summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/var_based_part.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/var_based_part.c1914
1 files changed, 1914 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/var_based_part.c b/third_party/aom/av1/encoder/var_based_part.c
new file mode 100644
index 0000000000..f664795153
--- /dev/null
+++ b/third_party/aom/av1/encoder/var_based_part.c
@@ -0,0 +1,1914 @@
+/*
+ * Copyright (c) 2019, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <limits.h>
+#include <math.h>
+#include <stdbool.h>
+#include <stdio.h>
+
+#include "config/aom_config.h"
+#include "config/aom_dsp_rtcd.h"
+#include "config/av1_rtcd.h"
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/binary_codes_writer.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/aom_timer.h"
+
+#include "av1/common/reconinter.h"
+#include "av1/common/blockd.h"
+
+#include "av1/encoder/encodeframe.h"
+#include "av1/encoder/var_based_part.h"
+#include "av1/encoder/reconinter_enc.h"
+#include "av1/encoder/rdopt_utils.h"
+
+// Possible values for the force_split variable while evaluating variance based
+// partitioning.
+enum {
+ // Evaluate all partition types
+ PART_EVAL_ALL = 0,
+ // Force PARTITION_SPLIT
+ PART_EVAL_ONLY_SPLIT = 1,
+ // Force PARTITION_NONE
+ PART_EVAL_ONLY_NONE = 2
+} UENUM1BYTE(PART_EVAL_STATUS);
+
+typedef struct {
+ VPVariance *part_variances;
+ VPartVar *split[4];
+} variance_node;
+
+static AOM_INLINE void tree_to_node(void *data, BLOCK_SIZE bsize,
+ variance_node *node) {
+ node->part_variances = NULL;
+ switch (bsize) {
+ case BLOCK_128X128: {
+ VP128x128 *vt = (VP128x128 *)data;
+ node->part_variances = &vt->part_variances;
+ for (int split_idx = 0; split_idx < 4; split_idx++)
+ node->split[split_idx] = &vt->split[split_idx].part_variances.none;
+ break;
+ }
+ case BLOCK_64X64: {
+ VP64x64 *vt = (VP64x64 *)data;
+ node->part_variances = &vt->part_variances;
+ for (int split_idx = 0; split_idx < 4; split_idx++)
+ node->split[split_idx] = &vt->split[split_idx].part_variances.none;
+ break;
+ }
+ case BLOCK_32X32: {
+ VP32x32 *vt = (VP32x32 *)data;
+ node->part_variances = &vt->part_variances;
+ for (int split_idx = 0; split_idx < 4; split_idx++)
+ node->split[split_idx] = &vt->split[split_idx].part_variances.none;
+ break;
+ }
+ case BLOCK_16X16: {
+ VP16x16 *vt = (VP16x16 *)data;
+ node->part_variances = &vt->part_variances;
+ for (int split_idx = 0; split_idx < 4; split_idx++)
+ node->split[split_idx] = &vt->split[split_idx].part_variances.none;
+ break;
+ }
+ case BLOCK_8X8: {
+ VP8x8 *vt = (VP8x8 *)data;
+ node->part_variances = &vt->part_variances;
+ for (int split_idx = 0; split_idx < 4; split_idx++)
+ node->split[split_idx] = &vt->split[split_idx].part_variances.none;
+ break;
+ }
+ default: {
+ VP4x4 *vt = (VP4x4 *)data;
+ assert(bsize == BLOCK_4X4);
+ node->part_variances = &vt->part_variances;
+ for (int split_idx = 0; split_idx < 4; split_idx++)
+ node->split[split_idx] = &vt->split[split_idx];
+ break;
+ }
+ }
+}
+
+// Set variance values given sum square error, sum error, count.
+static AOM_INLINE void fill_variance(uint32_t s2, int32_t s, int c,
+ VPartVar *v) {
+ v->sum_square_error = s2;
+ v->sum_error = s;
+ v->log2_count = c;
+}
+
+static AOM_INLINE void get_variance(VPartVar *v) {
+ v->variance =
+ (int)(256 * (v->sum_square_error -
+ (uint32_t)(((int64_t)v->sum_error * v->sum_error) >>
+ v->log2_count)) >>
+ v->log2_count);
+}
+
+static AOM_INLINE void sum_2_variances(const VPartVar *a, const VPartVar *b,
+ VPartVar *r) {
+ assert(a->log2_count == b->log2_count);
+ fill_variance(a->sum_square_error + b->sum_square_error,
+ a->sum_error + b->sum_error, a->log2_count + 1, r);
+}
+
+static AOM_INLINE void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
+ variance_node node;
+ memset(&node, 0, sizeof(node));
+ tree_to_node(data, bsize, &node);
+ sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
+ sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
+ sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
+ sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
+ sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
+ &node.part_variances->none);
+}
+
+static AOM_INLINE void set_block_size(AV1_COMP *const cpi, int mi_row,
+ int mi_col, BLOCK_SIZE bsize) {
+ if (cpi->common.mi_params.mi_cols > mi_col &&
+ cpi->common.mi_params.mi_rows > mi_row) {
+ CommonModeInfoParams *mi_params = &cpi->common.mi_params;
+ const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
+ const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
+ MB_MODE_INFO *mi = mi_params->mi_grid_base[mi_grid_idx] =
+ &mi_params->mi_alloc[mi_alloc_idx];
+ mi->bsize = bsize;
+ }
+}
+
+static int set_vt_partitioning(AV1_COMP *cpi, MACROBLOCKD *const xd,
+ const TileInfo *const tile, void *data,
+ BLOCK_SIZE bsize, int mi_row, int mi_col,
+ int64_t threshold, BLOCK_SIZE bsize_min,
+ PART_EVAL_STATUS force_split) {
+ AV1_COMMON *const cm = &cpi->common;
+ variance_node vt;
+ const int block_width = mi_size_wide[bsize];
+ const int block_height = mi_size_high[bsize];
+ int bs_width_check = block_width;
+ int bs_height_check = block_height;
+ int bs_width_vert_check = block_width >> 1;
+ int bs_height_horiz_check = block_height >> 1;
+ // On the right and bottom boundary we only need to check
+ // if half the bsize fits, because boundary is extended
+ // up to 64. So do this check only for sb_size = 64X64.
+ if (cm->seq_params->sb_size == BLOCK_64X64) {
+ if (tile->mi_col_end == cm->mi_params.mi_cols) {
+ bs_width_check = (block_width >> 1) + 1;
+ bs_width_vert_check = (block_width >> 2) + 1;
+ }
+ if (tile->mi_row_end == cm->mi_params.mi_rows) {
+ bs_height_check = (block_height >> 1) + 1;
+ bs_height_horiz_check = (block_height >> 2) + 1;
+ }
+ }
+
+ assert(block_height == block_width);
+ tree_to_node(data, bsize, &vt);
+
+ if (mi_col + bs_width_check <= tile->mi_col_end &&
+ mi_row + bs_height_check <= tile->mi_row_end &&
+ force_split == PART_EVAL_ONLY_NONE) {
+ set_block_size(cpi, mi_row, mi_col, bsize);
+ return 1;
+ }
+ if (force_split == PART_EVAL_ONLY_SPLIT) return 0;
+
+ // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
+ // variance is below threshold, otherwise split will be selected.
+ // No check for vert/horiz split as too few samples for variance.
+ if (bsize == bsize_min) {
+ // Variance already computed to set the force_split.
+ if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
+ if (mi_col + bs_width_check <= tile->mi_col_end &&
+ mi_row + bs_height_check <= tile->mi_row_end &&
+ vt.part_variances->none.variance < threshold) {
+ set_block_size(cpi, mi_row, mi_col, bsize);
+ return 1;
+ }
+ return 0;
+ } else if (bsize > bsize_min) {
+ // Variance already computed to set the force_split.
+ if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
+ // For key frame: take split for bsize above 32X32 or very high variance.
+ if (frame_is_intra_only(cm) &&
+ (bsize > BLOCK_32X32 ||
+ vt.part_variances->none.variance > (threshold << 4))) {
+ return 0;
+ }
+ // If variance is low, take the bsize (no split).
+ if (mi_col + bs_width_check <= tile->mi_col_end &&
+ mi_row + bs_height_check <= tile->mi_row_end &&
+ vt.part_variances->none.variance < threshold) {
+ set_block_size(cpi, mi_row, mi_col, bsize);
+ return 1;
+ }
+ // Check vertical split.
+ if (mi_row + bs_height_check <= tile->mi_row_end &&
+ mi_col + bs_width_vert_check <= tile->mi_col_end) {
+ BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_VERT);
+ BLOCK_SIZE plane_bsize =
+ get_plane_block_size(subsize, xd->plane[AOM_PLANE_U].subsampling_x,
+ xd->plane[AOM_PLANE_U].subsampling_y);
+ get_variance(&vt.part_variances->vert[0]);
+ get_variance(&vt.part_variances->vert[1]);
+ if (vt.part_variances->vert[0].variance < threshold &&
+ vt.part_variances->vert[1].variance < threshold &&
+ plane_bsize < BLOCK_INVALID) {
+ set_block_size(cpi, mi_row, mi_col, subsize);
+ set_block_size(cpi, mi_row, mi_col + block_width / 2, subsize);
+ return 1;
+ }
+ }
+ // Check horizontal split.
+ if (mi_col + bs_width_check <= tile->mi_col_end &&
+ mi_row + bs_height_horiz_check <= tile->mi_row_end) {
+ BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
+ BLOCK_SIZE plane_bsize =
+ get_plane_block_size(subsize, xd->plane[AOM_PLANE_U].subsampling_x,
+ xd->plane[AOM_PLANE_U].subsampling_y);
+ get_variance(&vt.part_variances->horz[0]);
+ get_variance(&vt.part_variances->horz[1]);
+ if (vt.part_variances->horz[0].variance < threshold &&
+ vt.part_variances->horz[1].variance < threshold &&
+ plane_bsize < BLOCK_INVALID) {
+ set_block_size(cpi, mi_row, mi_col, subsize);
+ set_block_size(cpi, mi_row + block_height / 2, mi_col, subsize);
+ return 1;
+ }
+ }
+ return 0;
+ }
+ return 0;
+}
+
+static AOM_INLINE int all_blks_inside(int x16_idx, int y16_idx, int pixels_wide,
+ int pixels_high) {
+ int all_inside = 1;
+ for (int idx = 0; idx < 4; idx++) {
+ all_inside &= ((x16_idx + GET_BLK_IDX_X(idx, 3)) < pixels_wide);
+ all_inside &= ((y16_idx + GET_BLK_IDX_Y(idx, 3)) < pixels_high);
+ }
+ return all_inside;
+}
+
+#if CONFIG_AV1_HIGHBITDEPTH
+// TODO(yunqingwang): Perform average of four 8x8 blocks similar to lowbd
+static AOM_INLINE void fill_variance_8x8avg_highbd(
+ const uint8_t *src_buf, int src_stride, const uint8_t *dst_buf,
+ int dst_stride, int x16_idx, int y16_idx, VP16x16 *vst, int pixels_wide,
+ int pixels_high) {
+ for (int idx = 0; idx < 4; idx++) {
+ const int x8_idx = x16_idx + GET_BLK_IDX_X(idx, 3);
+ const int y8_idx = y16_idx + GET_BLK_IDX_Y(idx, 3);
+ unsigned int sse = 0;
+ int sum = 0;
+ if (x8_idx < pixels_wide && y8_idx < pixels_high) {
+ int src_avg = aom_highbd_avg_8x8(src_buf + y8_idx * src_stride + x8_idx,
+ src_stride);
+ int dst_avg = aom_highbd_avg_8x8(dst_buf + y8_idx * dst_stride + x8_idx,
+ dst_stride);
+
+ sum = src_avg - dst_avg;
+ sse = sum * sum;
+ }
+ fill_variance(sse, sum, 0, &vst->split[idx].part_variances.none);
+ }
+}
+#endif
+
+static AOM_INLINE void fill_variance_8x8avg_lowbd(
+ const uint8_t *src_buf, int src_stride, const uint8_t *dst_buf,
+ int dst_stride, int x16_idx, int y16_idx, VP16x16 *vst, int pixels_wide,
+ int pixels_high) {
+ unsigned int sse[4] = { 0 };
+ int sum[4] = { 0 };
+
+ if (all_blks_inside(x16_idx, y16_idx, pixels_wide, pixels_high)) {
+ int src_avg[4];
+ int dst_avg[4];
+ aom_avg_8x8_quad(src_buf, src_stride, x16_idx, y16_idx, src_avg);
+ aom_avg_8x8_quad(dst_buf, dst_stride, x16_idx, y16_idx, dst_avg);
+ for (int idx = 0; idx < 4; idx++) {
+ sum[idx] = src_avg[idx] - dst_avg[idx];
+ sse[idx] = sum[idx] * sum[idx];
+ }
+ } else {
+ for (int idx = 0; idx < 4; idx++) {
+ const int x8_idx = x16_idx + GET_BLK_IDX_X(idx, 3);
+ const int y8_idx = y16_idx + GET_BLK_IDX_Y(idx, 3);
+ if (x8_idx < pixels_wide && y8_idx < pixels_high) {
+ int src_avg =
+ aom_avg_8x8(src_buf + y8_idx * src_stride + x8_idx, src_stride);
+ int dst_avg =
+ aom_avg_8x8(dst_buf + y8_idx * dst_stride + x8_idx, dst_stride);
+ sum[idx] = src_avg - dst_avg;
+ sse[idx] = sum[idx] * sum[idx];
+ }
+ }
+ }
+
+ for (int idx = 0; idx < 4; idx++) {
+ fill_variance(sse[idx], sum[idx], 0, &vst->split[idx].part_variances.none);
+ }
+}
+
+// Obtain parameters required to calculate variance (such as sum, sse, etc,.)
