summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/x86/cnn_avx2.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/x86/cnn_avx2.c532
1 files changed, 532 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/x86/cnn_avx2.c b/third_party/aom/av1/encoder/x86/cnn_avx2.c
new file mode 100644
index 0000000000..ee93b3d5a0
--- /dev/null
+++ b/third_party/aom/av1/encoder/x86/cnn_avx2.c
@@ -0,0 +1,532 @@
+/*
+ * Copyright (c) 2020, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <immintrin.h>
+#include <math.h>
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "av1/common/av1_common_int.h"
+#include "av1/encoder/cnn.h"
+
+// This mask rearranges source pixels in the order shown below.
+// shuffle_src_layer0[0][8]: applied on source pixels 0 to 7.
+// shuffle_src_layer0[1][8]: applied on source pixels 7 to 14.
+// This shuffling is needed to process 3 5x5 blocks which need
+// source pixels in the following order.
+// 1st 5x5 block: source pixels needed are 0 to 4,
+// 2nd 5x5 block: source pixels needed are 4 to 8,
+// 3rd 5x5 block: source pixels needed are 8 to 12.
+// Source pixels are loaded like mentioned below.
+// load_src0 : 0, 1, 2, 3, 4, 5, 6, 7
+// load_src1 : 7, 8, 9, 10, 11, 12, 13, 14
+// After applying masks, source bytes will be in the order:
+// load_src0 : 0, 1, 2, 3, 4, 4, 5, 6
+// consists 5 pixels needed for 1st 5x5 block and
+// first 3 pixels needed for 2nd 5x5 block.
+// load_src1 : 7, 8, 8, 9, 10, 11, 12, x
+// consists last 2 pixels needed for 2nd 5x5 block and
+// 5 pixels needed for 3rd 5x5 block.
+DECLARE_ALIGNED(32, static const uint32_t,
+ shuffle_src_layer0[2][8]) = { { 0, 1, 2, 3, 4, 4, 5, 6 },
+ { 0, 1, 1, 2, 3, 4, 5, 0 } };
+
+// This mask rearrange the weights to match shuffled source pixels order.
+DECLARE_ALIGNED(32, static const uint32_t,
+ shuffle_weight_layer0[2][8]) = { { 0, 1, 2, 3, 4, 0, 1, 2 },
+ { 3, 4, 0, 1, 2, 3, 4, 0 } };
+
+// Shuffle mask used to rearrange weights corresponding to layer 1 and layer 2.
+// For layer 1 and layer 2, convolution happens at 2x2 as filter_width and
+// filter_height are equal to 2. So rearranging the weights in the
+// order shown below to match source pixels. Basically this mask replicates
+// the weights across the width of 2.
+DECLARE_ALIGNED(32, static const uint32_t,
+ shuffle_weight_layer_1_and_2[2][8]) = {
+ { 0, 1, 0, 1, 0, 1, 0, 1 }, { 2, 3, 2, 3, 2, 3, 2, 3 }
+};
+
+// After the stages of multiplication and accumulation, the output values
+// in the register will be jumbled. In order to store register into
+// output buffer in a proper way, the following mask is applied on output
+// register.
+DECLARE_ALIGNED(32, static const uint32_t,
+ shuffle_output_layer_1_and_2[8]) = { 0, 1, 4, 5, 2, 3, 6, 7 };
+
+// Load weights needed for layer 0 (for 5x5 block processing),
+// and fill the registers appropriately to match source pixel mapping.
