summaryrefslogtreecommitdiffstats
path: root/third_party/aom/examples/svc_encoder_rtc.cc
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/examples/svc_encoder_rtc.cc2062
1 files changed, 2062 insertions, 0 deletions
diff --git a/third_party/aom/examples/svc_encoder_rtc.cc b/third_party/aom/examples/svc_encoder_rtc.cc
new file mode 100644
index 0000000000..2c041081e5
--- /dev/null
+++ b/third_party/aom/examples/svc_encoder_rtc.cc
@@ -0,0 +1,2062 @@
+/*
+ * Copyright (c) 2019, Alliance for Open Media. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+// This is an example demonstrating how to implement a multi-layer AOM
+// encoding scheme for RTC video applications.
+
+#include <assert.h>
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include <memory>
+
+#include "config/aom_config.h"
+
+#if CONFIG_AV1_DECODER
+#include "aom/aom_decoder.h"
+#endif
+#include "aom/aom_encoder.h"
+#include "aom/aomcx.h"
+#include "common/args.h"
+#include "common/tools_common.h"
+#include "common/video_writer.h"
+#include "examples/encoder_util.h"
+#include "aom_ports/aom_timer.h"
+#include "av1/ratectrl_rtc.h"
+
+#define OPTION_BUFFER_SIZE 1024
+
+typedef struct {
+ const char *output_filename;
+ char options[OPTION_BUFFER_SIZE];
+ struct AvxInputContext input_ctx;
+ int speed;
+ int aq_mode;
+ int layering_mode;
+ int output_obu;
+ int decode;
+ int tune_content;
+ int show_psnr;
+ bool use_external_rc;
+} AppInput;
+
+typedef enum {
+ QUANTIZER = 0,
+ BITRATE,
+ SCALE_FACTOR,
+ AUTO_ALT_REF,
+ ALL_OPTION_TYPES
+} LAYER_OPTION_TYPE;
+
+static const arg_def_t outputfile =
+ ARG_DEF("o", "output", 1, "Output filename");
+static const arg_def_t frames_arg =
+ ARG_DEF("f", "frames", 1, "Number of frames to encode");
+static const arg_def_t threads_arg =
+ ARG_DEF("th", "threads", 1, "Number of threads to use");
+static const arg_def_t width_arg = ARG_DEF("w", "width", 1, "Source width");
+static const arg_def_t height_arg = ARG_DEF("h", "height", 1, "Source height");
+static const arg_def_t timebase_arg =
+ ARG_DEF("t", "timebase", 1, "Timebase (num/den)");
+static const arg_def_t bitrate_arg = ARG_DEF(
+ "b", "target-bitrate", 1, "Encoding bitrate, in kilobits per second");
+static const arg_def_t spatial_layers_arg =
+ ARG_DEF("sl", "spatial-layers", 1, "Number of spatial SVC layers");
+static const arg_def_t temporal_layers_arg =
+ ARG_DEF("tl", "temporal-layers", 1, "Number of temporal SVC layers");
+static const arg_def_t layering_mode_arg =
+ ARG_DEF("lm", "layering-mode", 1, "Temporal layering scheme.");
+static const arg_def_t kf_dist_arg =
+ ARG_DEF("k", "kf-dist", 1, "Number of frames between keyframes");
+static const arg_def_t scale_factors_arg =
+ ARG_DEF("r", "scale-factors", 1, "Scale factors (lowest to highest layer)");
+static const arg_def_t min_q_arg =
+ ARG_DEF(NULL, "min-q", 1, "Minimum quantizer");
+static const arg_def_t max_q_arg =
+ ARG_DEF(NULL, "max-q", 1, "Maximum quantizer");
+static const arg_def_t speed_arg =
+ ARG_DEF("sp", "speed", 1, "Speed configuration");
+static const arg_def_t aqmode_arg =
+ ARG_DEF("aq", "aqmode", 1, "AQ mode off/on");