+// at 8x8 sub-block level for a given 16x16 block.
+// The function can be called only when is_key_frame is false since sum is
+// computed between source and reference frames.
+static AOM_INLINE void fill_variance_8x8avg(
+ const uint8_t *src_buf, int src_stride, const uint8_t *dst_buf,
+ int dst_stride, int x16_idx, int y16_idx, VP16x16 *vst, int highbd_flag,
+ int pixels_wide, int pixels_high) {
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (highbd_flag) {
+ fill_variance_8x8avg_highbd(src_buf, src_stride, dst_buf, dst_stride,
+ x16_idx, y16_idx, vst, pixels_wide,
+ pixels_high);
+ return;
+ }
+#else
+ (void)highbd_flag;
+#endif // CONFIG_AV1_HIGHBITDEPTH
+ fill_variance_8x8avg_lowbd(src_buf, src_stride, dst_buf, dst_stride, x16_idx,
+ y16_idx, vst, pixels_wide, pixels_high);
+}
+
+static int compute_minmax_8x8(const uint8_t *src_buf, int src_stride,
+ const uint8_t *dst_buf, int dst_stride,
+ int x16_idx, int y16_idx,
+#if CONFIG_AV1_HIGHBITDEPTH
+ int highbd_flag,
+#endif
+ int pixels_wide, int pixels_high) {
+ int minmax_max = 0;
+ int minmax_min = 255;
+ // Loop over the 4 8x8 subblocks.
+ for (int idx = 0; idx < 4; idx++) {
+ const int x8_idx = x16_idx + GET_BLK_IDX_X(idx, 3);
+ const int y8_idx = y16_idx + GET_BLK_IDX_Y(idx, 3);
+ int min = 0;
+ int max = 0;
+ if (x8_idx < pixels_wide && y8_idx < pixels_high) {
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
+ aom_highbd_minmax_8x8(
+ src_buf + y8_idx * src_stride + x8_idx, src_stride,
+ dst_buf + y8_idx * dst_stride + x8_idx, dst_stride, &min, &max);
+ } else {
+ aom_minmax_8x8(src_buf + y8_idx * src_stride + x8_idx, src_stride,
+ dst_buf + y8_idx * dst_stride + x8_idx, dst_stride, &min,
+ &max);
+ }
+#else
+ aom_minmax_8x8(src_buf + y8_idx * src_stride + x8_idx, src_stride,
+ dst_buf + y8_idx * dst_stride + x8_idx, dst_stride, &min,
+ &max);
+#endif
+ if ((max - min) > minmax_max) minmax_max = (max - min);
+ if ((max - min) < minmax_min) minmax_min = (max - min);
+ }
+ }
+ return (minmax_max - minmax_min);
+}
+
+// Function to compute average and variance of 4x4 sub-block.
+// The function can be called only when is_key_frame is true since sum is
+// computed using source frame only.
+static AOM_INLINE void fill_variance_4x4avg(const uint8_t *src_buf,
+ int src_stride, int x8_idx,
+ int y8_idx, VP8x8 *vst,
+#if CONFIG_AV1_HIGHBITDEPTH
+ int highbd_flag,
+#endif
+ int pixels_wide, int pixels_high,
+ int border_offset_4x4) {
+ for (int idx = 0; idx < 4; idx++) {
+ const int x4_idx = x8_idx + GET_BLK_IDX_X(idx, 2);
+ const int y4_idx = y8_idx + GET_BLK_IDX_Y(idx, 2);
+ unsigned int sse = 0;
+ int sum = 0;
+ if (x4_idx < pixels_wide - border_offset_4x4 &&
+ y4_idx < pixels_high - border_offset_4x4) {
+ int src_avg;
+ int dst_avg = 128;
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
+ src_avg = aom_highbd_avg_4x4(src_buf + y4_idx * src_stride + x4_idx,
+ src_stride);
+ } else {
+ src_avg =
+ aom_avg_4x4(src_buf + y4_idx * src_stride + x4_idx, src_stride);
+ }
+#else
+ src_avg = aom_avg_4x4(src_buf + y4_idx * src_stride + x4_idx, src_stride);
+#endif
+
+ sum = src_avg - dst_avg;
+ sse = sum * sum;
+ }
+ fill_variance(sse, sum, 0, &vst->split[idx].part_variances.none);
+ }
+}
+
+// TODO(kyslov) Bring back threshold adjustment based on content state
+static int64_t scale_part_thresh_content(int64_t threshold_base, int speed,
+ int width, int height,
+ int non_reference_frame) {
+ (void)width;
+ (void)height;
+ int64_t threshold = threshold_base;
+ if (non_reference_frame) threshold = (3 * threshold) >> 1;
+ if (speed >= 8) {
+ return (5 * threshold) >> 2;
+ }
+ return threshold;
+}
+
+// Tune thresholds less or more aggressively to prefer larger partitions
+static AOM_INLINE void tune_thresh_based_on_qindex(
+ AV1_COMP *cpi, int64_t thresholds[], uint64_t block_sad, int current_qindex,
+ int num_pixels, bool is_segment_id_boosted, int source_sad_nonrd,
+ int lighting_change) {
+ double weight;
+ if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 3) {
+ const int win = 20;
+ if (current_qindex < QINDEX_LARGE_BLOCK_THR - win)
+ weight = 1.0;
+ else if (current_qindex > QINDEX_LARGE_BLOCK_THR + win)
+ weight = 0.0;
+ else
+ weight =
+ 1.0 - (current_qindex - QINDEX_LARGE_BLOCK_THR + win) / (2 * win);
+ if (num_pixels > RESOLUTION_480P) {
+ for (int i = 0; i < 4; i++) {
+ thresholds[i] <<= 1;
+ }
+ }
+ if (num_pixels <= RESOLUTION_288P) {
+ thresholds[3] = INT64_MAX;
+ if (is_segment_id_boosted == false) {
+ thresholds[1] <<= 2;
+ thresholds[2] <<= (source_sad_nonrd <= kLowSad) ? 5 : 4;
+ } else {
+ thresholds[1] <<= 1;
+ thresholds[2] <<= 3;
+ }
+ // Allow for split to 8x8 for superblocks where part of it has
+ // moving boundary. So allow for sb with source_sad above threshold,
+ // and avoid very large source_sad or high source content, to avoid
+ // too many 8x8 within superblock.
+ uint64_t avg_source_sad_thresh = 25000;
+ uint64_t block_sad_low = 25000;
+ uint64_t block_sad_high = 50000;
+ if (cpi->svc.temporal_layer_id == 0 &&
+ cpi->svc.number_temporal_layers > 1) {
+ // Increase the sad thresholds for base TL0, as reference/LAST is
+ // 2/4 frames behind (for 2/3 #TL).
+ avg_source_sad_thresh = 40000;
+ block_sad_high = 70000;
+ }
+ if (is_segment_id_boosted == false &&
+ cpi->rc.avg_source_sad < avg_source_sad_thresh &&
+ block_sad > block_sad_low && block_sad < block_sad_high &&
+ !lighting_change) {
+ thresholds[2] = (3 * thresholds[2]) >> 2;
+ thresholds[3] = thresholds[2] << 3;
+ }
+ // Condition the increase of partition thresholds on the segment
+ // and the content. Avoid the increase for superblocks which have
+ // high source sad, unless the whole frame has very high motion
+ // (i.e, cpi->rc.avg_source_sad is very large, in which case all blocks
+ // have high source sad).
