int64_t rd =
+ search_state->simple_rd[this_mode][ref_mv_idx][ref_frame];
+ if (rd < simple_rd) simple_rd = rd;
+ }
+
+ // Insertion sort of single_state
+ const SingleInterModeState this_state_s = { simple_rd, ref_frame, 1 };
+ SingleInterModeState *state_s = search_state->single_state[dir][mode_offset];
+ i = search_state->single_state_cnt[dir][mode_offset];
+ for (j = i; j > 0 && state_s[j - 1].rd > this_state_s.rd; --j)
+ state_s[j] = state_s[j - 1];
+ state_s[j] = this_state_s;
+ search_state->single_state_cnt[dir][mode_offset]++;
+
+ // Modelled rd
+ int64_t modelled_rd = search_state->modelled_rd[this_mode][0][ref_frame];
+ for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) {
+ const int64_t rd =
+ search_state->modelled_rd[this_mode][ref_mv_idx][ref_frame];
+ if (rd < modelled_rd) modelled_rd = rd;
+ }
+
+ // Insertion sort of single_state_modelled
+ const SingleInterModeState this_state_m = { modelled_rd, ref_frame, 1 };
+ SingleInterModeState *state_m =
+ search_state->single_state_modelled[dir][mode_offset];
+ i = search_state->single_state_modelled_cnt[dir][mode_offset];
+ for (j = i; j > 0 && state_m[j - 1].rd > this_state_m.rd; --j)
+ state_m[j] = state_m[j - 1];
+ state_m[j] = this_state_m;
+ search_state->single_state_modelled_cnt[dir][mode_offset]++;
+}
+
+static AOM_INLINE void analyze_single_states(
+ const AV1_COMP *cpi, InterModeSearchState *search_state) {
+ const int prune_level = cpi->sf.inter_sf.prune_comp_search_by_single_result;
+ assert(prune_level >= 1);
+ int i, j, dir, mode;
+
+ for (dir = 0; dir < 2; ++dir) {
+ int64_t best_rd;
+ SingleInterModeState(*state)[FWD_REFS];
+ const int prune_factor = prune_level >= 2 ? 6 : 5;
+
+ // Use the best rd of GLOBALMV or NEWMV to prune the unlikely
+ // reference frames for all the modes (NEARESTMV and NEARMV may not
+ // have same motion vectors). Always keep the best of each mode
+ // because it might form the best possible combination with other mode.
+ state = search_state->single_state[dir];
+ best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd,
+ state[INTER_OFFSET(GLOBALMV)][0].rd);
+ for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
+ for (i = 1; i < search_state->single_state_cnt[dir][mode]; ++i) {
+ if (state[mode][i].rd != INT64_MAX &&
+ (state[mode][i].rd >> 3) * prune_factor > best_rd) {
+ state[mode][i].valid = 0;
+ }
+ }
+ }
+
+ state = search_state->single_state_modelled[dir];
+ best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd,
+ state[INTER_OFFSET(GLOBALMV)][0].rd);
+ for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
+ for (i = 1; i < search_state->single_state_modelled_cnt[dir][mode]; ++i) {
+ if (state[mode][i].rd != INT64_MAX &&
+ (state[mode][i].rd >> 3) * prune_factor > best_rd) {
+ state[mode][i].valid = 0;
+ }
+ }
+ }
+ }
+
+ // Ordering by simple rd first, then by modelled rd
+ for (dir = 0; dir < 2; ++dir) {
+ for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
+ const int state_cnt_s = search_state->single_state_cnt[dir][mode];
+ const int state_cnt_m =
+ search_state->single_state_modelled_cnt[dir][mode];
+ SingleInterModeState *state_s = search_state->single_state[dir][mode];
+ SingleInterModeState *state_m =
+ search_state->single_state_modelled[dir][mode];
+ int count = 0;
+ const int max_candidates = AOMMAX(state_cnt_s, state_cnt_m);
+ for (i = 0; i < state_cnt_s; ++i) {
+ if (state_s[i].rd == INT64_MAX) break;
+ if (state_s[i].valid) {
+ search_state->single_rd_order[dir][mode][count++] =
+ state_s[i].ref_frame;
+ }
+ }
+ if (count >= max_candidates) continue;
+
+ for (i = 0; i < state_cnt_m && count < max_candidates; ++i) {
+ if (state_m[i].rd == INT64_MAX) break;
+ if (!state_m[i].valid) continue;
+ const int ref_frame = state_m[i].ref_frame;
+ int match = 0;
+ // Check if existing already
+ for (j = 0; j < count; ++j) {
+ if (search_state->single_rd_order[dir][mode][j] == ref_frame) {
+ match = 1;
+ break;
+ }
+ }
+ if (match) continue;
+ // Check if this ref_frame is removed in simple rd
+ int valid = 1;
+ for (j = 0; j < state_cnt_s; ++j) {
+ if (ref_frame == state_s[j].ref_frame) {
+ valid = state_s[j].valid;
+ break;
+ }
+ }
+ if (valid) {
+ search_state->single_rd_order[dir][mode][count++] = ref_frame;
+ }
+ }
+ }
+ }
+}
+
+static int compound_skip_get_candidates(
+ const AV1_COMP *cpi, const InterModeSearchState *search_state,
+ const int dir, const PREDICTION_MODE mode) {
+ const int mode_offset = INTER_OFFSET(mode);
+ const SingleInterModeState *state =
+ search_state->single_state[dir][mode_offset];
+ const SingleInterModeState *state_modelled =
+ search_state->single_state_modelled[dir][mode_offset];
+
+ int max_candidates = 0;
+ for (int i = 0; i < FWD_REFS; ++i) {
+ if (search_state->single_rd_order[dir][mode_offset][i] == NONE_FRAME) break;
+ max_candidates++;
+ }
+
+ int candidates = max_candidates;
+ if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 2) {
+ candidates = AOMMIN(2, max_candidates);
+ }
+ if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 3) {
+ if (state[0].rd != INT64_MAX && state_modelled[0].rd != INT64_MAX &&
+ state[0].ref_frame == state_modelled[0].ref_frame)
+ candidates = 1;
+ if (mode == NEARMV || mode == GLOBALMV) candidates = 1;
+ }
+
+ if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 4) {
+ // Limit the number of candidates to 1 in each direction for compound
+ // prediction
+ candidates = AOMMIN(1, candidates);
+ }
+ return candidates;
+}
+
+static int compound_skip_by_single_states(
+ const AV1_COMP *cpi, const InterModeSearchState *search_state,
+ const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME ref_frame,
+ const MV_REFERENCE_FRAME second_ref_frame, const MACROBLOCK *x) {
+ const MV_REFERENCE_FRAME refs[2] = { ref_frame, second_ref_frame };
+ const int mode[2] = { compound_ref0_mode(this_mode),
+ compound_ref1_mode(this_mode) };
+ const int mode_offset[2] = { INTER_OFFSET(mode[0]), INTER_OFFSET(mode[1]) };
+ const int mode_dir[2] = { refs[0] <= GOLDEN_FRAME ? 0 : 1,
+ refs[1] <= GOLDEN_FRAME ? 0 : 1 };
+ int ref_searched[2] = { 0, 0 };
+ int ref_mv_match[2] = { 1, 1 };
+ int i, j;
+
+ for (i = 0; i < 2; ++i) {
+ const SingleInterModeState *state =
+ search_state->single_state[mode_dir[i]][mode_offset[i]];
+ const int state_cnt =
+ search_state->single_state_cnt[mode_dir[i]][mode_offset[i]];
+ for (j = 0; j < state_cnt; ++j) {
+ if (state[j].ref_frame == refs[i]) {
+ ref_searched[i] = 1;
+ break;
+ }
+ }
+ }
+
+ const int ref_set = get_drl_refmv_count(x, refs, this_mode);
+ for (i = 0; i < 2; ++i) {
+ if (!ref_searched[i] || (mode[i] != NEARESTMV && mode[i] != NEARMV)) {
+ continue;
+ }
+ const MV_REFERENCE_FRAME single_refs[2] = { refs[i], NONE_FRAME };
+ for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ref_mv_idx++) {
+ int_mv single_mv;
+ int_mv comp_mv;
+ get_this_mv(&single_mv, mode[i], 0, ref_mv_idx, 0, single_refs,
+ &x->mbmi_ext);
+ get_this_mv(&comp_mv, this_mode, i, ref_mv_idx, 0, refs, &x->mbmi_ext);
+ if (single_mv.as_int != comp_mv.as_int) {
+ ref_mv_match[i] = 0;
+ break;
+ }
+ }
+ }
+
+ for (i = 0; i < 2; ++i) {
+ if (!ref_searched[i] || !ref_mv_match[i]) continue;
+ const int candidates =
+ compound_skip_get_candidates(cpi, search_state, mode_dir[i], mode[i]);
+ const MV_REFERENCE_FRAME *ref_order =
+ search_state->single_rd_order[mode_dir[i]][mode_offset[i]];
+ int match = 0;
+ for (j = 0; j < candidates; ++j) {
+ if (refs[i] == ref_order[j]) {
+ match = 1;
+ break;
+ }
+ }
+ if (!match) return 1;
+ }
+
+ return 0;
+}
+
+// Check if ref frames of current block matches with given block.
+static INLINE void match_ref_frame(const MB_MODE_INFO *const mbmi,
+ const MV_REFERENCE_FRAME *ref_frames,
+ int *const is_ref_match) {
+ if (is_inter_block(mbmi)) {
+ is_ref_match[0] |= ref_frames[0] == mbmi->ref_frame[0];
+ is_ref_match[1] |= ref_frames[1] == mbmi->ref_frame[0];
+ if (has_second_ref(mbmi)) {
+ is_ref_match[0] |= ref_frames[0] == mbmi->ref_frame[1];
+ is_ref_match[1] |= ref_frames[1] == mbmi->ref_frame[1];
+ }
+ }
+}
+
+// Prune compound mode using ref frames of neighbor blocks.
+static INLINE int compound_skip_using_neighbor_refs(
+ MACROBLOCKD *const xd, const PREDICTION_MODE this_mode,
+ const MV_REFERENCE_FRAME *ref_frames, int prune_ext_comp_using_neighbors) {
+ // Exclude non-extended compound modes from pruning
+ if (this_mode == NEAREST_NEARESTMV || this_mode == NEAR_NEARMV ||
+ this_mode == NEW_NEWMV || this_mode == GLOBAL_GLOBALMV)
+ return 0;
+
+ if (prune_ext_comp_using_neighbors >= 3) return 1;
+
+ int is_ref_match[2] = { 0 }; // 0 - match for forward refs
+ // 1 - match for backward refs
+ // Check if ref frames of this block matches with left neighbor.
+ if (xd->left_available)
+ match_ref_frame(xd->left_mbmi, ref_frames, is_ref_match);
+
+ // Check if ref frames of this block matches with above neighbor.
+ if (xd->up_available)
+ match_ref_frame(xd->above_mbmi, ref_frames, is_ref_match);
+
+ // Combine ref frame match with neighbors in forward and backward refs.
+ const int track_ref_match = is_ref_match[0] + is_ref_match[1];
+
+ // Pruning based on ref frame match with neighbors.
+ if (track_ref_match >= prune_ext_comp_using_neighbors) return 0;
+ return 1;
+}
+
+// Update best single mode for the given reference frame based on simple rd.
+static INLINE void update_best_single_mode(InterModeSearchState *search_state,
+ const PREDICTION_MODE this_mode,
+ const MV_REFERENCE_FRAME ref_frame,
+ int64_t this_rd) {
+ if (this_rd < search_state->best_single_rd[ref_frame]) {
+ search_state->best_single_rd[ref_frame] = this_rd;
+ search_state->best_single_mode[ref_frame] = this_mode;
+ }
+}
+
+// Prune compound mode using best single mode for the same reference.
