summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/tpl_model.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/tpl_model.c2511
1 files changed, 2511 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/tpl_model.c b/third_party/aom/av1/encoder/tpl_model.c
new file mode 100644
index 0000000000..ca60e4981e
--- /dev/null
+++ b/third_party/aom/av1/encoder/tpl_model.c
@@ -0,0 +1,2511 @@
+/*
+ * Copyright (c) 2019, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <float.h>
+#include <stdint.h>
+
+#include "av1/encoder/thirdpass.h"
+#include "config/aom_config.h"
+#include "config/aom_dsp_rtcd.h"
+#include "config/aom_scale_rtcd.h"
+
+#include "aom/aom_codec.h"
+
+#include "av1/common/av1_common_int.h"
+#include "av1/common/enums.h"
+#include "av1/common/idct.h"
+#include "av1/common/reconintra.h"
+
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/ethread.h"
+#include "av1/encoder/encodeframe_utils.h"
+#include "av1/encoder/encode_strategy.h"
+#include "av1/encoder/hybrid_fwd_txfm.h"
+#include "av1/encoder/motion_search_facade.h"
+#include "av1/encoder/rd.h"
+#include "av1/encoder/rdopt.h"
+#include "av1/encoder/reconinter_enc.h"
+#include "av1/encoder/tpl_model.h"
+
+static INLINE double exp_bounded(double v) {
+ // When v > 700 or <-700, the exp function will be close to overflow
+ // For details, see the "Notes" in the following link.
+ // https://en.cppreference.com/w/c/numeric/math/exp
+ if (v > 700) {
+ return DBL_MAX;
+ } else if (v < -700) {
+ return 0;
+ }
+ return exp(v);
+}
+
+void av1_init_tpl_txfm_stats(TplTxfmStats *tpl_txfm_stats) {
+ tpl_txfm_stats->ready = 0;
+ tpl_txfm_stats->coeff_num = 256;
+ tpl_txfm_stats->txfm_block_count = 0;
+ memset(tpl_txfm_stats->abs_coeff_sum, 0,
+ sizeof(tpl_txfm_stats->abs_coeff_sum[0]) * tpl_txfm_stats->coeff_num);
+ memset(tpl_txfm_stats->abs_coeff_mean, 0,
+ sizeof(tpl_txfm_stats->abs_coeff_mean[0]) * tpl_txfm_stats->coeff_num);
+}
+
+#if CONFIG_BITRATE_ACCURACY
+void av1_accumulate_tpl_txfm_stats(const TplTxfmStats *sub_stats,
+ TplTxfmStats *accumulated_stats) {
+ accumulated_stats->txfm_block_count += sub_stats->txfm_block_count;
+ for (int i = 0; i < accumulated_stats->coeff_num; ++i) {
+ accumulated_stats->abs_coeff_sum[i] += sub_stats->abs_coeff_sum[i];
+ }
+}
+
+void av1_record_tpl_txfm_block(TplTxfmStats *tpl_txfm_stats,
+ const tran_low_t *coeff) {
+ // For transform larger than 16x16, the scale of coeff need to be adjusted.
+ // It's not LOSSLESS_Q_STEP.
+ assert(tpl_txfm_stats->coeff_num <= 256);
+ for (int i = 0; i < tpl_txfm_stats->coeff_num; ++i) {
+ tpl_txfm_stats->abs_coeff_sum[i] += abs(coeff[i]) / (double)LOSSLESS_Q_STEP;
+ }
+ ++tpl_txfm_stats->txfm_block_count;
+}
+
+void av1_tpl_txfm_stats_update_abs_coeff_mean(TplTxfmStats *txfm_stats) {
+ if (txfm_stats->txfm_block_count > 0) {
+ for (int j = 0; j < txfm_stats->coeff_num; j++) {
+ txfm_stats->abs_coeff_mean[j] =
+ txfm_stats->abs_coeff_sum[j] / txfm_stats->txfm_block_count;
+ }
+ txfm_stats->ready = 1;
+ } else {
+ txfm_stats->ready = 0;
+ }
+}
+
+static AOM_INLINE void av1_tpl_store_txfm_stats(
+ TplParams *tpl_data, const TplTxfmStats *tpl_txfm_stats,
+ const int frame_index) {
+ tpl_data->txfm_stats_list[frame_index] = *tpl_txfm_stats;
+}
+#endif // CONFIG_BITRATE_ACCURACY
+
+static AOM_INLINE void get_quantize_error(const MACROBLOCK *x, int plane,
+ const tran_low_t *coeff,
+ tran_low_t *qcoeff,
+ tran_low_t *dqcoeff, TX_SIZE tx_size,
+ uint16_t *eob, int64_t *recon_error,
+ int64_t *sse) {
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
+ int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
+ const int shift = tx_size == TX_32X32 ? 0 : 2;
+
+ QUANT_PARAM quant_param;
+ av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param);
+
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (is_cur_buf_hbd(xd)) {
+ av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob,
+ scan_order, &quant_param);
+ *recon_error =
+ av1_highbd_block_error(coeff, dqcoeff, pix_num, sse, xd->bd) >> shift;
+ } else {
+ av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
+ &quant_param);
+ *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
+ }
+#else
+ (void)xd;
+ av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
+ &quant_param);
+ *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
+#endif // CONFIG_AV1_HIGHBITDEPTH
+
+ *recon_error = AOMMAX(*recon_error, 1);
+
+ *sse = (*sse) >> shift;
+ *sse = AOMMAX(*sse, 1);
+}
+
+static AOM_INLINE void set_tpl_stats_block_size(uint8_t *block_mis_log2,
+ uint8_t *tpl_bsize_1d) {
+ // tpl stats bsize: 2 means 16x16
+ *block_mis_log2 = 2;
+ // Block size used in tpl motion estimation
+ *tpl_bsize_1d = 16;
+ // MIN_TPL_BSIZE_1D = 16;
+ assert(*tpl_bsize_1d >= 16);
+}
+
+void av1_setup_tpl_buffers(AV1_PRIMARY *const ppi,
+ CommonModeInfoParams *const mi_params, int width,
+ int height, int byte_alignment, int lag_in_frames) {
+ SequenceHeader *const seq_params = &ppi->seq_params;
+ TplParams *const tpl_data = &ppi->tpl_data;
+ set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
+ &tpl_data->tpl_bsize_1d);
+ const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
+ tpl_data->border_in_pixels =
+ ALIGN_POWER_OF_TWO(tpl_data->tpl_bsize_1d + 2 * AOM_INTERP_EXTEND, 5);
+
+ const int alloc_y_plane_only =
+ ppi->cpi->sf.tpl_sf.use_y_only_rate_distortion ? 1 : 0;
+ for (int frame = 0; frame < MAX_LENGTH_TPL_FRAME_STATS; ++frame) {
+ const int mi_cols =
+ ALIGN_POWER_OF_TWO(mi_params->mi_cols, MAX_MIB_SIZE_LOG2);
+ const int mi_rows =
+ ALIGN_POWER_OF_TWO(mi_params->mi_rows, MAX_MIB_SIZE_LOG2);
+ TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame];
+ tpl_frame->is_valid = 0;
+ tpl_frame->width = mi_cols >> block_mis_log2;
+ tpl_frame->height = mi_rows >> block_mis_log2;
+ tpl_frame->stride = tpl_data->tpl_stats_buffer[frame].width;
+ tpl_frame->mi_rows = mi_params->mi_rows;
+ tpl_frame->mi_cols = mi_params->mi_cols;
+ }
+ tpl_data->tpl_frame = &tpl_data->tpl_stats_buffer[REF_FRAMES + 1];
+
+ // If lag_in_frames <= 1, TPL module is not invoked. Hence dynamic memory
+ // allocations are avoided for buffers in tpl_data.
+ if (lag_in_frames <= 1) return;
+
+ AOM_CHECK_MEM_ERROR(&ppi->error, tpl_data->txfm_stats_list,
+ aom_calloc(MAX_LENGTH_TPL_FRAME_STATS,
+ sizeof(*tpl_data->txfm_stats_list)));
+
+ for (int frame = 0; frame < lag_in_frames; ++frame) {
+ AOM_CHECK_MEM_ERROR(
+ &ppi->error, tpl_data->tpl_stats_pool[frame],
+ aom_calloc(tpl_data->tpl_stats_buffer[frame].width *
+ tpl_data->tpl_stats_buffer[frame].height,
+ sizeof(*tpl_data->tpl_stats_buffer[frame].tpl_stats_ptr)));
+
+ if (aom_alloc_frame_buffer(
+ &tpl_data->tpl_rec_pool[frame], width, height,
+ seq_params->subsampling_x, seq_params->subsampling_y,
+ seq_params->use_highbitdepth, tpl_data->border_in_pixels,
+ byte_alignment, 0, alloc_y_plane_only))
+ aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate frame buffer");
+ }
+}
+
+static AOM_INLINE int32_t tpl_get_satd_cost(BitDepthInfo bd_info,
+ int16_t *src_diff, int diff_stride,
+ const uint8_t *src, int src_stride,
+ const uint8_t *dst, int dst_stride,
+ tran_low_t *coeff, int bw, int bh,
+ TX_SIZE tx_size) {
+ const int pix_num = bw * bh;
+
+ av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
+ dst, dst_stride);
+ av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
+ return aom_satd(coeff, pix_num);
+}
+
+static int rate_estimator(const tran_low_t *qcoeff, int eob, TX_SIZE tx_size) {
+ const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
+
+ assert((1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]) >= eob);
+ int rate_cost = 1;
+
+ for (int idx = 0; idx < eob; ++idx) {
+ unsigned int abs_level = abs(qcoeff[scan_order->scan[idx]]);
+ rate_cost += get_msb(abs_level + 1) + 1 + (abs_level > 0);
+ }
+
+ return (rate_cost << AV1_PROB_COST_SHIFT);
+}
+
+static AOM_INLINE void txfm_quant_rdcost(
+ const MACROBLOCK *x, int16_t *src_diff, int diff_stride, uint8_t *src,
+ int src_stride, uint8_t *dst, int dst_stride, tran_low_t *coeff,
+ tran_low_t *qcoeff, tran_low_t *dqcoeff, int bw, int bh, TX_SIZE tx_size,
+ int do_recon, int *rate_cost, int64_t *recon_error, int64_t *sse) {
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const BitDepthInfo bd_info = get_bit_depth_info(xd);
+ uint16_t eob;
+ av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
+ dst, dst_stride);
+ av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
+
+ get_quantize_error(x, 0, coeff, qcoeff, dqcoeff, tx_size, &eob, recon_error,
+ sse);
+
+ *rate_cost = rate_estimator(qcoeff, eob, tx_size);
+
+ if (do_recon)
+ av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst,
+ dst_stride, eob, 0);
+}
+
+static uint32_t motion_estimation(AV1_COMP *cpi, MACROBLOCK *x,
+ uint8_t *cur_frame_buf,
+ uint8_t *ref_frame_buf, int stride,
+ int ref_stride, int width, int ref_width,
+ BLOCK_SIZE bsize, MV center_mv,
+ int_mv *best_mv) {
+ AV1_COMMON *cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
+ int step_param;
+ uint32_t bestsme = UINT_MAX;
+ FULLPEL_MV_STATS best_mv_stats;
+ int distortion;
+ uint32_t sse;
+ int cost_list[5];
+ FULLPEL_MV start_mv = get_fullmv_from_mv(&center_mv);
+
+ // Setup frame pointers
+ x->plane[0].src.buf = cur_frame_buf;
+ x->plane[0].src.stride = stride;
+ x->plane[0].src.width = width;
+ xd->plane[0].pre[0].buf = ref_frame_buf;
+ xd->plane[0].pre[0].stride = ref_stride;
+ xd->plane[0].pre[0].width = ref_width;
+
+ step_param = tpl_sf->reduce_first_step_size;
+ step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2);
+
+ const search_site_config *search_site_cfg =
+ cpi->mv_search_params.search_site_cfg[SS_CFG_SRC];
+ if (search_site_cfg->stride != ref_stride)
+ search_site_cfg = cpi->mv_search_params.search_site_cfg[SS_CFG_LOOKAHEAD];
+ assert(search_site_cfg->stride == ref_stride);
+
+ FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
+ av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &center_mv,
+ start_mv, search_site_cfg,
+ tpl_sf->search_method,
+ /*fine_search_interval=*/0);
+
+ bestsme = av1_full_pixel_search(start_mv, &full_ms_params, step_param,
+ cond_cost_list(cpi, cost_list),
+ &best_mv->as_fullmv, &best_mv_stats, NULL);
+
+ // When sub-pel motion search is skipped, populate sub-pel precision MV and
+ // return.
+ if (tpl_sf->subpel_force_stop == FULL_PEL) {
+ best_mv->as_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
+ return bestsme;
+ }
+
+ SUBPEL_MOTION_SEARCH_PARAMS ms_params;
+ av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &center_mv,
+ cost_list);
+ ms_params.forced_stop = tpl_sf->subpel_force_stop;
+ ms_params.var_params.subpel_search_type = USE_2_TAPS;
+ ms_params.mv_cost_params.mv_cost_type = MV_COST_NONE;
+ best_mv_stats.err_cost = 0;
+ MV subpel_start_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
+ assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv));
+ bestsme = cpi->mv_search_params.find_fractional_mv_step(
+ xd, cm, &ms_params, subpel_start_mv, &best_mv_stats, &best_mv->as_mv,
+ &distortion, &sse, NULL);
+
+ return bestsme;
+}
+
+typedef struct {
+ int_mv mv;
+ int sad;
+} center_mv_t;
+
+static int compare_sad(const void *a, const void *b) {
+ const int diff = ((center_mv_t *)a)->sad - ((center_mv_t *)b)->sad;
+ if (diff < 0)
+ return -1;
+ else if (diff > 0)
+ return 1;
+ return 0;
+}
+
+static int is_alike_mv(int_mv candidate_mv, center_mv_t *center_mvs,
+ int center_mvs_count, int skip_alike_starting_mv) {
+ // MV difference threshold is in 1/8 precision.