+ } else if (num_pixels > RESOLUTION_480P && is_segment_id_boosted == false &&
+ (source_sad_nonrd != kHighSad ||
+ cpi->rc.avg_source_sad > 50000)) {
+ thresholds[0] = (3 * thresholds[0]) >> 1;
+ thresholds[3] = INT64_MAX;
+ if (current_qindex > QINDEX_LARGE_BLOCK_THR) {
+ thresholds[1] =
+ (int)((1 - weight) * (thresholds[1] << 1) + weight * thresholds[1]);
+ thresholds[2] =
+ (int)((1 - weight) * (thresholds[2] << 1) + weight * thresholds[2]);
+ }
+ } else if (current_qindex > QINDEX_LARGE_BLOCK_THR &&
+ is_segment_id_boosted == false &&
+ (source_sad_nonrd != kHighSad ||
+ cpi->rc.avg_source_sad > 50000)) {
+ thresholds[1] =
+ (int)((1 - weight) * (thresholds[1] << 2) + weight * thresholds[1]);
+ thresholds[2] =
+ (int)((1 - weight) * (thresholds[2] << 4) + weight * thresholds[2]);
+ thresholds[3] = INT64_MAX;
+ }
+ } else if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 2) {
+ thresholds[1] <<= (source_sad_nonrd <= kLowSad) ? 2 : 0;
+ thresholds[2] =
+ (source_sad_nonrd <= kLowSad) ? (3 * thresholds[2]) : thresholds[2];
+ } else if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 1) {
+ const int fac = (source_sad_nonrd <= kLowSad) ? 2 : 1;
+ if (current_qindex < QINDEX_LARGE_BLOCK_THR - 45)
+ weight = 1.0;
+ else if (current_qindex > QINDEX_LARGE_BLOCK_THR + 45)
+ weight = 0.0;
+ else
+ weight = 1.0 - (current_qindex - QINDEX_LARGE_BLOCK_THR + 45) / (2 * 45);
+ thresholds[1] =
+ (int)((1 - weight) * (thresholds[1] << 1) + weight * thresholds[1]);
+ thresholds[2] =
+ (int)((1 - weight) * (thresholds[2] << 1) + weight * thresholds[2]);
+ thresholds[3] =
+ (int)((1 - weight) * (thresholds[3] << fac) + weight * thresholds[3]);
+ }
+ if (cpi->sf.part_sf.disable_8x8_part_based_on_qidx && (current_qindex < 128))
+ thresholds[3] = INT64_MAX;
+}
+
+static void set_vbp_thresholds_key_frame(AV1_COMP *cpi, int64_t thresholds[],
+ int64_t threshold_base,
+ int threshold_left_shift,
+ int num_pixels) {
+ if (cpi->sf.rt_sf.force_large_partition_blocks_intra) {
+ const int shift_steps =
+ threshold_left_shift - (cpi->oxcf.mode == ALLINTRA ? 7 : 8);
+ assert(shift_steps >= 0);
+ threshold_base <<= shift_steps;
+ }
+ thresholds[0] = threshold_base;
+ thresholds[1] = threshold_base;
+ if (num_pixels < RESOLUTION_720P) {
+ thresholds[2] = threshold_base / 3;
+ thresholds[3] = threshold_base >> 1;
+ } else {
+ int shift_val = 2;
+ if (cpi->sf.rt_sf.force_large_partition_blocks_intra) {
+ shift_val = 0;
+ }
+
+ thresholds[2] = threshold_base >> shift_val;
+ thresholds[3] = threshold_base >> shift_val;
+ }
+ thresholds[4] = threshold_base << 2;
+}
+
+static AOM_INLINE void tune_thresh_based_on_resolution(
+ AV1_COMP *cpi, int64_t thresholds[], int64_t threshold_base,
+ int current_qindex, int source_sad_rd, int num_pixels) {
+ if (num_pixels >= RESOLUTION_720P) thresholds[3] = thresholds[3] << 1;
+ if (num_pixels <= RESOLUTION_288P) {
+ const int qindex_thr[5][2] = {
+ { 200, 220 }, { 140, 170 }, { 120, 150 }, { 200, 210 }, { 170, 220 },
+ };
+ int th_idx = 0;
+ if (cpi->sf.rt_sf.var_part_based_on_qidx >= 1)
+ th_idx =
+ (source_sad_rd <= kLowSad) ? cpi->sf.rt_sf.var_part_based_on_qidx : 0;
+ if (cpi->sf.rt_sf.var_part_based_on_qidx >= 3)
+ th_idx = cpi->sf.rt_sf.var_part_based_on_qidx;
+ const int qindex_low_thr = qindex_thr[th_idx][0];
+ const int qindex_high_thr = qindex_thr[th_idx][1];
+ if (current_qindex >= qindex_high_thr) {
+ threshold_base = (5 * threshold_base) >> 1;
+ thresholds[1] = threshold_base >> 3;
+ thresholds[2] = threshold_base << 2;
+ thresholds[3] = threshold_base << 5;
+ } else if (current_qindex < qindex_low_thr) {
+ thresholds[1] = threshold_base >> 3;
+ thresholds[2] = threshold_base >> 1;
+ thresholds[3] = threshold_base << 3;
+ } else {
+ int64_t qi_diff_low = current_qindex - qindex_low_thr;
+ int64_t qi_diff_high = qindex_high_thr - current_qindex;
+ int64_t threshold_diff = qindex_high_thr - qindex_low_thr;
+ int64_t threshold_base_high = (5 * threshold_base) >> 1;
+
+ threshold_diff = threshold_diff > 0 ? threshold_diff : 1;
+ threshold_base =
+ (qi_diff_low * threshold_base_high + qi_diff_high * threshold_base) /
+ threshold_diff;
+ thresholds[1] = threshold_base >> 3;
+ thresholds[2] = ((qi_diff_low * threshold_base) +
+ qi_diff_high * (threshold_base >> 1)) /
+ threshold_diff;
+ thresholds[3] = ((qi_diff_low * (threshold_base << 5)) +
+ qi_diff_high * (threshold_base << 3)) /
+ threshold_diff;
+ }
+ } else if (num_pixels < RESOLUTION_720P) {
+ thresholds[2] = (5 * threshold_base) >> 2;
+ } else if (num_pixels < RESOLUTION_1080P) {
+ thresholds[2] = threshold_base << 1;
+ } else {
+ // num_pixels >= RESOLUTION_1080P
+ if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) {
+ if (num_pixels < RESOLUTION_1440P) {
+ thresholds[2] = (5 * threshold_base) >> 1;
+ } else {
+ thresholds[2] = (7 * threshold_base) >> 1;
+ }
+ } else {
+ if (cpi->oxcf.speed > 7) {
+ thresholds[2] = 6 * threshold_base;
+ } else {
+ thresholds[2] = 3 * threshold_base;
+ }
+ }
+ }
+}
+
+// Increase partition thresholds for noisy content. Apply it only for
+// superblocks where sumdiff is low, as we assume the sumdiff of superblock
+// whose only change is due to noise will be low (i.e, noise will average
+// out over large block).
+static AOM_INLINE int64_t tune_thresh_noisy_content(AV1_COMP *cpi,
+ int64_t threshold_base,
+ int content_lowsumdiff,
+ int num_pixels) {
+ AV1_COMMON *const cm = &cpi->common;
+ int64_t updated_thresh_base = threshold_base;
+ if (cpi->noise_estimate.enabled && content_lowsumdiff &&
+ num_pixels > RESOLUTION_480P && cm->current_frame.frame_number > 60) {
+ NOISE_LEVEL noise_level =
+ av1_noise_estimate_extract_level(&cpi->noise_estimate);
+ if (noise_level == kHigh)
+ updated_thresh_base = (5 * updated_thresh_base) >> 1;
+ else if (noise_level == kMedium &&
+ !cpi->sf.rt_sf.prefer_large_partition_blocks)
+ updated_thresh_base = (5 * updated_thresh_base) >> 2;
+ }
+ // TODO(kyslov) Enable var based partition adjusment on temporal denoising
+#if 0 // CONFIG_AV1_TEMPORAL_DENOISING
+ if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
+ cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow)
+ updated_thresh_base =
+ av1_scale_part_thresh(updated_thresh_base, cpi->denoiser.denoising_level,
+ content_state, cpi->svc.temporal_layer_id);
+ else
+ threshold_base =
+ scale_part_thresh_content(updated_thresh_base, cpi->oxcf.speed, cm->width,
+ cm->height, cpi->ppi->rtc_ref.non_reference_frame);
+#else
+ // Increase base variance threshold based on content_state/sum_diff level.
+ updated_thresh_base = scale_part_thresh_content(
+ updated_thresh_base, cpi->oxcf.speed, cm->width, cm->height,
+ cpi->ppi->rtc_ref.non_reference_frame);
+#endif
+ return updated_thresh_base;
+}
+
+static AOM_INLINE void set_vbp_thresholds(
+ AV1_COMP *cpi, int64_t thresholds[], uint64_t blk_sad, int qindex,
+ int content_lowsumdiff, int source_sad_nonrd, int source_sad_rd,
+ bool is_segment_id_boosted, int lighting_change) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int is_key_frame = frame_is_intra_only(cm);
+ const int threshold_multiplier = is_key_frame ? 120 : 1;
+ const int ac_q = av1_ac_quant_QTX(qindex, 0, cm->seq_params->bit_depth);
+ int64_t threshold_base = (int64_t)(threshold_multiplier * ac_q);
+ const int current_qindex = cm->quant_params.base_qindex;
+ const int threshold_left_shift = cpi->sf.rt_sf.var_part_split_threshold_shift;
+ const int num_pixels = cm->width * cm->height;
+
+ if (is_key_frame) {
+ set_vbp_thresholds_key_frame(cpi, thresholds, threshold_base,
+ threshold_left_shift, num_pixels);
+ return;
+ }
+
+ threshold_base = tune_thresh_noisy_content(cpi, threshold_base,
+ content_lowsumdiff, num_pixels);
+ thresholds[0] = threshold_base >> 1;
+ thresholds[1] = threshold_base;
+ thresholds[3] = threshold_base << threshold_left_shift;
+
+ tune_thresh_based_on_resolution(cpi, thresholds, threshold_base,
+ current_qindex, source_sad_rd, num_pixels);
+
+ tune_thresh_based_on_qindex(cpi, thresholds, blk_sad, current_qindex,
+ num_pixels, is_segment_id_boosted,
+ source_sad_nonrd, lighting_change);
+}
+
+// Set temporal variance low flag for superblock 64x64.
+// Only first 25 in the array are used in this case.
+static AOM_INLINE void set_low_temp_var_flag_64x64(
+ CommonModeInfoParams *mi_params, PartitionSearchInfo *part_info,
+ MACROBLOCKD *xd, VP64x64 *vt, const int64_t thresholds[], int mi_col,
+ int mi_row) {
+ if (xd->mi[0]->bsize == BLOCK_64X64) {
+ if ((vt->part_variances).none.variance < (thresholds[0] >> 1))
+ part_info->variance_low[0] = 1;
+ } else if (xd->mi[0]->bsize == BLOCK_64X32) {
+ for (int part_idx = 0; part_idx < 2; part_idx++) {
+ if (vt->part_variances.horz[part_idx].variance < (thresholds[0] >> 2))
+ part_info->variance_low[part_idx + 1] = 1;
+ }
+ } else if (xd->mi[0]->bsize == BLOCK_32X64) {
+ for (int part_idx = 0; part_idx < 2; part_idx++) {
+ if (vt->part_variances.vert[part_idx].variance < (thresholds[0] >> 2))
+ part_info->variance_low[part_idx + 3] = 1;
+ }
+ } else {
+ static const int idx[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } };
+ for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) {
+ const int idx_str = mi_params->mi_stride * (mi_row + idx[lvl1_idx][0]) +
+ mi_col + idx[lvl1_idx][1];
+ MB_MODE_INFO **this_mi = mi_params->mi_grid_base + idx_str;
+
+ if (mi_params->mi_cols <= mi_col + idx[lvl1_idx][1] ||
+ mi_params->mi_rows <= mi_row + idx[lvl1_idx][0])
+ continue;
+
+ if (*this_mi == NULL) continue;
+
+ if ((*this_mi)->bsize == BLOCK_32X32) {
+ int64_t threshold_32x32 = (5 * thresholds[1]) >> 3;
+ if (vt->split[lvl1_idx].part_variances.none.variance < threshold_32x32)
+ part_info->variance_low[lvl1_idx + 5] = 1;
+ } else {
+ // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
+ // inside.