+static const arg_def_t bitrates_arg =
+ ARG_DEF("bl", "bitrates", 1,
+ "Bitrates[spatial_layer * num_temporal_layer + temporal_layer]");
+static const arg_def_t dropframe_thresh_arg =
+ ARG_DEF(NULL, "drop-frame", 1, "Temporal resampling threshold (buf %)");
+static const arg_def_t error_resilient_arg =
+ ARG_DEF(NULL, "error-resilient", 1, "Error resilient flag");
+static const arg_def_t output_obu_arg =
+ ARG_DEF(NULL, "output-obu", 1,
+ "Write OBUs when set to 1. Otherwise write IVF files.");
+static const arg_def_t test_decode_arg =
+ ARG_DEF(NULL, "test-decode", 1,
+ "Attempt to test decoding the output when set to 1. Default is 1.");
+static const arg_def_t psnr_arg =
+ ARG_DEF(NULL, "psnr", -1, "Show PSNR in status line.");
+static const arg_def_t ext_rc_arg =
+ ARG_DEF(NULL, "use-ext-rc", 0, "Use external rate control.");
+static const struct arg_enum_list tune_content_enum[] = {
+ { "default", AOM_CONTENT_DEFAULT },
+ { "screen", AOM_CONTENT_SCREEN },
+ { "film", AOM_CONTENT_FILM },
+ { NULL, 0 }
+};
+static const arg_def_t tune_content_arg = ARG_DEF_ENUM(
+ NULL, "tune-content", 1, "Tune content type", tune_content_enum);
+
+#if CONFIG_AV1_HIGHBITDEPTH
+static const struct arg_enum_list bitdepth_enum[] = { { "8", AOM_BITS_8 },
+ { "10", AOM_BITS_10 },
+ { NULL, 0 } };
+
+static const arg_def_t bitdepth_arg = ARG_DEF_ENUM(
+ "d", "bit-depth", 1, "Bit depth for codec 8 or 10. ", bitdepth_enum);
+#endif // CONFIG_AV1_HIGHBITDEPTH
+
+static const arg_def_t *svc_args[] = {
+ &frames_arg, &outputfile, &width_arg,
+ &height_arg, &timebase_arg, &bitrate_arg,
+ &spatial_layers_arg, &kf_dist_arg, &scale_factors_arg,
+ &min_q_arg, &max_q_arg, &temporal_layers_arg,
+ &layering_mode_arg, &threads_arg, &aqmode_arg,
+#if CONFIG_AV1_HIGHBITDEPTH
+ &bitdepth_arg,
+#endif
+ &speed_arg, &bitrates_arg, &dropframe_thresh_arg,
+ &error_resilient_arg, &output_obu_arg, &test_decode_arg,
+ &tune_content_arg, &psnr_arg, NULL,
+};
+
+#define zero(Dest) memset(&(Dest), 0, sizeof(Dest))
+
+static const char *exec_name;
+
+void usage_exit(void) {
+ fprintf(stderr, "Usage: %s <options> input_filename -o output_filename\n",
+ exec_name);
+ fprintf(stderr, "Options:\n");
+ arg_show_usage(stderr, svc_args);
+ exit(EXIT_FAILURE);
+}
+
+static int file_is_y4m(const char detect[4]) {
+ return memcmp(detect, "YUV4", 4) == 0;
+}
+
+static int fourcc_is_ivf(const char detect[4]) {
+ if (memcmp(detect, "DKIF", 4) == 0) {
+ return 1;
+ }
+ return 0;
+}
+
+static const int option_max_values[ALL_OPTION_TYPES] = { 63, INT_MAX, INT_MAX,
+ 1 };
+
+static const int option_min_values[ALL_OPTION_TYPES] = { 0, 0, 1, 0 };
+
+static void open_input_file(struct AvxInputContext *input,
+ aom_chroma_sample_position_t csp) {
+ /* Parse certain options from the input file, if possible */
+ input->file = strcmp(input->filename, "-") ? fopen(input->filename, "rb")
+ : set_binary_mode(stdin);
+
+ if (!input->file) fatal("Failed to open input file");
+
+ if (!fseeko(input->file, 0, SEEK_END)) {
+ /* Input file is seekable. Figure out how long it is, so we can get
+ * progress info.