+ const int mv_diff_thr[3] = { 1, (8 << 3), (16 << 3) };
+ int thr = mv_diff_thr[skip_alike_starting_mv];
+ int i;
+
+ for (i = 0; i < center_mvs_count; i++) {
+ if (abs(center_mvs[i].mv.as_mv.col - candidate_mv.as_mv.col) < thr &&
+ abs(center_mvs[i].mv.as_mv.row - candidate_mv.as_mv.row) < thr)
+ return 1;
+ }
+
+ return 0;
+}
+
+static void get_rate_distortion(
+ int *rate_cost, int64_t *recon_error, int64_t *pred_error,
+ int16_t *src_diff, tran_low_t *coeff, tran_low_t *qcoeff,
+ tran_low_t *dqcoeff, AV1_COMMON *cm, MACROBLOCK *x,
+ const YV12_BUFFER_CONFIG *ref_frame_ptr[2], uint8_t *rec_buffer_pool[3],
+ const int rec_stride_pool[3], TX_SIZE tx_size, PREDICTION_MODE best_mode,
+ int mi_row, int mi_col, int use_y_only_rate_distortion, int do_recon,
+ TplTxfmStats *tpl_txfm_stats) {
+ const SequenceHeader *seq_params = cm->seq_params;
+ *rate_cost = 0;
+ *recon_error = 1;
+ *pred_error = 1;
+
+ (void)tpl_txfm_stats;
+
+ MACROBLOCKD *xd = &x->e_mbd;
+ int is_compound = (best_mode == NEW_NEWMV);
+ int num_planes = use_y_only_rate_distortion ? 1 : MAX_MB_PLANE;
+
+ uint8_t *src_buffer_pool[MAX_MB_PLANE] = {
+ xd->cur_buf->y_buffer,
+ xd->cur_buf->u_buffer,
+ xd->cur_buf->v_buffer,
+ };
+ const int src_stride_pool[MAX_MB_PLANE] = {
+ xd->cur_buf->y_stride,
+ xd->cur_buf->uv_stride,
+ xd->cur_buf->uv_stride,
+ };
+
+ const int_interpfilters kernel =
+ av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
+
+ for (int plane = 0; plane < num_planes; ++plane) {
+ struct macroblockd_plane *pd = &xd->plane[plane];
+ BLOCK_SIZE bsize_plane =
+ av1_ss_size_lookup[txsize_to_bsize[tx_size]][pd->subsampling_x]
+ [pd->subsampling_y];
+
+ int dst_buffer_stride = rec_stride_pool[plane];
+ int dst_mb_offset =
+ ((mi_row * MI_SIZE * dst_buffer_stride) >> pd->subsampling_y) +
+ ((mi_col * MI_SIZE) >> pd->subsampling_x);
+ uint8_t *dst_buffer = rec_buffer_pool[plane] + dst_mb_offset;
+ for (int ref = 0; ref < 1 + is_compound; ++ref) {
+ if (!is_inter_mode(best_mode)) {
+ av1_predict_intra_block(
+ xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
+ block_size_wide[bsize_plane], block_size_high[bsize_plane],
+ max_txsize_rect_lookup[bsize_plane], best_mode, 0, 0,
+ FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, dst_buffer,
+ dst_buffer_stride, 0, 0, plane);
+ } else {
+ int_mv best_mv = xd->mi[0]->mv[ref];
+ uint8_t *ref_buffer_pool[MAX_MB_PLANE] = {
+ ref_frame_ptr[ref]->y_buffer,
+ ref_frame_ptr[ref]->u_buffer,
+ ref_frame_ptr[ref]->v_buffer,
+ };
+ InterPredParams inter_pred_params;
+ struct buf_2d ref_buf = {
+ NULL, ref_buffer_pool[plane],
+ plane ? ref_frame_ptr[ref]->uv_width : ref_frame_ptr[ref]->y_width,
+ plane ? ref_frame_ptr[ref]->uv_height : ref_frame_ptr[ref]->y_height,
+ plane ? ref_frame_ptr[ref]->uv_stride : ref_frame_ptr[ref]->y_stride
+ };
+ av1_init_inter_params(&inter_pred_params, block_size_wide[bsize_plane],
+ block_size_high[bsize_plane],
+ (mi_row * MI_SIZE) >> pd->subsampling_y,
+ (mi_col * MI_SIZE) >> pd->subsampling_x,
+ pd->subsampling_x, pd->subsampling_y, xd->bd,
+ is_cur_buf_hbd(xd), 0,
+ xd->block_ref_scale_factors[0], &ref_buf, kernel);
+ if (is_compound) av1_init_comp_mode(&inter_pred_params);
+ inter_pred_params.conv_params = get_conv_params_no_round(
+ ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
+
+ av1_enc_build_one_inter_predictor(dst_buffer, dst_buffer_stride,
+ &best_mv.as_mv, &inter_pred_params);
+ }
+ }
+
+ int src_stride = src_stride_pool[plane];
+ int src_mb_offset = ((mi_row * MI_SIZE * src_stride) >> pd->subsampling_y) +
+ ((mi_col * MI_SIZE) >> pd->subsampling_x);
+
+ int this_rate = 1;
+ int64_t this_recon_error = 1;
+ int64_t sse;
+ txfm_quant_rdcost(
+ x, src_diff, block_size_wide[bsize_plane],
+ src_buffer_pool[plane] + src_mb_offset, src_stride, dst_buffer,
+ dst_buffer_stride, coeff, qcoeff, dqcoeff, block_size_wide[bsize_plane],
+ block_size_high[bsize_plane], max_txsize_rect_lookup[bsize_plane],
+ do_recon, &this_rate, &this_recon_error, &sse);
+
+#if CONFIG_BITRATE_ACCURACY
+ if (plane == 0 && tpl_txfm_stats) {
+ // We only collect Y plane's transform coefficient
+ av1_record_tpl_txfm_block(tpl_txfm_stats, coeff);
+ }
+#endif // CONFIG_BITRATE_ACCURACY
+
+ *recon_error += this_recon_error;
+ *pred_error += sse;
+ *rate_cost += this_rate;
+ }
+}
+
+static AOM_INLINE int32_t get_inter_cost(const AV1_COMP *cpi, MACROBLOCKD *xd,
+ const uint8_t *src_mb_buffer,
+ int src_stride,
+ TplBuffers *tpl_tmp_buffers,
+ BLOCK_SIZE bsize, TX_SIZE tx_size,
+ int mi_row, int mi_col, int rf_idx,
+ MV *rfidx_mv, int use_pred_sad) {
+ const BitDepthInfo bd_info = get_bit_depth_info(xd);
+ TplParams *tpl_data = &cpi->ppi->tpl_data;
+ const YV12_BUFFER_CONFIG *const ref_frame_ptr =
+ tpl_data->src_ref_frame[rf_idx];
+ int16_t *src_diff = tpl_tmp_buffers->src_diff;
+ tran_low_t *coeff = tpl_tmp_buffers->coeff;
+ const int bw = 4 << mi_size_wide_log2[bsize];
+ const int bh = 4 << mi_size_high_log2[bsize];
+ int32_t inter_cost;
+
+ if (cpi->sf.tpl_sf.subpel_force_stop != FULL_PEL) {
+ const int_interpfilters kernel =
+ av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
+ uint8_t *predictor8 = tpl_tmp_buffers->predictor8;
+ uint8_t *predictor =
+ is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8;
+ struct buf_2d ref_buf = { NULL, ref_frame_ptr->y_buffer,
+ ref_frame_ptr->y_width, ref_frame_ptr->y_height,
+ ref_frame_ptr->y_stride };
+ InterPredParams inter_pred_params;
+ av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
+ mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd), 0,
+ &tpl_data->sf, &ref_buf, kernel);
+ inter_pred_params.conv_params = get_conv_params(0, 0, xd->bd);
+
+ av1_enc_build_one_inter_predictor(predictor, bw, rfidx_mv,
+ &inter_pred_params);
+
+ if (use_pred_sad) {
+ inter_cost = (int)cpi->ppi->fn_ptr[bsize].sdf(src_mb_buffer, src_stride,
+ predictor, bw);
+ } else {
+ inter_cost =
+ tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
+ predictor, bw, coeff, bw, bh, tx_size);
+ }
+ } else {
+ int ref_mb_offset =
+ mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE;
+ uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset;
+ int ref_stride = ref_frame_ptr->y_stride;
+ const FULLPEL_MV fullmv = get_fullmv_from_mv(rfidx_mv);
+ // Since sub-pel motion search is not performed, use the prediction pixels
+ // directly from the reference block ref_mb
+ if (use_pred_sad) {
+ inter_cost = (int)cpi->ppi->fn_ptr[bsize].sdf(
+ src_mb_buffer, src_stride,
+ &ref_mb[fullmv.row * ref_stride + fullmv.col], ref_stride);
+ } else {
+ inter_cost =
+ tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
+ &ref_mb[fullmv.row * ref_stride + fullmv.col],
+ ref_stride, coeff, bw, bh, tx_size);
+ }
+ }
+ return inter_cost;
+}
+
+static AOM_INLINE void mode_estimation(AV1_COMP *cpi,
+ TplTxfmStats *tpl_txfm_stats,
+ TplBuffers *tpl_tmp_buffers,
+ MACROBLOCK *x, int mi_row, int mi_col,
+ BLOCK_SIZE bsize, TX_SIZE tx_size,
+ TplDepStats *tpl_stats) {
+ AV1_COMMON *cm = &cpi->common;
+ const GF_GROUP *gf_group = &cpi->ppi->gf_group;
+ TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
+
+ (void)gf_group;
+
+ MACROBLOCKD *xd = &x->e_mbd;
+ const BitDepthInfo bd_info = get_bit_depth_info(xd);
+ TplParams *tpl_data = &cpi->ppi->tpl_data;
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
+ const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
+
+ const int bw = 4 << mi_size_wide_log2[bsize];
+ const int bh = 4 << mi_size_high_log2[bsize];
+
+ int frame_offset = tpl_data->frame_idx - cpi->gf_frame_index;
+
+ int32_t best_intra_cost = INT32_MAX;
+ int32_t intra_cost;
+ PREDICTION_MODE best_mode = DC_PRED;
+
+ const int mb_y_offset =
+ mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE;
+ uint8_t *src_mb_buffer = xd->cur_buf->y_buffer + mb_y_offset;
+ const int src_stride = xd->cur_buf->y_stride;
+ const int src_width = xd->cur_buf->y_width;
+
+ int dst_mb_offset =
+ mi_row * MI_SIZE * tpl_frame->rec_picture->y_stride + mi_col * MI_SIZE;
+ uint8_t *dst_buffer = tpl_frame->rec_picture->y_buffer + dst_mb_offset;
+ int dst_buffer_stride = tpl_frame->rec_picture->y_stride;
+ int use_y_only_rate_distortion = tpl_sf->use_y_only_rate_distortion;
+
+ uint8_t *rec_buffer_pool[3] = {
+ tpl_frame->rec_picture->y_buffer,
+ tpl_frame->rec_picture->u_buffer,
+ tpl_frame->rec_picture->v_buffer,
+ };
+
+ const int rec_stride_pool[3] = {
+ tpl_frame->rec_picture->y_stride,
+ tpl_frame->rec_picture->uv_stride,
+ tpl_frame->rec_picture->uv_stride,
+ };
+
+ for (int plane = 1; plane < MAX_MB_PLANE; ++plane) {
+ struct macroblockd_plane *pd = &xd->plane[plane];
+ pd->subsampling_x = xd->cur_buf->subsampling_x;
+ pd->subsampling_y = xd->cur_buf->subsampling_y;
+ }
+
+ uint8_t *predictor8 = tpl_tmp_buffers->predictor8;
+ int16_t *src_diff = tpl_tmp_buffers->src_diff;
+ tran_low_t *coeff = tpl_tmp_buffers->coeff;
+ tran_low_t *qcoeff = tpl_tmp_buffers->qcoeff;
+ tran_low_t *dqcoeff = tpl_tmp_buffers->dqcoeff;
+ uint8_t *predictor =
+ is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8;
+ int64_t recon_error = 1;
+ int64_t pred_error = 1;
+
+ memset(tpl_stats, 0, sizeof(*tpl_stats));
+ tpl_stats->ref_frame_index[0] = -1;
+ tpl_stats->ref_frame_index[1] = -1;
+
+ const int mi_width = mi_size_wide[bsize];
+ const int mi_height = mi_size_high[bsize];
+ set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
+ mi_row, mi_col);
+ set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width,
+ cm->mi_params.mi_rows, cm->mi_params.mi_cols);
+ set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize],
+ av1_num_planes(cm));
+ xd->mi[0]->bsize = bsize;
+ xd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
+
+ // Intra prediction search
+ xd->mi[0]->ref_frame[0] = INTRA_FRAME;
+
+ // Pre-load the bottom left line.