+ if ((*this_mi)->bsize == BLOCK_16X16 ||
+ (*this_mi)->bsize == BLOCK_32X16 ||
+ (*this_mi)->bsize == BLOCK_16X32) {
+ for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) {
+ if (vt->split[lvl1_idx]
+ .split[lvl2_idx]
+ .part_variances.none.variance < (thresholds[2] >> 8))
+ part_info->variance_low[(lvl1_idx << 2) + lvl2_idx + 9] = 1;
+ }
+ }
+ }
+ }
+ }
+}
+
+static AOM_INLINE void set_low_temp_var_flag_128x128(
+ CommonModeInfoParams *mi_params, PartitionSearchInfo *part_info,
+ MACROBLOCKD *xd, VP128x128 *vt, const int64_t thresholds[], int mi_col,
+ int mi_row) {
+ if (xd->mi[0]->bsize == BLOCK_128X128) {
+ if (vt->part_variances.none.variance < (thresholds[0] >> 1))
+ part_info->variance_low[0] = 1;
+ } else if (xd->mi[0]->bsize == BLOCK_128X64) {
+ for (int part_idx = 0; part_idx < 2; part_idx++) {
+ if (vt->part_variances.horz[part_idx].variance < (thresholds[0] >> 2))
+ part_info->variance_low[part_idx + 1] = 1;
+ }
+ } else if (xd->mi[0]->bsize == BLOCK_64X128) {
+ for (int part_idx = 0; part_idx < 2; part_idx++) {
+ if (vt->part_variances.vert[part_idx].variance < (thresholds[0] >> 2))
+ part_info->variance_low[part_idx + 3] = 1;
+ }
+ } else {
+ static const int idx64[4][2] = {
+ { 0, 0 }, { 0, 16 }, { 16, 0 }, { 16, 16 }
+ };
+ static const int idx32[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } };
+ for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) {
+ const int idx_str = mi_params->mi_stride * (mi_row + idx64[lvl1_idx][0]) +
+ mi_col + idx64[lvl1_idx][1];
+ MB_MODE_INFO **mi_64 = mi_params->mi_grid_base + idx_str;
+ if (*mi_64 == NULL) continue;
+ if (mi_params->mi_cols <= mi_col + idx64[lvl1_idx][1] ||
+ mi_params->mi_rows <= mi_row + idx64[lvl1_idx][0])
+ continue;
+ const int64_t threshold_64x64 = (5 * thresholds[1]) >> 3;
+ if ((*mi_64)->bsize == BLOCK_64X64) {
+ if (vt->split[lvl1_idx].part_variances.none.variance < threshold_64x64)
+ part_info->variance_low[5 + lvl1_idx] = 1;
+ } else if ((*mi_64)->bsize == BLOCK_64X32) {
+ for (int part_idx = 0; part_idx < 2; part_idx++)
+ if (vt->split[lvl1_idx].part_variances.horz[part_idx].variance <
+ (threshold_64x64 >> 1))
+ part_info->variance_low[9 + (lvl1_idx << 1) + part_idx] = 1;
+ } else if ((*mi_64)->bsize == BLOCK_32X64) {
+ for (int part_idx = 0; part_idx < 2; part_idx++)
+ if (vt->split[lvl1_idx].part_variances.vert[part_idx].variance <
+ (threshold_64x64 >> 1))
+ part_info->variance_low[17 + (lvl1_idx << 1) + part_idx] = 1;
+ } else {
+ for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) {
+ const int idx_str1 =
+ mi_params->mi_stride * idx32[lvl2_idx][0] + idx32[lvl2_idx][1];
+ MB_MODE_INFO **mi_32 = mi_params->mi_grid_base + idx_str + idx_str1;
+ if (*mi_32 == NULL) continue;
+
+ if (mi_params->mi_cols <=
+ mi_col + idx64[lvl1_idx][1] + idx32[lvl2_idx][1] ||
+ mi_params->mi_rows <=
+ mi_row + idx64[lvl1_idx][0] + idx32[lvl2_idx][0])
+ continue;
+ const int64_t threshold_32x32 = (5 * thresholds[2]) >> 3;
+ if ((*mi_32)->bsize == BLOCK_32X32) {
+ if (vt->split[lvl1_idx]
+ .split[lvl2_idx]
+ .part_variances.none.variance < threshold_32x32)
+ part_info->variance_low[25 + (lvl1_idx << 2) + lvl2_idx] = 1;
+ } else {
+ // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
+ // inside.
+ if ((*mi_32)->bsize == BLOCK_16X16 ||
+ (*mi_32)->bsize == BLOCK_32X16 ||
+ (*mi_32)->bsize == BLOCK_16X32) {
+ for (int lvl3_idx = 0; lvl3_idx < 4; lvl3_idx++) {
+ VPartVar *none_var = &vt->split[lvl1_idx]
+ .split[lvl2_idx]
+ .split[lvl3_idx]
+ .part_variances.none;
+ if (none_var->variance < (thresholds[3] >> 8))
+ part_info->variance_low[41 + (lvl1_idx << 4) +
+ (lvl2_idx << 2) + lvl3_idx] = 1;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+static AOM_INLINE void set_low_temp_var_flag(
+ AV1_COMP *cpi, PartitionSearchInfo *part_info, MACROBLOCKD *xd,
+ VP128x128 *vt, int64_t thresholds[], MV_REFERENCE_FRAME ref_frame_partition,
+ int mi_col, int mi_row, const bool is_small_sb) {
+ AV1_COMMON *const cm = &cpi->common;
+ // Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected.
+ // If the temporal variance is small set the flag
+ // variance_low for the block. The variance threshold can be adjusted, the
+ // higher the more aggressive.
+ if (ref_frame_partition == LAST_FRAME) {
+ if (is_small_sb)
+ set_low_temp_var_flag_64x64(&cm->mi_params, part_info, xd,
+ &(vt->split[0]), thresholds, mi_col, mi_row);
+ else
+ set_low_temp_var_flag_128x128(&cm->mi_params, part_info, xd, vt,
+ thresholds, mi_col, mi_row);
+ }
+}
+
+static const int pos_shift_16x16[4][4] = {
+ { 9, 10, 13, 14 }, { 11, 12, 15, 16 }, { 17, 18, 21, 22 }, { 19, 20, 23, 24 }
+};
+
+int av1_get_force_skip_low_temp_var_small_sb(const uint8_t *variance_low,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ // Relative indices of MB inside the superblock.
+ const int mi_x = mi_row & 0xF;
+ const int mi_y = mi_col & 0xF;
+ // Relative indices of 16x16 block inside the superblock.
+ const int i = mi_x >> 2;
+ const int j = mi_y >> 2;
+ int force_skip_low_temp_var = 0;
+ // Set force_skip_low_temp_var based on the block size and block offset.
+ switch (bsize) {
+ case BLOCK_64X64: force_skip_low_temp_var = variance_low[0]; break;
+ case BLOCK_64X32:
+ if (!mi_y && !mi_x) {
+ force_skip_low_temp_var = variance_low[1];
+ } else if (!mi_y && mi_x) {
+ force_skip_low_temp_var = variance_low[2];
+ }
+ break;
+ case BLOCK_32X64:
+ if (!mi_y && !mi_x) {
+ force_skip_low_temp_var = variance_low[3];
+ } else if (mi_y && !mi_x) {
+ force_skip_low_temp_var = variance_low[4];
+ }
+ break;
+ case BLOCK_32X32:
+ if (!mi_y && !mi_x) {
+ force_skip_low_temp_var = variance_low[5];
+ } else if (mi_y && !mi_x) {
+ force_skip_low_temp_var = variance_low[6];
+ } else if (!mi_y && mi_x) {
+ force_skip_low_temp_var = variance_low[7];
+ } else if (mi_y && mi_x) {
+ force_skip_low_temp_var = variance_low[8];
+ }
+ break;
+ case BLOCK_32X16:
+ case BLOCK_16X32:
+ case BLOCK_16X16:
+ force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]];
+ break;
+ default: break;
+ }
+
+ return force_skip_low_temp_var;
+}
+
+int av1_get_force_skip_low_temp_var(const uint8_t *variance_low, int mi_row,
+ int mi_col, BLOCK_SIZE bsize) {
+ int force_skip_low_temp_var = 0;
+ int x, y;
+ x = (mi_col & 0x1F) >> 4;
+ // y = (mi_row & 0x1F) >> 4;
+ // const int idx64 = (y << 1) + x;
+ y = (mi_row & 0x17) >> 3;
+ const int idx64 = y + x;
+
+ x = (mi_col & 0xF) >> 3;
+ // y = (mi_row & 0xF) >> 3;
+ // const int idx32 = (y << 1) + x;
+ y = (mi_row & 0xB) >> 2;
+ const int idx32 = y + x;
+
+ x = (mi_col & 0x7) >> 2;
+ // y = (mi_row & 0x7) >> 2;
+ // const int idx16 = (y << 1) + x;
+ y = (mi_row & 0x5) >> 1;
+ const int idx16 = y + x;
+ // Set force_skip_low_temp_var based on the block size and block offset.
+ switch (bsize) {
+ case BLOCK_128X128: force_skip_low_temp_var = variance_low[0]; break;
+ case BLOCK_128X64:
+ assert((mi_col & 0x1F) == 0);
+ force_skip_low_temp_var = variance_low[1 + ((mi_row & 0x1F) != 0)];
+ break;
+ case BLOCK_64X128:
+ assert((mi_row & 0x1F) == 0);
+ force_skip_low_temp_var = variance_low[3 + ((mi_col & 0x1F) != 0)];
+ break;
+ case BLOCK_64X64:
+ // Location of this 64x64 block inside the 128x128 superblock
+ force_skip_low_temp_var = variance_low[5 + idx64];
+ break;
+ case BLOCK_64X32:
+ x = (mi_col & 0x1F) >> 4;
+ y = (mi_row & 0x1F) >> 3;
+ /*
+ .---------------.---------------.
+ | x=0,y=0,idx=0 | x=0,y=0,idx=2 |
+ :---------------+---------------:
+ | x=0,y=1,idx=1 | x=1,y=1,idx=3 |
+ :---------------+---------------:
+ | x=0,y=2,idx=4 | x=1,y=2,idx=6 |
+ :---------------+---------------:
+ | x=0,y=3,idx=5 | x=1,y=3,idx=7 |
+ '---------------'---------------'
+ */
+ const int idx64x32 = (x << 1) + (y % 2) + ((y >> 1) << 2);
+ force_skip_low_temp_var = variance_low[9 + idx64x32];
+ break;
+ case BLOCK_32X64:
+ x = (mi_col & 0x1F) >> 3;
+ y = (mi_row & 0x1F) >> 4;
+ const int idx32x64 = (y << 2) + x;
+ force_skip_low_temp_var = variance_low[17 + idx32x64];
+ break;
+ case BLOCK_32X32:
+ force_skip_low_temp_var = variance_low[25 + (idx64 << 2) + idx32];
+ break;
+ case BLOCK_32X16:
+ case BLOCK_16X32:
+ case BLOCK_16X16:
+ force_skip_low_temp_var =
+ variance_low[41 + (idx64 << 4) + (idx32 << 2) + idx16];
+ break;
+ default: break;
+ }
+ return force_skip_low_temp_var;
+}
+
+void av1_set_variance_partition_thresholds(AV1_COMP *cpi, int qindex,
+ int content_lowsumdiff) {
+ SPEED_FEATURES *const sf = &cpi->sf;
+ if (sf->part_sf.partition_search_type != VAR_BASED_PARTITION) {
+ return;
+ } else {
+ set_vbp_thresholds(cpi, cpi->vbp_info.thresholds, 0, qindex,
+ content_lowsumdiff, 0, 0, 0, 0);
+ // The threshold below is not changed locally.
+ cpi->vbp_info.threshold_minmax = 15 + (qindex >> 3);
+ }
+}
+
+static AOM_INLINE void chroma_check(AV1_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, unsigned int y_sad,
+ unsigned int y_sad_g,
+ unsigned int y_sad_alt, bool is_key_frame,
+ bool zero_motion, unsigned int *uv_sad) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ const int source_sad_nonrd = x->content_state_sb.source_sad_nonrd;
+ int shift_upper_limit = 1;
+ int shift_lower_limit = 3;
+ int fac_uv = 6;
+ if (is_key_frame || cpi->oxcf.tool_cfg.enable_monochrome) return;
+
+ // Use lower threshold (more conservative in setting color flag) for
+ // higher resolutions non-screen, which tend to have more camera noise.
+ // Since this may be used to skip compound mode in nonrd pickmode, which
+ // is generally more effective for higher resolutions, better to be more
+ // conservative.
