summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/x86/error_intrin_avx2.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/x86/error_intrin_avx2.c210
1 files changed, 210 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/x86/error_intrin_avx2.c b/third_party/aom/av1/encoder/x86/error_intrin_avx2.c
new file mode 100644
index 0000000000..57725d1795
--- /dev/null
+++ b/third_party/aom/av1/encoder/x86/error_intrin_avx2.c
@@ -0,0 +1,210 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <immintrin.h> // AVX2
+
+#include "config/av1_rtcd.h"
+
+#include "aom/aom_integer.h"
+
+static INLINE void read_coeff(const tran_low_t *coeff, intptr_t offset,
+ __m256i *c) {
+ const tran_low_t *addr = coeff + offset;
+
+ if (sizeof(tran_low_t) == 4) {
+ const __m256i x0 = _mm256_loadu_si256((const __m256i *)addr);
+ const __m256i x1 = _mm256_loadu_si256((const __m256i *)addr + 1);
+ const __m256i y = _mm256_packs_epi32(x0, x1);
+ *c = _mm256_permute4x64_epi64(y, 0xD8);
+ } else {
+ *c = _mm256_loadu_si256((const __m256i *)addr);
+ }
+}
+
+static INLINE void av1_block_error_num_coeff16_avx2(const int16_t *coeff,
+ const int16_t *dqcoeff,
+ __m256i *sse_256) {
+ const __m256i _coeff = _mm256_loadu_si256((const __m256i *)coeff);
+ const __m256i _dqcoeff = _mm256_loadu_si256((const __m256i *)dqcoeff);
+ // d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15
+ const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff);
+ // r0 r1 r2 r3 r4 r5 r6 r7
+ const __m256i error = _mm256_madd_epi16(diff, diff);
+ // r0+r1 r2+r3 | r0+r1 r2+r3 | r4+r5 r6+r7 | r4+r5 r6+r7
+ const __m256i error_hi = _mm256_hadd_epi32(error, error);
+ // r0+r1 | r2+r3 | r4+r5 | r6+r7
+ *sse_256 = _mm256_unpacklo_epi32(error_hi, _mm256_setzero_si256());
+}
+
+static INLINE void av1_block_error_num_coeff32_avx2(const int16_t *coeff,
+ const int16_t *dqcoeff,
+ __m256i *sse_256) {
+ const __m256i zero = _mm256_setzero_si256();
+ const __m256i _coeff_0 = _mm256_loadu_si256((const __m256i *)coeff);
+ const __m256i _dqcoeff_0 = _mm256_loadu_si256((const __m256i *)dqcoeff);
+ const __m256i _coeff_1 = _mm256_loadu_si256((const __m256i *)(coeff + 16));
+ const __m256i _dqcoeff_1 =
+ _mm256_loadu_si256((const __m256i *)(dqcoeff + 16));
+
+ // d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15
+ const __m256i diff_0 = _mm256_sub_epi16(_dqcoeff_0, _coeff_0);
+ const __m256i diff_1 = _mm256_sub_epi16(_dqcoeff_1, _coeff_1);
+
+ // r0 r1 r2 r3 r4 r5 r6 r7
+ const __m256i error_0 = _mm256_madd_epi16(diff_0, diff_0);
+ const __m256i error_1 = _mm256_madd_epi16(diff_1, diff_1);
+ const __m256i err_final_0 = _mm256_add_epi32(error_0, error_1);
+
+ // For extreme input values, the accumulation needs to happen in 64 bit
+ // precision to avoid any overflow.
+ const __m256i exp0_error_lo = _mm256_unpacklo_epi32(err_final_0, zero);
+ const __m256i exp0_error_hi = _mm256_unpackhi_epi32(err_final_0, zero);
+ const __m256i sum_temp_0 = _mm256_add_epi64(exp0_error_hi, exp0_error_lo);
+ *sse_256 = _mm256_add_epi64(*sse_256, sum_temp_0);
+}
+
+static INLINE void av1_block_error_num_coeff64_avx2(const int16_t *coeff,
+ const int16_t *dqcoeff,
+ __m256i *sse_256,
+ intptr_t num_coeff) {
+ const __m256i zero = _mm256_setzero_si256();
+ for (int i = 0; i < num_coeff; i += 64) {
+ // Load 64 elements for coeff and dqcoeff.