+ if (xd->left_available &&
+ mi_row + tx_size_high_unit[tx_size] < xd->tile.mi_row_end) {
+ if (is_cur_buf_hbd(xd)) {
+ uint16_t *dst = CONVERT_TO_SHORTPTR(dst_buffer);
+ for (int i = 0; i < bw; ++i)
+ dst[(bw + i) * dst_buffer_stride - 1] =
+ dst[(bw - 1) * dst_buffer_stride - 1];
+ } else {
+ for (int i = 0; i < bw; ++i)
+ dst_buffer[(bw + i) * dst_buffer_stride - 1] =
+ dst_buffer[(bw - 1) * dst_buffer_stride - 1];
+ }
+ }
+
+ // if cpi->sf.tpl_sf.prune_intra_modes is on, then search only DC_PRED,
+ // H_PRED, and V_PRED
+ const PREDICTION_MODE last_intra_mode =
+ tpl_sf->prune_intra_modes ? D45_PRED : INTRA_MODE_END;
+ const SequenceHeader *seq_params = cm->seq_params;
+ for (PREDICTION_MODE mode = INTRA_MODE_START; mode < last_intra_mode;
+ ++mode) {
+ av1_predict_intra_block(xd, seq_params->sb_size,
+ seq_params->enable_intra_edge_filter,
+ block_size_wide[bsize], block_size_high[bsize],
+ tx_size, mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
+ dst_buffer_stride, predictor, bw, 0, 0, 0);
+
+ if (tpl_frame->use_pred_sad) {
+ intra_cost = (int32_t)cpi->ppi->fn_ptr[bsize].sdf(
+ src_mb_buffer, src_stride, predictor, bw);
+ } else {
+ intra_cost =
+ tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
+ predictor, bw, coeff, bw, bh, tx_size);
+ }
+
+ if (intra_cost < best_intra_cost) {
+ best_intra_cost = intra_cost;
+ best_mode = mode;
+ }
+ }
+ // Calculate SATD of the best intra mode if SAD was used for mode decision
+ // as best_intra_cost is used in ML model to skip intra mode evaluation.
+ if (tpl_frame->use_pred_sad) {
+ av1_predict_intra_block(
+ xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
+ block_size_wide[bsize], block_size_high[bsize], tx_size, best_mode, 0,
+ 0, FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, predictor, bw, 0,
+ 0, 0);
+ best_intra_cost =
+ tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
+ predictor, bw, coeff, bw, bh, tx_size);
+ }
+
+ int rate_cost = 1;
+
+ if (cpi->use_ducky_encode) {
+ get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
+ qcoeff, dqcoeff, cm, x, NULL, rec_buffer_pool,
+ rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
+ use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
+
+ tpl_stats->intra_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
+ tpl_stats->intra_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
+ tpl_stats->intra_rate = rate_cost;
+ }
+
+ if (cpi->third_pass_ctx &&
+ frame_offset < cpi->third_pass_ctx->frame_info_count &&
+ tpl_data->frame_idx < gf_group->size) {
+ double ratio_h, ratio_w;
+ av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
+ cm->width, &ratio_h, &ratio_w);
+ THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
+ cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
+
+ PREDICTION_MODE third_pass_mode = this_mi->pred_mode;
+
+ if (third_pass_mode >= last_intra_mode &&
+ third_pass_mode < INTRA_MODE_END) {
+ av1_predict_intra_block(
+ xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
+ block_size_wide[bsize], block_size_high[bsize], tx_size,
+ third_pass_mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
+ dst_buffer_stride, predictor, bw, 0, 0, 0);
+
+ intra_cost =
+ tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
+ predictor, bw, coeff, bw, bh, tx_size);
+
+ if (intra_cost < best_intra_cost) {
+ best_intra_cost = intra_cost;
+ best_mode = third_pass_mode;
+ }
+ }
+ }
+
+ // Motion compensated prediction
+ xd->mi[0]->ref_frame[0] = INTRA_FRAME;
+ xd->mi[0]->ref_frame[1] = NONE_FRAME;
+ xd->mi[0]->compound_idx = 1;
+
+ int best_rf_idx = -1;
+ int_mv best_mv[2];
+ int32_t inter_cost;
+ int32_t best_inter_cost = INT32_MAX;
+ int rf_idx;
+ int_mv single_mv[INTER_REFS_PER_FRAME];
+
+ best_mv[0].as_int = INVALID_MV;
+ best_mv[1].as_int = INVALID_MV;
+
+ for (rf_idx = 0; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) {
+ single_mv[rf_idx].as_int = INVALID_MV;
+ if (tpl_data->ref_frame[rf_idx] == NULL ||
+ tpl_data->src_ref_frame[rf_idx] == NULL) {
+ tpl_stats->mv[rf_idx].as_int = INVALID_MV;
+ continue;
+ }
+
+ const YV12_BUFFER_CONFIG *ref_frame_ptr = tpl_data->src_ref_frame[rf_idx];
+ const int ref_mb_offset =
+ mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE;
+ uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset;
+ const int ref_stride = ref_frame_ptr->y_stride;
+ const int ref_width = ref_frame_ptr->y_width;
+
+ int_mv best_rfidx_mv = { 0 };
+ uint32_t bestsme = UINT32_MAX;
+
+ center_mv_t center_mvs[4] = { { { 0 }, INT_MAX },
+ { { 0 }, INT_MAX },
+ { { 0 }, INT_MAX },
+ { { 0 }, INT_MAX } };
+ int refmv_count = 1;
+ int idx;
+
+ if (xd->up_available) {
+ TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
+ mi_row - mi_height, mi_col, tpl_frame->stride, block_mis_log2)];
+ if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
+ tpl_sf->skip_alike_starting_mv)) {
+ center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
+ ++refmv_count;
+ }
+ }
+
+ if (xd->left_available) {
+ TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
+ mi_row, mi_col - mi_width, tpl_frame->stride, block_mis_log2)];
+ if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
+ tpl_sf->skip_alike_starting_mv)) {
+ center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
+ ++refmv_count;
+ }
+ }
+
+ if (xd->up_available && mi_col + mi_width < xd->tile.mi_col_end) {
+ TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
+ mi_row - mi_height, mi_col + mi_width, tpl_frame->stride,
+ block_mis_log2)];
+ if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
+ tpl_sf->skip_alike_starting_mv)) {
+ center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
+ ++refmv_count;
+ }
+ }
+
+ if (cpi->third_pass_ctx &&
+ frame_offset < cpi->third_pass_ctx->frame_info_count &&
+ tpl_data->frame_idx < gf_group->size) {
+ double ratio_h, ratio_w;
+ av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
+ cm->width, &ratio_h, &ratio_w);
+ THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
+ cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
+
+ int_mv tp_mv = av1_get_third_pass_adjusted_mv(this_mi, ratio_h, ratio_w,
+ rf_idx + LAST_FRAME);
+ if (tp_mv.as_int != INVALID_MV &&
+ !is_alike_mv(tp_mv, center_mvs + 1, refmv_count - 1,
+ tpl_sf->skip_alike_starting_mv)) {
+ center_mvs[0].mv = tp_mv;
+ }
+ }
+
+ // Prune starting mvs
+ if (tpl_sf->prune_starting_mv && refmv_count > 1) {
+ // Get each center mv's sad.
+ for (idx = 0; idx < refmv_count; ++idx) {
+ FULLPEL_MV mv = get_fullmv_from_mv(&center_mvs[idx].mv.as_mv);
+ clamp_fullmv(&mv, &x->mv_limits);
+ center_mvs[idx].sad = (int)cpi->ppi->fn_ptr[bsize].sdf(
+ src_mb_buffer, src_stride, &ref_mb[mv.row * ref_stride + mv.col],
+ ref_stride);
+ }
+
+ // Rank center_mv using sad.
+ qsort(center_mvs, refmv_count, sizeof(center_mvs[0]), compare_sad);
+
+ refmv_count = AOMMIN(4 - tpl_sf->prune_starting_mv, refmv_count);
+ // Further reduce number of refmv based on sad difference.
+ if (refmv_count > 1) {
+ int last_sad = center_mvs[refmv_count - 1].sad;
+ int second_to_last_sad = center_mvs[refmv_count - 2].sad;
+ if ((last_sad - second_to_last_sad) * 5 > second_to_last_sad)
+ refmv_count--;
+ }
+ }
+
+ for (idx = 0; idx < refmv_count; ++idx) {
+ int_mv this_mv;
+ uint32_t thissme = motion_estimation(
+ cpi, x, src_mb_buffer, ref_mb, src_stride, ref_stride, src_width,
+ ref_width, bsize, center_mvs[idx].mv.as_mv, &this_mv);
+
+ if (thissme < bestsme) {
+ bestsme = thissme;
+ best_rfidx_mv = this_mv;
+ }
+ }
+
+ tpl_stats->mv[rf_idx].as_int = best_rfidx_mv.as_int;
+ single_mv[rf_idx] = best_rfidx_mv;
+
+ inter_cost = get_inter_cost(
+ cpi, xd, src_mb_buffer, src_stride, tpl_tmp_buffers, bsize, tx_size,
+ mi_row, mi_col, rf_idx, &best_rfidx_mv.as_mv, tpl_frame->use_pred_sad);
+ // Store inter cost for each ref frame. This is used to prune inter modes.
+ tpl_stats->pred_error[rf_idx] = AOMMAX(1, inter_cost);
+
+ if (inter_cost < best_inter_cost) {
+ best_rf_idx = rf_idx;
+
+ best_inter_cost = inter_cost;
+ best_mv[0].as_int = best_rfidx_mv.as_int;
+ }
+ }
+ // Calculate SATD of the best inter mode if SAD was used for mode decision
+ // as best_inter_cost is used in ML model to skip intra mode evaluation.
+ if (best_inter_cost < INT32_MAX && tpl_frame->use_pred_sad) {
+ assert(best_rf_idx != -1);
+ best_inter_cost = get_inter_cost(
+ cpi, xd, src_mb_buffer, src_stride, tpl_tmp_buffers, bsize, tx_size,
+ mi_row, mi_col, best_rf_idx, &best_mv[0].as_mv, 0 /* use_pred_sad */);
+ }
+
+ if (best_rf_idx != -1 && best_inter_cost < best_intra_cost) {
+ best_mode = NEWMV;
+ xd->mi[0]->ref_frame[0] = best_rf_idx + LAST_FRAME;
+ xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
+ }
+
+ // Start compound predition search.
+ int comp_ref_frames[3][2] = {
+ { 0, 4 },
+ { 0, 6 },
+ { 3, 6 },
+ };
+
+ int start_rf = 0;
+ int end_rf = 3;
+ if (!tpl_sf->allow_compound_pred) end_rf = 0;
+ if (cpi->third_pass_ctx &&
+ frame_offset < cpi->third_pass_ctx->frame_info_count &&
+ tpl_data->frame_idx < gf_group->size) {
+ double ratio_h, ratio_w;
+ av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
+ cm->width, &ratio_h, &ratio_w);
+ THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
+ cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
+
+ if (this_mi->ref_frame[0] >= LAST_FRAME &&
+ this_mi->ref_frame[1] >= LAST_FRAME) {
+ int found = 0;
+ for (int i = 0; i < 3; i++) {
+ if (comp_ref_frames[i][0] + LAST_FRAME == this_mi->ref_frame[0] &&
+ comp_ref_frames[i][1] + LAST_FRAME == this_mi->ref_frame[1]) {
+ found = 1;
+ break;
+ }
+ }
+ if (!found || !tpl_sf->allow_compound_pred) {
+ comp_ref_frames[2][0] = this_mi->ref_frame[0] - LAST_FRAME;
+ comp_ref_frames[2][1] = this_mi->ref_frame[1] - LAST_FRAME;
+ if (!tpl_sf->allow_compound_pred) {
+ start_rf = 2;
+ end_rf = 3;
+ }
+ }
+ }
+ }
+
+ xd->mi_row = mi_row;
+ xd->mi_col = mi_col;
+ int best_cmp_rf_idx = -1;
+ const int_interpfilters kernel =
+ av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
+ for (int cmp_rf_idx = start_rf; cmp_rf_idx < end_rf; ++cmp_rf_idx) {
+ int rf_idx0 = comp_ref_frames[cmp_rf_idx][0];
+ int rf_idx1 = comp_ref_frames[cmp_rf_idx][1];
+
+ if (tpl_data->ref_frame[rf_idx0] == NULL ||
+ tpl_data->src_ref_frame[rf_idx0] == NULL ||
+ tpl_data->ref_frame[rf_idx1] == NULL ||
+ tpl_data->src_ref_frame[rf_idx1] == NULL) {
+ continue;
+ }
+
+ const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
+ tpl_data->src_ref_frame[rf_idx0],
+ tpl_data->src_ref_frame[rf_idx1],
+ };
+
+ xd->mi[0]->ref_frame[0] = rf_idx0 + LAST_FRAME;
+ xd->mi[0]->ref_frame[1] = rf_idx1 + LAST_FRAME;
+ xd->mi[0]->mode = NEW_NEWMV;
+ const int8_t ref_frame_type = av1_ref_frame_type(xd->mi[0]->ref_frame);
+ // Set up ref_mv for av1_joint_motion_search().