+ if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN) {
+ if (cpi->common.width * cpi->common.height >= RESOLUTION_1080P)
+ fac_uv = 3;
+ else
+ fac_uv = 5;
+ }
+ if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN &&
+ cpi->rc.high_source_sad) {
+ shift_lower_limit = 7;
+ } else if (source_sad_nonrd >= kMedSad && x->source_variance > 500 &&
+ cpi->common.width * cpi->common.height >= 640 * 360) {
+ shift_upper_limit = 2;
+ shift_lower_limit = source_sad_nonrd > kMedSad ? 5 : 4;
+ }
+
+ MB_MODE_INFO *mi = xd->mi[0];
+ const AV1_COMMON *const cm = &cpi->common;
+ const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME);
+ const YV12_BUFFER_CONFIG *yv12_g = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
+ const YV12_BUFFER_CONFIG *yv12_alt = get_ref_frame_yv12_buf(cm, ALTREF_FRAME);
+ const struct scale_factors *const sf =
+ get_ref_scale_factors_const(cm, LAST_FRAME);
+ struct buf_2d dst;
+ unsigned int uv_sad_g = 0;
+ unsigned int uv_sad_alt = 0;
+
+ for (int plane = AOM_PLANE_U; plane < MAX_MB_PLANE; ++plane) {
+ struct macroblock_plane *p = &x->plane[plane];
+ struct macroblockd_plane *pd = &xd->plane[plane];
+ const BLOCK_SIZE bs =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+
+ if (bs != BLOCK_INVALID) {
+ // For last:
+ if (zero_motion) {
+ if (mi->ref_frame[0] == LAST_FRAME) {
+ uv_sad[plane - 1] = cpi->ppi->fn_ptr[bs].sdf(
+ p->src.buf, p->src.stride, pd->pre[0].buf, pd->pre[0].stride);
+ } else {
+ uint8_t *src = (plane == 1) ? yv12->u_buffer : yv12->v_buffer;
+ setup_pred_plane(&dst, xd->mi[0]->bsize, src, yv12->uv_crop_width,
+ yv12->uv_crop_height, yv12->uv_stride, xd->mi_row,
+ xd->mi_col, sf, xd->plane[plane].subsampling_x,
+ xd->plane[plane].subsampling_y);
+
+ uv_sad[plane - 1] = cpi->ppi->fn_ptr[bs].sdf(
+ p->src.buf, p->src.stride, dst.buf, dst.stride);
+ }
+ } else {
+ uv_sad[plane - 1] = cpi->ppi->fn_ptr[bs].sdf(
+ p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride);
+ }
+
+ // For golden:
+ if (y_sad_g != UINT_MAX) {
+ uint8_t *src = (plane == 1) ? yv12_g->u_buffer : yv12_g->v_buffer;
+ setup_pred_plane(&dst, xd->mi[0]->bsize, src, yv12_g->uv_crop_width,
+ yv12_g->uv_crop_height, yv12_g->uv_stride, xd->mi_row,
+ xd->mi_col, sf, xd->plane[plane].subsampling_x,
+ xd->plane[plane].subsampling_y);
+ uv_sad_g = cpi->ppi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, dst.buf,
+ dst.stride);
+ }
+
+ // For altref:
+ if (y_sad_alt != UINT_MAX) {
+ uint8_t *src = (plane == 1) ? yv12_alt->u_buffer : yv12_alt->v_buffer;
+ setup_pred_plane(&dst, xd->mi[0]->bsize, src, yv12_alt->uv_crop_width,
+ yv12_alt->uv_crop_height, yv12_alt->uv_stride,
+ xd->mi_row, xd->mi_col, sf,
+ xd->plane[plane].subsampling_x,
+ xd->plane[plane].subsampling_y);
+ uv_sad_alt = cpi->ppi->fn_ptr[bs].sdf(p->src.buf, p->src.stride,
+ dst.buf, dst.stride);
+ }
+ }
+
+ if (uv_sad[plane - 1] > (y_sad >> shift_upper_limit))
+ x->color_sensitivity_sb[COLOR_SENS_IDX(plane)] = 1;
+ else if (uv_sad[plane - 1] < (y_sad >> shift_lower_limit))
+ x->color_sensitivity_sb[COLOR_SENS_IDX(plane)] = 0;
+ // Borderline case: to be refined at coding block level in nonrd_pickmode,
+ // for coding block size < sb_size.
+ else
+ x->color_sensitivity_sb[COLOR_SENS_IDX(plane)] = 2;
+
+ x->color_sensitivity_sb_g[COLOR_SENS_IDX(plane)] =
+ uv_sad_g > y_sad_g / fac_uv;
+ x->color_sensitivity_sb_alt[COLOR_SENS_IDX(plane)] =
+ uv_sad_alt > y_sad_alt / fac_uv;
+ }
+}
+
+static void fill_variance_tree_leaves(
+ AV1_COMP *cpi, MACROBLOCK *x, VP128x128 *vt, PART_EVAL_STATUS *force_split,
+ int avg_16x16[][4], int maxvar_16x16[][4], int minvar_16x16[][4],
+ int64_t *thresholds, const uint8_t *src_buf, int src_stride,
+ const uint8_t *dst_buf, int dst_stride, bool is_key_frame,
+ const bool is_small_sb) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ const int num_64x64_blocks = is_small_sb ? 1 : 4;
+ // TODO(kyslov) Bring back compute_minmax_variance with content type detection
+ const int compute_minmax_variance = 0;
+ const int segment_id = xd->mi[0]->segment_id;
+ int pixels_wide = 128, pixels_high = 128;
+ int border_offset_4x4 = 0;
+ int temporal_denoising = cpi->sf.rt_sf.use_rtc_tf;
+ // dst_buf pointer is not used for is_key_frame, so it should be NULL.
+ assert(IMPLIES(is_key_frame, dst_buf == NULL));
+ if (is_small_sb) {
+ pixels_wide = 64;
+ pixels_high = 64;
+ }
+ if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
+ if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
+#if CONFIG_AV1_TEMPORAL_DENOISING
+ temporal_denoising |= cpi->oxcf.noise_sensitivity;
+#endif
+ // For temporal filtering or temporal denoiser enabled: since the source
+ // is modified we need to avoid 4x4 avg along superblock boundary, since
+ // simd code will load 8 pixels for 4x4 avg and so can access source
+ // data outside superblock (while its being modified by temporal filter).
+ // Temporal filtering is never done on key frames.
+ if (!is_key_frame && temporal_denoising) border_offset_4x4 = 4;
+ for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; blk64_idx++) {
+ const int x64_idx = GET_BLK_IDX_X(blk64_idx, 6);
+ const int y64_idx = GET_BLK_IDX_Y(blk64_idx, 6);
+ const int blk64_scale_idx = blk64_idx << 2;
+ force_split[blk64_idx + 1] = PART_EVAL_ALL;
+
+ for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) {
+ const int x32_idx = x64_idx + GET_BLK_IDX_X(lvl1_idx, 5);
+ const int y32_idx = y64_idx + GET_BLK_IDX_Y(lvl1_idx, 5);
+ const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2;
+ force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ALL;
+ avg_16x16[blk64_idx][lvl1_idx] = 0;
+ maxvar_16x16[blk64_idx][lvl1_idx] = 0;
+ minvar_16x16[blk64_idx][lvl1_idx] = INT_MAX;
+ for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) {
+ const int x16_idx = x32_idx + GET_BLK_IDX_X(lvl2_idx, 4);
+ const int y16_idx = y32_idx + GET_BLK_IDX_Y(lvl2_idx, 4);
+ const int split_index = 21 + lvl1_scale_idx + lvl2_idx;
+ VP16x16 *vst = &vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx];
+ force_split[split_index] = PART_EVAL_ALL;
+ if (is_key_frame) {
+ // Go down to 4x4 down-sampling for variance.
+ for (int lvl3_idx = 0; lvl3_idx < 4; lvl3_idx++) {
+ const int x8_idx = x16_idx + GET_BLK_IDX_X(lvl3_idx, 3);
+ const int y8_idx = y16_idx + GET_BLK_IDX_Y(lvl3_idx, 3);
+ VP8x8 *vst2 = &vst->split[lvl3_idx];
+ fill_variance_4x4avg(src_buf, src_stride, x8_idx, y8_idx, vst2,
+#if CONFIG_AV1_HIGHBITDEPTH
+ xd->cur_buf->flags,
+#endif
+ pixels_wide, pixels_high, border_offset_4x4);
+ }
+ } else {
+ fill_variance_8x8avg(src_buf, src_stride, dst_buf, dst_stride,
+ x16_idx, y16_idx, vst, is_cur_buf_hbd(xd),
+ pixels_wide, pixels_high);
+
+ fill_variance_tree(vst, BLOCK_16X16);
+ VPartVar *none_var = &vt->split[blk64_idx]
+ .split[lvl1_idx]
+ .split[lvl2_idx]
+ .part_variances.none;
+ get_variance(none_var);
+ const int val_none_var = none_var->variance;
+ avg_16x16[blk64_idx][lvl1_idx] += val_none_var;
+ minvar_16x16[blk64_idx][lvl1_idx] =
+ AOMMIN(minvar_16x16[blk64_idx][lvl1_idx], val_none_var);
+ maxvar_16x16[blk64_idx][lvl1_idx] =
+ AOMMAX(maxvar_16x16[blk64_idx][lvl1_idx], val_none_var);
+ if (val_none_var > thresholds[3]) {
+ // 16X16 variance is above threshold for split, so force split to
+ // 8x8 for this 16x16 block (this also forces splits for upper
+ // levels).
+ force_split[split_index] = PART_EVAL_ONLY_SPLIT;
+ force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT;
+ force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
+ force_split[0] = PART_EVAL_ONLY_SPLIT;
+ } else if (!cyclic_refresh_segment_id_boosted(segment_id) &&
+ compute_minmax_variance && val_none_var > thresholds[2]) {
+ // We have some nominal amount of 16x16 variance (based on average),
+ // compute the minmax over the 8x8 sub-blocks, and if above
+ // threshold, force split to 8x8 block for this 16x16 block.
+ int minmax = compute_minmax_8x8(src_buf, src_stride, dst_buf,
+ dst_stride, x16_idx, y16_idx,
+#if CONFIG_AV1_HIGHBITDEPTH
+ xd->cur_buf->flags,
+#endif
+ pixels_wide, pixels_high);
+ const int thresh_minmax = (int)cpi->vbp_info.threshold_minmax;
+ if (minmax > thresh_minmax) {
+ force_split[split_index] = PART_EVAL_ONLY_SPLIT;
+ force_split[5 + blk64_scale_idx + lvl1_idx] =
+ PART_EVAL_ONLY_SPLIT;
+ force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
+ force_split[0] = PART_EVAL_ONLY_SPLIT;
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+static AOM_INLINE void set_ref_frame_for_partition(
+ AV1_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
+ MV_REFERENCE_FRAME *ref_frame_partition, MB_MODE_INFO *mi,
+ unsigned int *y_sad, unsigned int *y_sad_g, unsigned int *y_sad_alt,
+ const YV12_BUFFER_CONFIG *yv12_g, const YV12_BUFFER_CONFIG *yv12_alt,
+ int mi_row, int mi_col, int num_planes) {
+ AV1_COMMON *const cm = &cpi->common;
+ const bool is_set_golden_ref_frame =
+ *y_sad_g < 0.9 * *y_sad && *y_sad_g < *y_sad_alt;
+ const bool is_set_altref_ref_frame =
+ *y_sad_alt < 0.9 * *y_sad && *y_sad_alt < *y_sad_g;
+
+ if (is_set_golden_ref_frame) {
+ av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
+ get_ref_scale_factors(cm, GOLDEN_FRAME), num_planes);
+ mi->ref_frame[0] = GOLDEN_FRAME;
+ mi->mv[0].as_int = 0;
+ *y_sad = *y_sad_g;
+ *ref_frame_partition = GOLDEN_FRAME;
+ x->nonrd_prune_ref_frame_search = 0;
+ x->sb_me_partition = 0;
+ } else if (is_set_altref_ref_frame) {
+ av1_setup_pre_planes(xd, 0, yv12_alt, mi_row, mi_col,
+ get_ref_scale_factors(cm, ALTREF_FRAME), num_planes);
+ mi->ref_frame[0] = ALTREF_FRAME;
+ mi->mv[0].as_int = 0;
+ *y_sad = *y_sad_alt;
+ *ref_frame_partition = ALTREF_FRAME;
+ x->nonrd_prune_ref_frame_search = 0;
+ x->sb_me_partition = 0;
+ } else {
+ *ref_frame_partition = LAST_FRAME;
+ x->nonrd_prune_ref_frame_search =
+ cpi->sf.rt_sf.nonrd_prune_ref_frame_search;
+ }
+}
+
+static AOM_FORCE_INLINE int mv_distance(const FULLPEL_MV *mv0,
+ const FULLPEL_MV *mv1) {
+ return abs(mv0->row - mv1->row) + abs(mv0->col - mv1->col);
+}
+
+static AOM_INLINE void evaluate_neighbour_mvs(AV1_COMP *cpi, MACROBLOCK *x,
+ unsigned int *y_sad,
+ bool is_small_sb,
+ int est_motion) {
+ const int source_sad_nonrd = x->content_state_sb.source_sad_nonrd;
+ // TODO(yunqingwang@google.com): test if this condition works with other
+ // speeds.