+static INLINE void prepare_weights_for_5x5_convolve(
+ const float *layer_config_weights, int off, float weight[5][8],
+ const int cstep, __m256 *shuffle_weight, const __m256i weight_mask_0,
+ const __m256i weight_mask_1) {
+ for (int row = 0; row < 5; ++row) {
+ for (int col = 0; col < 5; ++col) {
+ weight[row][col] = layer_config_weights[off];
+ off += cstep;
+ }
+ }
+ shuffle_weight[0] = _mm256_loadu_ps(weight[0]);
+ shuffle_weight[1] = _mm256_loadu_ps(weight[1]);
+ shuffle_weight[2] = _mm256_loadu_ps(weight[2]);
+ shuffle_weight[3] = _mm256_loadu_ps(weight[3]);
+ shuffle_weight[4] = _mm256_loadu_ps(weight[4]);
+
+ shuffle_weight[0] =
+ _mm256_permutevar8x32_ps(shuffle_weight[0], weight_mask_0);
+ shuffle_weight[1] =
+ _mm256_permutevar8x32_ps(shuffle_weight[1], weight_mask_0);
+ shuffle_weight[2] =
+ _mm256_permutevar8x32_ps(shuffle_weight[2], weight_mask_0);
+ shuffle_weight[3] =
+ _mm256_permutevar8x32_ps(shuffle_weight[3], weight_mask_0);
+ shuffle_weight[4] =
+ _mm256_permutevar8x32_ps(shuffle_weight[4], weight_mask_0);
+ shuffle_weight[5] =
+ _mm256_permutevar8x32_ps(shuffle_weight[0], weight_mask_1);
+ shuffle_weight[6] =
+ _mm256_permutevar8x32_ps(shuffle_weight[1], weight_mask_1);
+ shuffle_weight[7] =
+ _mm256_permutevar8x32_ps(shuffle_weight[2], weight_mask_1);
+ shuffle_weight[8] =
+ _mm256_permutevar8x32_ps(shuffle_weight[3], weight_mask_1);
+ shuffle_weight[9] =
+ _mm256_permutevar8x32_ps(shuffle_weight[4], weight_mask_1);
+}
+
+// For each row, loads source pixels 0 to 7(load_src_0), 7 to 14(load_src_1) and
+// arranges them appropriately to process 3 blocks.
+#define PERFORM_CONVOLVE_FOR_3_5X5_BLOCKS() \
+ do { \
+ for (int row = 0; row < 5; row++) { \
+ load_src_0 = _mm256_loadu_ps(input_ptr); \
+ load_src_1 = _mm256_loadu_ps(input_ptr + 7); \
+ load_src_0 = _mm256_permutevar8x32_ps(load_src_0, block0_1); \
+ load_src_1 = _mm256_permutevar8x32_ps(load_src_1, block1_2); \
+ load_src_0 = _mm256_mul_ps(load_src_0, shuffle_weight[0 + row]); \
+ load_src_1 = _mm256_mul_ps(load_src_1, shuffle_weight[5 + row]); \
+ accum_src_0 = _mm256_add_ps(load_src_0, accum_src_0); \
+ accum_src_1 = _mm256_add_ps(load_src_1, accum_src_1); \
+ input_ptr += in_stride; \
+ } \
+ } while (0)
+
+// Load masks needed for shuffling of output and weights.
+static INLINE void load_shuffle_masks_for_2x2_convolve(__m256i *output_mask,
+ __m256i *weight_mask) {
+ // Load shuffle buffer needed to sort the output.
+ *output_mask =
+ _mm256_load_si256((const __m256i *)shuffle_output_layer_1_and_2);
+
+ // Load shuffle buffers needed for weight.
+ weight_mask[0] =
+ _mm256_load_si256((const __m256i *)shuffle_weight_layer_1_and_2[0]);
+ weight_mask[1] =
+ _mm256_load_si256((const __m256i *)shuffle_weight_layer_1_and_2[1]);
+}
+
+// Load weights needed for layer 1 and 2 (for 2x2 block processing),
+// and fill the registers appropriately to match source pixel mapping.
+static INLINE void prepare_weights_for_2x2_convolve(
+ const float *layer_config_weights, int off, const int cstep,
+ __m256 *shuffle_weight, __m256i *weight_mask) {
+ // Weights needed for 2x2 block.
+ float weight[4] = { 0 };
+ for (int i = 0; i < 4; ++i) {
+ weight[i] = layer_config_weights[off];
+ off += cstep;
+ }
+
+ const __m256 weight_vec = _mm256_castps128_ps256(_mm_loadu_ps(weight));
+ shuffle_weight[0] = _mm256_permutevar8x32_ps(weight_vec, weight_mask[0]);
+ shuffle_weight[1] = _mm256_permutevar8x32_ps(weight_vec, weight_mask[1]);
+}
+
+// Do convolution of one 5x5 block.