+ CANDIDATE_MV *this_ref_mv_stack = x->mbmi_ext.ref_mv_stack[ref_frame_type];
+ this_ref_mv_stack[xd->mi[0]->ref_mv_idx].this_mv = single_mv[rf_idx0];
+ this_ref_mv_stack[xd->mi[0]->ref_mv_idx].comp_mv = single_mv[rf_idx1];
+
+ struct buf_2d yv12_mb[2][MAX_MB_PLANE];
+ for (int i = 0; i < 2; ++i) {
+ av1_setup_pred_block(xd, yv12_mb[i], ref_frame_ptr[i],
+ xd->block_ref_scale_factors[i],
+ xd->block_ref_scale_factors[i], MAX_MB_PLANE);
+ for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
+ xd->plane[plane].pre[i] = yv12_mb[i][plane];
+ }
+ }
+
+ int_mv tmp_mv[2] = { single_mv[rf_idx0], single_mv[rf_idx1] };
+ int rate_mv;
+ av1_joint_motion_search(cpi, x, bsize, tmp_mv, NULL, 0, &rate_mv,
+ !cpi->sf.mv_sf.disable_second_mv,
+ NUM_JOINT_ME_REFINE_ITER);
+
+ for (int ref = 0; ref < 2; ++ref) {
+ struct buf_2d ref_buf = { NULL, ref_frame_ptr[ref]->y_buffer,
+ ref_frame_ptr[ref]->y_width,
+ ref_frame_ptr[ref]->y_height,
+ ref_frame_ptr[ref]->y_stride };
+ InterPredParams inter_pred_params;
+ av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
+ mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd),
+ 0, &tpl_data->sf, &ref_buf, kernel);
+ av1_init_comp_mode(&inter_pred_params);
+
+ inter_pred_params.conv_params = get_conv_params_no_round(
+ ref, 0, xd->tmp_conv_dst, MAX_SB_SIZE, 1, xd->bd);
+
+ av1_enc_build_one_inter_predictor(predictor, bw, &tmp_mv[ref].as_mv,
+ &inter_pred_params);
+ }
+ inter_cost =
+ tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
+ predictor, bw, coeff, bw, bh, tx_size);
+ if (inter_cost < best_inter_cost) {
+ best_cmp_rf_idx = cmp_rf_idx;
+ best_inter_cost = inter_cost;
+ best_mv[0] = tmp_mv[0];
+ best_mv[1] = tmp_mv[1];
+ }
+ }
+
+ if (best_cmp_rf_idx != -1 && best_inter_cost < best_intra_cost) {
+ best_mode = NEW_NEWMV;
+ const int best_rf_idx0 = comp_ref_frames[best_cmp_rf_idx][0];
+ const int best_rf_idx1 = comp_ref_frames[best_cmp_rf_idx][1];
+ xd->mi[0]->ref_frame[0] = best_rf_idx0 + LAST_FRAME;
+ xd->mi[0]->ref_frame[1] = best_rf_idx1 + LAST_FRAME;
+ }
+
+ if (best_inter_cost < INT32_MAX && is_inter_mode(best_mode)) {
+ xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
+ xd->mi[0]->mv[1].as_int = best_mv[1].as_int;
+ const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
+ best_cmp_rf_idx >= 0
+ ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
+ : tpl_data->src_ref_frame[best_rf_idx],
+ best_cmp_rf_idx >= 0
+ ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
+ : NULL,
+ };
+ rate_cost = 1;
+ get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
+ qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
+ rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
+ use_y_only_rate_distortion, 0 /*do_recon*/, NULL);
+ tpl_stats->srcrf_rate = rate_cost;
+ }
+
+ best_intra_cost = AOMMAX(best_intra_cost, 1);
+ best_inter_cost = AOMMIN(best_intra_cost, best_inter_cost);
+ tpl_stats->inter_cost = best_inter_cost;
+ tpl_stats->intra_cost = best_intra_cost;
+
+ tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
+ tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
+
+ // Final encode
+ rate_cost = 0;
+ const YV12_BUFFER_CONFIG *ref_frame_ptr[2];
+
+ ref_frame_ptr[0] =
+ best_mode == NEW_NEWMV
+ ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
+ : best_rf_idx >= 0 ? tpl_data->ref_frame[best_rf_idx]
+ : NULL;
+ ref_frame_ptr[1] =
+ best_mode == NEW_NEWMV
+ ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
+ : NULL;
+ get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
+ qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
+ rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
+ use_y_only_rate_distortion, 1 /*do_recon*/,
+ tpl_txfm_stats);
+
+ tpl_stats->recrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
+ tpl_stats->recrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
+ tpl_stats->recrf_rate = rate_cost;
+
+ if (!is_inter_mode(best_mode)) {
+ tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
+ tpl_stats->srcrf_rate = rate_cost;
+ tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
+ }
+
+ tpl_stats->recrf_dist = AOMMAX(tpl_stats->srcrf_dist, tpl_stats->recrf_dist);
+ tpl_stats->recrf_rate = AOMMAX(tpl_stats->srcrf_rate, tpl_stats->recrf_rate);
+
+ if (best_mode == NEW_NEWMV) {
+ ref_frame_ptr[0] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
+ ref_frame_ptr[1] =
+ tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
+ get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
+ qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
+ rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
+ use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
+ tpl_stats->cmp_recrf_dist[0] = recon_error << TPL_DEP_COST_SCALE_LOG2;
+ tpl_stats->cmp_recrf_rate[0] = rate_cost;
+
+ tpl_stats->cmp_recrf_dist[0] =
+ AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[0]);
+ tpl_stats->cmp_recrf_rate[0] =
+ AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[0]);
+
+ tpl_stats->cmp_recrf_dist[0] =
+ AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[0]);
+ tpl_stats->cmp_recrf_rate[0] =
+ AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[0]);
+
+ rate_cost = 0;
+ ref_frame_ptr[0] =
+ tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
+ ref_frame_ptr[1] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
+ get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
+ qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
+ rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
+ use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
+ tpl_stats->cmp_recrf_dist[1] = recon_error << TPL_DEP_COST_SCALE_LOG2;
+ tpl_stats->cmp_recrf_rate[1] = rate_cost;
+
+ tpl_stats->cmp_recrf_dist[1] =
+ AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[1]);
+ tpl_stats->cmp_recrf_rate[1] =
+ AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[1]);
+
+ tpl_stats->cmp_recrf_dist[1] =
+ AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[1]);
+ tpl_stats->cmp_recrf_rate[1] =
+ AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[1]);
+ }
+
+ if (best_mode == NEWMV) {
+ tpl_stats->mv[best_rf_idx] = best_mv[0];
+ tpl_stats->ref_frame_index[0] = best_rf_idx;
+ tpl_stats->ref_frame_index[1] = NONE_FRAME;
+ } else if (best_mode == NEW_NEWMV) {
+ tpl_stats->ref_frame_index[0] = comp_ref_frames[best_cmp_rf_idx][0];
+ tpl_stats->ref_frame_index[1] = comp_ref_frames[best_cmp_rf_idx][1];
+ tpl_stats->mv[tpl_stats->ref_frame_index[0]] = best_mv[0];
+ tpl_stats->mv[tpl_stats->ref_frame_index[1]] = best_mv[1];
+ }
+
+ for (int idy = 0; idy < mi_height; ++idy) {
+ for (int idx = 0; idx < mi_width; ++idx) {
+ if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > idx &&
+ (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > idy) {
+ xd->mi[idx + idy * cm->mi_params.mi_stride] = xd->mi[0];
+ }
+ }
+ }
+}
+
+static int round_floor(int ref_pos, int bsize_pix) {
+ int round;
+ if (ref_pos < 0)
+ round = -(1 + (-ref_pos - 1) / bsize_pix);
+ else
+ round = ref_pos / bsize_pix;
+
+ return round;
+}
+
+int av1_get_overlap_area(int row_a, int col_a, int row_b, int col_b, int width,
+ int height) {
+ int min_row = AOMMAX(row_a, row_b);
+ int max_row = AOMMIN(row_a + height, row_b + height);
+ int min_col = AOMMAX(col_a, col_b);
+ int max_col = AOMMIN(col_a + width, col_b + width);
+ if (min_row < max_row && min_col < max_col) {
+ return (max_row - min_row) * (max_col - min_col);
+ }
+ return 0;
+}
+
+int av1_tpl_ptr_pos(int mi_row, int mi_col, int stride, uint8_t right_shift) {
+ return (mi_row >> right_shift) * stride + (mi_col >> right_shift);
+}
+
+int64_t av1_delta_rate_cost(int64_t delta_rate, int64_t recrf_dist,
+ int64_t srcrf_dist, int pix_num) {
+ double beta = (double)srcrf_dist / recrf_dist;
+ int64_t rate_cost = delta_rate;
+
+ if (srcrf_dist <= 128) return rate_cost;
+
+ double dr =
+ (double)(delta_rate >> (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT)) /
+ pix_num;
+
+ double log_den = log(beta) / log(2.0) + 2.0 * dr;
+
+ if (log_den > log(10.0) / log(2.0)) {
+ rate_cost = (int64_t)((log(1.0 / beta) * pix_num) / log(2.0) / 2.0);
+ rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
+ return rate_cost;
+ }
+
+ double num = pow(2.0, log_den);
+ double den = num * beta + (1 - beta) * beta;
+
+ rate_cost = (int64_t)((pix_num * log(num / den)) / log(2.0) / 2.0);
+
+ rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
+
+ return rate_cost;
+}
+
+static AOM_INLINE void tpl_model_update_b(TplParams *const tpl_data, int mi_row,
+ int mi_col, const BLOCK_SIZE bsize,
+ int frame_idx, int ref) {
+ TplDepFrame *tpl_frame_ptr = &tpl_data->tpl_frame[frame_idx];
+ TplDepStats *tpl_ptr = tpl_frame_ptr->tpl_stats_ptr;
+ TplDepFrame *tpl_frame = tpl_data->tpl_frame;
+ const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
+ TplDepStats *tpl_stats_ptr = &tpl_ptr[av1_tpl_ptr_pos(
+ mi_row, mi_col, tpl_frame->stride, block_mis_log2)];
+
+ int is_compound = tpl_stats_ptr->ref_frame_index[1] >= 0;
+
+ if (tpl_stats_ptr->ref_frame_index[ref] < 0) return;
+ const int ref_frame_index = tpl_stats_ptr->ref_frame_index[ref];
+ TplDepFrame *ref_tpl_frame =
+ &tpl_frame[tpl_frame[frame_idx].ref_map_index[ref_frame_index]];
+ TplDepStats *ref_stats_ptr = ref_tpl_frame->tpl_stats_ptr;
+
+ if (tpl_frame[frame_idx].ref_map_index[ref_frame_index] < 0) return;
+
+ const FULLPEL_MV full_mv =
+ get_fullmv_from_mv(&tpl_stats_ptr->mv[ref_frame_index].as_mv);
+ const int ref_pos_row = mi_row * MI_SIZE + full_mv.row;
+ const int ref_pos_col = mi_col * MI_SIZE + full_mv.col;
+
+ const int bw = 4 << mi_size_wide_log2[bsize];
+ const int bh = 4 << mi_size_high_log2[bsize];
+ const int mi_height = mi_size_high[bsize];
+ const int mi_width = mi_size_wide[bsize];
+ const int pix_num = bw * bh;
+
+ // top-left on grid block location in pixel
+ int grid_pos_row_base = round_floor(ref_pos_row, bh) * bh;
+ int grid_pos_col_base = round_floor(ref_pos_col, bw) * bw;
+ int block;
+
+ int64_t srcrf_dist = is_compound ? tpl_stats_ptr->cmp_recrf_dist[!ref]
+ : tpl_stats_ptr->srcrf_dist;
+ int64_t srcrf_rate =
+ is_compound
+ ? (tpl_stats_ptr->cmp_recrf_rate[!ref] << TPL_DEP_COST_SCALE_LOG2)
+ : (tpl_stats_ptr->srcrf_rate << TPL_DEP_COST_SCALE_LOG2);
+
+ int64_t cur_dep_dist = tpl_stats_ptr->recrf_dist - srcrf_dist;
+ int64_t mc_dep_dist =
+ (int64_t)(tpl_stats_ptr->mc_dep_dist *
+ ((double)(tpl_stats_ptr->recrf_dist - srcrf_dist) /
+ tpl_stats_ptr->recrf_dist));
+ int64_t delta_rate =
+ (tpl_stats_ptr->recrf_rate << TPL_DEP_COST_SCALE_LOG2) - srcrf_rate;
+ int64_t mc_dep_rate =
+ av1_delta_rate_cost(tpl_stats_ptr->mc_dep_rate, tpl_stats_ptr->recrf_dist,
+ srcrf_dist, pix_num);
+
+ for (block = 0; block < 4; ++block) {
+ int grid_pos_row = grid_pos_row_base + bh * (block >> 1);
+ int grid_pos_col = grid_pos_col_base + bw * (block & 0x01);
+
+ if (grid_pos_row >= 0 && grid_pos_row < ref_tpl_frame->mi_rows * MI_SIZE &&
+ grid_pos_col >= 0 && grid_pos_col < ref_tpl_frame->mi_cols * MI_SIZE) {
+ int overlap_area = av1_get_overlap_area(grid_pos_row, grid_pos_col,
+ ref_pos_row, ref_pos_col, bw, bh);
+ int ref_mi_row = round_floor(grid_pos_row, bh) * mi_height;
+ int ref_mi_col = round_floor(grid_pos_col, bw) * mi_width;
+ assert((1 << block_mis_log2) == mi_height);
+ assert((1 << block_mis_log2) == mi_width);
+ TplDepStats *des_stats = &ref_stats_ptr[av1_tpl_ptr_pos(
+ ref_mi_row, ref_mi_col, ref_tpl_frame->stride, block_mis_log2)];
+ des_stats->mc_dep_dist +=
+ ((cur_dep_dist + mc_dep_dist) * overlap_area) / pix_num;
+ des_stats->mc_dep_rate +=
+ ((delta_rate + mc_dep_rate) * overlap_area) / pix_num;
+ }
+ }
+}
+
+static AOM_INLINE void tpl_model_update(TplParams *const tpl_data, int mi_row,
+ int mi_col, int frame_idx) {
+ const BLOCK_SIZE tpl_stats_block_size =
+ convert_length_to_bsize(MI_SIZE << tpl_data->tpl_stats_block_mis_log2);
+ tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
+ 0);
+ tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
+ 1);
+}
+
+static AOM_INLINE void tpl_model_store(TplDepStats *tpl_stats_ptr, int mi_row,
+ int mi_col, int stride,
+ const TplDepStats *src_stats,
+ uint8_t block_mis_log2) {
+ int index = av1_tpl_ptr_pos(mi_row, mi_col, stride, block_mis_log2);
+ TplDepStats *tpl_ptr = &tpl_stats_ptr[index];
+ *tpl_ptr = *src_stats;
+ tpl_ptr->intra_cost = AOMMAX(1, tpl_ptr->intra_cost);
+ tpl_ptr->inter_cost = AOMMAX(1, tpl_ptr->inter_cost);
+ tpl_ptr->srcrf_dist = AOMMAX(1, tpl_ptr->srcrf_dist);
+ tpl_ptr->srcrf_sse = AOMMAX(1, tpl_ptr->srcrf_sse);
+ tpl_ptr->recrf_dist = AOMMAX(1, tpl_ptr->recrf_dist);
+ tpl_ptr->srcrf_rate = AOMMAX(1, tpl_ptr->srcrf_rate);
+ tpl_ptr->recrf_rate = AOMMAX(1, tpl_ptr->recrf_rate);
+ tpl_ptr->cmp_recrf_dist[0] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[0]);
+ tpl_ptr->cmp_recrf_dist[1] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[1]);
+ tpl_ptr->cmp_recrf_rate[0] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[0]);
+ tpl_ptr->cmp_recrf_rate[1] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[1]);
+}
+
+// Reset the ref and source frame pointers of tpl_data.