+static INLINE int skip_compound_using_best_single_mode_ref(
+ const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME *ref_frames,
+ const PREDICTION_MODE *best_single_mode,
+ int prune_comp_using_best_single_mode_ref) {
+ // Exclude non-extended compound modes from pruning
+ if (this_mode == NEAREST_NEARESTMV || this_mode == NEAR_NEARMV ||
+ this_mode == NEW_NEWMV || this_mode == GLOBAL_GLOBALMV)
+ return 0;
+
+ assert(this_mode >= NEAREST_NEWMV && this_mode <= NEW_NEARMV);
+ const PREDICTION_MODE comp_mode_ref0 = compound_ref0_mode(this_mode);
+ // Get ref frame direction corresponding to NEWMV
+ // 0 - NEWMV corresponding to forward direction
+ // 1 - NEWMV corresponding to backward direction
+ const int newmv_dir = comp_mode_ref0 != NEWMV;
+
+ // Avoid pruning the compound mode when ref frame corresponding to NEWMV
+ // have NEWMV as single mode winner.
+ // Example: For an extended-compound mode,
+ // {mode, {fwd_frame, bwd_frame}} = {NEAR_NEWMV, {LAST_FRAME, ALTREF_FRAME}}
+ // - Ref frame corresponding to NEWMV is ALTREF_FRAME
+ // - Avoid pruning this mode, if best single mode corresponding to ref frame
+ // ALTREF_FRAME is NEWMV
+ const PREDICTION_MODE single_mode = best_single_mode[ref_frames[newmv_dir]];
+ if (single_mode == NEWMV) return 0;
+
+ // Avoid pruning the compound mode when best single mode is not available
+ if (prune_comp_using_best_single_mode_ref == 1)
+ if (single_mode == MB_MODE_COUNT) return 0;
+ return 1;
+}
+
+static int compare_int64(const void *a, const void *b) {
+ int64_t a64 = *((int64_t *)a);
+ int64_t b64 = *((int64_t *)b);
+ if (a64 < b64) {
+ return -1;
+ } else if (a64 == b64) {
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+static INLINE void update_search_state(
+ InterModeSearchState *search_state, RD_STATS *best_rd_stats_dst,
+ PICK_MODE_CONTEXT *ctx, const RD_STATS *new_best_rd_stats,
+ const RD_STATS *new_best_rd_stats_y, const RD_STATS *new_best_rd_stats_uv,
+ THR_MODES new_best_mode, const MACROBLOCK *x, int txfm_search_done) {
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const MB_MODE_INFO *mbmi = xd->mi[0];
+ const int skip_ctx = av1_get_skip_txfm_context(xd);
+ const int skip_txfm =
+ mbmi->skip_txfm && !is_mode_intra(av1_mode_defs[new_best_mode].mode);
+ const TxfmSearchInfo *txfm_info = &x->txfm_search_info;
+
+ search_state->best_rd = new_best_rd_stats->rdcost;
+ search_state->best_mode_index = new_best_mode;
+ *best_rd_stats_dst = *new_best_rd_stats;
+ search_state->best_mbmode = *mbmi;
+ search_state->best_skip2 = skip_txfm;
+ search_state->best_mode_skippable = new_best_rd_stats->skip_txfm;
+ // When !txfm_search_done, new_best_rd_stats won't provide correct rate_y and
+ // rate_uv because av1_txfm_search process is replaced by rd estimation.
+ // Therefore, we should avoid updating best_rate_y and best_rate_uv here.
+ // These two values will be updated when av1_txfm_search is called.
+ if (txfm_search_done) {
+ search_state->best_rate_y =
+ new_best_rd_stats_y->rate +
+ x->mode_costs.skip_txfm_cost[skip_ctx]
+ [new_best_rd_stats->skip_txfm || skip_txfm];
+ search_state->best_rate_uv = new_best_rd_stats_uv->rate;
+ }
+ search_state->best_y_rdcost = *new_best_rd_stats_y;
+ memcpy(ctx->blk_skip, txfm_info->blk_skip,
+ sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
+ av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
+}
+
+// Find the best RD for a reference frame (among single reference modes)
+// and store +10% of it in the 0-th element in ref_frame_rd.
+static AOM_INLINE void find_top_ref(int64_t ref_frame_rd[REF_FRAMES]) {
+ assert(ref_frame_rd[0] == INT64_MAX);
+ int64_t ref_copy[REF_FRAMES - 1];
+ memcpy(ref_copy, ref_frame_rd + 1,
+ sizeof(ref_frame_rd[0]) * (REF_FRAMES - 1));
+ qsort(ref_copy, REF_FRAMES - 1, sizeof(int64_t), compare_int64);
+
+ int64_t cutoff = ref_copy[0];
+ // The cut-off is within 10% of the best.
+ if (cutoff != INT64_MAX) {
+ assert(cutoff < INT64_MAX / 200);
+ cutoff = (110 * cutoff) / 100;
+ }
+ ref_frame_rd[0] = cutoff;
+}
+
+// Check if either frame is within the cutoff.
+static INLINE bool in_single_ref_cutoff(int64_t ref_frame_rd[REF_FRAMES],
+ MV_REFERENCE_FRAME frame1,
+ MV_REFERENCE_FRAME frame2) {
+ assert(frame2 > 0);
+ return ref_frame_rd[frame1] <= ref_frame_rd[0] ||
+ ref_frame_rd[frame2] <= ref_frame_rd[0];
+}
+
+static AOM_INLINE void evaluate_motion_mode_for_winner_candidates(
+ const AV1_COMP *const cpi, MACROBLOCK *const x, RD_STATS *const rd_cost,
+ HandleInterModeArgs *const args, TileDataEnc *const tile_data,
+ PICK_MODE_CONTEXT *const ctx,
+ struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE],
+ const motion_mode_best_st_candidate *const best_motion_mode_cands,
+ int do_tx_search, const BLOCK_SIZE bsize, int64_t *const best_est_rd,
+ InterModeSearchState *const search_state, int64_t *yrd) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ InterModesInfo *const inter_modes_info = x->inter_modes_info;
+ const int num_best_cand = best_motion_mode_cands->num_motion_mode_cand;
+
+ for (int cand = 0; cand < num_best_cand; cand++) {
+ RD_STATS rd_stats;
+ RD_STATS rd_stats_y;
+ RD_STATS rd_stats_uv;
+ av1_init_rd_stats(&rd_stats);
+ av1_init_rd_stats(&rd_stats_y);
+ av1_init_rd_stats(&rd_stats_uv);
+ int rate_mv;
+
+ rate_mv = best_motion_mode_cands->motion_mode_cand[cand].rate_mv;
+ args->skip_motion_mode =
+ best_motion_mode_cands->motion_mode_cand[cand].skip_motion_mode;
+ *mbmi = best_motion_mode_cands->motion_mode_cand[cand].mbmi;
+ rd_stats.rate =
+ best_motion_mode_cands->motion_mode_cand[cand].rate2_nocoeff;
+
+ // Continue if the best candidate is compound.
+ if (!is_inter_singleref_mode(mbmi->mode)) continue;
+
+ x->txfm_search_info.skip_txfm = 0;
+ struct macroblockd_plane *pd = xd->plane;
+ const BUFFER_SET orig_dst = {
+ { pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf },
+ { pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride },
+ };
+
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ // Initialize motion mode to simple translation
+ // Calculation of switchable rate depends on it.
+ mbmi->motion_mode = 0;
+ const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME;
+ for (int i = 0; i < num_planes; i++) {
+ xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
+ if (is_comp_pred) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
+ }
+
+ int64_t skip_rd[2] = { search_state->best_skip_rd[0],
+ search_state->best_skip_rd[1] };
+ int64_t this_yrd = INT64_MAX;
+ int64_t ret_value = motion_mode_rd(
+ cpi, tile_data, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, args,
+ search_state->best_rd, skip_rd, &rate_mv, &orig_dst, best_est_rd,
+ do_tx_search, inter_modes_info, 1, &this_yrd);
+
+ if (ret_value != INT64_MAX) {
+ rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist);
+ const THR_MODES mode_enum = get_prediction_mode_idx(
+ mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ // Collect mode stats for multiwinner mode processing
+ store_winner_mode_stats(
+ &cpi->common, x, mbmi, &rd_stats, &rd_stats_y, &rd_stats_uv,
+ mode_enum, NULL, bsize, rd_stats.rdcost,
+ cpi->sf.winner_mode_sf.multi_winner_mode_type, do_tx_search);
+ if (rd_stats.rdcost < search_state->best_rd) {
+ *yrd = this_yrd;
+ update_search_state(search_state, rd_cost, ctx, &rd_stats, &rd_stats_y,
+ &rd_stats_uv, mode_enum, x, do_tx_search);
+ if (do_tx_search) search_state->best_skip_rd[0] = skip_rd[0];
+ }
+ }
+ }
+}
+
+/*!\cond */
+// Arguments for speed feature pruning of inter mode search
+typedef struct {
+ int *skip_motion_mode;
+ mode_skip_mask_t *mode_skip_mask;
+ InterModeSearchState *search_state;
+ int skip_ref_frame_mask;
+ int reach_first_comp_mode;
+ int mode_thresh_mul_fact;
+ int num_single_modes_processed;
+ int prune_cpd_using_sr_stats_ready;
+} InterModeSFArgs;
+/*!\endcond */
+
+static int skip_inter_mode(AV1_COMP *cpi, MACROBLOCK *x, const BLOCK_SIZE bsize,
+ int64_t *ref_frame_rd, int midx,
+ InterModeSFArgs *args, int is_low_temp_var) {
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ // Get the actual prediction mode we are trying in this iteration
+ const THR_MODES mode_enum = av1_default_mode_order[midx];
+ const MODE_DEFINITION *mode_def = &av1_mode_defs[mode_enum];
+ const PREDICTION_MODE this_mode = mode_def->mode;
+ const MV_REFERENCE_FRAME *ref_frames = mode_def->ref_frame;
+ const MV_REFERENCE_FRAME ref_frame = ref_frames[0];
+ const MV_REFERENCE_FRAME second_ref_frame = ref_frames[1];
+ const int comp_pred = second_ref_frame > INTRA_FRAME;
+
+ if (ref_frame == INTRA_FRAME) return 1;
+
+ const FRAME_UPDATE_TYPE update_type =
+ get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
+ if (sf->inter_sf.skip_arf_compound && update_type == ARF_UPDATE &&
+ comp_pred) {
+ return 1;
+ }
+
+ // This is for real time encoding.
+ if (is_low_temp_var && !comp_pred && ref_frame != LAST_FRAME &&
+ this_mode != NEARESTMV)
+ return 1;
+
+ // Check if this mode should be skipped because it is incompatible with the
+ // current frame
+ if (inter_mode_compatible_skip(cpi, x, bsize, this_mode, ref_frames))
+ return 1;
+ const int ret = inter_mode_search_order_independent_skip(
+ cpi, x, args->mode_skip_mask, args->search_state,
+ args->skip_ref_frame_mask, this_mode, mode_def->ref_frame);
+ if (ret == 1) return 1;
+ *(args->skip_motion_mode) = (ret == 2);
+
+ // We've reached the first compound prediction mode, get stats from the
+ // single reference predictors to help with pruning.
+ // Disable this pruning logic if interpolation filter search was skipped for
+ // single prediction modes as it can result in aggressive pruning of compound
+ // prediction modes due to the absence of modelled_rd populated by
+ // av1_interpolation_filter_search().
+ // TODO(Remya): Check the impact of the sf
+ // 'prune_comp_search_by_single_result' if compound prediction modes are
+ // enabled in future for REALTIME encode.