+#define PERFORM_CONVOLVE_FOR_1_5X5_BLOCK(w, accum0, in_stride) \
+ do { \
+ __m128 load_src[5]; \
+ load_src[0] = _mm_loadu_ps(input_ptr); \
+ last_column_sum += input_ptr[4] * weight[0][4]; \
+ input_ptr += in_stride; \
+ load_src[1] = _mm_loadu_ps(input_ptr); \
+ last_column_sum += input_ptr[4] * weight[1][4]; \
+ input_ptr += in_stride; \
+ load_src[2] = _mm_loadu_ps(input_ptr); \
+ last_column_sum += input_ptr[4] * weight[2][4]; \
+ input_ptr += in_stride; \
+ load_src[3] = _mm_loadu_ps(input_ptr); \
+ last_column_sum += input_ptr[4] * weight[3][4]; \
+ input_ptr += in_stride; \
+ load_src[4] = _mm_loadu_ps(input_ptr); \
+ last_column_sum += input_ptr[4] * weight[4][4]; \
+ \
+ load_src[0] = _mm_mul_ps(load_src[0], _mm256_castps256_ps128(w[0])); \
+ load_src[1] = _mm_mul_ps(load_src[1], _mm256_castps256_ps128(w[1])); \
+ load_src[2] = _mm_mul_ps(load_src[2], _mm256_castps256_ps128(w[2])); \
+ load_src[3] = _mm_mul_ps(load_src[3], _mm256_castps256_ps128(w[3])); \
+ load_src[4] = _mm_mul_ps(load_src[4], _mm256_castps256_ps128(w[4])); \
+ \
+ accum0 = _mm_add_ps(load_src[0], accum0); \
+ load_src[1] = _mm_add_ps(load_src[1], load_src[2]); \
+ load_src[3] = _mm_add_ps(load_src[3], load_src[4]); \
+ load_src[1] = _mm_add_ps(load_src[1], load_src[3]); \
+ accum0 = _mm_add_ps(accum0, load_src[1]); \
+ } while (0)
+
+// Do convolution on 8 horizontal 2x2 blocks.
+static INLINE void perform_convolve_for_8h_2x2_blocks(
+ const float *input_ptr, int in_stride, __m256 *weight, __m256 *out_accum,
+ __m256i shuffle_output_mask) {
+ __m256 load_src[4];
+ // Load input into source registers.
+ load_src[0] = _mm256_loadu_ps(input_ptr);
+ load_src[1] = _mm256_loadu_ps(input_ptr + 8);
+ load_src[2] = _mm256_loadu_ps(input_ptr + in_stride);
+ load_src[3] = _mm256_loadu_ps(input_ptr + in_stride + 8);
+
+ // Multiply the loaded input with corresponding weights.
+ load_src[0] = _mm256_mul_ps(load_src[0], weight[0]);
+ load_src[1] = _mm256_mul_ps(load_src[1], weight[0]);
+ load_src[2] = _mm256_mul_ps(load_src[2], weight[1]);
+ load_src[3] = _mm256_mul_ps(load_src[3], weight[1]);
+
+ // Accumulate across 2x2 blocks.
+ load_src[0] = _mm256_add_ps(load_src[0], load_src[2]);
+ load_src[1] = _mm256_add_ps(load_src[1], load_src[3]);
+ load_src[0] = _mm256_hadd_ps(load_src[0], load_src[1]);
+
+ // Sort the output in order to store into output buffer.
+ load_src[0] = _mm256_permutevar8x32_ps(load_src[0], shuffle_output_mask);
+ *out_accum = _mm256_add_ps(*out_accum, load_src[0]);
+}
+
+// Do convolution on 8 (4 horizontal x 2 vertical) 2x2 blocks.
+static INLINE void perform_convolve_for_4hx2v_2x2_blocks(
+ const float *input_ptr, int in_stride, __m256 *weight, __m256 *out_accum,
+ __m256i shuffle_output_mask) {
+ __m256 load_src[4];
+ // Load input into source registers.