+static AOM_INLINE void tpl_reset_src_ref_frames(TplParams *tpl_data) {
+ for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
+ tpl_data->ref_frame[i] = NULL;
+ tpl_data->src_ref_frame[i] = NULL;
+ }
+}
+
+static AOM_INLINE int get_gop_length(const GF_GROUP *gf_group) {
+ int gop_length = AOMMIN(gf_group->size, MAX_TPL_FRAME_IDX - 1);
+ return gop_length;
+}
+
+// Initialize the mc_flow parameters used in computing tpl data.
+static AOM_INLINE void init_mc_flow_dispenser(AV1_COMP *cpi, int frame_idx,
+ int pframe_qindex) {
+ TplParams *const tpl_data = &cpi->ppi->tpl_data;
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx];
+ const YV12_BUFFER_CONFIG *this_frame = tpl_frame->gf_picture;
+ const YV12_BUFFER_CONFIG *ref_frames_ordered[INTER_REFS_PER_FRAME];
+ uint32_t ref_frame_display_indices[INTER_REFS_PER_FRAME];
+ const GF_GROUP *gf_group = &cpi->ppi->gf_group;
+ TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
+ int ref_pruning_enabled = is_frame_eligible_for_ref_pruning(
+ gf_group, cpi->sf.inter_sf.selective_ref_frame,
+ tpl_sf->prune_ref_frames_in_tpl, frame_idx);
+ int gop_length = get_gop_length(gf_group);
+ int ref_frame_flags;
+ AV1_COMMON *cm = &cpi->common;
+ int rdmult, idx;
+ ThreadData *td = &cpi->td;
+ MACROBLOCK *x = &td->mb;
+ MACROBLOCKD *xd = &x->e_mbd;
+ TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats;
+ tpl_data->frame_idx = frame_idx;
+ tpl_reset_src_ref_frames(tpl_data);
+ av1_tile_init(&xd->tile, cm, 0, 0);
+
+ const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
+ const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
+ const FRAME_TYPE frame_type = cm->current_frame.frame_type;
+
+ // Setup scaling factor
+ av1_setup_scale_factors_for_frame(
+ &tpl_data->sf, this_frame->y_crop_width, this_frame->y_crop_height,
+ this_frame->y_crop_width, this_frame->y_crop_height);
+
+ xd->cur_buf = this_frame;
+
+ for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
+ TplDepFrame *tpl_ref_frame =
+ &tpl_data->tpl_frame[tpl_frame->ref_map_index[idx]];
+ tpl_data->ref_frame[idx] = tpl_ref_frame->rec_picture;
+ tpl_data->src_ref_frame[idx] = tpl_ref_frame->gf_picture;
+ ref_frame_display_indices[idx] = tpl_ref_frame->frame_display_index;
+ }
+
+ // Store the reference frames based on priority order
+ for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
+ ref_frames_ordered[i] =
+ tpl_data->ref_frame[ref_frame_priority_order[i] - 1];
+ }
+
+ // Work out which reference frame slots may be used.
+ ref_frame_flags =
+ get_ref_frame_flags(&cpi->sf, is_one_pass_rt_params(cpi),
+ ref_frames_ordered, cpi->ext_flags.ref_frame_flags);
+
+ enforce_max_ref_frames(cpi, &ref_frame_flags, ref_frame_display_indices,
+ tpl_frame->frame_display_index);
+
+ // Prune reference frames
+ for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
+ if ((ref_frame_flags & (1 << idx)) == 0) {
+ tpl_data->ref_frame[idx] = NULL;
+ }
+ }
+
+ // Skip motion estimation w.r.t. reference frames which are not
+ // considered in RD search, using "selective_ref_frame" speed feature.
+ // The reference frame pruning is not enabled for frames beyond the gop
+ // length, as there are fewer reference frames and the reference frames
+ // differ from the frames considered during RD search.
+ if (ref_pruning_enabled && (frame_idx < gop_length)) {
+ for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
+ const MV_REFERENCE_FRAME refs[2] = { idx + 1, NONE_FRAME };
+ if (prune_ref_by_selective_ref_frame(cpi, NULL, refs,
+ ref_frame_display_indices)) {
+ tpl_data->ref_frame[idx] = NULL;
+ }
+ }
+ }
+
+ // Make a temporary mbmi for tpl model
+ MB_MODE_INFO mbmi;
+ memset(&mbmi, 0, sizeof(mbmi));
+ MB_MODE_INFO *mbmi_ptr = &mbmi;
+ xd->mi = &mbmi_ptr;
+
+ xd->block_ref_scale_factors[0] = &tpl_data->sf;
+ xd->block_ref_scale_factors[1] = &tpl_data->sf;
+
+ const int base_qindex =
+ cpi->use_ducky_encode ? gf_group->q_val[frame_idx] : pframe_qindex;
+ // Get rd multiplier set up.
+ rdmult = (int)av1_compute_rd_mult(
+ base_qindex, cm->seq_params->bit_depth,
+ cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
+ boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
+ is_stat_consumption_stage(cpi));
+
+ if (rdmult < 1) rdmult = 1;
+ av1_set_error_per_bit(&x->errorperbit, rdmult);
+ av1_set_sad_per_bit(cpi, &x->sadperbit, base_qindex);
+
+ tpl_frame->is_valid = 1;
+
+ cm->quant_params.base_qindex = base_qindex;
+ av1_frame_init_quantizer(cpi);
+
+ const BitDepthInfo bd_info = get_bit_depth_info(xd);
+ const FRAME_UPDATE_TYPE update_type =
+ gf_group->update_type[cpi->gf_frame_index];
+ tpl_frame->base_rdmult = av1_compute_rd_mult_based_on_qindex(
+ bd_info.bit_depth, update_type, base_qindex) /
+ 6;
+
+ if (cpi->use_ducky_encode)
+ tpl_frame->base_rdmult = gf_group->rdmult_val[frame_idx];
+
+ av1_init_tpl_txfm_stats(tpl_txfm_stats);
+
+ // Initialize x->mbmi_ext when compound predictions are enabled.
+ if (tpl_sf->allow_compound_pred) av1_zero(x->mbmi_ext);
+
+ // Set the pointer to null since mbmi is only allocated inside this function.
+ assert(xd->mi == &mbmi_ptr);
+ xd->mi = NULL;
+
+ // Tpl module is called before the setting of speed features at frame level.
+ // Thus, turning off this speed feature for key frame is done here and not
+ // integrated into the speed feature setting itself.
+ const int layer_depth_th = (tpl_sf->use_sad_for_mode_decision == 1) ? 5 : 0;
+ tpl_frame->use_pred_sad =
+ tpl_sf->use_sad_for_mode_decision &&
+ gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE &&
+ gf_group->layer_depth[frame_idx] >= layer_depth_th;
+}
+
+// This function stores the motion estimation dependencies of all the blocks in
+// a row
+void av1_mc_flow_dispenser_row(AV1_COMP *cpi, TplTxfmStats *tpl_txfm_stats,
+ TplBuffers *tpl_tmp_buffers, MACROBLOCK *x,
+ int mi_row, BLOCK_SIZE bsize, TX_SIZE tx_size) {
+ AV1_COMMON *const cm = &cpi->common;
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+ AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ const int mi_width = mi_size_wide[bsize];
+ TplParams *const tpl_data = &cpi->ppi->tpl_data;
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
+ MACROBLOCKD *xd = &x->e_mbd;
+
+ const int tplb_cols_in_tile =
+ ROUND_POWER_OF_TWO(mi_params->mi_cols, mi_size_wide_log2[bsize]);
+ const int tplb_row = ROUND_POWER_OF_TWO(mi_row, mi_size_high_log2[bsize]);
+ assert(mi_size_high[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
+ assert(mi_size_wide[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
+
+ for (int mi_col = 0, tplb_col_in_tile = 0; mi_col < mi_params->mi_cols;
+ mi_col += mi_width, tplb_col_in_tile++) {
+ (*tpl_row_mt->sync_read_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
+ tplb_col_in_tile);
+
+#if CONFIG_MULTITHREAD
+ if (mt_info->num_workers > 1) {
+ pthread_mutex_lock(tpl_row_mt->mutex_);
+ const bool tpl_mt_exit = tpl_row_mt->tpl_mt_exit;
+ pthread_mutex_unlock(tpl_row_mt->mutex_);
+ // Exit in case any worker has encountered an error.
+ if (tpl_mt_exit) return;
+ }
+#endif
+
+ TplDepStats tpl_stats;
+
+ // Motion estimation column boundary
+ av1_set_mv_col_limits(mi_params, &x->mv_limits, mi_col, mi_width,
+ tpl_data->border_in_pixels);
+ xd->mb_to_left_edge = -GET_MV_SUBPEL(mi_col * MI_SIZE);
+ xd->mb_to_right_edge =
+ GET_MV_SUBPEL(mi_params->mi_cols - mi_width - mi_col);
+ mode_estimation(cpi, tpl_txfm_stats, tpl_tmp_buffers, x, mi_row, mi_col,
+ bsize, tx_size, &tpl_stats);
+
+ // Motion flow dependency dispenser.
+ tpl_model_store(tpl_frame->tpl_stats_ptr, mi_row, mi_col, tpl_frame->stride,
+ &tpl_stats, tpl_data->tpl_stats_block_mis_log2);
+ (*tpl_row_mt->sync_write_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
+ tplb_col_in_tile, tplb_cols_in_tile);
+ }
+}
+
+static AOM_INLINE void mc_flow_dispenser(AV1_COMP *cpi) {
+ AV1_COMMON *cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ ThreadData *td = &cpi->td;
+ MACROBLOCK *x = &td->mb;
+ MACROBLOCKD *xd = &x->e_mbd;
+ const BLOCK_SIZE bsize =
+ convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
+ const TX_SIZE tx_size = max_txsize_lookup[bsize];
+ const int mi_height = mi_size_high[bsize];
+ for (int mi_row = 0; mi_row < mi_params->mi_rows; mi_row += mi_height) {
+ // Motion estimation row boundary
+ av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
+ cpi->ppi->tpl_data.border_in_pixels);
+ xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
+ xd->mb_to_bottom_edge =
+ GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
+ av1_mc_flow_dispenser_row(cpi, &td->tpl_txfm_stats, &td->tpl_tmp_buffers, x,
+ mi_row, bsize, tx_size);
+ }
+}
+
+static void mc_flow_synthesizer(TplParams *tpl_data, int frame_idx, int mi_rows,
+ int mi_cols) {
+ if (!frame_idx) {
+ return;
+ }
+ const BLOCK_SIZE bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
+ const int mi_height = mi_size_high[bsize];
+ const int mi_width = mi_size_wide[bsize];
+ assert(mi_height == (1 << tpl_data->tpl_stats_block_mis_log2));
+ assert(mi_width == (1 << tpl_data->tpl_stats_block_mis_log2));
+
+ for (int mi_row = 0; mi_row < mi_rows; mi_row += mi_height) {
+ for (int mi_col = 0; mi_col < mi_cols; mi_col += mi_width) {
+ tpl_model_update(tpl_data, mi_row, mi_col, frame_idx);
+ }
+ }
+}
+
+static AOM_INLINE void init_gop_frames_for_tpl(
+ AV1_COMP *cpi, const EncodeFrameParams *const init_frame_params,
+ GF_GROUP *gf_group, int *tpl_group_frames, int *pframe_qindex) {
+ AV1_COMMON *cm = &cpi->common;
+ assert(cpi->gf_frame_index == 0);
+ *pframe_qindex = 0;
+
+ RefFrameMapPair ref_frame_map_pairs[REF_FRAMES];
+ init_ref_map_pair(cpi, ref_frame_map_pairs);
+
+ int remapped_ref_idx[REF_FRAMES];
+
+ EncodeFrameParams frame_params = *init_frame_params;
+ TplParams *const tpl_data = &cpi->ppi->tpl_data;
+
+ int ref_picture_map[REF_FRAMES];
+
+ for (int i = 0; i < REF_FRAMES; ++i) {
+ if (frame_params.frame_type == KEY_FRAME) {
+ tpl_data->tpl_frame[-i - 1].gf_picture = NULL;
+ tpl_data->tpl_frame[-i - 1].rec_picture = NULL;
+ tpl_data->tpl_frame[-i - 1].frame_display_index = 0;
+ } else {
+ tpl_data->tpl_frame[-i - 1].gf_picture = &cm->ref_frame_map[i]->buf;
+ tpl_data->tpl_frame[-i - 1].rec_picture = &cm->ref_frame_map[i]->buf;
+ tpl_data->tpl_frame[-i - 1].frame_display_index =
+ cm->ref_frame_map[i]->display_order_hint;
+ }
+
+ ref_picture_map[i] = -i - 1;
+ }
+
+ *tpl_group_frames = 0;
+
+ int gf_index;
+ int process_frame_count = 0;
+ const int gop_length = get_gop_length(gf_group);
+
+ for (gf_index = 0; gf_index < gop_length; ++gf_index) {
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
+ FRAME_UPDATE_TYPE frame_update_type = gf_group->update_type[gf_index];
+ int lookahead_index =
+ gf_group->cur_frame_idx[gf_index] + gf_group->arf_src_offset[gf_index];
+ frame_params.show_frame = frame_update_type != ARF_UPDATE &&
+ frame_update_type != INTNL_ARF_UPDATE;
+ frame_params.show_existing_frame =
+ frame_update_type == INTNL_OVERLAY_UPDATE ||
+ frame_update_type == OVERLAY_UPDATE;
+ frame_params.frame_type = gf_group->frame_type[gf_index];
+
+ if (frame_update_type == LF_UPDATE)
+ *pframe_qindex = gf_group->q_val[gf_index];
+
+ const struct lookahead_entry *buf = av1_lookahead_peek(
+ cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage);
+ if (buf == NULL) break;
+ tpl_frame->gf_picture = &buf->img;
+
+ // Use filtered frame buffer if available. This will make tpl stats more
+ // precise.