+ if (!sf->interp_sf.skip_interp_filter_search &&
+ sf->inter_sf.prune_comp_search_by_single_result > 0 && comp_pred &&
+ args->reach_first_comp_mode == 0) {
+ analyze_single_states(cpi, args->search_state);
+ args->reach_first_comp_mode = 1;
+ }
+
+ // Prune aggressively when best mode is skippable.
+ int mul_fact = args->search_state->best_mode_skippable
+ ? args->mode_thresh_mul_fact
+ : (1 << MODE_THRESH_QBITS);
+ int64_t mode_threshold =
+ (args->search_state->mode_threshold[mode_enum] * mul_fact) >>
+ MODE_THRESH_QBITS;
+
+ if (args->search_state->best_rd < mode_threshold) return 1;
+
+ // Skip this compound mode based on the RD results from the single prediction
+ // modes
+ if (!sf->interp_sf.skip_interp_filter_search &&
+ sf->inter_sf.prune_comp_search_by_single_result > 0 && comp_pred) {
+ if (compound_skip_by_single_states(cpi, args->search_state, this_mode,
+ ref_frame, second_ref_frame, x))
+ return 1;
+ }
+
+ if (sf->inter_sf.prune_compound_using_single_ref && comp_pred) {
+ // After we done with single reference modes, find the 2nd best RD
+ // for a reference frame. Only search compound modes that have a reference
+ // frame at least as good as the 2nd best.
+ if (!args->prune_cpd_using_sr_stats_ready &&
+ args->num_single_modes_processed == NUM_SINGLE_REF_MODES) {
+ find_top_ref(ref_frame_rd);
+ args->prune_cpd_using_sr_stats_ready = 1;
+ }
+ if (args->prune_cpd_using_sr_stats_ready &&
+ !in_single_ref_cutoff(ref_frame_rd, ref_frame, second_ref_frame))
+ return 1;
+ }
+
+ // Skip NEW_NEARMV and NEAR_NEWMV extended compound modes
+ if (sf->inter_sf.skip_ext_comp_nearmv_mode &&
+ (this_mode == NEW_NEARMV || this_mode == NEAR_NEWMV)) {
+ return 1;
+ }
+
+ if (sf->inter_sf.prune_ext_comp_using_neighbors && comp_pred) {
+ if (compound_skip_using_neighbor_refs(
+ xd, this_mode, ref_frames,
+ sf->inter_sf.prune_ext_comp_using_neighbors))
+ return 1;
+ }
+
+ if (sf->inter_sf.prune_comp_using_best_single_mode_ref && comp_pred) {
+ if (skip_compound_using_best_single_mode_ref(
+ this_mode, ref_frames, args->search_state->best_single_mode,
+ sf->inter_sf.prune_comp_using_best_single_mode_ref))
+ return 1;
+ }
+
+ if (sf->inter_sf.prune_nearest_near_mv_using_refmv_weight && !comp_pred) {
+ const int8_t ref_frame_type = av1_ref_frame_type(ref_frames);
+ if (skip_nearest_near_mv_using_refmv_weight(
+ x, this_mode, ref_frame_type,
+ args->search_state->best_mbmode.mode)) {
+ // Ensure the mode is pruned only when the current block has obtained a
+ // valid inter mode.
+ assert(is_inter_mode(args->search_state->best_mbmode.mode));
+ return 1;
+ }
+ }
+
+ if (sf->rt_sf.prune_inter_modes_with_golden_ref &&
+ ref_frame == GOLDEN_FRAME && !comp_pred) {
+ const int subgop_size = AOMMIN(cpi->ppi->gf_group.size, FIXED_GF_INTERVAL);
+ if (cpi->rc.frames_since_golden > (subgop_size >> 2) &&
+ args->search_state->best_mbmode.ref_frame[0] != GOLDEN_FRAME) {
+ if ((bsize > BLOCK_16X16 && this_mode == NEWMV) || this_mode == NEARMV)
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+static void record_best_compound(REFERENCE_MODE reference_mode,
+ RD_STATS *rd_stats, int comp_pred, int rdmult,
+ InterModeSearchState *search_state,
+ int compmode_cost) {
+ int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
+
+ if (reference_mode == REFERENCE_MODE_SELECT) {
+ single_rate = rd_stats->rate - compmode_cost;
+ hybrid_rate = rd_stats->rate;
+ } else {
+ single_rate = rd_stats->rate;
+ hybrid_rate = rd_stats->rate + compmode_cost;
+ }
+
+ single_rd = RDCOST(rdmult, single_rate, rd_stats->dist);
+ hybrid_rd = RDCOST(rdmult, hybrid_rate, rd_stats->dist);
+
+ if (!comp_pred) {
+ if (single_rd < search_state->best_pred_rd[SINGLE_REFERENCE])
+ search_state->best_pred_rd[SINGLE_REFERENCE] = single_rd;
+ } else {
+ if (single_rd < search_state->best_pred_rd[COMPOUND_REFERENCE])
+ search_state->best_pred_rd[COMPOUND_REFERENCE] = single_rd;
+ }
+ if (hybrid_rd < search_state->best_pred_rd[REFERENCE_MODE_SELECT])
+ search_state->best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
+}
+
+// Does a transform search over a list of the best inter mode candidates.
+// This is called if the original mode search computed an RD estimate
+// for the transform search rather than doing a full search.
+static void tx_search_best_inter_candidates(
+ AV1_COMP *cpi, TileDataEnc *tile_data, MACROBLOCK *x,
+ int64_t best_rd_so_far, BLOCK_SIZE bsize,
+ struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE], int mi_row, int mi_col,
+ InterModeSearchState *search_state, RD_STATS *rd_cost,
+ PICK_MODE_CONTEXT *ctx, int64_t *yrd) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ TxfmSearchInfo *txfm_info = &x->txfm_search_info;
+ const ModeCosts *mode_costs = &x->mode_costs;
+ const int num_planes = av1_num_planes(cm);
+ const int skip_ctx = av1_get_skip_txfm_context(xd);
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ InterModesInfo *inter_modes_info = x->inter_modes_info;
+ inter_modes_info_sort(inter_modes_info, inter_modes_info->rd_idx_pair_arr);
+ search_state->best_rd = best_rd_so_far;
+ search_state->best_mode_index = THR_INVALID;
+ // Initialize best mode stats for winner mode processing
+ x->winner_mode_count = 0;
+ store_winner_mode_stats(&cpi->common, x, mbmi, NULL, NULL, NULL, THR_INVALID,
+ NULL, bsize, best_rd_so_far,
+ cpi->sf.winner_mode_sf.multi_winner_mode_type, 0);
+ inter_modes_info->num =
+ inter_modes_info->num < cpi->sf.rt_sf.num_inter_modes_for_tx_search
+ ? inter_modes_info->num
+ : cpi->sf.rt_sf.num_inter_modes_for_tx_search;
+ const int64_t top_est_rd =
+ inter_modes_info->num > 0
+ ? inter_modes_info
+ ->est_rd_arr[inter_modes_info->rd_idx_pair_arr[0].idx]
+ : INT64_MAX;
+ *yrd = INT64_MAX;
+ int64_t best_rd_in_this_partition = INT64_MAX;
+ int num_inter_mode_cands = inter_modes_info->num;
+ int newmv_mode_evaled = 0;
+ int max_allowed_cands = INT_MAX;
+ if (cpi->sf.inter_sf.limit_inter_mode_cands) {
+ // The bound on the no. of inter mode candidates, beyond which the
+ // candidates are limited if a newmv mode got evaluated, is set as
+ // max_allowed_cands + 1.
+ const int num_allowed_cands[5] = { INT_MAX, 10, 9, 6, 2 };
+ assert(cpi->sf.inter_sf.limit_inter_mode_cands <= 4);
+ max_allowed_cands =
+ num_allowed_cands[cpi->sf.inter_sf.limit_inter_mode_cands];
+ }
+
+ int num_mode_thresh = INT_MAX;
+ if (cpi->sf.inter_sf.limit_txfm_eval_per_mode) {
+ // Bound the no. of transform searches per prediction mode beyond a
+ // threshold.
+ const int num_mode_thresh_ary[4] = { INT_MAX, 4, 3, 0 };
+ assert(cpi->sf.inter_sf.limit_txfm_eval_per_mode <= 3);
+ num_mode_thresh =
+ num_mode_thresh_ary[cpi->sf.inter_sf.limit_txfm_eval_per_mode];
+ }
+
+ int num_tx_cands = 0;
+ int num_tx_search_modes[INTER_MODE_END - INTER_MODE_START] = { 0 };
+ // Iterate over best inter mode candidates and perform tx search
+ for (int j = 0; j < num_inter_mode_cands; ++j) {
+ const int data_idx = inter_modes_info->rd_idx_pair_arr[j].idx;
+ *mbmi = inter_modes_info->mbmi_arr[data_idx];
+ const PREDICTION_MODE prediction_mode = mbmi->mode;
+ int64_t curr_est_rd = inter_modes_info->est_rd_arr[data_idx];
+ if (curr_est_rd * 0.80 > top_est_rd) break;
+
+ if (num_tx_cands > num_mode_thresh) {
+ if ((prediction_mode != NEARESTMV &&
+ num_tx_search_modes[prediction_mode - INTER_MODE_START] >= 1) ||
+ (prediction_mode == NEARESTMV &&
+ num_tx_search_modes[prediction_mode - INTER_MODE_START] >= 2))
+ continue;
+ }
+
+ txfm_info->skip_txfm = 0;
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+
+ // Select prediction reference frames.
+ const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME;
+ for (int i = 0; i < num_planes; i++) {
+ xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
+ if (is_comp_pred) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
+ }
+
+ bool is_predictor_built = false;
+
+ // Initialize RD stats
+ RD_STATS rd_stats;
+ RD_STATS rd_stats_y;
+ RD_STATS rd_stats_uv;
+ const int mode_rate = inter_modes_info->mode_rate_arr[data_idx];
+ int64_t skip_rd = INT64_MAX;
+ const int txfm_rd_gate_level = get_txfm_rd_gate_level(
+ cm->seq_params->enable_masked_compound,
+ cpi->sf.inter_sf.txfm_rd_gate_level, bsize, TX_SEARCH_DEFAULT,
+ /*eval_motion_mode=*/0);
+ if (txfm_rd_gate_level) {
+ // Check if the mode is good enough based on skip RD
+ int64_t curr_sse = inter_modes_info->sse_arr[data_idx];
+ skip_rd = RDCOST(x->rdmult, mode_rate, curr_sse);
+ int eval_txfm = check_txfm_eval(x, bsize, search_state->best_skip_rd[0],
+ skip_rd, txfm_rd_gate_level, 0);
+ if (!eval_txfm) continue;
+ }
+
+ // Build the prediction for this mode
+ if (!is_predictor_built) {
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
+ av1_num_planes(cm) - 1);
+ }
+ if (mbmi->motion_mode == OBMC_CAUSAL) {
+ av1_build_obmc_inter_predictors_sb(cm, xd);
+ }
+
+ num_tx_cands++;
+ if (have_newmv_in_inter_mode(prediction_mode)) newmv_mode_evaled = 1;
+ num_tx_search_modes[prediction_mode - INTER_MODE_START]++;
+ int64_t this_yrd = INT64_MAX;
+ // Do the transform search
+ if (!av1_txfm_search(cpi, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv,
+ mode_rate, search_state->best_rd)) {
+ continue;
+ } else {
+ const int y_rate =
+ rd_stats.skip_txfm
+ ? mode_costs->skip_txfm_cost[skip_ctx][1]
+ : (rd_stats_y.rate + mode_costs->skip_txfm_cost[skip_ctx][0]);
+ this_yrd = RDCOST(x->rdmult, y_rate + mode_rate, rd_stats_y.dist);
+
+ if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
+ inter_mode_data_push(
+ tile_data, mbmi->bsize, rd_stats.sse, rd_stats.dist,
+ rd_stats_y.rate + rd_stats_uv.rate +
+ mode_costs->skip_txfm_cost[skip_ctx][mbmi->skip_txfm]);
+ }
+ }
+ rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist);
+ if (rd_stats.rdcost < best_rd_in_this_partition) {
+ best_rd_in_this_partition = rd_stats.rdcost;
+ *yrd = this_yrd;
+ }
+
+ const THR_MODES mode_enum = get_prediction_mode_idx(
+ prediction_mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+
+ // Collect mode stats for multiwinner mode processing
+ const int txfm_search_done = 1;
+ store_winner_mode_stats(
+ &cpi->common, x, mbmi, &rd_stats, &rd_stats_y, &rd_stats_uv, mode_enum,
+ NULL, bsize, rd_stats.rdcost,
+ cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done);
+
+ if (rd_stats.rdcost < search_state->best_rd) {
+ update_search_state(search_state, rd_cost, ctx, &rd_stats, &rd_stats_y,
+ &rd_stats_uv, mode_enum, x, txfm_search_done);
+ search_state->best_skip_rd[0] = skip_rd;
+ // Limit the total number of modes to be evaluated if the first is valid
+ // and transform skip or compound
+ if (cpi->sf.inter_sf.inter_mode_txfm_breakout) {
+ if (!j && (search_state->best_mbmode.skip_txfm || rd_stats.skip_txfm)) {
+ // Evaluate more candidates at high quantizers where occurrence of
+ // transform skip is high.