+ */
+ input->length = ftello(input->file);
+ rewind(input->file);
+ }
+
+ /* Default to 1:1 pixel aspect ratio. */
+ input->pixel_aspect_ratio.numerator = 1;
+ input->pixel_aspect_ratio.denominator = 1;
+
+ /* For RAW input sources, these bytes will applied on the first frame
+ * in read_frame().
+ */
+ input->detect.buf_read = fread(input->detect.buf, 1, 4, input->file);
+ input->detect.position = 0;
+
+ if (input->detect.buf_read == 4 && file_is_y4m(input->detect.buf)) {
+ if (y4m_input_open(&input->y4m, input->file, input->detect.buf, 4, csp,
+ input->only_i420) >= 0) {
+ input->file_type = FILE_TYPE_Y4M;
+ input->width = input->y4m.pic_w;
+ input->height = input->y4m.pic_h;
+ input->pixel_aspect_ratio.numerator = input->y4m.par_n;
+ input->pixel_aspect_ratio.denominator = input->y4m.par_d;
+ input->framerate.numerator = input->y4m.fps_n;
+ input->framerate.denominator = input->y4m.fps_d;
+ input->fmt = input->y4m.aom_fmt;
+ input->bit_depth = static_cast<aom_bit_depth_t>(input->y4m.bit_depth);
+ } else {
+ fatal("Unsupported Y4M stream.");
+ }
+ } else if (input->detect.buf_read == 4 && fourcc_is_ivf(input->detect.buf)) {
+ fatal("IVF is not supported as input.");
+ } else {
+ input->file_type = FILE_TYPE_RAW;
+ }
+}
+
+static aom_codec_err_t extract_option(LAYER_OPTION_TYPE type, char *input,
+ int *value0, int *value1) {
+ if (type == SCALE_FACTOR) {
+ *value0 = (int)strtol(input, &input, 10);
+ if (*input++ != '/') return AOM_CODEC_INVALID_PARAM;
+ *value1 = (int)strtol(input, &input, 10);
+
+ if (*value0 < option_min_values[SCALE_FACTOR] ||
+ *value1 < option_min_values[SCALE_FACTOR] ||
+ *value0 > option_max_values[SCALE_FACTOR] ||
+ *value1 > option_max_values[SCALE_FACTOR] ||
+ *value0 > *value1) // num shouldn't be greater than den
+ return AOM_CODEC_INVALID_PARAM;
+ } else {
+ *value0 = atoi(input);
+ if (*value0 < option_min_values[type] || *value0 > option_max_values[type])
+ return AOM_CODEC_INVALID_PARAM;
+ }
+ return AOM_CODEC_OK;
+}
+
+static aom_codec_err_t parse_layer_options_from_string(
+ aom_svc_params_t *svc_params, LAYER_OPTION_TYPE type, const char *input,
+ int *option0, int *option1) {
+ aom_codec_err_t res = AOM_CODEC_OK;
+ char *input_string;
+ char *token;
+ const char *delim = ",";
+ int num_layers = svc_params->number_spatial_layers;
+ int i = 0;
+
+ if (type == BITRATE)
+ num_layers =
+ svc_params->number_spatial_layers * svc_params->number_temporal_layers;
+
+ if (input == NULL || option0 == NULL ||
+ (option1 == NULL && type == SCALE_FACTOR))
+ return AOM_CODEC_INVALID_PARAM;
+
+ const size_t input_length = strlen(input);
+ input_string = reinterpret_cast<char *>(malloc(input_length + 1));
+ if (input_string == NULL) return AOM_CODEC_MEM_ERROR;
+ memcpy(input_string, input, input_length + 1);
+ token = strtok(input_string, delim); // NOLINT
+ for (i = 0; i < num_layers; ++i) {
+ if (token != NULL) {
+ res = extract_option(type, token, option0 + i, option1 + i);
+ if (res != AOM_CODEC_OK) break;