+ load_src[0] = _mm256_loadu_ps(input_ptr);
+ load_src[1] = _mm256_loadu_ps(input_ptr + in_stride);
+ load_src[2] = _mm256_loadu_ps(input_ptr + (in_stride * 2));
+ load_src[3] = _mm256_loadu_ps(input_ptr + (in_stride * 3));
+
+ // Multiply the loaded input with corresponding weights.
+ load_src[0] = _mm256_mul_ps(load_src[0], weight[0]);
+ load_src[1] = _mm256_mul_ps(load_src[1], weight[1]);
+ load_src[2] = _mm256_mul_ps(load_src[2], weight[0]);
+ load_src[3] = _mm256_mul_ps(load_src[3], weight[1]);
+
+ // Accumulate across 2x2 blocks.
+ load_src[0] = _mm256_add_ps(load_src[0], load_src[1]);
+ load_src[2] = _mm256_add_ps(load_src[2], load_src[3]);
+ load_src[0] = _mm256_hadd_ps(load_src[0], load_src[2]);
+
+ // Sort the output in order to store into output buffer.
+ load_src[0] = _mm256_permutevar8x32_ps(load_src[0], shuffle_output_mask);
+ *out_accum = _mm256_add_ps(*out_accum, load_src[0]);
+}
+
+// AVX2 variant of av1_cnn_convolve_no_maxpool_padding_valid_c(), when
+// filter_width and filter_height are equal to 5.
+// CNN convolve parsing is based on av1_intra_mode_cnn_partition_cnn_config.
+// Based on the configuration set for each layer, the current encoder
+// always chooses the case of no_maxpool_padding_valid.
+// And also for layer 0 convolution happens at 5x5 level as the
+// filter_width and filter_height are set as 5.
+static void cnn_convolve_no_maxpool_padding_valid_5x5_avx2(
+ const float **input, int in_width, int in_height, int in_stride,
+ const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride,
+ int start_idx, const int cstep, const int channel_step) {
+ const int kFilterWidth = 5;
+ const int kFilterHeight = 5;
+ const int kSkipWidth = 4;
+ const int kSkipHeight = 4;
+ assert(layer_config->filter_width == kFilterWidth &&
+ layer_config->filter_height == kFilterHeight);
+ assert(layer_config->skip_width == kSkipWidth &&
+ layer_config->skip_height == kSkipHeight);
+
+ // Load shuffle buffers needed for source.
+ const __m256i block0_1 =
+ _mm256_load_si256((const __m256i *)shuffle_src_layer0[0]);
+ const __m256i block1_2 =
+ _mm256_load_si256((const __m256i *)shuffle_src_layer0[1]);
+
+ // Load shuffle buffers needed for weight.
+ const __m256i weight_mask_0 =
+ _mm256_load_si256((const __m256i *)shuffle_weight_layer0[0]);
+ const __m256i weight_mask_1 =
+ _mm256_load_si256((const __m256i *)shuffle_weight_layer0[1]);
+
+ // Width needs to be moved to go to next iteration of processing 3 5x5 blocks.
+ const int kSkipWidthForNextIter = kSkipWidth * 3;
+
+ // Minimum width required to process 3 5x5 blocks at a time.
+ // min width (for processing 3 5x5 block) = 2*skip_width + filter_width
+ // Here, skip_width specifies how much width we should move while processing
+ // next block convolution and filter_width specifies for how many pixels
+ // filter needs to be applied.
+ const int kMinWidthFor3_5x5Blocks = (kSkipWidth * 2) + kFilterWidth;
+ for (int i = start_idx; i < layer_config->out_channels; i += channel_step) {
+ const float out_ch_bias = layer_config->bias[i];
+ for (int k = 0; k < layer_config->in_channels; ++k) {
+ __m256 shuffle_weight[10];
+
+ // Weights needed are 5x5, for SIMD purpose made this array as 5x8.
+ float weight[5][8] = { { 0 } };
+ int off = k * layer_config->out_channels + i;
+
+ // In layer 0, the convolution process happens at 5x5.
+ // The weights needed for 5x5 block are same across the in-channels,
+ // which is why the load of weights happens once for each in-channel.