+ FRAME_DIFF frame_diff;
+ const YV12_BUFFER_CONFIG *tf_buf =
+ av1_tf_info_get_filtered_buf(&cpi->ppi->tf_info, gf_index, &frame_diff);
+ if (tf_buf != NULL) {
+ tpl_frame->gf_picture = tf_buf;
+ }
+
+ // 'cm->current_frame.frame_number' is the display number
+ // of the current frame.
+ // 'lookahead_index' is frame offset within the gf group.
+ // 'lookahead_index + cm->current_frame.frame_number'
+ // is the display index of the frame.
+ tpl_frame->frame_display_index =
+ lookahead_index + cm->current_frame.frame_number;
+ assert(buf->display_idx ==
+ cpi->frame_index_set.show_frame_count + lookahead_index);
+
+ if (frame_update_type != OVERLAY_UPDATE &&
+ frame_update_type != INTNL_OVERLAY_UPDATE) {
+ tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
+ tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
+ ++process_frame_count;
+ }
+ const int true_disp = (int)(tpl_frame->frame_display_index);
+
+ av1_get_ref_frames(ref_frame_map_pairs, true_disp, cpi, gf_index, 0,
+ remapped_ref_idx);
+
+ int refresh_mask =
+ av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type,
+ gf_index, true_disp, ref_frame_map_pairs);
+
+ // Make the frames marked as is_frame_non_ref to non-reference frames.
+ if (cpi->ppi->gf_group.is_frame_non_ref[gf_index]) refresh_mask = 0;
+
+ int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
+
+ if (refresh_frame_map_index < REF_FRAMES &&
+ refresh_frame_map_index != INVALID_IDX) {
+ ref_frame_map_pairs[refresh_frame_map_index].disp_order =
+ AOMMAX(0, true_disp);
+ ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
+ get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
+ cpi->ppi->gf_group.max_layer_depth);
+ }
+
+ for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
+ tpl_frame->ref_map_index[i - LAST_FRAME] =
+ ref_picture_map[remapped_ref_idx[i - LAST_FRAME]];
+
+ if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;
+
+ ++*tpl_group_frames;
+ }
+
+ const int tpl_extend = cpi->oxcf.gf_cfg.lag_in_frames - MAX_GF_INTERVAL;
+ int extend_frame_count = 0;
+ int extend_frame_length = AOMMIN(
+ tpl_extend, cpi->rc.frames_to_key - cpi->ppi->p_rc.baseline_gf_interval);
+
+ int frame_display_index = gf_group->cur_frame_idx[gop_length - 1] +
+ gf_group->arf_src_offset[gop_length - 1] + 1;
+
+ for (;
+ gf_index < MAX_TPL_FRAME_IDX && extend_frame_count < extend_frame_length;
+ ++gf_index) {
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
+ FRAME_UPDATE_TYPE frame_update_type = LF_UPDATE;
+ frame_params.show_frame = frame_update_type != ARF_UPDATE &&
+ frame_update_type != INTNL_ARF_UPDATE;
+ frame_params.show_existing_frame =
+ frame_update_type == INTNL_OVERLAY_UPDATE;
+ frame_params.frame_type = INTER_FRAME;
+
+ int lookahead_index = frame_display_index;
+ struct lookahead_entry *buf = av1_lookahead_peek(
+ cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage);
+
+ if (buf == NULL) break;
+
+ tpl_frame->gf_picture = &buf->img;
+ tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
+ tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
+ // 'cm->current_frame.frame_number' is the display number
+ // of the current frame.
+ // 'frame_display_index' is frame offset within the gf group.
+ // 'frame_display_index + cm->current_frame.frame_number'
+ // is the display index of the frame.
+ tpl_frame->frame_display_index =
+ frame_display_index + cm->current_frame.frame_number;
+
+ ++process_frame_count;
+
+ gf_group->update_type[gf_index] = LF_UPDATE;
+
+#if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
+ if (cpi->oxcf.pass == AOM_RC_SECOND_PASS) {
+ if (cpi->oxcf.rc_cfg.mode == AOM_Q) {
+ *pframe_qindex = cpi->oxcf.rc_cfg.cq_level;
+ } else if (cpi->oxcf.rc_cfg.mode == AOM_VBR) {
+ // TODO(angiebird): Find a more adaptive method to decide pframe_qindex
+ // override the pframe_qindex in the second pass when bitrate accuracy
+ // is on. We found that setting this pframe_qindex make the tpl stats
+ // more stable.
+ *pframe_qindex = 128;
+ }
+ }
+#endif // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
+ gf_group->q_val[gf_index] = *pframe_qindex;
+ const int true_disp = (int)(tpl_frame->frame_display_index);
+ av1_get_ref_frames(ref_frame_map_pairs, true_disp, cpi, gf_index, 0,
+ remapped_ref_idx);
+ int refresh_mask =
+ av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type,
+ gf_index, true_disp, ref_frame_map_pairs);
+ int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
+
+ if (refresh_frame_map_index < REF_FRAMES &&
+ refresh_frame_map_index != INVALID_IDX) {
+ ref_frame_map_pairs[refresh_frame_map_index].disp_order =
+ AOMMAX(0, true_disp);
+ ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
+ get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
+ cpi->ppi->gf_group.max_layer_depth);
+ }
+
+ for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
+ tpl_frame->ref_map_index[i - LAST_FRAME] =
+ ref_picture_map[remapped_ref_idx[i - LAST_FRAME]];
+
+ tpl_frame->ref_map_index[ALTREF_FRAME - LAST_FRAME] = -1;
+ tpl_frame->ref_map_index[LAST3_FRAME - LAST_FRAME] = -1;
+ tpl_frame->ref_map_index[BWDREF_FRAME - LAST_FRAME] = -1;
+ tpl_frame->ref_map_index[ALTREF2_FRAME - LAST_FRAME] = -1;
+
+ if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;
+
+ ++*tpl_group_frames;
+ ++extend_frame_count;
+ ++frame_display_index;
+ }
+}
+
+void av1_init_tpl_stats(TplParams *const tpl_data) {
+ tpl_data->ready = 0;
+ set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
+ &tpl_data->tpl_bsize_1d);
+ for (int frame_idx = 0; frame_idx < MAX_LENGTH_TPL_FRAME_STATS; ++frame_idx) {
+ TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx];
+ tpl_frame->is_valid = 0;
+ }
+ for (int frame_idx = 0; frame_idx < MAX_LAG_BUFFERS; ++frame_idx) {
+ TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx];
+ if (tpl_data->tpl_stats_pool[frame_idx] == NULL) continue;
+ memset(tpl_data->tpl_stats_pool[frame_idx], 0,
+ tpl_frame->height * tpl_frame->width *
+ sizeof(*tpl_frame->tpl_stats_ptr));
+ }
+}
+
+int av1_tpl_stats_ready(const TplParams *tpl_data, int gf_frame_index) {
+ if (tpl_data->ready == 0) {
+ return 0;
+ }
+ if (gf_frame_index >= MAX_TPL_FRAME_IDX) {
+ // The sub-GOP length exceeds the TPL buffer capacity.
+ // Hence the TPL related functions are disabled hereafter.
+ return 0;
+ }
+ return tpl_data->tpl_frame[gf_frame_index].is_valid;
+}
+
+static AOM_INLINE int eval_gop_length(double *beta, int gop_eval) {
+ switch (gop_eval) {
+ case 1:
+ // Allow larger GOP size if the base layer ARF has higher dependency
+ // factor than the intermediate ARF and both ARFs have reasonably high
+ // dependency factors.
+ return (beta[0] >= beta[1] + 0.7) && beta[0] > 3.0;
+ case 2:
+ if ((beta[0] >= beta[1] + 0.4) && beta[0] > 1.6)
+ return 1; // Don't shorten the gf interval
+ else if ((beta[0] < beta[1] + 0.1) || beta[0] <= 1.4)
+ return 0; // Shorten the gf interval
+ else
+ return 2; // Cannot decide the gf interval, so redo the
+ // tpl stats calculation.
+ case 3: return beta[0] > 1.1;
+ default: return 2;
+ }
+}
+
+// TODO(jingning): Restructure av1_rc_pick_q_and_bounds() to narrow down
+// the scope of input arguments.
+void av1_tpl_preload_rc_estimate(AV1_COMP *cpi,
+ const EncodeFrameParams *const frame_params) {
+ AV1_COMMON *cm = &cpi->common;
+ GF_GROUP *gf_group = &cpi->ppi->gf_group;
+ int bottom_index, top_index;
+ if (cpi->use_ducky_encode) return;
+
+ cm->current_frame.frame_type = frame_params->frame_type;
+ for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
+ ++gf_index) {
+ cm->current_frame.frame_type = gf_group->frame_type[gf_index];
+ cm->show_frame = gf_group->update_type[gf_index] != ARF_UPDATE &&
+ gf_group->update_type[gf_index] != INTNL_ARF_UPDATE;
+ gf_group->q_val[gf_index] = av1_rc_pick_q_and_bounds(
+ cpi, cm->width, cm->height, gf_index, &bottom_index, &top_index);
+ }
+}
+
+static AOM_INLINE int skip_tpl_for_frame(const GF_GROUP *gf_group,
+ int frame_idx, int gop_eval,
+ int approx_gop_eval,
+ int reduce_num_frames) {
+ // When gop_eval is set to 2, tpl stats calculation is done for ARFs from base
+ // layer, (base+1) layer and (base+2) layer. When gop_eval is set to 3,
+ // tpl stats calculation is limited to ARFs from base layer and (base+1)
+ // layer.
+ const int num_arf_layers = (gop_eval == 2) ? 3 : 2;
+ const int gop_length = get_gop_length(gf_group);
+
+ if (gf_group->update_type[frame_idx] == INTNL_OVERLAY_UPDATE ||
+ gf_group->update_type[frame_idx] == OVERLAY_UPDATE)
+ return 1;
+
+ // When approx_gop_eval = 1, skip tpl stats calculation for higher layer
+ // frames and for frames beyond gop length.
+ if (approx_gop_eval && (gf_group->layer_depth[frame_idx] > num_arf_layers ||
+ frame_idx >= gop_length))
+ return 1;
+
+ if (reduce_num_frames && gf_group->update_type[frame_idx] == LF_UPDATE &&
+ frame_idx < gop_length)
+ return 1;
+
+ return 0;
+}
+
+int av1_tpl_setup_stats(AV1_COMP *cpi, int gop_eval,
+ const EncodeFrameParams *const frame_params) {
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, av1_tpl_setup_stats_time);
+#endif
+ assert(cpi->gf_frame_index == 0);
+ AV1_COMMON *cm = &cpi->common;
+ MultiThreadInfo *const mt_info = &cpi->mt_info;
+ AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
+ GF_GROUP *gf_group = &cpi->ppi->gf_group;
+ EncodeFrameParams this_frame_params = *frame_params;
+ TplParams *const tpl_data = &cpi->ppi->tpl_data;
+ int approx_gop_eval = (gop_eval > 1);
+
+ if (cpi->superres_mode != AOM_SUPERRES_NONE) {
+ assert(cpi->superres_mode != AOM_SUPERRES_AUTO);
+ av1_init_tpl_stats(tpl_data);
+ return 0;
+ }
+
+ cm->current_frame.frame_type = frame_params->frame_type;
+ for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
+ ++gf_index) {
+ cm->current_frame.frame_type = gf_group->frame_type[gf_index];
+ av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
+ gf_group->update_type[gf_index],
+ gf_group->refbuf_state[gf_index], 0);
+
+ memcpy(&cpi->refresh_frame, &this_frame_params.refresh_frame,
+ sizeof(cpi->refresh_frame));
+ }
+
+ int pframe_qindex;
+ int tpl_gf_group_frames;
+ init_gop_frames_for_tpl(cpi, frame_params, gf_group, &tpl_gf_group_frames,
+ &pframe_qindex);
+
+ cpi->ppi->p_rc.base_layer_qp = pframe_qindex;
+
+ av1_init_tpl_stats(tpl_data);
+
+ TplBuffers *tpl_tmp_buffers = &cpi->td.tpl_tmp_buffers;
+ if (!tpl_alloc_temp_buffers(tpl_tmp_buffers, tpl_data->tpl_bsize_1d)) {
+ aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
+ "Error allocating tpl data");
+ }
+
+ tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read_dummy;
+ tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write_dummy;
+
+ av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height,
+ cm->width, cm->height);
+
+ if (frame_params->frame_type == KEY_FRAME) {
+ av1_init_mv_probs(cm);
+ }
+ av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv,
+ cm->features.allow_high_precision_mv, cpi->td.mb.mv_costs);
+
+ const int num_planes =
+ cpi->sf.tpl_sf.use_y_only_rate_distortion ? 1 : av1_num_planes(cm);
+ // As tpl module is called before the setting of speed features at frame
+ // level, turning off this speed feature for the first GF group of the
+ // key-frame interval is done here.