+ const int max_cands_cap[5] = { 2, 3, 5, 7, 9 };
+ const int qindex_band = (5 * x->qindex) >> QINDEX_BITS;
+ num_inter_mode_cands =
+ AOMMIN(max_cands_cap[qindex_band], inter_modes_info->num);
+ } else if (!j && has_second_ref(&search_state->best_mbmode)) {
+ const int aggr = cpi->sf.inter_sf.inter_mode_txfm_breakout - 1;
+ // Evaluate more candidates at low quantizers where occurrence of
+ // single reference mode is high.
+ const int max_cands_cap_cmp[2][4] = { { 10, 7, 5, 4 },
+ { 10, 7, 5, 3 } };
+ const int qindex_band_cmp = (4 * x->qindex) >> QINDEX_BITS;
+ num_inter_mode_cands = AOMMIN(
+ max_cands_cap_cmp[aggr][qindex_band_cmp], inter_modes_info->num);
+ }
+ }
+ }
+ // If the number of candidates evaluated exceeds max_allowed_cands, break if
+ // a newmv mode was evaluated already.
+ if ((num_tx_cands > max_allowed_cands) && newmv_mode_evaled) break;
+ }
+}
+
+// Indicates number of winner simple translation modes to be used
+static const unsigned int num_winner_motion_modes[3] = { 0, 10, 3 };
+
+// Adds a motion mode to the candidate list for motion_mode_for_winner_cand
+// speed feature. This list consists of modes that have only searched
+// SIMPLE_TRANSLATION. The final list will be used to search other motion
+// modes after the initial RD search.
+static void handle_winner_cand(
+ MB_MODE_INFO *const mbmi,
+ motion_mode_best_st_candidate *best_motion_mode_cands,
+ int max_winner_motion_mode_cand, int64_t this_rd,
+ motion_mode_candidate *motion_mode_cand, int skip_motion_mode) {
+ // Number of current motion mode candidates in list
+ const int num_motion_mode_cand = best_motion_mode_cands->num_motion_mode_cand;
+ int valid_motion_mode_cand_loc = num_motion_mode_cand;
+
+ // find the best location to insert new motion mode candidate
+ for (int j = 0; j < num_motion_mode_cand; j++) {
+ if (this_rd < best_motion_mode_cands->motion_mode_cand[j].rd_cost) {
+ valid_motion_mode_cand_loc = j;
+ break;
+ }
+ }
+
+ // Insert motion mode if location is found
+ if (valid_motion_mode_cand_loc < max_winner_motion_mode_cand) {
+ if (num_motion_mode_cand > 0 &&
+ valid_motion_mode_cand_loc < max_winner_motion_mode_cand - 1)
+ memmove(
+ &best_motion_mode_cands
+ ->motion_mode_cand[valid_motion_mode_cand_loc + 1],
+ &best_motion_mode_cands->motion_mode_cand[valid_motion_mode_cand_loc],
+ (AOMMIN(num_motion_mode_cand, max_winner_motion_mode_cand - 1) -
+ valid_motion_mode_cand_loc) *
+ sizeof(best_motion_mode_cands->motion_mode_cand[0]));
+ motion_mode_cand->mbmi = *mbmi;
+ motion_mode_cand->rd_cost = this_rd;
+ motion_mode_cand->skip_motion_mode = skip_motion_mode;
+ best_motion_mode_cands->motion_mode_cand[valid_motion_mode_cand_loc] =
+ *motion_mode_cand;
+ best_motion_mode_cands->num_motion_mode_cand =
+ AOMMIN(max_winner_motion_mode_cand,
+ best_motion_mode_cands->num_motion_mode_cand + 1);
+ }
+}
+
+/*!\brief Search intra modes in interframes
+ *
+ * \ingroup intra_mode_search
+ *
+ * This function searches for the best intra mode when the current frame is an
+ * interframe. This function however does *not* handle luma palette mode.
+ * Palette mode is currently handled by \ref av1_search_palette_mode.
+ *
+ * This function will first iterate through the luma mode candidates to find the
+ * best luma intra mode. Once the best luma mode it's found, it will then search
+ * for the best chroma mode. Because palette mode is currently not handled by
+ * here, a cache of uv mode is stored in
+ * InterModeSearchState::intra_search_state so it can be reused later by \ref
+ * av1_search_palette_mode.
+ *
+ * \param[in,out] search_state Struct keep track of the prediction mode
+ * search state in interframe.
+ *
+ * \param[in] cpi Top-level encoder structure.
+ * \param[in,out] x Pointer to struct holding all the data for
+ * the current prediction block.
+ * \param[out] rd_cost Stores the best rd_cost among all the
+ * prediction modes searched.
+ * \param[in] bsize Current block size.
+ * \param[in,out] ctx Structure to hold the number of 4x4 blks to
+ * copy the tx_type and txfm_skip arrays.
+ * for only the Y plane.
+ * \param[in] sf_args Stores the list of intra mode candidates
+ * to be searched.
+ * \param[in] intra_ref_frame_cost The entropy cost for signaling that the
+ * current ref frame is an intra frame.
+ * \param[in] yrd_threshold The rdcost threshold for luma intra mode to
+ * terminate chroma intra mode search.
+ *
+ * \remark If a new best mode is found, search_state and rd_costs are updated
+ * correspondingly. While x is also modified, it is only used as a temporary
+ * buffer, and the final decisions are stored in search_state.
+ */
+static AOM_INLINE void search_intra_modes_in_interframe(
+ InterModeSearchState *search_state, const AV1_COMP *cpi, MACROBLOCK *x,
+ RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
+ const InterModeSFArgs *sf_args, unsigned int intra_ref_frame_cost,
+ int64_t yrd_threshold) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ IntraModeSearchState *intra_search_state = &search_state->intra_search_state;
+
+ int is_best_y_mode_intra = 0;
+ RD_STATS best_intra_rd_stats_y;
+ int64_t best_rd_y = INT64_MAX;
+ int best_mode_cost_y = -1;
+ MB_MODE_INFO best_mbmi = *xd->mi[0];
+ THR_MODES best_mode_enum = THR_INVALID;
+ uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ const int num_4x4 = bsize_to_num_blk(bsize);
+
+ // Performs luma search
+ int64_t best_model_rd = INT64_MAX;
+ int64_t top_intra_model_rd[TOP_INTRA_MODEL_COUNT];
+ for (int i = 0; i < TOP_INTRA_MODEL_COUNT; i++) {
+ top_intra_model_rd[i] = INT64_MAX;
+ }
+ for (int mode_idx = 0; mode_idx < LUMA_MODE_COUNT; ++mode_idx) {
+ if (sf->intra_sf.skip_intra_in_interframe &&
+ search_state->intra_search_state.skip_intra_modes)
+ break;
+ set_y_mode_and_delta_angle(
+ mode_idx, mbmi, sf->intra_sf.prune_luma_odd_delta_angles_in_intra);
+ assert(mbmi->mode < INTRA_MODE_END);
+
+ // Use intra_y_mode_mask speed feature to skip intra mode evaluation.
+ if (sf_args->mode_skip_mask->pred_modes[INTRA_FRAME] & (1 << mbmi->mode))
+ continue;
+
+ const THR_MODES mode_enum =
+ get_prediction_mode_idx(mbmi->mode, INTRA_FRAME, NONE_FRAME);
+ if ((!intra_mode_cfg->enable_smooth_intra ||
+ cpi->sf.intra_sf.disable_smooth_intra) &&
+ (mbmi->mode == SMOOTH_PRED || mbmi->mode == SMOOTH_H_PRED ||
+ mbmi->mode == SMOOTH_V_PRED))
+ continue;
+ if (!intra_mode_cfg->enable_paeth_intra && mbmi->mode == PAETH_PRED)
+ continue;
+ if (av1_is_directional_mode(mbmi->mode) &&
+ !(av1_use_angle_delta(bsize) && intra_mode_cfg->enable_angle_delta) &&
+ mbmi->angle_delta[PLANE_TYPE_Y] != 0)
+ continue;
+ const PREDICTION_MODE this_mode = mbmi->mode;
+
+ assert(av1_mode_defs[mode_enum].ref_frame[0] == INTRA_FRAME);
+ assert(av1_mode_defs[mode_enum].ref_frame[1] == NONE_FRAME);
+ init_mbmi(mbmi, this_mode, av1_mode_defs[mode_enum].ref_frame, cm);
+ x->txfm_search_info.skip_txfm = 0;
+
+ if (this_mode != DC_PRED) {
+ // Only search the oblique modes if the best so far is
+ // one of the neighboring directional modes
+ if ((sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
+ (this_mode >= D45_PRED && this_mode <= PAETH_PRED)) {
+ if (search_state->best_mode_index != THR_INVALID &&
+ search_state->best_mbmode.ref_frame[0] > INTRA_FRAME)
+ continue;
+ }
+ if (sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
+ if (conditional_skipintra(
+ this_mode, search_state->intra_search_state.best_intra_mode))
+ continue;
+ }
+ }
+
+ RD_STATS intra_rd_stats_y;
+ int mode_cost_y;
+ int64_t intra_rd_y = INT64_MAX;
+ const int is_luma_result_valid = av1_handle_intra_y_mode(
+ intra_search_state, cpi, x, bsize, intra_ref_frame_cost, ctx,
+ &intra_rd_stats_y, search_state->best_rd, &mode_cost_y, &intra_rd_y,
+ &best_model_rd, top_intra_model_rd);
+ if (is_luma_result_valid && intra_rd_y < yrd_threshold) {
+ is_best_y_mode_intra = 1;
+ if (intra_rd_y < best_rd_y) {
+ best_intra_rd_stats_y = intra_rd_stats_y;
+ best_mode_cost_y = mode_cost_y;
+ best_rd_y = intra_rd_y;
+ best_mbmi = *mbmi;
+ best_mode_enum = mode_enum;
+ memcpy(best_blk_skip, x->txfm_search_info.blk_skip,
+ sizeof(best_blk_skip[0]) * num_4x4);
+ av1_copy_array(best_tx_type_map, xd->tx_type_map, num_4x4);
+ }
+ }
+ }
+
+ if (!is_best_y_mode_intra) {
+ return;
+ }
+
+ assert(best_rd_y < INT64_MAX);
+
+ // Restores the best luma mode
+ *mbmi = best_mbmi;
+ memcpy(x->txfm_search_info.blk_skip, best_blk_skip,
+ sizeof(best_blk_skip[0]) * num_4x4);
+ av1_copy_array(xd->tx_type_map, best_tx_type_map, num_4x4);
+
+ // Performs chroma search
+ RD_STATS intra_rd_stats, intra_rd_stats_uv;
+ av1_init_rd_stats(&intra_rd_stats);
+ av1_init_rd_stats(&intra_rd_stats_uv);
+ const int num_planes = av1_num_planes(cm);
+ if (num_planes > 1) {
+ const int intra_uv_mode_valid = av1_search_intra_uv_modes_in_interframe(
+ intra_search_state, cpi, x, bsize, &intra_rd_stats,
+ &best_intra_rd_stats_y, &intra_rd_stats_uv, search_state->best_rd);
+
+ if (!intra_uv_mode_valid) {
+ return;
+ }
+ }
+
+ // Merge the luma and chroma rd stats
+ assert(best_mode_cost_y >= 0);
+ intra_rd_stats.rate = best_intra_rd_stats_y.rate + best_mode_cost_y;
+ if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(bsize)) {
+ // av1_pick_uniform_tx_size_type_yrd above includes the cost of the tx_size
+ // in the tokenonly rate, but for intra blocks, tx_size is always coded
+ // (prediction granularity), so we account for it in the full rate,
+ // not the tokenonly rate.
