summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/x86/ml_avx2.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/av1/encoder/x86/ml_avx2.c240
1 files changed, 240 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/x86/ml_avx2.c b/third_party/aom/av1/encoder/x86/ml_avx2.c
new file mode 100644
index 0000000000..6432708416
--- /dev/null
+++ b/third_party/aom/av1/encoder/x86/ml_avx2.c
@@ -0,0 +1,240 @@
+/*
+ * Copyright (c) 2023, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <stdbool.h>
+#include <assert.h>
+#include <immintrin.h>
+
+#include "config/av1_rtcd.h"
+#include "av1/encoder/ml.h"
+#include "av1/encoder/x86/ml_sse3.h"
+
+#define CALC_OUTPUT_FOR_2ROWS \
+ const int index = weight_idx + (2 * i * tot_num_inputs); \
+ const __m256 weight0 = _mm256_loadu_ps(&weights[index]); \
+ const __m256 weight1 = _mm256_loadu_ps(&weights[index + tot_num_inputs]); \
+ const __m256 mul0 = _mm256_mul_ps(inputs256, weight0); \
+ const __m256 mul1 = _mm256_mul_ps(inputs256, weight1); \
+ hadd[i] = _mm256_hadd_ps(mul0, mul1);
+
+static INLINE void nn_propagate_8to1(
+ const float *const inputs, const float *const weights,
+ const float *const bias, int num_inputs_to_process, int tot_num_inputs,
+ int num_outputs, float *const output_nodes, int is_clip_required) {
+ // Process one output row at a time.
+ for (int out = 0; out < num_outputs; out++) {
+ __m256 in_result = _mm256_setzero_ps();
+ float bias_val = bias[out];
+ for (int in = 0; in < num_inputs_to_process; in += 8) {
+ const __m256 inputs256 = _mm256_loadu_ps(&inputs[in]);
+ const int weight_idx = in + (out * tot_num_inputs);
+ const __m256 weight0 = _mm256_loadu_ps(&weights[weight_idx]);
+ const __m256 mul0 = _mm256_mul_ps(inputs256, weight0);
+ in_result = _mm256_add_ps(in_result, mul0);
+ }
+ const __m128 low_128 = _mm256_castps256_ps128(in_result);
+ const __m128 high_128 = _mm256_extractf128_ps(in_result, 1);
+ const __m128 sum_par_0 = _mm_add_ps(low_128, high_128);
+ const __m128 sum_par_1 = _mm_hadd_ps(sum_par_0, sum_par_0);
+ const __m128 sum_tot =
+ _mm_add_ps(_mm_shuffle_ps(sum_par_1, sum_par_1, 0x99), sum_par_1);
+
+ bias_val += _mm_cvtss_f32(sum_tot);
+ if (is_clip_required) bias_val = AOMMAX(bias_val, 0);
+ output_nodes[out] = bias_val;
+ }
+}
+
+static INLINE void nn_propagate_8to4(
+ const float *const inputs, const float *const weights,
+ const float *const bias, int num_inputs_to_process, int tot_num_inputs,
+ int num_outputs, float *const output_nodes, int is_clip_required) {
+ __m256 hadd[2];
+ for (int out = 0; out < num_outputs; out += 4) {
+ __m128 bias_reg = _mm_loadu_ps(&bias[out]);
+ __m128 in_result = _mm_setzero_ps();
+ for (int in = 0; in < num_inputs_to_process; in += 8) {
+ const __m256 inputs256 = _mm256_loadu_ps(&inputs[in]);
+ const int weight_idx = in + (out * tot_num_inputs);
+ // Process two output row at a time.