+ int reduce_num_frames =
+ cpi->sf.tpl_sf.reduce_num_frames &&
+ gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE &&
+ gf_group->max_layer_depth > 2;
+ // TPL processing is skipped for frames of type LF_UPDATE when
+ // 'reduce_num_frames' is 1, which affects the r0 calcuation. Thus, a factor
+ // to adjust r0 is used. The value of 1.6 corresponds to using ~60% of the
+ // frames in the gf group on an average.
+ tpl_data->r0_adjust_factor = reduce_num_frames ? 1.6 : 1.0;
+
+ // Backward propagation from tpl_group_frames to 1.
+ for (int frame_idx = cpi->gf_frame_index; frame_idx < tpl_gf_group_frames;
+ ++frame_idx) {
+ if (skip_tpl_for_frame(gf_group, frame_idx, gop_eval, approx_gop_eval,
+ reduce_num_frames))
+ continue;
+
+ init_mc_flow_dispenser(cpi, frame_idx, pframe_qindex);
+ if (mt_info->num_workers > 1) {
+ tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read;
+ tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write;
+ av1_mc_flow_dispenser_mt(cpi);
+ } else {
+ mc_flow_dispenser(cpi);
+ }
+#if CONFIG_BITRATE_ACCURACY
+ av1_tpl_txfm_stats_update_abs_coeff_mean(&cpi->td.tpl_txfm_stats);
+ av1_tpl_store_txfm_stats(tpl_data, &cpi->td.tpl_txfm_stats, frame_idx);
+#endif // CONFIG_BITRATE_ACCURACY
+#if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY
+ if (cpi->oxcf.pass == AOM_RC_THIRD_PASS) {
+ int frame_coding_idx =
+ av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, frame_idx);
+ rc_log_frame_stats(&cpi->rc_log, frame_coding_idx,
+ &cpi->td.tpl_txfm_stats);
+ }
+#endif // CONFIG_RATECTRL_LOG
+
+ aom_extend_frame_borders(tpl_data->tpl_frame[frame_idx].rec_picture,
+ num_planes);
+ }
+
+ for (int frame_idx = tpl_gf_group_frames - 1;
+ frame_idx >= cpi->gf_frame_index; --frame_idx) {
+ if (skip_tpl_for_frame(gf_group, frame_idx, gop_eval, approx_gop_eval,
+ reduce_num_frames))
+ continue;
+
+ mc_flow_synthesizer(tpl_data, frame_idx, cm->mi_params.mi_rows,
+ cm->mi_params.mi_cols);
+ }
+
+ av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
+ gf_group->update_type[cpi->gf_frame_index],
+ gf_group->update_type[cpi->gf_frame_index], 0);
+ cm->current_frame.frame_type = frame_params->frame_type;
+ cm->show_frame = frame_params->show_frame;
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ // Record the time if the function returns.
+ if (cpi->common.tiles.large_scale || gf_group->max_layer_depth_allowed == 0 ||
+ !gop_eval)
+ end_timing(cpi, av1_tpl_setup_stats_time);
+#endif
+
+ tpl_dealloc_temp_buffers(tpl_tmp_buffers);
+
+ if (!approx_gop_eval) {
+ tpl_data->ready = 1;
+ }
+ if (cpi->common.tiles.large_scale) return 0;
+ if (gf_group->max_layer_depth_allowed == 0) return 1;
+ if (!gop_eval) return 0;
+ assert(gf_group->arf_index >= 0);
+
+ double beta[2] = { 0.0 };
+ const int frame_idx_0 = gf_group->arf_index;
+ const int frame_idx_1 =
+ AOMMIN(tpl_gf_group_frames - 1, gf_group->arf_index + 1);
+ beta[0] = av1_tpl_get_frame_importance(tpl_data, frame_idx_0);
+ beta[1] = av1_tpl_get_frame_importance(tpl_data, frame_idx_1);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, av1_tpl_setup_stats_time);
+#endif
+ return eval_gop_length(beta, gop_eval);
+}
+
+void av1_tpl_rdmult_setup(AV1_COMP *cpi) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int tpl_idx = cpi->gf_frame_index;
+
+ assert(
+ IMPLIES(cpi->ppi->gf_group.size > 0, tpl_idx < cpi->ppi->gf_group.size));
+
+ TplParams *const tpl_data = &cpi->ppi->tpl_data;
+ const TplDepFrame *const tpl_frame = &tpl_data->tpl_frame[tpl_idx];
+
+ if (!tpl_frame->is_valid) return;
+
+ const TplDepStats *const tpl_stats = tpl_frame->tpl_stats_ptr;
+ const int tpl_stride = tpl_frame->stride;
+ const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
+
+ const int block_size = BLOCK_16X16;
+ const int num_mi_w = mi_size_wide[block_size];
+ const int num_mi_h = mi_size_high[block_size];
+ const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
+ const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
+ const double c = 1.2;
+ const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
+
+ // Loop through each 'block_size' X 'block_size' block.
+ for (int row = 0; row < num_rows; row++) {
+ for (int col = 0; col < num_cols; col++) {
+ double intra_cost = 0.0, mc_dep_cost = 0.0;
+ // Loop through each mi block.
+ for (int mi_row = row * num_mi_h; mi_row < (row + 1) * num_mi_h;
+ mi_row += step) {
+ for (int mi_col = col * num_mi_w; mi_col < (col + 1) * num_mi_w;
+ mi_col += step) {
+ if (mi_row >= cm->mi_params.mi_rows || mi_col >= mi_cols_sr) continue;
+ const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
+ mi_row, mi_col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
+ int64_t mc_dep_delta =
+ RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
+ this_stats->mc_dep_dist);
+ intra_cost += (double)(this_stats->recrf_dist << RDDIV_BITS);
+ mc_dep_cost +=
+ (double)(this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
+ }
+ }
+ const double rk = intra_cost / mc_dep_cost;
+ const int index = row * num_cols + col;
+ cpi->tpl_rdmult_scaling_factors[index] = rk / cpi->rd.r0 + c;
+ }
+ }
+}
+
+void av1_tpl_rdmult_setup_sb(AV1_COMP *cpi, MACROBLOCK *const x,
+ BLOCK_SIZE sb_size, int mi_row, int mi_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ GF_GROUP *gf_group = &cpi->ppi->gf_group;
+ assert(IMPLIES(cpi->ppi->gf_group.size > 0,
+ cpi->gf_frame_index < cpi->ppi->gf_group.size));
+ const int tpl_idx = cpi->gf_frame_index;
+
+ const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
+ const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
+ const FRAME_TYPE frame_type = cm->current_frame.frame_type;
+
+ if (tpl_idx >= MAX_TPL_FRAME_IDX) return;
+ TplDepFrame *tpl_frame = &cpi->ppi->tpl_data.tpl_frame[tpl_idx];
+ if (!tpl_frame->is_valid) return;
+ if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return;
+ if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return;
+
+ const int mi_col_sr =
+ coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
+ const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
+ const int sb_mi_width_sr = coded_to_superres_mi(
+ mi_size_wide[sb_size], cm->superres_scale_denominator);
+
+ const int bsize_base = BLOCK_16X16;
+ const int num_mi_w = mi_size_wide[bsize_base];
+ const int num_mi_h = mi_size_high[bsize_base];
+ const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
+ const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
+ const int num_bcols = (sb_mi_width_sr + num_mi_w - 1) / num_mi_w;
+ const int num_brows = (mi_size_high[sb_size] + num_mi_h - 1) / num_mi_h;
+ int row, col;
+
+ double base_block_count = 0.0;
+ double log_sum = 0.0;
+
+ for (row = mi_row / num_mi_w;
+ row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
+ for (col = mi_col_sr / num_mi_h;
+ col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
+ const int index = row * num_cols + col;
+ log_sum += log(cpi->tpl_rdmult_scaling_factors[index]);
+ base_block_count += 1.0;
+ }
+ }
+
+ const CommonQuantParams *quant_params = &cm->quant_params;
+
+ const int orig_qindex_rdmult =
+ quant_params->base_qindex + quant_params->y_dc_delta_q;
+ const int orig_rdmult = av1_compute_rd_mult(
+ orig_qindex_rdmult, cm->seq_params->bit_depth,
+ cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
+ boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
+ is_stat_consumption_stage(cpi));
+
+ const int new_qindex_rdmult = quant_params->base_qindex +
+ x->rdmult_delta_qindex +
+ quant_params->y_dc_delta_q;
+ const int new_rdmult = av1_compute_rd_mult(
+ new_qindex_rdmult, cm->seq_params->bit_depth,
+ cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
+ boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
+ is_stat_consumption_stage(cpi));
+
+ const double scaling_factor = (double)new_rdmult / (double)orig_rdmult;
+
+ double scale_adj = log(scaling_factor) - log_sum / base_block_count;
+ scale_adj = exp_bounded(scale_adj);
+
+ for (row = mi_row / num_mi_w;
+ row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
+ for (col = mi_col_sr / num_mi_h;
+ col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
+ const int index = row * num_cols + col;
+ cpi->ppi->tpl_sb_rdmult_scaling_factors[index] =
+ scale_adj * cpi->tpl_rdmult_scaling_factors[index];
+ }
+ }
+}
+
+double av1_exponential_entropy(double q_step, double b) {
+ b = AOMMAX(b, TPL_EPSILON);
+ double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
+ return -log2(1 - z) - z * log2(z) / (1 - z);
+}
+
+double av1_laplace_entropy(double q_step, double b, double zero_bin_ratio) {
+ // zero bin's size is zero_bin_ratio * q_step
+ // non-zero bin's size is q_step
+ b = AOMMAX(b, TPL_EPSILON);
+ double z = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
+ double h = av1_exponential_entropy(q_step, b);
+ double r = -(1 - z) * log2(1 - z) - z * log2(z) + z * (h + 1);
+ return r;
+}
+
+double av1_laplace_estimate_frame_rate(int q_index, int block_count,
+ const double *abs_coeff_mean,
+ int coeff_num) {
+ double zero_bin_ratio = 2;
+ double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
+ double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
+ double est_rate = 0;
+ // dc coeff
+ est_rate += av1_laplace_entropy(dc_q_step, abs_coeff_mean[0], zero_bin_ratio);
+ // ac coeff
+ for (int i = 1; i < coeff_num; ++i) {
+ est_rate +=
+ av1_laplace_entropy(ac_q_step, abs_coeff_mean[i], zero_bin_ratio);
+ }
+ est_rate *= block_count;
+ return est_rate;
+}
+
+double av1_estimate_coeff_entropy(double q_step, double b,
+ double zero_bin_ratio, int qcoeff) {
+ b = AOMMAX(b, TPL_EPSILON);
+ int abs_qcoeff = abs(qcoeff);
+ double z0 = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
+ if (abs_qcoeff == 0) {
+ double r = -log2(1 - z0);
+ return r;
+ } else {
+ double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
+ double r = 1 - log2(z0) - log2(1 - z) - (abs_qcoeff - 1) * log2(z);
+ return r;
+ }
+}
+
+double av1_estimate_txfm_block_entropy(int q_index,
+ const double *abs_coeff_mean,
+ int *qcoeff_arr, int coeff_num) {
+ double zero_bin_ratio = 2;
+ double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
+ double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
+ double est_rate = 0;
+ // dc coeff
+ est_rate += av1_estimate_coeff_entropy(dc_q_step, abs_coeff_mean[0],
+ zero_bin_ratio, qcoeff_arr[0]);
+ // ac coeff
+ for (int i = 1; i < coeff_num; ++i) {
+ est_rate += av1_estimate_coeff_entropy(ac_q_step, abs_coeff_mean[i],
+ zero_bin_ratio, qcoeff_arr[i]);
+ }
+ return est_rate;
+}
+
+#if CONFIG_RD_COMMAND
+void av1_read_rd_command(const char *filepath, RD_COMMAND *rd_command) {
+ FILE *fptr = fopen(filepath, "r");
+ fscanf(fptr, "%d", &rd_command->frame_count);
+ rd_command->frame_index = 0;
+ for (int i = 0; i < rd_command->frame_count; ++i) {
+ int option;
+ fscanf(fptr, "%d", &option);
+ rd_command->option_ls[i] = (RD_OPTION)option;
+ if (option == RD_OPTION_SET_Q) {
+ fscanf(fptr, "%d", &rd_command->q_index_ls[i]);
+ } else if (option == RD_OPTION_SET_Q_RDMULT) {
+ fscanf(fptr, "%d", &rd_command->q_index_ls[i]);
+ fscanf(fptr, "%d", &rd_command->rdmult_ls[i]);
+ }
+ }
+ fclose(fptr);
+}
+#endif // CONFIG_RD_COMMAND
+
+double av1_tpl_get_frame_importance(const TplParams *tpl_data,
+ int gf_frame_index) {
+ const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_frame_index];
+ const TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+
+ const int tpl_stride = tpl_frame->stride;
+ double intra_cost_base = 0;
+ double mc_dep_cost_base = 0;
+ double cbcmp_base = 1;
+ const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
+
+ for (int row = 0; row < tpl_frame->mi_rows; row += step) {
+ for (int col = 0; col < tpl_frame->mi_cols; col += step) {
+ const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
+ row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
+ double cbcmp = (double)this_stats->srcrf_dist;
+ const int64_t mc_dep_delta =
+ RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
+ this_stats->mc_dep_dist);
+ double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
+ dist_scaled = AOMMAX(dist_scaled, 1);
+ intra_cost_base += log(dist_scaled) * cbcmp;
+ mc_dep_cost_base += log(dist_scaled + mc_dep_delta) * cbcmp;
+ cbcmp_base += cbcmp;
+ }
+ }
+ return exp((mc_dep_cost_base - intra_cost_base) / cbcmp_base);
+}
+
+double av1_tpl_get_qstep_ratio(const TplParams *tpl_data, int gf_frame_index) {
+ if (!av1_tpl_stats_ready(tpl_data, gf_frame_index)) {
+ return 1;
+ }
+ const double frame_importance =
+ av1_tpl_get_frame_importance(tpl_data, gf_frame_index);
+ return sqrt(1 / frame_importance);
+}
+
+int av1_get_q_index_from_qstep_ratio(int leaf_qindex, double qstep_ratio,
+ aom_bit_depth_t bit_depth) {
+ const double leaf_qstep = av1_dc_quant_QTX(leaf_qindex, 0, bit_depth);
+ const double target_qstep = leaf_qstep * qstep_ratio;
+ int qindex = leaf_qindex;
+ if (qstep_ratio < 1.0) {
+ for (qindex = leaf_qindex; qindex > 0; --qindex) {
+ const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth);
+ if (qstep <= target_qstep) break;
+ }
+ } else {
+ for (qindex = leaf_qindex; qindex <= MAXQ; ++qindex) {
+ const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth);
+ if (qstep >= target_qstep) break;
+ }
+ }
+ return qindex;
+}
+
+int av1_tpl_get_q_index(const TplParams *tpl_data, int gf_frame_index,
+ int leaf_qindex, aom_bit_depth_t bit_depth) {
+ const double qstep_ratio = av1_tpl_get_qstep_ratio(tpl_data, gf_frame_index);
+ return av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth);
+}
+
+#if CONFIG_BITRATE_ACCURACY
+void av1_vbr_rc_init(VBR_RATECTRL_INFO *vbr_rc_info, double total_bit_budget,
+ int show_frame_count) {
+ av1_zero(*vbr_rc_info);
+ vbr_rc_info->ready = 0;
+ vbr_rc_info->total_bit_budget = total_bit_budget;
+ vbr_rc_info->show_frame_count = show_frame_count;
+ const double scale_factors[FRAME_UPDATE_TYPES] = { 0.94559, 0.94559, 1,
+ 0.94559, 1, 1,
+ 0.94559 };
+
+ // TODO(angiebird): Based on the previous code, only the scale factor 0.94559
+ // will be used in most of the cases with --limi=17. Figure out if the
+ // following scale factors works better.