+ if (est_motion > 2 && source_sad_nonrd > kMedSad) return;
+
+ MACROBLOCKD *xd = &x->e_mbd;
+ BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128;
+ MB_MODE_INFO *mi = xd->mi[0];
+
+ unsigned int above_y_sad = UINT_MAX;
+ unsigned int left_y_sad = UINT_MAX;
+ FULLPEL_MV above_mv = kZeroFullMv;
+ FULLPEL_MV left_mv = kZeroFullMv;
+ SubpelMvLimits subpel_mv_limits;
+ const MV dummy_mv = { 0, 0 };
+ av1_set_subpel_mv_search_range(&subpel_mv_limits, &x->mv_limits, &dummy_mv);
+
+ // Current best MV
+ FULLPEL_MV best_mv = get_fullmv_from_mv(&mi->mv[0].as_mv);
+ const int multi = (est_motion > 2 && source_sad_nonrd > kLowSad) ? 7 : 8;
+
+ if (xd->up_available) {
+ const MB_MODE_INFO *above_mbmi = xd->above_mbmi;
+ if (above_mbmi->mode >= INTRA_MODE_END &&
+ above_mbmi->ref_frame[0] == LAST_FRAME) {
+ MV temp = above_mbmi->mv[0].as_mv;
+ clamp_mv(&temp, &subpel_mv_limits);
+ above_mv = get_fullmv_from_mv(&temp);
+
+ if (mv_distance(&best_mv, &above_mv) > 0) {
+ uint8_t const *ref_buf =
+ get_buf_from_fullmv(&xd->plane[0].pre[0], &above_mv);
+ above_y_sad = cpi->ppi->fn_ptr[bsize].sdf(
+ x->plane[0].src.buf, x->plane[0].src.stride, ref_buf,
+ xd->plane[0].pre[0].stride);
+ }
+ }
+ }
+ if (xd->left_available) {
+ const MB_MODE_INFO *left_mbmi = xd->left_mbmi;
+ if (left_mbmi->mode >= INTRA_MODE_END &&
+ left_mbmi->ref_frame[0] == LAST_FRAME) {
+ MV temp = left_mbmi->mv[0].as_mv;
+ clamp_mv(&temp, &subpel_mv_limits);
+ left_mv = get_fullmv_from_mv(&temp);
+
+ if (mv_distance(&best_mv, &left_mv) > 0 &&
+ mv_distance(&above_mv, &left_mv) > 0) {
+ uint8_t const *ref_buf =
+ get_buf_from_fullmv(&xd->plane[0].pre[0], &left_mv);
+ left_y_sad = cpi->ppi->fn_ptr[bsize].sdf(
+ x->plane[0].src.buf, x->plane[0].src.stride, ref_buf,
+ xd->plane[0].pre[0].stride);
+ }
+ }
+ }
+
+ if (above_y_sad < ((multi * *y_sad) >> 3) && above_y_sad < left_y_sad) {
+ *y_sad = above_y_sad;
+ mi->mv[0].as_mv = get_mv_from_fullmv(&above_mv);
+ clamp_mv(&mi->mv[0].as_mv, &subpel_mv_limits);
+ }
+ if (left_y_sad < ((multi * *y_sad) >> 3) && left_y_sad < above_y_sad) {
+ *y_sad = left_y_sad;
+ mi->mv[0].as_mv = get_mv_from_fullmv(&left_mv);
+ clamp_mv(&mi->mv[0].as_mv, &subpel_mv_limits);
+ }
+}
+
+static void setup_planes(AV1_COMP *cpi, MACROBLOCK *x, unsigned int *y_sad,
+ unsigned int *y_sad_g, unsigned int *y_sad_alt,
+ unsigned int *y_sad_last,
+ MV_REFERENCE_FRAME *ref_frame_partition,
+ struct scale_factors *sf_no_scale, int mi_row,
+ int mi_col, bool is_small_sb, bool scaled_ref_last) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *xd = &x->e_mbd;
+ const int num_planes = av1_num_planes(cm);
+ bool scaled_ref_golden = false;
+ bool scaled_ref_alt = false;
+ BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128;
+ MB_MODE_INFO *mi = xd->mi[0];
+ const YV12_BUFFER_CONFIG *yv12 =
+ scaled_ref_last ? av1_get_scaled_ref_frame(cpi, LAST_FRAME)
+ : get_ref_frame_yv12_buf(cm, LAST_FRAME);
+ assert(yv12 != NULL);
+ const YV12_BUFFER_CONFIG *yv12_g = NULL;
+ const YV12_BUFFER_CONFIG *yv12_alt = NULL;
+ // Check if LAST is a reference. For spatial layers always use it as
+ // reference scaling.
+ int use_last_ref = (cpi->ref_frame_flags & AOM_LAST_FLAG) ||
+ cpi->svc.number_spatial_layers > 1;
+ int use_golden_ref = cpi->ref_frame_flags & AOM_GOLD_FLAG;
+ int use_alt_ref = cpi->ppi->rtc_ref.set_ref_frame_config ||
+ cpi->sf.rt_sf.use_nonrd_altref_frame ||
+ (cpi->sf.rt_sf.use_comp_ref_nonrd &&
+ cpi->sf.rt_sf.ref_frame_comp_nonrd[2] == 1);
+
+ // For 1 spatial layer: GOLDEN is another temporal reference.
+ // Check if it should be used as reference for partitioning.
+ if (cpi->svc.number_spatial_layers == 1 && use_golden_ref &&
+ (x->content_state_sb.source_sad_nonrd != kZeroSad || !use_last_ref)) {
+ yv12_g = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
+ if (yv12_g && (yv12_g->y_crop_height != cm->height ||
+ yv12_g->y_crop_width != cm->width)) {
+ yv12_g = av1_get_scaled_ref_frame(cpi, GOLDEN_FRAME);
+ scaled_ref_golden = true;
+ }
+ if (yv12_g && yv12_g != yv12) {
+ av1_setup_pre_planes(
+ xd, 0, yv12_g, mi_row, mi_col,
+ scaled_ref_golden ? NULL : get_ref_scale_factors(cm, GOLDEN_FRAME),
+ num_planes);
+ *y_sad_g = cpi->ppi->fn_ptr[bsize].sdf(
+ x->plane[AOM_PLANE_Y].src.buf, x->plane[AOM_PLANE_Y].src.stride,
+ xd->plane[AOM_PLANE_Y].pre[0].buf,
+ xd->plane[AOM_PLANE_Y].pre[0].stride);
+ }
+ }
+
+ // For 1 spatial layer: ALTREF is another temporal reference.
+ // Check if it should be used as reference for partitioning.
+ if (cpi->svc.number_spatial_layers == 1 && use_alt_ref &&
+ (cpi->ref_frame_flags & AOM_ALT_FLAG) &&
+ (x->content_state_sb.source_sad_nonrd != kZeroSad || !use_last_ref)) {
+ yv12_alt = get_ref_frame_yv12_buf(cm, ALTREF_FRAME);
+ if (yv12_alt && (yv12_alt->y_crop_height != cm->height ||
+ yv12_alt->y_crop_width != cm->width)) {
+ yv12_alt = av1_get_scaled_ref_frame(cpi, ALTREF_FRAME);
+ scaled_ref_alt = true;
+ }
+ if (yv12_alt && yv12_alt != yv12) {
+ av1_setup_pre_planes(
+ xd, 0, yv12_alt, mi_row, mi_col,
+ scaled_ref_alt ? NULL : get_ref_scale_factors(cm, ALTREF_FRAME),
+ num_planes);
+ *y_sad_alt = cpi->ppi->fn_ptr[bsize].sdf(
+ x->plane[AOM_PLANE_Y].src.buf, x->plane[AOM_PLANE_Y].src.stride,
+ xd->plane[AOM_PLANE_Y].pre[0].buf,
+ xd->plane[AOM_PLANE_Y].pre[0].stride);
+ }
+ }
+
+ if (use_last_ref) {
+ const int source_sad_nonrd = x->content_state_sb.source_sad_nonrd;
+ av1_setup_pre_planes(
+ xd, 0, yv12, mi_row, mi_col,
+ scaled_ref_last ? NULL : get_ref_scale_factors(cm, LAST_FRAME),
+ num_planes);
+ mi->ref_frame[0] = LAST_FRAME;
+ mi->ref_frame[1] = NONE_FRAME;
+ mi->bsize = cm->seq_params->sb_size;
+ mi->mv[0].as_int = 0;
+ mi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
+
+ int est_motion = cpi->sf.rt_sf.estimate_motion_for_var_based_partition;
+ // TODO(b/290596301): Look into adjusting this condition.
+ // There is regression on color content when
+ // estimate_motion_for_var_based_partition = 3 and high motion,
+ // so for now force it to 2 based on superblock sad.
+ if (est_motion > 2 && source_sad_nonrd > kMedSad) est_motion = 2;
+
+ if (est_motion == 1 || est_motion == 2) {
+ if (xd->mb_to_right_edge >= 0 && xd->mb_to_bottom_edge >= 0) {
+ // For screen only do int_pro_motion for spatial variance above
+ // threshold and motion level above LowSad.
+ if (x->source_variance > 100 && source_sad_nonrd > kLowSad) {
+ int is_screen = cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN;
+ int me_search_size_col =
+ is_screen ? 96 : block_size_wide[cm->seq_params->sb_size] >> 1;
+ // For screen use larger search size row motion to capture
+ // vertical scroll, which can be larger motion.
+ int me_search_size_row =
+ is_screen ? 192 : block_size_high[cm->seq_params->sb_size] >> 1;
+ unsigned int y_sad_zero;
+ *y_sad = av1_int_pro_motion_estimation(
+ cpi, x, cm->seq_params->sb_size, mi_row, mi_col, &kZeroMv,
+ &y_sad_zero, me_search_size_col, me_search_size_row);
+ // The logic below selects whether the motion estimated in the
+ // int_pro_motion() will be used in nonrd_pickmode. Only do this
+ // for screen for now.
+ if (is_screen) {
+ unsigned int thresh_sad =
+ (cm->seq_params->sb_size == BLOCK_128X128) ? 50000 : 20000;
+ if (*y_sad < (y_sad_zero >> 1) && *y_sad < thresh_sad) {
+ x->sb_me_partition = 1;
+ x->sb_me_mv.as_int = mi->mv[0].as_int;
+ } else {
+ x->sb_me_partition = 0;
+ // Fall back to using zero motion.