+ best_intra_rd_stats_y.rate -= tx_size_cost(x, bsize, mbmi->tx_size);
+ }
+
+ const ModeCosts *mode_costs = &x->mode_costs;
+ const PREDICTION_MODE mode = mbmi->mode;
+ if (num_planes > 1 && xd->is_chroma_ref) {
+ const int uv_mode_cost =
+ mode_costs->intra_uv_mode_cost[is_cfl_allowed(xd)][mode][mbmi->uv_mode];
+ intra_rd_stats.rate +=
+ intra_rd_stats_uv.rate +
+ intra_mode_info_cost_uv(cpi, x, mbmi, bsize, uv_mode_cost);
+ }
+
+ // Intra block is always coded as non-skip
+ intra_rd_stats.skip_txfm = 0;
+ intra_rd_stats.dist = best_intra_rd_stats_y.dist + intra_rd_stats_uv.dist;
+ // Add in the cost of the no skip flag.
+ const int skip_ctx = av1_get_skip_txfm_context(xd);
+ intra_rd_stats.rate += mode_costs->skip_txfm_cost[skip_ctx][0];
+ // Calculate the final RD estimate for this mode.
+ const int64_t this_rd =
+ RDCOST(x->rdmult, intra_rd_stats.rate, intra_rd_stats.dist);
+ // Keep record of best intra rd
+ if (this_rd < search_state->best_intra_rd) {
+ search_state->best_intra_rd = this_rd;
+ intra_search_state->best_intra_mode = mode;
+ }
+
+ for (int i = 0; i < REFERENCE_MODES; ++i) {
+ search_state->best_pred_rd[i] =
+ AOMMIN(search_state->best_pred_rd[i], this_rd);
+ }
+
+ intra_rd_stats.rdcost = this_rd;
+
+ // Collect mode stats for multiwinner mode processing
+ const int txfm_search_done = 1;
+ store_winner_mode_stats(
+ &cpi->common, x, mbmi, &intra_rd_stats, &best_intra_rd_stats_y,
+ &intra_rd_stats_uv, best_mode_enum, NULL, bsize, intra_rd_stats.rdcost,
+ cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done);
+ if (intra_rd_stats.rdcost < search_state->best_rd) {
+ update_search_state(search_state, rd_cost, ctx, &intra_rd_stats,
+ &best_intra_rd_stats_y, &intra_rd_stats_uv,
+ best_mode_enum, x, txfm_search_done);
+ }
+}
+
+#if !CONFIG_REALTIME_ONLY
+// Prepare inter_cost and intra_cost from TPL stats, which are used as ML
+// features in intra mode pruning.
+static AOM_INLINE void calculate_cost_from_tpl_data(
+ const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row,
+ int mi_col, int64_t *inter_cost, int64_t *intra_cost) {
+ const AV1_COMMON *const cm = &cpi->common;
+ // Only consider full SB.
+ const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
+ const int tpl_bsize_1d = cpi->ppi->tpl_data.tpl_bsize_1d;
+ const int len = (block_size_wide[sb_size] / tpl_bsize_1d) *
+ (block_size_high[sb_size] / tpl_bsize_1d);
+ SuperBlockEnc *sb_enc = &x->sb_enc;
+ if (sb_enc->tpl_data_count == len) {
+ const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_bsize_1d);
+ const int tpl_stride = sb_enc->tpl_stride;
+ const int tplw = mi_size_wide[tpl_bsize];
+ const int tplh = mi_size_high[tpl_bsize];
+ const int nw = mi_size_wide[bsize] / tplw;
+ const int nh = mi_size_high[bsize] / tplh;
+ if (nw >= 1 && nh >= 1) {
+ const int of_h = mi_row % mi_size_high[sb_size];
+ const int of_w = mi_col % mi_size_wide[sb_size];
+ const int start = of_h / tplh * tpl_stride + of_w / tplw;
+
+ for (int k = 0; k < nh; k++) {
+ for (int l = 0; l < nw; l++) {
+ *inter_cost += sb_enc->tpl_inter_cost[start + k * tpl_stride + l];
+ *intra_cost += sb_enc->tpl_intra_cost[start + k * tpl_stride + l];
+ }
+ }
+ *inter_cost /= nw * nh;
+ *intra_cost /= nw * nh;
+ }
+ }
+}
+#endif // !CONFIG_REALTIME_ONLY
+
+// When the speed feature skip_intra_in_interframe > 0, enable ML model to prune
+// intra mode search.
+static AOM_INLINE void skip_intra_modes_in_interframe(
+ AV1_COMMON *const cm, struct macroblock *x, BLOCK_SIZE bsize,
+ InterModeSearchState *search_state, const SPEED_FEATURES *const sf,
+ int64_t inter_cost, int64_t intra_cost) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int comp_pred = search_state->best_mbmode.ref_frame[1] > INTRA_FRAME;
+ if (sf->rt_sf.prune_intra_mode_based_on_mv_range &&
+ bsize > sf->part_sf.max_intra_bsize && !comp_pred) {
+ const MV best_mv = search_state->best_mbmode.mv[0].as_mv;
+ const int mv_thresh = 16 << sf->rt_sf.prune_intra_mode_based_on_mv_range;
+ if (abs(best_mv.row) < mv_thresh && abs(best_mv.col) < mv_thresh &&
+ x->source_variance > 128) {
+ search_state->intra_search_state.skip_intra_modes = 1;
+ return;
+ }
+ }
+
+ const unsigned int src_var_thresh_intra_skip = 1;
+ const int skip_intra_in_interframe = sf->intra_sf.skip_intra_in_interframe;
+ if (!(skip_intra_in_interframe &&
+ (x->source_variance > src_var_thresh_intra_skip)))
+ return;
+
+ // Prune intra search based on best inter mode being transfrom skip.
+ if ((skip_intra_in_interframe >= 2) && search_state->best_mbmode.skip_txfm) {
+ const int qindex_thresh[2] = { 200, MAXQ };
+ const int ind = (skip_intra_in_interframe >= 3) ? 1 : 0;
+ if (!have_newmv_in_inter_mode(search_state->best_mbmode.mode) &&
+ (x->qindex <= qindex_thresh[ind])) {
+ search_state->intra_search_state.skip_intra_modes = 1;
+ return;
+ } else if ((skip_intra_in_interframe >= 4) &&
+ (inter_cost < 0 || intra_cost < 0)) {
+ search_state->intra_search_state.skip_intra_modes = 1;
+ return;
+ }
+ }
+ // Use ML model to prune intra search.
+ if (inter_cost >= 0 && intra_cost >= 0) {
+ const NN_CONFIG *nn_config = (AOMMIN(cm->width, cm->height) <= 480)
+ ? &av1_intrap_nn_config
+ : &av1_intrap_hd_nn_config;
+ float nn_features[6];
+ float scores[2] = { 0.0f };
+
+ nn_features[0] = (float)search_state->best_mbmode.skip_txfm;
+ nn_features[1] = (float)mi_size_wide_log2[bsize];
+ nn_features[2] = (float)mi_size_high_log2[bsize];
+ nn_features[3] = (float)intra_cost;
+ nn_features[4] = (float)inter_cost;
+ const int ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd);
+ const int ac_q_max = av1_ac_quant_QTX(255, 0, xd->bd);
+ nn_features[5] = (float)(ac_q_max / ac_q);
+
+ av1_nn_predict(nn_features, nn_config, 1, scores);
+
+ // For two parameters, the max prob returned from av1_nn_softmax equals
+ // 1.0 / (1.0 + e^(-|diff_score|)). Here use scores directly to avoid the
+ // calling of av1_nn_softmax.
+ const float thresh[5] = { 1.4f, 1.4f, 1.4f, 1.4f, 1.4f };
+ assert(skip_intra_in_interframe <= 5);
+ if (scores[1] > scores[0] + thresh[skip_intra_in_interframe - 1]) {
+ search_state->intra_search_state.skip_intra_modes = 1;
+ }
+ }
+}
+
+static AOM_INLINE bool skip_interp_filter_search(const AV1_COMP *cpi,
+ int is_single_pred) {
+ const MODE encoding_mode = cpi->oxcf.mode;
+ if (encoding_mode == REALTIME) {
+ return (cpi->common.current_frame.reference_mode == SINGLE_REFERENCE &&
+ (cpi->sf.interp_sf.skip_interp_filter_search ||
+ cpi->sf.winner_mode_sf.winner_mode_ifs));
+ } else if (encoding_mode == GOOD) {
+ // Skip interpolation filter search for single prediction modes.
+ return (cpi->sf.interp_sf.skip_interp_filter_search && is_single_pred);
+ }
+ return false;
+}
+
+static AOM_INLINE int get_block_temp_var(const AV1_COMP *cpi,
+ const MACROBLOCK *x,
+ BLOCK_SIZE bsize) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const SPEED_FEATURES *const sf = &cpi->sf;
+
+ if (sf->part_sf.partition_search_type != VAR_BASED_PARTITION ||
+ !sf->rt_sf.short_circuit_low_temp_var ||
+ !sf->rt_sf.prune_inter_modes_using_temp_var) {
+ return 0;
+ }
+
+ const int mi_row = x->e_mbd.mi_row;
+ const int mi_col = x->e_mbd.mi_col;
+ int is_low_temp_var = 0;
+
+ if (cm->seq_params->sb_size == BLOCK_64X64)
+ is_low_temp_var = av1_get_force_skip_low_temp_var_small_sb(
+ &x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
+ else
+ is_low_temp_var = av1_get_force_skip_low_temp_var(
+ &x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
+
+ return is_low_temp_var;
+}
+
+// TODO(chiyotsai@google.com): See the todo for av1_rd_pick_intra_mode_sb.