+ // const double scale_factors[FRAME_UPDATE_TYPES] = { 0.94559, 0.12040, 1,
+ // 1.10199, 1, 1,
+ // 0.16393 };
+
+ const double mv_scale_factors[FRAME_UPDATE_TYPES] = { 3, 3, 3, 3, 3, 3, 3 };
+ memcpy(vbr_rc_info->scale_factors, scale_factors,
+ sizeof(scale_factors[0]) * FRAME_UPDATE_TYPES);
+ memcpy(vbr_rc_info->mv_scale_factors, mv_scale_factors,
+ sizeof(mv_scale_factors[0]) * FRAME_UPDATE_TYPES);
+
+ vbr_rc_reset_gop_data(vbr_rc_info);
+#if CONFIG_THREE_PASS
+ // TODO(angiebird): Explain why we use -1 here
+ vbr_rc_info->cur_gop_idx = -1;
+ vbr_rc_info->gop_count = 0;
+ vbr_rc_info->total_frame_count = 0;
+#endif // CONFIG_THREE_PASS
+}
+
+#if CONFIG_THREE_PASS
+int av1_vbr_rc_frame_coding_idx(const VBR_RATECTRL_INFO *vbr_rc_info,
+ int gf_frame_index) {
+ int gop_idx = vbr_rc_info->cur_gop_idx;
+ int gop_start_idx = vbr_rc_info->gop_start_idx_list[gop_idx];
+ return gop_start_idx + gf_frame_index;
+}
+
+void av1_vbr_rc_append_tpl_info(VBR_RATECTRL_INFO *vbr_rc_info,
+ const TPL_INFO *tpl_info) {
+ int gop_start_idx = vbr_rc_info->total_frame_count;
+ vbr_rc_info->gop_start_idx_list[vbr_rc_info->gop_count] = gop_start_idx;
+ vbr_rc_info->gop_length_list[vbr_rc_info->gop_count] = tpl_info->gf_length;
+ assert(gop_start_idx + tpl_info->gf_length <= VBR_RC_INFO_MAX_FRAMES);
+ for (int i = 0; i < tpl_info->gf_length; ++i) {
+ vbr_rc_info->txfm_stats_list[gop_start_idx + i] =
+ tpl_info->txfm_stats_list[i];
+ vbr_rc_info->qstep_ratio_list[gop_start_idx + i] =
+ tpl_info->qstep_ratio_ls[i];
+ vbr_rc_info->update_type_list[gop_start_idx + i] =
+ tpl_info->update_type_list[i];
+ }
+ vbr_rc_info->total_frame_count += tpl_info->gf_length;
+ vbr_rc_info->gop_count++;
+}
+#endif // CONFIG_THREE_PASS
+
+void av1_vbr_rc_set_gop_bit_budget(VBR_RATECTRL_INFO *vbr_rc_info,
+ int gop_showframe_count) {
+ vbr_rc_info->gop_showframe_count = gop_showframe_count;
+ vbr_rc_info->gop_bit_budget = vbr_rc_info->total_bit_budget *
+ gop_showframe_count /
+ vbr_rc_info->show_frame_count;
+}
+
+void av1_vbr_rc_compute_q_indices(int base_q_index, int frame_count,
+ const double *qstep_ratio_list,
+ aom_bit_depth_t bit_depth,
+ int *q_index_list) {
+ for (int i = 0; i < frame_count; ++i) {
+ q_index_list[i] = av1_get_q_index_from_qstep_ratio(
+ base_q_index, qstep_ratio_list[i], bit_depth);
+ }
+}
+
+double av1_vbr_rc_info_estimate_gop_bitrate(
+ int base_q_index, aom_bit_depth_t bit_depth,
+ const double *update_type_scale_factors, int frame_count,
+ const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list,
+ const TplTxfmStats *stats_list, int *q_index_list,
+ double *estimated_bitrate_byframe) {
+ av1_vbr_rc_compute_q_indices(base_q_index, frame_count, qstep_ratio_list,
+ bit_depth, q_index_list);
+ double estimated_gop_bitrate = 0;
+ for (int frame_index = 0; frame_index < frame_count; frame_index++) {
+ const TplTxfmStats *frame_stats = &stats_list[frame_index];
+ double frame_bitrate = 0;
+ if (frame_stats->ready) {
+ int q_index = q_index_list[frame_index];
+
+ frame_bitrate = av1_laplace_estimate_frame_rate(
+ q_index, frame_stats->txfm_block_count, frame_stats->abs_coeff_mean,
+ frame_stats->coeff_num);
+ }
+ FRAME_UPDATE_TYPE update_type = update_type_list[frame_index];
+ estimated_gop_bitrate +=
+ frame_bitrate * update_type_scale_factors[update_type];
+ if (estimated_bitrate_byframe != NULL) {
+ estimated_bitrate_byframe[frame_index] = frame_bitrate;
+ }
+ }
+ return estimated_gop_bitrate;
+}
+
+int av1_vbr_rc_info_estimate_base_q(
+ double bit_budget, aom_bit_depth_t bit_depth,
+ const double *update_type_scale_factors, int frame_count,
+ const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list,
+ const TplTxfmStats *stats_list, int *q_index_list,
+ double *estimated_bitrate_byframe) {
+ int q_max = 255; // Maximum q value.
+ int q_min = 0; // Minimum q value.
+ int q = (q_max + q_min) / 2;
+
+ double q_max_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
+ q_max, bit_depth, update_type_scale_factors, frame_count,
+ update_type_list, qstep_ratio_list, stats_list, q_index_list,
+ estimated_bitrate_byframe);
+
+ double q_min_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
+ q_min, bit_depth, update_type_scale_factors, frame_count,
+ update_type_list, qstep_ratio_list, stats_list, q_index_list,
+ estimated_bitrate_byframe);
+ while (q_min + 1 < q_max) {
+ double estimate = av1_vbr_rc_info_estimate_gop_bitrate(
+ q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
+ qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
+ if (estimate > bit_budget) {
+ q_min = q;
+ q_min_estimate = estimate;
+ } else {
+ q_max = q;
+ q_max_estimate = estimate;
+ }
+ q = (q_max + q_min) / 2;
+ }
+ // Pick the estimate that lands closest to the budget.
+ if (fabs(q_max_estimate - bit_budget) < fabs(q_min_estimate - bit_budget)) {
+ q = q_max;
+ } else {
+ q = q_min;
+ }
+ // Update q_index_list and vbr_rc_info.
+ av1_vbr_rc_info_estimate_gop_bitrate(
+ q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
+ qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
+ return q;
+}
+void av1_vbr_rc_update_q_index_list(VBR_RATECTRL_INFO *vbr_rc_info,
+ const TplParams *tpl_data,
+ const GF_GROUP *gf_group,
+ aom_bit_depth_t bit_depth) {
+ vbr_rc_info->q_index_list_ready = 1;
+ double gop_bit_budget = vbr_rc_info->gop_bit_budget;
+
+ for (int i = 0; i < gf_group->size; i++) {
+ vbr_rc_info->qstep_ratio_list[i] = av1_tpl_get_qstep_ratio(tpl_data, i);
+ }
+
+ double mv_bits = 0;
+ for (int i = 0; i < gf_group->size; i++) {
+ double frame_mv_bits = 0;
+ if (av1_tpl_stats_ready(tpl_data, i)) {
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[i];
+ frame_mv_bits = av1_tpl_compute_frame_mv_entropy(
+ tpl_frame, tpl_data->tpl_stats_block_mis_log2);
+ FRAME_UPDATE_TYPE updae_type = gf_group->update_type[i];
+ mv_bits += frame_mv_bits * vbr_rc_info->mv_scale_factors[updae_type];
+ }
+ }
+
+ mv_bits = AOMMIN(mv_bits, 0.6 * gop_bit_budget);
+ gop_bit_budget -= mv_bits;
+
+ vbr_rc_info->base_q_index = av1_vbr_rc_info_estimate_base_q(
+ gop_bit_budget, bit_depth, vbr_rc_info->scale_factors, gf_group->size,
+ gf_group->update_type, vbr_rc_info->qstep_ratio_list,
+ tpl_data->txfm_stats_list, vbr_rc_info->q_index_list, NULL);
+}
+
+#endif // CONFIG_BITRATE_ACCURACY
+
+// Use upper and left neighbor block as the reference MVs.
+// Compute the minimum difference between current MV and reference MV.
+int_mv av1_compute_mv_difference(const TplDepFrame *tpl_frame, int row, int col,
+ int step, int tpl_stride, int right_shift) {
+ const TplDepStats *tpl_stats =
+ &tpl_frame
+ ->tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_stride, right_shift)];
+ int_mv current_mv = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
+ int current_mv_magnitude =
+ abs(current_mv.as_mv.row) + abs(current_mv.as_mv.col);
+
+ // Retrieve the up and left neighbors.
+ int up_error = INT_MAX;
+ int_mv up_mv_diff;
+ if (row - step >= 0) {
+ tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
+ row - step, col, tpl_stride, right_shift)];
+ up_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
+ up_mv_diff.as_mv.row = current_mv.as_mv.row - up_mv_diff.as_mv.row;
+ up_mv_diff.as_mv.col = current_mv.as_mv.col - up_mv_diff.as_mv.col;
+ up_error = abs(up_mv_diff.as_mv.row) + abs(up_mv_diff.as_mv.col);
+ }
+
+ int left_error = INT_MAX;
+ int_mv left_mv_diff;
+ if (col - step >= 0) {
+ tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
+ row, col - step, tpl_stride, right_shift)];
+ left_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
+ left_mv_diff.as_mv.row = current_mv.as_mv.row - left_mv_diff.as_mv.row;
+ left_mv_diff.as_mv.col = current_mv.as_mv.col - left_mv_diff.as_mv.col;
+ left_error = abs(left_mv_diff.as_mv.row) + abs(left_mv_diff.as_mv.col);
+ }
+
+ // Return the MV with the minimum distance from current.
+ if (up_error < left_error && up_error < current_mv_magnitude) {
+ return up_mv_diff;
+ } else if (left_error < up_error && left_error < current_mv_magnitude) {
+ return left_mv_diff;
+ }
+ return current_mv;
+}
+
+/* Compute the entropy of motion vectors for a single frame. */
+double av1_tpl_compute_frame_mv_entropy(const TplDepFrame *tpl_frame,
+ uint8_t right_shift) {
+ if (!tpl_frame->is_valid) {
+ return 0;
+ }
+
+ int count_row[500] = { 0 };
+ int count_col[500] = { 0 };
+ int n = 0; // number of MVs to process
+
+ const int tpl_stride = tpl_frame->stride;
+ const int step = 1 << right_shift;
+
+ for (int row = 0; row < tpl_frame->mi_rows; row += step) {
+ for (int col = 0; col < tpl_frame->mi_cols; col += step) {
+ int_mv mv = av1_compute_mv_difference(tpl_frame, row, col, step,
+ tpl_stride, right_shift);
+ count_row[clamp(mv.as_mv.row, 0, 499)] += 1;
+ count_col[clamp(mv.as_mv.row, 0, 499)] += 1;
+ n += 1;
+ }
+ }
+
+ // Estimate the bits used using the entropy formula.
+ double rate_row = 0;
+ double rate_col = 0;
+ for (int i = 0; i < 500; i++) {
+ if (count_row[i] != 0) {
+ double p = count_row[i] / (double)n;
+ rate_row += count_row[i] * -log2(p);
+ }
+ if (count_col[i] != 0) {
+ double p = count_col[i] / (double)n;
+ rate_col += count_col[i] * -log2(p);
+ }
+ }
+
+ return rate_row + rate_col;
+}