+ prepare_weights_for_5x5_convolve(layer_config->weights, off, weight,
+ cstep, shuffle_weight, weight_mask_0,
+ weight_mask_1);
+
+ for (int h = 0, u = 0; h < in_height - kFilterHeight + 1;
+ h += kSkipHeight, ++u) {
+ const int out_h = u * out_stride;
+ int v = 0;
+ int w = 0;
+ int rem_width = in_width;
+ // Processing 3 5x5 blocks at a time, if sufficient width is present.
+ while (rem_width >= kMinWidthFor3_5x5Blocks) {
+ __m256 load_src_0, load_src_1;
+ __m256 accum_src_0 = _mm256_setzero_ps();
+ __m256 accum_src_1 = _mm256_setzero_ps();
+ const float *input_ptr = &input[k][h * in_stride + w];
+ PERFORM_CONVOLVE_FOR_3_5X5_BLOCKS();
+
+ // Accumulate across column.
+ __m256 accum = _mm256_hadd_ps(accum_src_0, accum_src_1);
+ __m128 tmp_reg_0 = _mm256_extractf128_ps(accum_src_0, 1);
+ __m128 tmp_reg_1 = _mm256_extractf128_ps(accum_src_1, 1);
+
+ __m128 accum_l = _mm256_castps256_ps128(accum);
+ __m128 accum_h = _mm256_extractf128_ps(accum, 1);
+
+ __m128 tmp_reg_2 = _mm_add_ps(accum_l, tmp_reg_0);
+ __m128 tmp_reg_3 = _mm_add_ps(tmp_reg_0, accum_h);
+ __m128 tmp_reg_4 = _mm_add_ps(tmp_reg_1, accum_h);
+
+ // 1st 5x5 block output.
+ output[i][out_h + v] =
+ out_ch_bias + _mm_cvtss_f32(tmp_reg_2) +
+ _mm_cvtss_f32(_mm_shuffle_ps(accum_l, accum_l, 1));
+
+ // 2nd 5x5 block output.
+ output[i][out_h + v + 1] =
+ out_ch_bias +
+ _mm_cvtss_f32(_mm_shuffle_ps(tmp_reg_3, tmp_reg_3, 1)) +
+ _mm_cvtss_f32(_mm_shuffle_ps(accum_l, accum_l, 2));
+
+ // 3rd 5x5 block output.
+ output[i][out_h + v + 2] =
+ out_ch_bias +
+ _mm_cvtss_f32(_mm_shuffle_ps(tmp_reg_4, tmp_reg_4, 2)) +
+ _mm_cvtss_f32(_mm_shuffle_ps(accum_l, accum_l, 3));
+
+ v += 3;
+ w += kSkipWidthForNextIter;
+ rem_width -= kSkipWidthForNextIter;
+ }
+
+ // Process remaining blocks as single 5x5 block at a time.
+ while (rem_width >= kFilterWidth) {
+ float last_column_sum = 0;
+ __m128 accum = _mm_setzero_ps();
+ const float *input_ptr = &input[k][h * in_stride + w];
+ PERFORM_CONVOLVE_FOR_1_5X5_BLOCK(shuffle_weight, accum, in_stride);
+
+ // Accumulate across column.
+ accum = _mm_hadd_ps(accum, accum);
+ output[i][out_h + v] = out_ch_bias + last_column_sum +
+ _mm_cvtss_f32(accum) +
+ _mm_cvtss_f32(_mm_shuffle_ps(accum, accum, 1));
+
+ v += 1;
+ w += kSkipWidth;
+ rem_width -= kSkipWidth;
+ }
+ }
+ }
+ }
+}
+
+// AVX2 implementation for layer 1.
+static INLINE void cnn_convolve_no_maxpool_padding_valid_layer1_avx2(
+ const float **input, int in_stride,
+ const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride,
+ int start_idx, const int cstep, const int channel_step) {
+ __m256i weight_mask[2];
+ __m256i shuffle_output_mask;
+ load_shuffle_masks_for_2x2_convolve(&shuffle_output_mask, weight_mask);
+
+ const int kInHeight = 16;
+ const int kFilterHeight = 2;
+ const int kSkipHeight = 2;
+ for (int i = start_idx; i < layer_config->out_channels; i += channel_step) {
+ __m256 bias_reg = _mm256_set1_ps(layer_config->bias[i]);
+ // out_accum registers are used to store the 2x2 convolve outputs
+ // (calculated over input block size), which are accumulated across the
+ // in_channels. As per the design, each iteration of for loop processes 8
+ // (horizontal) 2x2 blocks and stores in corresponding out_accum register
+ // (as input size is 16x16, a total of 64 2x2 blocks are present and 8
+ // out_accum registers are enough to store the outputs).