+ *y_sad = y_sad_zero;
+ mi->mv[0].as_int = 0;
+ }
+ }
+ }
+ }
+ }
+
+ if (*y_sad == UINT_MAX) {
+ *y_sad = cpi->ppi->fn_ptr[bsize].sdf(
+ x->plane[AOM_PLANE_Y].src.buf, x->plane[AOM_PLANE_Y].src.stride,
+ xd->plane[AOM_PLANE_Y].pre[0].buf,
+ xd->plane[AOM_PLANE_Y].pre[0].stride);
+ }
+
+ // Evaluate if neighbours' MVs give better predictions. Zero MV is tested
+ // already, so only non-zero MVs are tested here. Here the neighbour blocks
+ // are the first block above or left to this superblock.
+ if (est_motion >= 2 && (xd->up_available || xd->left_available))
+ evaluate_neighbour_mvs(cpi, x, y_sad, is_small_sb, est_motion);
+
+ *y_sad_last = *y_sad;
+ }
+
+ // Pick the ref frame for partitioning, use golden or altref frame only if
+ // its lower sad, bias to LAST with factor 0.9.
+ set_ref_frame_for_partition(cpi, x, xd, ref_frame_partition, mi, y_sad,
+ y_sad_g, y_sad_alt, yv12_g, yv12_alt, mi_row,
+ mi_col, num_planes);
+
+ // Only calculate the predictor for non-zero MV.
+ if (mi->mv[0].as_int != 0) {
+ if (!scaled_ref_last) {
+ set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
+ } else {
+ xd->block_ref_scale_factors[0] = sf_no_scale;
+ xd->block_ref_scale_factors[1] = sf_no_scale;
+ }
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL,
+ cm->seq_params->sb_size, AOM_PLANE_Y,
+ num_planes - 1);
+ }
+}
+
+// Decides whether to split or merge a 16x16 partition block in variance based
+// partitioning based on the 8x8 sub-block variances.
+static AOM_INLINE PART_EVAL_STATUS get_part_eval_based_on_sub_blk_var(
+ VP16x16 *var_16x16_info, int64_t threshold16) {
+ int max_8x8_var = 0, min_8x8_var = INT_MAX;
+ for (int split_idx = 0; split_idx < 4; split_idx++) {
+ get_variance(&var_16x16_info->split[split_idx].part_variances.none);
+ int this_8x8_var =
+ var_16x16_info->split[split_idx].part_variances.none.variance;
+ max_8x8_var = AOMMAX(this_8x8_var, max_8x8_var);
+ min_8x8_var = AOMMIN(this_8x8_var, min_8x8_var);
+ }
+ // If the difference between maximum and minimum sub-block variances is high,
+ // then only evaluate PARTITION_SPLIT for the 16x16 block. Otherwise, evaluate
+ // only PARTITION_NONE. The shift factor for threshold16 has been derived
+ // empirically.
+ return ((max_8x8_var - min_8x8_var) > (threshold16 << 2))
+ ? PART_EVAL_ONLY_SPLIT
+ : PART_EVAL_ONLY_NONE;
+}
+
+static AOM_INLINE bool is_set_force_zeromv_skip_based_on_src_sad(
+ int set_zeromv_skip_based_on_source_sad, SOURCE_SAD source_sad_nonrd) {
+ if (set_zeromv_skip_based_on_source_sad == 0) return false;
+
+ if (set_zeromv_skip_based_on_source_sad >= 3)
+ return source_sad_nonrd <= kLowSad;
+ else if (set_zeromv_skip_based_on_source_sad >= 2)
+ return source_sad_nonrd <= kVeryLowSad;
+ else if (set_zeromv_skip_based_on_source_sad >= 1)
+ return source_sad_nonrd == kZeroSad;
+
+ return false;
+}
+
+static AOM_INLINE bool set_force_zeromv_skip_for_sb(
+ AV1_COMP *cpi, MACROBLOCK *x, const TileInfo *const tile, VP128x128 *vt,
+ unsigned int *uv_sad, int mi_row, int mi_col, unsigned int y_sad,
+ BLOCK_SIZE bsize) {
+ AV1_COMMON *const cm = &cpi->common;
+ if (!is_set_force_zeromv_skip_based_on_src_sad(
+ cpi->sf.rt_sf.set_zeromv_skip_based_on_source_sad,
+ x->content_state_sb.source_sad_nonrd))
+ return false;
+ int shift = cpi->sf.rt_sf.increase_source_sad_thresh ? 1 : 0;
+ const int block_width = mi_size_wide[cm->seq_params->sb_size];
+ const int block_height = mi_size_high[cm->seq_params->sb_size];
+ const unsigned int thresh_exit_part_y =
+ cpi->zeromv_skip_thresh_exit_part[bsize] << shift;
+ unsigned int thresh_exit_part_uv =
+ CALC_CHROMA_THRESH_FOR_ZEROMV_SKIP(thresh_exit_part_y) << shift;
+ // Be more aggressive in UV threshold if source_sad >= VeryLowSad
+ // to suppreess visual artifact caused by the speed feature:
+ // set_zeromv_skip_based_on_source_sad = 2. For now only for
+ // part_early_exit_zeromv = 1.
+ if (x->content_state_sb.source_sad_nonrd >= kVeryLowSad &&
+ cpi->sf.rt_sf.part_early_exit_zeromv == 1)
+ thresh_exit_part_uv = thresh_exit_part_uv >> 3;
+ if (mi_col + block_width <= tile->mi_col_end &&
+ mi_row + block_height <= tile->mi_row_end && y_sad < thresh_exit_part_y &&
+ uv_sad[0] < thresh_exit_part_uv && uv_sad[1] < thresh_exit_part_uv) {
+ set_block_size(cpi, mi_row, mi_col, bsize);
+ x->force_zeromv_skip_for_sb = 1;
+ aom_free(vt);
+ // Partition shape is set here at SB level.
+ // Exit needs to happen from av1_choose_var_based_partitioning().
+ return true;
+ } else if (x->content_state_sb.source_sad_nonrd == kZeroSad &&
+ cpi->sf.rt_sf.part_early_exit_zeromv >= 2)
+ x->force_zeromv_skip_for_sb = 2;
+ return false;
+}
+
+int av1_choose_var_based_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
+ ThreadData *td, MACROBLOCK *x, int mi_row,
+ int mi_col) {
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, choose_var_based_partitioning_time);
+#endif
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *xd = &x->e_mbd;
+ const int64_t *const vbp_thresholds = cpi->vbp_info.thresholds;
+ PART_EVAL_STATUS force_split[85];
+ int avg_64x64;
+ int max_var_32x32[4];
+ int min_var_32x32[4];
+ int var_32x32;
+ int var_64x64;
+ int min_var_64x64 = INT_MAX;
+ int max_var_64x64 = 0;
+ int avg_16x16[4][4];
+ int maxvar_16x16[4][4];
+ int minvar_16x16[4][4];
+ const uint8_t *src_buf;
+ const uint8_t *dst_buf;
+ int dst_stride;
+ unsigned int uv_sad[MAX_MB_PLANE - 1];
+ NOISE_LEVEL noise_level = kLow;
+ bool is_zero_motion = true;
+ bool scaled_ref_last = false;
+ struct scale_factors sf_no_scale;
+ av1_setup_scale_factors_for_frame(&sf_no_scale, cm->width, cm->height,
+ cm->width, cm->height);
+
+ bool is_key_frame =
+ (frame_is_intra_only(cm) ||
+ (cpi->ppi->use_svc &&
+ cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame));
+
+ assert(cm->seq_params->sb_size == BLOCK_64X64 ||
+ cm->seq_params->sb_size == BLOCK_128X128);
+ const bool is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64);
+ const int num_64x64_blocks = is_small_sb ? 1 : 4;
+
+ unsigned int y_sad = UINT_MAX;
+ unsigned int y_sad_g = UINT_MAX;
+ unsigned int y_sad_alt = UINT_MAX;
+ unsigned int y_sad_last = UINT_MAX;
+ BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128;
+
+ // Ref frame used in partitioning.
+ MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME;
+
+ int64_t thresholds[5] = { vbp_thresholds[0], vbp_thresholds[1],
+ vbp_thresholds[2], vbp_thresholds[3],
+ vbp_thresholds[4] };
+
+ const int segment_id = xd->mi[0]->segment_id;
+ uint64_t blk_sad = 0;
+ if (cpi->src_sad_blk_64x64 != NULL &&
+ cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) {
+ const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128)
+ ? (cm->seq_params->mib_size >> 1)
+ : cm->seq_params->mib_size;
+ const int sb_cols =
+ (cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb;
+ const int sbi_col = mi_col / sb_size_by_mb;
+ const int sbi_row = mi_row / sb_size_by_mb;
+ blk_sad = cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols];
+ }
+
+ const bool is_segment_id_boosted =
+ cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
+ cyclic_refresh_segment_id_boosted(segment_id);
+ const int qindex =
+ is_segment_id_boosted
+ ? av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex)
+ : cm->quant_params.base_qindex;
+ set_vbp_thresholds(
+ cpi, thresholds, blk_sad, qindex, x->content_state_sb.low_sumdiff,
+ x->content_state_sb.source_sad_nonrd, x->content_state_sb.source_sad_rd,
+ is_segment_id_boosted, x->content_state_sb.lighting_change);
+
+ src_buf = x->plane[AOM_PLANE_Y].src.buf;
+ int src_stride = x->plane[AOM_PLANE_Y].src.stride;
+
+ // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
+ // 5-20 for the 16x16 blocks.
+ force_split[0] = PART_EVAL_ALL;
+ memset(x->part_search_info.variance_low, 0,
+ sizeof(x->part_search_info.variance_low));
+
+ // Check if LAST frame is NULL, and if so, treat this frame
+ // as a key frame, for the purpose of the superblock partitioning.
+ // LAST == NULL can happen in cases where enhancement spatial layers are
+ // enabled dyanmically and the only reference is the spatial(GOLDEN).
+ // If LAST frame has a different resolution: set the scaled_ref_last flag
+ // and check if ref_scaled is NULL.
+ if (!frame_is_intra_only(cm)) {
+ const YV12_BUFFER_CONFIG *ref = get_ref_frame_yv12_buf(cm, LAST_FRAME);
+ if (ref == NULL) {
+ is_key_frame = true;
+ } else if (ref->y_crop_height != cm->height ||
+ ref->y_crop_width != cm->width) {
+ scaled_ref_last = true;
+ const YV12_BUFFER_CONFIG *ref_scaled =
+ av1_get_scaled_ref_frame(cpi, LAST_FRAME);
+ if (ref_scaled == NULL) is_key_frame = true;
+ }
+ }
+
+ x->source_variance = UINT_MAX;
+ // For nord_pickmode: compute source_variance, only for superblocks with
+ // some motion for now. This input can then be used to bias the partitioning
+ // or the chroma_check.
+ if (cpi->sf.rt_sf.use_nonrd_pick_mode &&
+ x->content_state_sb.source_sad_nonrd > kLowSad)
+ x->source_variance = av1_get_perpixel_variance_facade(
+ cpi, xd, &x->plane[0].src, cm->seq_params->sb_size, AOM_PLANE_Y);
+
+ if (!is_key_frame) {
+ setup_planes(cpi, x, &y_sad, &y_sad_g, &y_sad_alt, &y_sad_last,
+ &ref_frame_partition, &sf_no_scale, mi_row, mi_col,
+ is_small_sb, scaled_ref_last);
+
+ MB_MODE_INFO *mi = xd->mi[0];
+ // Use reference SB directly for zero mv.