+ for (int i = 0; i < 2; i++) {
+ CALC_OUTPUT_FOR_2ROWS
+ }
+
+ const __m256 sum_par = _mm256_hadd_ps(hadd[0], hadd[1]);
+ const __m128 low_128 = _mm256_castps256_ps128(sum_par);
+ const __m128 high_128 = _mm256_extractf128_ps(sum_par, 1);
+ const __m128 result = _mm_add_ps(low_128, high_128);
+
+ in_result = _mm_add_ps(in_result, result);
+ }
+
+ in_result = _mm_add_ps(in_result, bias_reg);
+ if (is_clip_required) in_result = _mm_max_ps(in_result, _mm_setzero_ps());
+ _mm_storeu_ps(&output_nodes[out], in_result);
+ }
+}
+
+static INLINE void nn_propagate_8to8(
+ const float *const inputs, const float *const weights,
+ const float *const bias, int num_inputs_to_process, int tot_num_inputs,
+ int num_outputs, float *const output_nodes, int is_clip_required) {
+ __m256 hadd[4];
+ for (int out = 0; out < num_outputs; out += 8) {
+ __m256 bias_reg = _mm256_loadu_ps(&bias[out]);
+ __m256 in_result = _mm256_setzero_ps();
+ for (int in = 0; in < num_inputs_to_process; in += 8) {
+ const __m256 inputs256 = _mm256_loadu_ps(&inputs[in]);
+ const int weight_idx = in + (out * tot_num_inputs);
+ // Process two output rows at a time.
+ for (int i = 0; i < 4; i++) {
+ CALC_OUTPUT_FOR_2ROWS
+ }
+ const __m256 hh0 = _mm256_hadd_ps(hadd[0], hadd[1]);
+ const __m256 hh1 = _mm256_hadd_ps(hadd[2], hadd[3]);
+
+ __m256 ht_0 = _mm256_permute2f128_ps(hh0, hh1, 0x20);
+ __m256 ht_1 = _mm256_permute2f128_ps(hh0, hh1, 0x31);
+
+ __m256 result = _mm256_add_ps(ht_0, ht_1);
+ in_result = _mm256_add_ps(in_result, result);
+ }
+ in_result = _mm256_add_ps(in_result, bias_reg);
+ if (is_clip_required)
+ in_result = _mm256_max_ps(in_result, _mm256_setzero_ps());
+ _mm256_storeu_ps(&output_nodes[out], in_result);
+ }
+}
+
+static INLINE void nn_propagate_input_multiple_of_8(
+ const float *const inputs, const float *const weights,
+ const float *const bias, int num_inputs_to_process, int tot_num_inputs,
+ bool is_output_layer, int num_outputs, float *const output_nodes) {
+ // The saturation of output is considered for hidden layer which is not equal
+ // to final hidden layer.
+ const int is_clip_required =
+ !is_output_layer && num_inputs_to_process == tot_num_inputs;
+ if (num_outputs % 8 == 0) {
+ nn_propagate_8to8(inputs, weights, bias, num_inputs_to_process,
+ tot_num_inputs, num_outputs, output_nodes,
+ is_clip_required);
+ } else if (num_outputs % 4 == 0) {
+ nn_propagate_8to4(inputs, weights, bias, num_inputs_to_process,
+ tot_num_inputs, num_outputs, output_nodes,
+ is_clip_required);
+ } else {
+ nn_propagate_8to1(inputs, weights, bias, num_inputs_to_process,
+ tot_num_inputs, num_outputs, output_nodes,
+ is_clip_required);
+ }
+}
+
+void av1_nn_predict_avx2(const float *input_nodes,
+ const NN_CONFIG *const nn_config, int reduce_prec,
+ float *const output) {
+ float buf[2][NN_MAX_NODES_PER_LAYER];
+ int buf_index = 0;
+ int num_inputs = nn_config->num_inputs;
+ assert(num_inputs > 0 && num_inputs <= NN_MAX_NODES_PER_LAYER);
+
+ for (int layer = 0; layer <= nn_config->num_hidden_layers; layer++) {
+ const float *layer_weights = nn_config->weights[layer];
+ const float *layer_bias = nn_config->bias[layer];
+ bool is_output_layer = layer == nn_config->num_hidden_layers;
+ float *const output_nodes = is_output_layer ? output : &buf[buf_index][0];
+ const int num_outputs = is_output_layer
+ ? nn_config->num_outputs
+ : nn_config->num_hidden_nodes[layer];
+ assert(num_outputs > 0 && num_outputs <= NN_MAX_NODES_PER_LAYER);
+
+ // Process input multiple of 8 using AVX2 intrinsic.