+ // Hence for loops corresponding to 'j' and 'h', below, run over the number
+ // of out_accum registers.
+ __m256 out_accum[8];
+ for (int j = 0; j < 8; ++j) out_accum[j] = bias_reg;
+ for (int k = 0; k < layer_config->in_channels; ++k) {
+ __m256 shuffle_weight[2];
+ int off = k * layer_config->out_channels + i;
+ // In layer 1, the convolution process happens at 2x2.
+ // The weights needed for 2x2 block are same across the in-channels,
+ // which is why the load of weights happens once for each in-channel.
+ prepare_weights_for_2x2_convolve(layer_config->weights, off, cstep,
+ shuffle_weight, weight_mask);
+
+ for (int h = 0, u = 0; h < kInHeight - kFilterHeight + 1;
+ h += kSkipHeight, ++u) {
+ const float *input_ptr = &input[k][h * in_stride];
+ perform_convolve_for_8h_2x2_blocks(input_ptr, in_stride, shuffle_weight,
+ &out_accum[u], shuffle_output_mask);
+ }
+ }
+ // Store output of layer 1.
+ for (int j = 0; j < 8; ++j) {
+ _mm256_storeu_ps(&output[i][j * out_stride], out_accum[j]);
+ }
+ }
+}
+
+// AVX2 implementation for layer 2.
+static INLINE void cnn_convolve_no_maxpool_padding_valid_layer2_avx2(
+ const float **input, int in_stride,
+ const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride,
+ int start_idx, const int cstep, const int channel_step) {
+ __m256i weight_mask[2];
+ __m256i shuffle_output_mask;
+ load_shuffle_masks_for_2x2_convolve(&shuffle_output_mask, weight_mask);
+
+ const int kInHeight = 8;
+ const int kFilterHeight = 2;
+ const int kSkipHeight = 2;
+ for (int i = start_idx; i < layer_config->out_channels; i += channel_step) {
+ __m256 bias_reg = _mm256_set1_ps(layer_config->bias[i]);
+ // out_accum registers are used to store the 2x2 convolve outputs
+ // (calculated over input block size), which are accumulated across the
+ // in_channels. As per the design, each iteration of for loop processes 8
+ // (4 horizontal x 2 vertical) 2x2 blocks and stores in corresponding
+ // out_accum register (as input size is 8x8, a total of 16 2x2 blocks are
+ // present and 2 out_accum registers are enough to store the outputs).
+ // Hence for loops corresponding to 'j' and 'h', below, run over the number
+ // of out_accum registers.
+ __m256 out_accum[2];
+
+ // Height needs to be moved to go to next iteration of processing
+ // while processing 2 2x2 blocks vertically.
+ const int kSkipHeightForNextIter = kSkipHeight * 2;
+ for (int j = 0; j < 2; ++j) out_accum[j] = bias_reg;
+ for (int k = 0; k < layer_config->in_channels; ++k) {
+ __m256 shuffle_weight[2];
+ int off = k * layer_config->out_channels + i;
+ // In layer 2, the convolution process happens at 2x2.
+ // The weights needed for 2x2 block are same across the in-channels,
+ // which is why the load of weights happens once for each in-channel.
+ prepare_weights_for_2x2_convolve(layer_config->weights, off, cstep,
+ shuffle_weight, weight_mask);
+
+ for (int h = 0, u = 0; h < kInHeight - kFilterHeight + 1;
+ h += kSkipHeightForNextIter, ++u) {
+ const float *input_ptr = &input[k][h * in_stride];
+ perform_convolve_for_4hx2v_2x2_blocks(input_ptr, in_stride,
+ shuffle_weight, &out_accum[u],
+ shuffle_output_mask);
+ }
+ }
+ // Store output of layer 2.