+ if (mi->mv[0].as_int != 0) {
+ dst_buf = xd->plane[AOM_PLANE_Y].dst.buf;
+ dst_stride = xd->plane[AOM_PLANE_Y].dst.stride;
+ is_zero_motion = false;
+ } else {
+ dst_buf = xd->plane[AOM_PLANE_Y].pre[0].buf;
+ dst_stride = xd->plane[AOM_PLANE_Y].pre[0].stride;
+ }
+ } else {
+ dst_buf = NULL;
+ dst_stride = 0;
+ }
+
+ // check and set the color sensitivity of sb.
+ av1_zero(uv_sad);
+ chroma_check(cpi, x, bsize, y_sad_last, y_sad_g, y_sad_alt, is_key_frame,
+ is_zero_motion, uv_sad);
+
+ x->force_zeromv_skip_for_sb = 0;
+
+ VP128x128 *vt;
+ AOM_CHECK_MEM_ERROR(xd->error_info, vt, aom_malloc(sizeof(*vt)));
+ vt->split = td->vt64x64;
+
+ // If the superblock is completely static (zero source sad) and
+ // the y_sad (relative to LAST ref) is very small, take the sb_size partition
+ // and exit, and force zeromv_last skip mode for nonrd_pickmode.
+ // Only do this on the base segment (so the QP-boosted segment, if applied,
+ // can still continue cleaning/ramping up the quality).
+ // Condition on color uv_sad is also added.
+ if (!is_key_frame && cpi->sf.rt_sf.part_early_exit_zeromv &&
+ cpi->rc.frames_since_key > 30 && segment_id == CR_SEGMENT_ID_BASE &&
+ ref_frame_partition == LAST_FRAME && xd->mi[0]->mv[0].as_int == 0) {
+ // Exit here, if zero mv skip flag is set at SB level.
+ if (set_force_zeromv_skip_for_sb(cpi, x, tile, vt, uv_sad, mi_row, mi_col,
+ y_sad, bsize))
+ return 0;
+ }
+
+ if (cpi->noise_estimate.enabled)
+ noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate);
+
+ // Fill in the entire tree of 8x8 (for inter frames) or 4x4 (for key frames)
+ // variances for splits.
+ fill_variance_tree_leaves(cpi, x, vt, force_split, avg_16x16, maxvar_16x16,
+ minvar_16x16, thresholds, src_buf, src_stride,
+ dst_buf, dst_stride, is_key_frame, is_small_sb);
+
+ avg_64x64 = 0;
+ for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; ++blk64_idx) {
+ max_var_32x32[blk64_idx] = 0;
+ min_var_32x32[blk64_idx] = INT_MAX;
+ const int blk64_scale_idx = blk64_idx << 2;
+ for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) {
+ const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2;
+ for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) {
+ if (!is_key_frame) continue;
+ VP16x16 *vtemp = &vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx];
+ for (int lvl3_idx = 0; lvl3_idx < 4; lvl3_idx++)
+ fill_variance_tree(&vtemp->split[lvl3_idx], BLOCK_8X8);
+ fill_variance_tree(vtemp, BLOCK_16X16);
+ // If variance of this 16x16 block is above the threshold, force block
+ // to split. This also forces a split on the upper levels.
+ get_variance(&vtemp->part_variances.none);
+ if (vtemp->part_variances.none.variance > thresholds[3]) {
+ const int split_index = 21 + lvl1_scale_idx + lvl2_idx;
+ force_split[split_index] =
+ cpi->sf.rt_sf.vbp_prune_16x16_split_using_min_max_sub_blk_var
+ ? get_part_eval_based_on_sub_blk_var(vtemp, thresholds[3])
+ : PART_EVAL_ONLY_SPLIT;
+ force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT;
+ force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
+ force_split[0] = PART_EVAL_ONLY_SPLIT;
+ }
+ }
+ fill_variance_tree(&vt->split[blk64_idx].split[lvl1_idx], BLOCK_32X32);
+ // If variance of this 32x32 block is above the threshold, or if its above
+ // (some threshold of) the average variance over the sub-16x16 blocks,
+ // then force this block to split. This also forces a split on the upper
+ // (64x64) level.
+ uint64_t frame_sad_thresh = 20000;
+ const int is_360p_or_smaller = cm->width * cm->height <= RESOLUTION_360P;
+ if (cpi->svc.number_temporal_layers > 2 &&
+ cpi->svc.temporal_layer_id == 0)
+ frame_sad_thresh = frame_sad_thresh << 1;
+ if (force_split[5 + blk64_scale_idx + lvl1_idx] == PART_EVAL_ALL) {
+ get_variance(&vt->split[blk64_idx].split[lvl1_idx].part_variances.none);
+ var_32x32 =
+ vt->split[blk64_idx].split[lvl1_idx].part_variances.none.variance;
+ max_var_32x32[blk64_idx] = AOMMAX(var_32x32, max_var_32x32[blk64_idx]);
+ min_var_32x32[blk64_idx] = AOMMIN(var_32x32, min_var_32x32[blk64_idx]);
+ const int max_min_var_16X16_diff = (maxvar_16x16[blk64_idx][lvl1_idx] -
+ minvar_16x16[blk64_idx][lvl1_idx]);
+
+ if (var_32x32 > thresholds[2] ||
+ (!is_key_frame && var_32x32 > (thresholds[2] >> 1) &&
+ var_32x32 > (avg_16x16[blk64_idx][lvl1_idx] >> 1))) {
+ force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT;
+ force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
+ force_split[0] = PART_EVAL_ONLY_SPLIT;
+ } else if (!is_key_frame && is_360p_or_smaller &&
+ ((max_min_var_16X16_diff > (thresholds[2] >> 1) &&
+ maxvar_16x16[blk64_idx][lvl1_idx] > thresholds[2]) ||
+ (cpi->sf.rt_sf.prefer_large_partition_blocks &&
+ x->content_state_sb.source_sad_nonrd > kLowSad &&
+ cpi->rc.frame_source_sad < frame_sad_thresh &&
+ maxvar_16x16[blk64_idx][lvl1_idx] > (thresholds[2] >> 4) &&
+ maxvar_16x16[blk64_idx][lvl1_idx] >
+ (minvar_16x16[blk64_idx][lvl1_idx] << 2)))) {
+ force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT;
+ force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
+ force_split[0] = PART_EVAL_ONLY_SPLIT;
+ }
+ }
+ }
+ if (force_split[1 + blk64_idx] == PART_EVAL_ALL) {
+ fill_variance_tree(&vt->split[blk64_idx], BLOCK_64X64);
+ get_variance(&vt->split[blk64_idx].part_variances.none);
+ var_64x64 = vt->split[blk64_idx].part_variances.none.variance;
+ max_var_64x64 = AOMMAX(var_64x64, max_var_64x64);
+ min_var_64x64 = AOMMIN(var_64x64, min_var_64x64);
+ // If the difference of the max-min variances of sub-blocks or max
+ // variance of a sub-block is above some threshold of then force this
+ // block to split. Only checking this for noise level >= medium, if
+ // encoder is in SVC or if we already forced large blocks.
+ const int max_min_var_32x32_diff =
+ max_var_32x32[blk64_idx] - min_var_32x32[blk64_idx];
+ const int check_max_var = max_var_32x32[blk64_idx] > thresholds[1] >> 1;
+ const bool check_noise_lvl = noise_level >= kMedium ||
+ cpi->ppi->use_svc ||
+ cpi->sf.rt_sf.prefer_large_partition_blocks;
+ const int64_t set_threshold = 3 * (thresholds[1] >> 3);
+
+ if (!is_key_frame && max_min_var_32x32_diff > set_threshold &&
+ check_max_var && check_noise_lvl) {
+ force_split[1 + blk64_idx] = PART_EVAL_ONLY_SPLIT;
+ force_split[0] = PART_EVAL_ONLY_SPLIT;
+ }
+ avg_64x64 += var_64x64;
+ }
+ if (is_small_sb) force_split[0] = PART_EVAL_ONLY_SPLIT;
+ }
+
+ if (force_split[0] == PART_EVAL_ALL) {
+ fill_variance_tree(vt, BLOCK_128X128);
+ get_variance(&vt->part_variances.none);
+ const int set_avg_64x64 = (9 * avg_64x64) >> 5;
+ if (!is_key_frame && vt->part_variances.none.variance > set_avg_64x64)
+ force_split[0] = PART_EVAL_ONLY_SPLIT;
+
+ if (!is_key_frame &&
+ (max_var_64x64 - min_var_64x64) > 3 * (thresholds[0] >> 3) &&
+ max_var_64x64 > thresholds[0] >> 1)
+ force_split[0] = PART_EVAL_ONLY_SPLIT;
+ }
+
+ if (mi_col + 32 > tile->mi_col_end || mi_row + 32 > tile->mi_row_end ||
+ !set_vt_partitioning(cpi, xd, tile, vt, BLOCK_128X128, mi_row, mi_col,
+ thresholds[0], BLOCK_16X16, force_split[0])) {
+ for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; ++blk64_idx) {
+ const int x64_idx = GET_BLK_IDX_X(blk64_idx, 4);
+ const int y64_idx = GET_BLK_IDX_Y(blk64_idx, 4);
+ const int blk64_scale_idx = blk64_idx << 2;
+
+ // Now go through the entire structure, splitting every block size until
+ // we get to one that's got a variance lower than our threshold.
+ if (set_vt_partitioning(cpi, xd, tile, &vt->split[blk64_idx], BLOCK_64X64,
+ mi_row + y64_idx, mi_col + x64_idx, thresholds[1],
+ BLOCK_16X16, force_split[1 + blk64_idx]))
+ continue;
+ for (int lvl1_idx = 0; lvl1_idx < 4; ++lvl1_idx) {
+ const int x32_idx = GET_BLK_IDX_X(lvl1_idx, 3);
+ const int y32_idx = GET_BLK_IDX_Y(lvl1_idx, 3);
+ const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2;
+ if (set_vt_partitioning(
+ cpi, xd, tile, &vt->split[blk64_idx].split[lvl1_idx],
+ BLOCK_32X32, (mi_row + y64_idx + y32_idx),
+ (mi_col + x64_idx + x32_idx), thresholds[2], BLOCK_16X16,
+ force_split[5 + blk64_scale_idx + lvl1_idx]))
+ continue;
+ for (int lvl2_idx = 0; lvl2_idx < 4; ++lvl2_idx) {
+ const int x16_idx = GET_BLK_IDX_X(lvl2_idx, 2);
+ const int y16_idx = GET_BLK_IDX_Y(lvl2_idx, 2);
+ const int split_index = 21 + lvl1_scale_idx + lvl2_idx;
+ VP16x16 *vtemp =
+ &vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx];
+ if (set_vt_partitioning(cpi, xd, tile, vtemp, BLOCK_16X16,
+ mi_row + y64_idx + y32_idx + y16_idx,
+ mi_col + x64_idx + x32_idx + x16_idx,
+ thresholds[3], BLOCK_8X8,
+ force_split[split_index]))
+ continue;
+ for (int lvl3_idx = 0; lvl3_idx < 4; ++lvl3_idx) {
+ const int x8_idx = GET_BLK_IDX_X(lvl3_idx, 1);
+ const int y8_idx = GET_BLK_IDX_Y(lvl3_idx, 1);
+ set_block_size(cpi, (mi_row + y64_idx + y32_idx + y16_idx + y8_idx),
+ (mi_col + x64_idx + x32_idx + x16_idx + x8_idx),
+ BLOCK_8X8);
+ }
+ }
+ }
+ }
+ }
+
+ if (cpi->sf.rt_sf.short_circuit_low_temp_var) {
+ set_low_temp_var_flag(cpi, &x->part_search_info, xd, vt, thresholds,
+ ref_frame_partition, mi_col, mi_row, is_small_sb);
+ }
+
+ aom_free(vt);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, choose_var_based_partitioning_time);
+#endif
+ return 0;
+}