+void av1_rd_pick_inter_mode(struct AV1_COMP *cpi, struct TileDataEnc *tile_data,
+ struct macroblock *x, struct RD_STATS *rd_cost,
+ BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
+ int64_t best_rd_so_far) {
+ AV1_COMMON *const cm = &cpi->common;
+ const FeatureFlags *const features = &cm->features;
+ const int num_planes = av1_num_planes(cm);
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ TxfmSearchInfo *txfm_info = &x->txfm_search_info;
+ int i;
+ const ModeCosts *mode_costs = &x->mode_costs;
+ const int *comp_inter_cost =
+ mode_costs->comp_inter_cost[av1_get_reference_mode_context(xd)];
+
+ InterModeSearchState search_state;
+ init_inter_mode_search_state(&search_state, cpi, x, bsize, best_rd_so_far);
+ INTERINTRA_MODE interintra_modes[REF_FRAMES] = {
+ INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES,
+ INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES
+ };
+ HandleInterModeArgs args = { { NULL },
+ { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE },
+ { NULL },
+ { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
+ MAX_SB_SIZE >> 1 },
+ NULL,
+ NULL,
+ NULL,
+ search_state.modelled_rd,
+ INT_MAX,
+ INT_MAX,
+ search_state.simple_rd,
+ 0,
+ false,
+ interintra_modes,
+ { { { 0 }, { { 0 } }, { 0 }, 0, 0, 0, 0 } },
+ { { 0, 0 } },
+ { 0 },
+ 0,
+ 0,
+ -1,
+ -1,
+ -1,
+ { 0 },
+ { 0 },
+ UINT_MAX };
+ // Currently, is_low_temp_var is used in real time encoding.
+ const int is_low_temp_var = get_block_temp_var(cpi, x, bsize);
+
+ for (i = 0; i < MODE_CTX_REF_FRAMES; ++i) args.cmp_mode[i] = -1;
+ // Indicates the appropriate number of simple translation winner modes for
+ // exhaustive motion mode evaluation
+ const int max_winner_motion_mode_cand =
+ num_winner_motion_modes[sf->winner_mode_sf.motion_mode_for_winner_cand];
+ assert(max_winner_motion_mode_cand <= MAX_WINNER_MOTION_MODES);
+ motion_mode_candidate motion_mode_cand;
+ motion_mode_best_st_candidate best_motion_mode_cands;
+ // Initializing the number of motion mode candidates to zero.
+ best_motion_mode_cands.num_motion_mode_cand = 0;
+ for (i = 0; i < MAX_WINNER_MOTION_MODES; ++i)
+ best_motion_mode_cands.motion_mode_cand[i].rd_cost = INT64_MAX;
+
+ for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
+
+ av1_invalid_rd_stats(rd_cost);
+
+ for (i = 0; i < REF_FRAMES; ++i) {
+ x->warp_sample_info[i].num = -1;
+ }
+
+ // Ref frames that are selected by square partition blocks.
+ int picked_ref_frames_mask = 0;
+ if (sf->inter_sf.prune_ref_frame_for_rect_partitions &&
+ mbmi->partition != PARTITION_NONE) {
+ // prune_ref_frame_for_rect_partitions = 1 implies prune only extended
+ // partition blocks. prune_ref_frame_for_rect_partitions >=2
+ // implies prune for vert, horiz and extended partition blocks.
+ if ((mbmi->partition != PARTITION_VERT &&
+ mbmi->partition != PARTITION_HORZ) ||
+ sf->inter_sf.prune_ref_frame_for_rect_partitions >= 2) {
+ picked_ref_frames_mask =
+ fetch_picked_ref_frames_mask(x, bsize, cm->seq_params->mib_size);
+ }
+ }
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, set_params_rd_pick_inter_mode_time);
+#endif
+ // Skip ref frames that never selected by square blocks.
+ const int skip_ref_frame_mask =
+ picked_ref_frames_mask ? ~picked_ref_frames_mask : 0;
+ mode_skip_mask_t mode_skip_mask;
+ unsigned int ref_costs_single[REF_FRAMES];
+ unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES];
+ struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE];
+ // init params, set frame modes, speed features
+ set_params_rd_pick_inter_mode(cpi, x, &args, bsize, &mode_skip_mask,
+ skip_ref_frame_mask, ref_costs_single,
+ ref_costs_comp, yv12_mb);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, set_params_rd_pick_inter_mode_time);
+#endif
+
+ int64_t best_est_rd = INT64_MAX;
+ const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
+ // If do_tx_search is 0, only estimated RD should be computed.
+ // If do_tx_search is 1, all modes have TX search performed.
+ const int do_tx_search =
+ !((sf->inter_sf.inter_mode_rd_model_estimation == 1 && md->ready) ||
+ (sf->inter_sf.inter_mode_rd_model_estimation == 2 &&
+ num_pels_log2_lookup[bsize] > 8));
+ InterModesInfo *inter_modes_info = x->inter_modes_info;
+ inter_modes_info->num = 0;
+
+ // Temporary buffers used by handle_inter_mode().
+ uint8_t *const tmp_buf = get_buf_by_bd(xd, x->tmp_pred_bufs[0]);
+
+ // The best RD found for the reference frame, among single reference modes.
+ // Note that the 0-th element will contain a cut-off that is later used
+ // to determine if we should skip a compound mode.
+ int64_t ref_frame_rd[REF_FRAMES] = { INT64_MAX, INT64_MAX, INT64_MAX,
+ INT64_MAX, INT64_MAX, INT64_MAX,
+ INT64_MAX, INT64_MAX };
+
+ // Prepared stats used later to check if we could skip intra mode eval.
+ int64_t inter_cost = -1;
+ int64_t intra_cost = -1;
+ // Need to tweak the threshold for hdres speed 0 & 1.
+ const int mi_row = xd->mi_row;
+ const int mi_col = xd->mi_col;
+
+ // Obtain the relevant tpl stats for pruning inter modes
+ PruneInfoFromTpl inter_cost_info_from_tpl;
+#if !CONFIG_REALTIME_ONLY
+ if (sf->inter_sf.prune_inter_modes_based_on_tpl) {
+ // x->tpl_keep_ref_frame[id] = 1 => no pruning in
+ // prune_ref_by_selective_ref_frame()
+ // x->tpl_keep_ref_frame[id] = 0 => ref frame can be pruned in
+ // prune_ref_by_selective_ref_frame()
+ // Populating valid_refs[idx] = 1 ensures that
+ // 'inter_cost_info_from_tpl.best_inter_cost' does not correspond to a
+ // pruned ref frame.
+ int valid_refs[INTER_REFS_PER_FRAME];
+ for (MV_REFERENCE_FRAME frame = LAST_FRAME; frame < REF_FRAMES; frame++) {
+ const MV_REFERENCE_FRAME refs[2] = { frame, NONE_FRAME };
+ valid_refs[frame - 1] =
+ x->tpl_keep_ref_frame[frame] ||
+ !prune_ref_by_selective_ref_frame(
+ cpi, x, refs, cm->cur_frame->ref_display_order_hint);
+ }
+ av1_zero(inter_cost_info_from_tpl);
+ get_block_level_tpl_stats(cpi, bsize, mi_row, mi_col, valid_refs,
+ &inter_cost_info_from_tpl);
+ }
+
+ const int do_pruning =
+ (AOMMIN(cm->width, cm->height) > 480 && cpi->speed <= 1) ? 0 : 1;
+ if (do_pruning && sf->intra_sf.skip_intra_in_interframe &&
+ cpi->oxcf.algo_cfg.enable_tpl_model)
+ calculate_cost_from_tpl_data(cpi, x, bsize, mi_row, mi_col, &inter_cost,
+ &intra_cost);
+#endif // !CONFIG_REALTIME_ONLY
+
+ // Initialize best mode stats for winner mode processing.
+ const int max_winner_mode_count =
+ winner_mode_count_allowed[sf->winner_mode_sf.multi_winner_mode_type];
+ zero_winner_mode_stats(bsize, max_winner_mode_count, x->winner_mode_stats);
+ x->winner_mode_count = 0;
+ store_winner_mode_stats(&cpi->common, x, mbmi, NULL, NULL, NULL, THR_INVALID,
+ NULL, bsize, best_rd_so_far,
+ sf->winner_mode_sf.multi_winner_mode_type, 0);
+
+ int mode_thresh_mul_fact = (1 << MODE_THRESH_QBITS);
+ if (sf->inter_sf.prune_inter_modes_if_skippable) {
+ // Higher multiplication factor values for lower quantizers.
+ mode_thresh_mul_fact = mode_threshold_mul_factor[x->qindex];
+ }
+
+ // Initialize arguments for mode loop speed features
+ InterModeSFArgs sf_args = { &args.skip_motion_mode,
+ &mode_skip_mask,
+ &search_state,
+ skip_ref_frame_mask,
+ 0,
+ mode_thresh_mul_fact,
+ 0,
+ 0 };
+ int64_t best_inter_yrd = INT64_MAX;
+
+ // This is the main loop of this function. It loops over all possible inter
+ // modes and calls handle_inter_mode() to compute the RD for each.
+ // Here midx is just an iterator index that should not be used by itself
+ // except to keep track of the number of modes searched. It should be used
+ // with av1_default_mode_order to get the enum that defines the mode, which
+ // can be used with av1_mode_defs to get the prediction mode and the ref
+ // frames.
+ // TODO(yunqing, any): Setting mode_start and mode_end outside for-loop brings
+ // good speedup for real time case. If we decide to use compound mode in real
+ // time, maybe we can modify av1_default_mode_order table.
+ THR_MODES mode_start = THR_INTER_MODE_START;
+ THR_MODES mode_end = THR_INTER_MODE_END;
+ const CurrentFrame *const current_frame = &cm->current_frame;
+ if (current_frame->reference_mode == SINGLE_REFERENCE) {
+ mode_start = SINGLE_REF_MODE_START;
+ mode_end = SINGLE_REF_MODE_END;
+ }
+
+ for (THR_MODES midx = mode_start; midx < mode_end; ++midx) {
+ // Get the actual prediction mode we are trying in this iteration
+ const THR_MODES mode_enum = av1_default_mode_order[midx];
+ const MODE_DEFINITION *mode_def = &av1_mode_defs[mode_enum];
+ const PREDICTION_MODE this_mode = mode_def->mode;
+ const MV_REFERENCE_FRAME *ref_frames = mode_def->ref_frame;
+
+ const MV_REFERENCE_FRAME ref_frame = ref_frames[0];
+ const MV_REFERENCE_FRAME second_ref_frame = ref_frames[1];
+ const int is_single_pred =
+ ref_frame > INTRA_FRAME && second_ref_frame == NONE_FRAME;
+ const int comp_pred = second_ref_frame > INTRA_FRAME;
+
+ init_mbmi(mbmi, this_mode, ref_frames, cm);
+
+ txfm_info->skip_txfm = 0;
+ sf_args.num_single_modes_processed += is_single_pred;
+ set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, skip_inter_mode_time);
+#endif
+ // Apply speed features to decide if this inter mode can be skipped
+ const int is_skip_inter_mode = skip_inter_mode(
+ cpi, x, bsize, ref_frame_rd, midx, &sf_args, is_low_temp_var);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, skip_inter_mode_time);
+#endif
+ if (is_skip_inter_mode) continue;
+
+ // Select prediction reference frames.