+ for (int j = 0; j < 2; ++j) {
+ _mm256_storeu_ps(&output[i][j * out_stride * 2], out_accum[j]);
+ }
+ }
+}
+
+// AVX2 variant of av1_cnn_convolve_no_maxpool_padding_valid_c(), when
+// filter_width and filter_height are equal to 2.
+// As per the layer config set by av1_intra_mode_cnn_partition_cnn_config,
+// the filter_width and filter_height are equal to 2 for layer >= 1. So
+// convolution happens at 2x2 for layer >= 1.
+void cnn_convolve_no_maxpool_padding_valid_2x2_avx2(
+ const float **input, int in_width, int in_height, int in_stride,
+ const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride,
+ int start_idx, const int cstep, const int channel_step) {
+ assert(layer_config->filter_width == 2 && layer_config->filter_height == 2);
+ assert(layer_config->skip_width == 2 && layer_config->skip_height == 2);
+
+ if (in_width == 16 && in_height == 16) {
+ // This case of in_width and in_height equal to 16 corresponds to layer 1.
+ // The output size of this layer is 8x8.
+ cnn_convolve_no_maxpool_padding_valid_layer1_avx2(
+ input, in_stride, layer_config, output, out_stride, start_idx, cstep,
+ channel_step);
+ } else if (in_width == 8 && in_height == 8) {
+ // This case of in_width and in_height equal to 8 corresponds to layer 2.
+ // The output size of this layer is 4x4.
+ cnn_convolve_no_maxpool_padding_valid_layer2_avx2(
+ input, in_stride, layer_config, output, out_stride, start_idx, cstep,
+ channel_step);
+ } else {
+ // For layer equal to 3 and 4, the input is of size 4x4 and 2x2
+ // respectively. Implementing SIMD for these cases might not be optimal,
+ // which is why we call C path for layer >= 3.
+ av1_cnn_convolve_no_maxpool_padding_valid_c(
+ input, in_width, in_height, in_stride, layer_config, output, out_stride,
+ start_idx, cstep, channel_step);
+ }
+}
+
+// AVX2 variant of av1_cnn_convolve_no_maxpool_padding_valid_c().
+// As per the current encoder, av1_cnn_convolve function gets called for
+// block size equal to 64x64. av1_cnn_convolve() uses layer config values
+// set by av1_intra_mode_cnn_partition_cnn_config. The following are a few
+// details related to each layer's config parameters.
+// Layer_Number in_size out_size filter_wd filter_ht skip_wd skip_ht
+// 0 64x64 16x16 5 5 4 4
+// 1 16x16 8x8 2 2 2 2
+// 2 8x8 4x4 2 2 2 2
+// 3 4x4 2x2 2 2 2 2
+// 4 2x2 1x1 2 2 2 2
+// Here,
+// filter_wd = filter_width and filter_ht = filter_height,
+// skip_wd = skip_width and skip_ht = skip_height.
+void av1_cnn_convolve_no_maxpool_padding_valid_avx2(
+ const float **input, int in_width, int in_height, int in_stride,
+ const CNN_LAYER_CONFIG *layer_config, float **output, int out_stride,
+ int start_idx, int cstep, int channel_step) {
+ if (layer_config->filter_width == 5 && layer_config->filter_height == 5 &&
+ layer_config->skip_width == 4 && layer_config->skip_height == 4) {
+ cnn_convolve_no_maxpool_padding_valid_5x5_avx2(
+ input, in_width, in_height, in_stride, layer_config, output, out_stride,
+ start_idx, cstep, channel_step);
+ } else if (layer_config->filter_width == 2 &&
+ layer_config->filter_height == 2 &&
+ layer_config->skip_width == 2 && layer_config->skip_height == 2) {
+ cnn_convolve_no_maxpool_padding_valid_2x2_avx2(
+ input, in_width, in_height, in_stride, layer_config, output, out_stride,
+ start_idx, cstep, channel_step);
+ } else {
+ av1_cnn_convolve_no_maxpool_padding_valid_c(
+ input, in_width, in_height, in_stride, layer_config, output, out_stride,
+ start_idx, cstep, channel_step);
+ }
+}