+ if (num_inputs % 8 == 0) {
+ nn_propagate_input_multiple_of_8(input_nodes, layer_weights, layer_bias,
+ num_inputs, num_inputs, is_output_layer,
+ num_outputs, output_nodes);
+ } else {
+ // When number of inputs is not multiple of 8, use hybrid approach of AVX2
+ // and SSE3 based on the need.
+ const int in_mul_8 = num_inputs / 8;
+ const int num_inputs_to_process = in_mul_8 * 8;
+ int bias_is_considered = 0;
+ if (in_mul_8) {
+ nn_propagate_input_multiple_of_8(
+ input_nodes, layer_weights, layer_bias, num_inputs_to_process,
+ num_inputs, is_output_layer, num_outputs, output_nodes);
+ bias_is_considered = 1;
+ }
+
+ const float *out_temp = bias_is_considered ? output_nodes : layer_bias;
+ const int input_remaining = num_inputs % 8;
+ if (input_remaining % 4 == 0 && num_outputs % 8 == 0) {
+ for (int out = 0; out < num_outputs; out += 8) {
+ __m128 out_h = _mm_loadu_ps(&out_temp[out + 4]);
+ __m128 out_l = _mm_loadu_ps(&out_temp[out]);
+ for (int in = in_mul_8 * 8; in < num_inputs; in += 4) {
+ av1_nn_propagate_4to8_sse3(&input_nodes[in],
+ &layer_weights[out * num_inputs + in],
+ &out_h, &out_l, num_inputs);
+ }
+ if (!is_output_layer) {
+ const __m128 zero = _mm_setzero_ps();
+ out_h = _mm_max_ps(out_h, zero);
+ out_l = _mm_max_ps(out_l, zero);
+ }
+ _mm_storeu_ps(&output_nodes[out + 4], out_h);
+ _mm_storeu_ps(&output_nodes[out], out_l);
+ }
+ } else if (input_remaining % 4 == 0 && num_outputs % 4 == 0) {
+ for (int out = 0; out < num_outputs; out += 4) {
+ __m128 outputs = _mm_loadu_ps(&out_temp[out]);
+ for (int in = in_mul_8 * 8; in < num_inputs; in += 4) {
+ av1_nn_propagate_4to4_sse3(&input_nodes[in],
+ &layer_weights[out * num_inputs + in],
+ &outputs, num_inputs);
+ }
+ if (!is_output_layer) outputs = _mm_max_ps(outputs, _mm_setzero_ps());
+ _mm_storeu_ps(&output_nodes[out], outputs);
+ }
+ } else if (input_remaining % 4 == 0) {
+ for (int out = 0; out < num_outputs; out++) {
+ __m128 outputs = _mm_load1_ps(&out_temp[out]);
+ for (int in = in_mul_8 * 8; in < num_inputs; in += 4) {
+ av1_nn_propagate_4to1_sse3(&input_nodes[in],
+ &layer_weights[out * num_inputs + in],
+ &outputs);
+ }
+ if (!is_output_layer) outputs = _mm_max_ps(outputs, _mm_setzero_ps());
+ output_nodes[out] = _mm_cvtss_f32(outputs);
+ }
+ } else {
+ // Use SSE instructions for scalar operations to avoid the latency
+ // of swapping between SIMD and FPU modes.
+ for (int out = 0; out < num_outputs; out++) {
+ __m128 outputs = _mm_load1_ps(&out_temp[out]);
+ for (int in_node = in_mul_8 * 8; in_node < num_inputs; in_node++) {
+ __m128 input = _mm_load1_ps(&input_nodes[in_node]);
+ __m128 weight =
+ _mm_load1_ps(&layer_weights[num_inputs * out + in_node]);
+ outputs = _mm_add_ps(outputs, _mm_mul_ps(input, weight));
+ }
+ if (!is_output_layer) outputs = _mm_max_ps(outputs, _mm_setzero_ps());
+ output_nodes[out] = _mm_cvtss_f32(outputs);
+ }
+ }
+ }
+ // Before processing the next layer, treat the output of current layer as
+ // input to next layer.
+ input_nodes = output_nodes;
+ num_inputs = num_outputs;
+ buf_index = 1 - buf_index;
+ }
+ if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs);
+}