+ for (i = 0; i < num_planes; i++) {
+ xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
+ if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
+ }
+
+ mbmi->angle_delta[PLANE_TYPE_Y] = 0;
+ mbmi->angle_delta[PLANE_TYPE_UV] = 0;
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ mbmi->ref_mv_idx = 0;
+
+ const int64_t ref_best_rd = search_state.best_rd;
+ RD_STATS rd_stats, rd_stats_y, rd_stats_uv;
+ av1_init_rd_stats(&rd_stats);
+
+ const int ref_frame_cost = comp_pred
+ ? ref_costs_comp[ref_frame][second_ref_frame]
+ : ref_costs_single[ref_frame];
+ const int compmode_cost =
+ is_comp_ref_allowed(mbmi->bsize) ? comp_inter_cost[comp_pred] : 0;
+ const int real_compmode_cost =
+ cm->current_frame.reference_mode == REFERENCE_MODE_SELECT
+ ? compmode_cost
+ : 0;
+ // Point to variables that are maintained between loop iterations
+ args.single_newmv = search_state.single_newmv;
+ args.single_newmv_rate = search_state.single_newmv_rate;
+ args.single_newmv_valid = search_state.single_newmv_valid;
+ args.single_comp_cost = real_compmode_cost;
+ args.ref_frame_cost = ref_frame_cost;
+ args.best_pred_sse = search_state.best_pred_sse;
+ args.skip_ifs = skip_interp_filter_search(cpi, is_single_pred);
+
+ int64_t skip_rd[2] = { search_state.best_skip_rd[0],
+ search_state.best_skip_rd[1] };
+ int64_t this_yrd = INT64_MAX;
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, handle_inter_mode_time);
+#endif
+ int64_t this_rd = handle_inter_mode(
+ cpi, tile_data, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, &args,
+ ref_best_rd, tmp_buf, &x->comp_rd_buffer, &best_est_rd, do_tx_search,
+ inter_modes_info, &motion_mode_cand, skip_rd, &inter_cost_info_from_tpl,
+ &this_yrd);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, handle_inter_mode_time);
+#endif
+ if (current_frame->reference_mode != SINGLE_REFERENCE) {
+ if (!args.skip_ifs &&
+ sf->inter_sf.prune_comp_search_by_single_result > 0 &&
+ is_inter_singleref_mode(this_mode)) {
+ collect_single_states(x, &search_state, mbmi);
+ }
+
+ if (sf->inter_sf.prune_comp_using_best_single_mode_ref > 0 &&
+ is_inter_singleref_mode(this_mode))
+ update_best_single_mode(&search_state, this_mode, ref_frame, this_rd);
+ }
+
+ if (this_rd == INT64_MAX) continue;
+
+ if (mbmi->skip_txfm) {
+ rd_stats_y.rate = 0;
+ rd_stats_uv.rate = 0;
+ }
+
+ if (sf->inter_sf.prune_compound_using_single_ref && is_single_pred &&
+ this_rd < ref_frame_rd[ref_frame]) {
+ ref_frame_rd[ref_frame] = this_rd;
+ }
+
+ // Did this mode help, i.e., is it the new best mode
+ if (this_rd < search_state.best_rd) {
+ assert(IMPLIES(comp_pred,
+ cm->current_frame.reference_mode != SINGLE_REFERENCE));
+ search_state.best_pred_sse = x->pred_sse[ref_frame];
+ best_inter_yrd = this_yrd;
+ update_search_state(&search_state, rd_cost, ctx, &rd_stats, &rd_stats_y,
+ &rd_stats_uv, mode_enum, x, do_tx_search);
+ if (do_tx_search) search_state.best_skip_rd[0] = skip_rd[0];
+ // skip_rd[0] is the best total rd for a skip mode so far.
+ // skip_rd[1] is the best total rd for a skip mode so far in luma.
+ // When do_tx_search = 1, both skip_rd[0] and skip_rd[1] are updated.
+ // When do_tx_search = 0, skip_rd[1] is updated.
+ search_state.best_skip_rd[1] = skip_rd[1];
+ }
+ if (sf->winner_mode_sf.motion_mode_for_winner_cand) {
+ // Add this mode to motion mode candidate list for motion mode search
+ // if using motion_mode_for_winner_cand speed feature
+ handle_winner_cand(mbmi, &best_motion_mode_cands,
+ max_winner_motion_mode_cand, this_rd,
+ &motion_mode_cand, args.skip_motion_mode);
+ }
+
+ /* keep record of best compound/single-only prediction */
+ record_best_compound(cm->current_frame.reference_mode, &rd_stats, comp_pred,
+ x->rdmult, &search_state, compmode_cost);
+ }
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, evaluate_motion_mode_for_winner_candidates_time);
+#endif
+ if (sf->winner_mode_sf.motion_mode_for_winner_cand) {
+ // For the single ref winner candidates, evaluate other motion modes (non
+ // simple translation).
+ evaluate_motion_mode_for_winner_candidates(
+ cpi, x, rd_cost, &args, tile_data, ctx, yv12_mb,
+ &best_motion_mode_cands, do_tx_search, bsize, &best_est_rd,
+ &search_state, &best_inter_yrd);
+ }
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, evaluate_motion_mode_for_winner_candidates_time);
+#endif
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, do_tx_search_time);
+#endif
+ if (do_tx_search != 1) {
+ // A full tx search has not yet been done, do tx search for
+ // top mode candidates
+ tx_search_best_inter_candidates(cpi, tile_data, x, best_rd_so_far, bsize,
+ yv12_mb, mi_row, mi_col, &search_state,
+ rd_cost, ctx, &best_inter_yrd);
+ }
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, do_tx_search_time);
+#endif
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, handle_intra_mode_time);
+#endif
+ // Gate intra mode evaluation if best of inter is skip except when source
+ // variance is extremely low and also based on max intra bsize.
+ skip_intra_modes_in_interframe(cm, x, bsize, &search_state, sf, inter_cost,
+ intra_cost);
+
+ const unsigned int intra_ref_frame_cost = ref_costs_single[INTRA_FRAME];
+ search_intra_modes_in_interframe(&search_state, cpi, x, rd_cost, bsize, ctx,
+ &sf_args, intra_ref_frame_cost,
+ best_inter_yrd);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, handle_intra_mode_time);
+#endif
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, refine_winner_mode_tx_time);
+#endif
+ int winner_mode_count =
+ sf->winner_mode_sf.multi_winner_mode_type ? x->winner_mode_count : 1;
+ // In effect only when fast tx search speed features are enabled.
+ refine_winner_mode_tx(
+ cpi, x, rd_cost, bsize, ctx, &search_state.best_mode_index,
+ &search_state.best_mbmode, yv12_mb, search_state.best_rate_y,
+ search_state.best_rate_uv, &search_state.best_skip2, winner_mode_count);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, refine_winner_mode_tx_time);
+#endif
+
+ // Initialize default mode evaluation params
+ set_mode_eval_params(cpi, x, DEFAULT_EVAL);
+
+ // Only try palette mode when the best mode so far is an intra mode.
+ const int try_palette =
+ cpi->oxcf.tool_cfg.enable_palette &&
+ av1_allow_palette(features->allow_screen_content_tools, mbmi->bsize) &&
+ !is_inter_mode(search_state.best_mbmode.mode) && rd_cost->rate != INT_MAX;
+ RD_STATS this_rd_cost;
+ int this_skippable = 0;
+ if (try_palette) {
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, av1_search_palette_mode_time);
+#endif
+ this_skippable = av1_search_palette_mode(
+ &search_state.intra_search_state, cpi, x, bsize, intra_ref_frame_cost,
+ ctx, &this_rd_cost, search_state.best_rd);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, av1_search_palette_mode_time);
+#endif
+ if (this_rd_cost.rdcost < search_state.best_rd) {
+ search_state.best_mode_index = THR_DC;
+ mbmi->mv[0].as_int = 0;
+ rd_cost->rate = this_rd_cost.rate;
+ rd_cost->dist = this_rd_cost.dist;
+ rd_cost->rdcost = this_rd_cost.rdcost;
+ search_state.best_rd = rd_cost->rdcost;
+ search_state.best_mbmode = *mbmi;
+ search_state.best_skip2 = 0;
+ search_state.best_mode_skippable = this_skippable;
+ memcpy(ctx->blk_skip, txfm_info->blk_skip,
+ sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
+ av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
+ }
+ }
+
+ search_state.best_mbmode.skip_mode = 0;
+ if (cm->current_frame.skip_mode_info.skip_mode_flag &&
+ is_comp_ref_allowed(bsize)) {
+ const struct segmentation *const seg = &cm->seg;
+ unsigned char segment_id = mbmi->segment_id;
+ if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
+ rd_pick_skip_mode(rd_cost, &search_state, cpi, x, bsize, yv12_mb);
+ }
+ }
+
+ // Make sure that the ref_mv_idx is only nonzero when we're
+ // using a mode which can support ref_mv_idx
+ if (search_state.best_mbmode.ref_mv_idx != 0 &&
+ !(search_state.best_mbmode.mode == NEWMV ||
+ search_state.best_mbmode.mode == NEW_NEWMV ||
+ have_nearmv_in_inter_mode(search_state.best_mbmode.mode))) {
+ search_state.best_mbmode.ref_mv_idx = 0;
+ }
+
+ if (search_state.best_mode_index == THR_INVALID ||
+ search_state.best_rd >= best_rd_so_far) {
+ rd_cost->rate = INT_MAX;
+ rd_cost->rdcost = INT64_MAX;
+ return;
+ }
+
+ const InterpFilter interp_filter = features->interp_filter;
+ assert((interp_filter == SWITCHABLE) ||
+ (interp_filter ==
+ search_state.best_mbmode.interp_filters.as_filters.y_filter) ||
+ !is_inter_block(&search_state.best_mbmode));
+ assert((interp_filter == SWITCHABLE) ||
+ (interp_filter ==
+ search_state.best_mbmode.interp_filters.as_filters.x_filter) ||
+ !is_inter_block(&search_state.best_mbmode));
+
+ if (!cpi->rc.is_src_frame_alt_ref && sf->inter_sf.adaptive_rd_thresh) {
+ av1_update_rd_thresh_fact(
+ cm, x->thresh_freq_fact, sf->inter_sf.adaptive_rd_thresh, bsize,
+ search_state.best_mode_index, mode_start, mode_end, THR_DC, MAX_MODES);
+ }
+
+ // macroblock modes
+ *mbmi = search_state.best_mbmode;
+ txfm_info->skip_txfm |= search_state.best_skip2;
+
+ // Note: this section is needed since the mode may have been forced to
+ // GLOBALMV by the all-zero mode handling of ref-mv.