+ const __m256i _coeff_0 = _mm256_loadu_si256((const __m256i *)coeff);
+ const __m256i _dqcoeff_0 = _mm256_loadu_si256((const __m256i *)dqcoeff);
+ const __m256i _coeff_1 = _mm256_loadu_si256((const __m256i *)(coeff + 16));
+ const __m256i _dqcoeff_1 =
+ _mm256_loadu_si256((const __m256i *)(dqcoeff + 16));
+ const __m256i _coeff_2 = _mm256_loadu_si256((const __m256i *)(coeff + 32));
+ const __m256i _dqcoeff_2 =
+ _mm256_loadu_si256((const __m256i *)(dqcoeff + 32));
+ const __m256i _coeff_3 = _mm256_loadu_si256((const __m256i *)(coeff + 48));
+ const __m256i _dqcoeff_3 =
+ _mm256_loadu_si256((const __m256i *)(dqcoeff + 48));
+
+ // d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15
+ const __m256i diff_0 = _mm256_sub_epi16(_dqcoeff_0, _coeff_0);
+ const __m256i diff_1 = _mm256_sub_epi16(_dqcoeff_1, _coeff_1);
+ const __m256i diff_2 = _mm256_sub_epi16(_dqcoeff_2, _coeff_2);
+ const __m256i diff_3 = _mm256_sub_epi16(_dqcoeff_3, _coeff_3);
+
+ // r0 r1 r2 r3 r4 r5 r6 r7
+ const __m256i error_0 = _mm256_madd_epi16(diff_0, diff_0);
+ const __m256i error_1 = _mm256_madd_epi16(diff_1, diff_1);
+ const __m256i error_2 = _mm256_madd_epi16(diff_2, diff_2);
+ const __m256i error_3 = _mm256_madd_epi16(diff_3, diff_3);
+ // r00 r01 r02 r03 r04 r05 r06 r07
+ const __m256i err_final_0 = _mm256_add_epi32(error_0, error_1);
+ // r10 r11 r12 r13 r14 r15 r16 r17
+ const __m256i err_final_1 = _mm256_add_epi32(error_2, error_3);
+
+ // For extreme input values, the accumulation needs to happen in 64 bit
+ // precision to avoid any overflow. r00 r01 r04 r05
+ const __m256i exp0_error_lo = _mm256_unpacklo_epi32(err_final_0, zero);
+ // r02 r03 r06 r07
+ const __m256i exp0_error_hi = _mm256_unpackhi_epi32(err_final_0, zero);
+ // r10 r11 r14 r15
+ const __m256i exp1_error_lo = _mm256_unpacklo_epi32(err_final_1, zero);
+ // r12 r13 r16 r17
+ const __m256i exp1_error_hi = _mm256_unpackhi_epi32(err_final_1, zero);
+
+ const __m256i sum_temp_0 = _mm256_add_epi64(exp0_error_hi, exp0_error_lo);
+ const __m256i sum_temp_1 = _mm256_add_epi64(exp1_error_hi, exp1_error_lo);
+ const __m256i sse_256_temp = _mm256_add_epi64(sum_temp_1, sum_temp_0);
+ *sse_256 = _mm256_add_epi64(*sse_256, sse_256_temp);
+ coeff += 64;
+ dqcoeff += 64;
+ }
+}
+
+int64_t av1_block_error_lp_avx2(const int16_t *coeff, const int16_t *dqcoeff,
+ intptr_t num_coeff) {
+ assert(num_coeff % 16 == 0);
+ __m256i sse_256 = _mm256_setzero_si256();
+ int64_t sse;
+
+ if (num_coeff == 16)
+ av1_block_error_num_coeff16_avx2(coeff, dqcoeff, &sse_256);
+ else if (num_coeff == 32)
+ av1_block_error_num_coeff32_avx2(coeff, dqcoeff, &sse_256);
+ else
+ av1_block_error_num_coeff64_avx2(coeff, dqcoeff, &sse_256, num_coeff);
+
+ // Save the higher 64 bit of each 128 bit lane.
+ const __m256i sse_hi = _mm256_srli_si256(sse_256, 8);
+ // Add the higher 64 bit to the low 64 bit.
+ sse_256 = _mm256_add_epi64(sse_256, sse_hi);
+ // Accumulate the sse_256 register to get final sse
+ const __m128i sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256),
+ _mm256_extractf128_si256(sse_256, 1));
+
+ // Store the results.
+ _mm_storel_epi64((__m128i *)&sse, sse_128);
+ return sse;
+}
+
+int64_t av1_block_error_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff,
+ intptr_t block_size, int64_t *ssz) {
+ __m256i sse_reg, ssz_reg, coeff_reg, dqcoeff_reg;
+ __m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi;
+ __m256i sse_reg_64hi, ssz_reg_64hi;
+ __m128i sse_reg128, ssz_reg128;
+ int64_t sse;
+ int i;
+ const __m256i zero_reg = _mm256_setzero_si256();
+
+ // init sse and ssz registerd to zero
+ sse_reg = _mm256_setzero_si256();
+ ssz_reg = _mm256_setzero_si256();
+
+ for (i = 0; i < block_size; i += 16) {
+ // load 32 bytes from coeff and dqcoeff
+ read_coeff(coeff, i, &coeff_reg);
+ read_coeff(dqcoeff, i, &dqcoeff_reg);
+ // dqcoeff - coeff
+ dqcoeff_reg = _mm256_sub_epi16(dqcoeff_reg, coeff_reg);
+ // madd (dqcoeff - coeff)
+ dqcoeff_reg = _mm256_madd_epi16(dqcoeff_reg, dqcoeff_reg);
+ // madd coeff
+ coeff_reg = _mm256_madd_epi16(coeff_reg, coeff_reg);
+ // expand each double word of madd (dqcoeff - coeff) to quad word
+ exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg);
+ exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg, zero_reg);
+ // expand each double word of madd (coeff) to quad word
+ exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg, zero_reg);
+ exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg, zero_reg);
+ // add each quad word of madd (dqcoeff - coeff) and madd (coeff)
+ sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo);
+ ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo);
+ sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi);
+ ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi);
+ }
+ // save the higher 64 bit of each 128 bit lane
+ sse_reg_64hi = _mm256_srli_si256(sse_reg, 8);
+ ssz_reg_64hi = _mm256_srli_si256(ssz_reg, 8);
+ // add the higher 64 bit to the low 64 bit
+ sse_reg = _mm256_add_epi64(sse_reg, sse_reg_64hi);
+ ssz_reg = _mm256_add_epi64(ssz_reg, ssz_reg_64hi);
+
+ // add each 64 bit from each of the 128 bit lane of the 256 bit
+ sse_reg128 = _mm_add_epi64(_mm256_castsi256_si128(sse_reg),
+ _mm256_extractf128_si256(sse_reg, 1));
+
+ ssz_reg128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_reg),
+ _mm256_extractf128_si256(ssz_reg, 1));
+
+ // store the results
+ _mm_storel_epi64((__m128i *)(&sse), sse_reg128);
+
+ _mm_storel_epi64((__m128i *)(ssz), ssz_reg128);
+ _mm256_zeroupper();
+ return sse;
+}