+ if (mbmi->mode == GLOBALMV || mbmi->mode == GLOBAL_GLOBALMV) {
+ // Correct the interp filters for GLOBALMV
+ if (is_nontrans_global_motion(xd, xd->mi[0])) {
+ int_interpfilters filters =
+ av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));
+ assert(mbmi->interp_filters.as_int == filters.as_int);
+ (void)filters;
+ }
+ }
+
+ txfm_info->skip_txfm |= search_state.best_mode_skippable;
+
+ assert(search_state.best_mode_index != THR_INVALID);
+
+#if CONFIG_INTERNAL_STATS
+ store_coding_context(x, ctx, search_state.best_mode_index,
+ search_state.best_mode_skippable);
+#else
+ store_coding_context(x, ctx, search_state.best_mode_skippable);
+#endif // CONFIG_INTERNAL_STATS
+
+ if (mbmi->palette_mode_info.palette_size[1] > 0) {
+ assert(try_palette);
+ av1_restore_uv_color_map(cpi, x);
+ }
+}
+
+void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi,
+ TileDataEnc *tile_data, MACROBLOCK *x,
+ int mi_row, int mi_col,
+ RD_STATS *rd_cost, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx,
+ int64_t best_rd_so_far) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const FeatureFlags *const features = &cm->features;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ unsigned char segment_id = mbmi->segment_id;
+ const int comp_pred = 0;
+ int i;
+ unsigned int ref_costs_single[REF_FRAMES];
+ unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES];
+ const ModeCosts *mode_costs = &x->mode_costs;
+ const int *comp_inter_cost =
+ mode_costs->comp_inter_cost[av1_get_reference_mode_context(xd)];
+ InterpFilter best_filter = SWITCHABLE;
+ int64_t this_rd = INT64_MAX;
+ int rate2 = 0;
+ const int64_t distortion2 = 0;
+ (void)mi_row;
+ (void)mi_col;
+ (void)tile_data;
+
+ av1_collect_neighbors_ref_counts(xd);
+
+ estimate_ref_frame_costs(cm, xd, mode_costs, segment_id, ref_costs_single,
+ ref_costs_comp);
+
+ for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
+ for (i = LAST_FRAME; i < REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX;
+
+ rd_cost->rate = INT_MAX;
+
+ assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP));
+
+ mbmi->palette_mode_info.palette_size[0] = 0;
+ mbmi->palette_mode_info.palette_size[1] = 0;
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ mbmi->mode = GLOBALMV;
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ mbmi->uv_mode = UV_DC_PRED;
+ if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME))
+ mbmi->ref_frame[0] = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
+ else
+ mbmi->ref_frame[0] = LAST_FRAME;
+ mbmi->ref_frame[1] = NONE_FRAME;
+ mbmi->mv[0].as_int =
+ gm_get_motion_vector(&cm->global_motion[mbmi->ref_frame[0]],
+ features->allow_high_precision_mv, bsize, mi_col,
+ mi_row, features->cur_frame_force_integer_mv)
+ .as_int;
+ mbmi->tx_size = max_txsize_lookup[bsize];
+ x->txfm_search_info.skip_txfm = 1;
+
+ mbmi->ref_mv_idx = 0;
+
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ av1_count_overlappable_neighbors(cm, xd);
+ if (is_motion_variation_allowed_bsize(bsize) && !has_second_ref(mbmi)) {
+ int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
+ mbmi->num_proj_ref = av1_findSamples(cm, xd, pts, pts_inref);
+ // Select the samples according to motion vector difference
+ if (mbmi->num_proj_ref > 1) {
+ mbmi->num_proj_ref = av1_selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref,
+ mbmi->num_proj_ref, bsize);
+ }
+ }
+
+ const InterpFilter interp_filter = features->interp_filter;
+ set_default_interp_filters(mbmi, interp_filter);
+
+ if (interp_filter != SWITCHABLE) {
+ best_filter = interp_filter;
+ } else {
+ best_filter = EIGHTTAP_REGULAR;
+ if (av1_is_interp_needed(xd)) {
+ int rs;
+ int best_rs = INT_MAX;
+ for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
+ mbmi->interp_filters = av1_broadcast_interp_filter(i);
+ rs = av1_get_switchable_rate(x, xd, interp_filter,
+ cm->seq_params->enable_dual_filter);
+ if (rs < best_rs) {
+ best_rs = rs;
+ best_filter = mbmi->interp_filters.as_filters.y_filter;
+ }
+ }
+ }
+ }
+ // Set the appropriate filter
+ mbmi->interp_filters = av1_broadcast_interp_filter(best_filter);
+ rate2 += av1_get_switchable_rate(x, xd, interp_filter,
+ cm->seq_params->enable_dual_filter);
+
+ if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT)
+ rate2 += comp_inter_cost[comp_pred];
+
+ // Estimate the reference frame signaling cost and add it
+ // to the rolling cost variable.
+ rate2 += ref_costs_single[LAST_FRAME];
+ this_rd = RDCOST(x->rdmult, rate2, distortion2);
+
+ rd_cost->rate = rate2;
+ rd_cost->dist = distortion2;
+ rd_cost->rdcost = this_rd;
+
+ if (this_rd >= best_rd_so_far) {
+ rd_cost->rate = INT_MAX;
+ rd_cost->rdcost = INT64_MAX;
+ return;
+ }
+
+ assert((interp_filter == SWITCHABLE) ||
+ (interp_filter == mbmi->interp_filters.as_filters.y_filter));
+
+ if (cpi->sf.inter_sf.adaptive_rd_thresh) {
+ av1_update_rd_thresh_fact(cm, x->thresh_freq_fact,
+ cpi->sf.inter_sf.adaptive_rd_thresh, bsize,
+ THR_GLOBALMV, THR_INTER_MODE_START,
+ THR_INTER_MODE_END, THR_DC, MAX_MODES);
+ }
+
+#if CONFIG_INTERNAL_STATS
+ store_coding_context(x, ctx, THR_GLOBALMV, 0);
+#else
+ store_coding_context(x, ctx, 0);
+#endif // CONFIG_INTERNAL_STATS
+}
+
+/*!\cond */
+struct calc_target_weighted_pred_ctxt {
+ const OBMCBuffer *obmc_buffer;
+ const uint8_t *tmp;
+ int tmp_stride;
+ int overlap;
+};
+/*!\endcond */
+
+static INLINE void calc_target_weighted_pred_above(
+ MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
+ int dir, MB_MODE_INFO *nb_mi, void *fun_ctxt, const int num_planes) {
+ (void)nb_mi;
+ (void)num_planes;
+ (void)rel_mi_row;
+ (void)dir;
+
+ struct calc_target_weighted_pred_ctxt *ctxt =
+ (struct calc_target_weighted_pred_ctxt *)fun_ctxt;
+
+ const int bw = xd->width << MI_SIZE_LOG2;
+ const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap);
+
+ int32_t *wsrc = ctxt->obmc_buffer->wsrc + (rel_mi_col * MI_SIZE);
+ int32_t *mask = ctxt->obmc_buffer->mask + (rel_mi_col * MI_SIZE);
+ const uint8_t *tmp = ctxt->tmp + rel_mi_col * MI_SIZE;
+ const int is_hbd = is_cur_buf_hbd(xd);
+
+ if (!is_hbd) {
+ for (int row = 0; row < ctxt->overlap; ++row) {
+ const uint8_t m0 = mask1d[row];
+ const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
+ for (int col = 0; col < op_mi_size * MI_SIZE; ++col) {
+ wsrc[col] = m1 * tmp[col];
+ mask[col] = m0;
+ }
+ wsrc += bw;
+ mask += bw;
+ tmp += ctxt->tmp_stride;
+ }
+ } else {
+ const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp);
+
+ for (int row = 0; row < ctxt->overlap; ++row) {
+ const uint8_t m0 = mask1d[row];
+ const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
+ for (int col = 0; col < op_mi_size * MI_SIZE; ++col) {
+ wsrc[col] = m1 * tmp16[col];
+ mask[col] = m0;
+ }
+ wsrc += bw;
+ mask += bw;
+ tmp16 += ctxt->tmp_stride;
+ }
+ }
+}
+
+static INLINE void calc_target_weighted_pred_left(
+ MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
+ int dir, MB_MODE_INFO *nb_mi, void *fun_ctxt, const int num_planes) {
+ (void)nb_mi;
+ (void)num_planes;
+ (void)rel_mi_col;
+ (void)dir;
+
+ struct calc_target_weighted_pred_ctxt *ctxt =
+ (struct calc_target_weighted_pred_ctxt *)fun_ctxt;
+
+ const int bw = xd->width << MI_SIZE_LOG2;
+ const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap);
+
+ int32_t *wsrc = ctxt->obmc_buffer->wsrc + (rel_mi_row * MI_SIZE * bw);
+ int32_t *mask = ctxt->obmc_buffer->mask + (rel_mi_row * MI_SIZE * bw);
+ const uint8_t *tmp = ctxt->tmp + (rel_mi_row * MI_SIZE * ctxt->tmp_stride);
+ const int is_hbd = is_cur_buf_hbd(xd);
+
+ if (!is_hbd) {
+ for (int row = 0; row < op_mi_size * MI_SIZE; ++row) {
+ for (int col = 0; col < ctxt->overlap; ++col) {
+ const uint8_t m0 = mask1d[col];
+ const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
+ wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
+ (tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
+ mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
+ }
+ wsrc += bw;
+ mask += bw;
+ tmp += ctxt->tmp_stride;
+ }
+ } else {
+ const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp);
+
+ for (int row = 0; row < op_mi_size * MI_SIZE; ++row) {
+ for (int col = 0; col < ctxt->overlap; ++col) {
+ const uint8_t m0 = mask1d[col];
+ const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
+ wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
+ (tmp16[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
+ mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
+ }
+ wsrc += bw;
+ mask += bw;
+ tmp16 += ctxt->tmp_stride;
+ }
+ }
+}
+
+// This function has a structure similar to av1_build_obmc_inter_prediction
+//
+// The OBMC predictor is computed as:
+//
+// PObmc(x,y) =
+// AOM_BLEND_A64(Mh(x),
+// AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)),
+// PLeft(x, y))
+//
+// Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate
+// rounding, this can be written as:
+//
+// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) =
+// Mh(x) * Mv(y) * P(x,y) +
+// Mh(x) * Cv(y) * Pabove(x,y) +
+// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
+//
+// Where :
+//
+// Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y)
+// Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y)
+//
+// This function computes 'wsrc' and 'mask' as:
+//
+// wsrc(x, y) =
+// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) -
+// Mh(x) * Cv(y) * Pabove(x,y) +
+// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
+//
+// mask(x, y) = Mh(x) * Mv(y)
+//
+// These can then be used to efficiently approximate the error for any
+// predictor P in the context of the provided neighbouring predictors by
+// computing:
+//
+// error(x, y) =
+// wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2)
+//
+static AOM_INLINE void calc_target_weighted_pred(
+ const AV1_COMMON *cm, const MACROBLOCK *x, const MACROBLOCKD *xd,
+ const uint8_t *above, int above_stride, const uint8_t *left,
+ int left_stride) {
+ const BLOCK_SIZE bsize = xd->mi[0]->bsize;
+ const int bw = xd->width << MI_SIZE_LOG2;
+ const int bh = xd->height << MI_SIZE_LOG2;
+ const OBMCBuffer *obmc_buffer = &x->obmc_buffer;
+ int32_t *mask_buf = obmc_buffer->mask;
+ int32_t *wsrc_buf = obmc_buffer->wsrc;
+
+ const int is_hbd = is_cur_buf_hbd(xd);
+ const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA;
+
+ // plane 0 should not be sub-sampled
+ assert(xd->plane[0].subsampling_x == 0);
+ assert(xd->plane[0].subsampling_y == 0);
+
+ av1_zero_array(wsrc_buf, bw * bh);
+ for (int i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA;
+
+ // handle above row
+ if (xd->up_available) {
+ const int overlap =
+ AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1;
+ struct calc_target_weighted_pred_ctxt ctxt = { obmc_buffer, above,
+ above_stride, overlap };
+ foreach_overlappable_nb_above(cm, (MACROBLOCKD *)xd,
+ max_neighbor_obmc[mi_size_wide_log2[bsize]],
+ calc_target_weighted_pred_above, &ctxt);
+ }
+
+ for (int i = 0; i < bw * bh; ++i) {
+ wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
+ mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
+ }
+
+ // handle left column
+ if (xd->left_available) {
+ const int overlap =
+ AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1;
+ struct calc_target_weighted_pred_ctxt ctxt = { obmc_buffer, left,
+ left_stride, overlap };
+ foreach_overlappable_nb_left(cm, (MACROBLOCKD *)xd,
+ max_neighbor_obmc[mi_size_high_log2[bsize]],
+ calc_target_weighted_pred_left, &ctxt);
+ }
+
+ if (!is_hbd) {
+ const uint8_t *src = x->plane[0].src.buf;
+
+ for (int row = 0; row < bh; ++row) {
+ for (int col = 0; col < bw; ++col) {
+ wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
+ }
+ wsrc_buf += bw;
+ src += x->plane[0].src.stride;
+ }
+ } else {
+ const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf);
+
+ for (int row = 0; row < bh; ++row) {
+ for (int col = 0; col < bw; ++col) {
+ wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
+ }
+ wsrc_buf += bw;
+ src += x->plane[0].src.stride;
+ }
+ }
+}