+ token = strtok(NULL, delim); // NOLINT
+ } else {
+ res = AOM_CODEC_INVALID_PARAM;
+ break;
+ }
+ }
+ free(input_string);
+ return res;
+}
+
+static void parse_command_line(int argc, const char **argv_,
+ AppInput *app_input,
+ aom_svc_params_t *svc_params,
+ aom_codec_enc_cfg_t *enc_cfg) {
+ struct arg arg;
+ char **argv = NULL;
+ char **argi = NULL;
+ char **argj = NULL;
+ char string_options[1024] = { 0 };
+
+ // Default settings
+ svc_params->number_spatial_layers = 1;
+ svc_params->number_temporal_layers = 1;
+ app_input->layering_mode = 0;
+ app_input->output_obu = 0;
+ app_input->decode = 1;
+ enc_cfg->g_threads = 1;
+ enc_cfg->rc_end_usage = AOM_CBR;
+
+ // process command line options
+ argv = argv_dup(argc - 1, argv_ + 1);
+ if (!argv) {
+ fprintf(stderr, "Error allocating argument list\n");
+ exit(EXIT_FAILURE);
+ }
+ for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) {
+ arg.argv_step = 1;
+
+ if (arg_match(&arg, &outputfile, argi)) {
+ app_input->output_filename = arg.val;
+ } else if (arg_match(&arg, &width_arg, argi)) {
+ enc_cfg->g_w = arg_parse_uint(&arg);
+ } else if (arg_match(&arg, &height_arg, argi)) {
+ enc_cfg->g_h = arg_parse_uint(&arg);
+ } else if (arg_match(&arg, &timebase_arg, argi)) {
+ enc_cfg->g_timebase = arg_parse_rational(&arg);
+ } else if (arg_match(&arg, &bitrate_arg, argi)) {
+ enc_cfg->rc_target_bitrate = arg_parse_uint(&arg);
+ } else if (arg_match(&arg, &spatial_layers_arg, argi)) {
+ svc_params->number_spatial_layers = arg_parse_uint(&arg);
+ } else if (arg_match(&arg, &temporal_layers_arg, argi)) {
+ svc_params->number_temporal_layers = arg_parse_uint(&arg);
+ } else if (arg_match(&arg, &speed_arg, argi)) {
+ app_input->speed = arg_parse_uint(&arg);
+ if (app_input->speed > 11) {
+ aom_tools_warn("Mapping speed %d to speed 11.\n", app_input->speed);
+ }
+ } else if (arg_match(&arg, &aqmode_arg, argi)) {
+ app_input->aq_mode = arg_parse_uint(&arg);
+ } else if (arg_match(&arg, &threads_arg, argi)) {
+ enc_cfg->g_threads = arg_parse_uint(&arg);
+ } else if (arg_match(&arg, &layering_mode_arg, argi)) {
+ app_input->layering_mode = arg_parse_int(&arg);
+ } else if (arg_match(&arg, &kf_dist_arg, argi)) {
+ enc_cfg->kf_min_dist = arg_parse_uint(&arg);
+ enc_cfg->kf_max_dist = enc_cfg->kf_min_dist;
+ } else if (arg_match(&arg, &scale_factors_arg, argi)) {
+ aom_codec_err_t res = parse_layer_options_from_string(
+ svc_params, SCALE_FACTOR, arg.val, svc_params->scaling_factor_num,
+ svc_params->scaling_factor_den);
+ if (res != AOM_CODEC_OK) {
+ die("Failed to parse scale factors: %s\n",
+ aom_codec_err_to_string(res));
+ }
+ } else if (arg_match(&arg, &min_q_arg, argi)) {
+ enc_cfg->rc_min_quantizer = arg_parse_uint(&arg);
+ } else if (arg_match(&arg, &max_q_arg, argi)) {
+ enc_cfg->rc_max_quantizer = arg_parse_uint(&arg);
+#if CONFIG_AV1_HIGHBITDEPTH
+ } else if (arg_match(&arg, &bitdepth_arg, argi)) {
+ enc_cfg->g_bit_depth =
+ static_cast<aom_bit_depth_t>(arg_parse_enum_or_int(&arg));
+ switch (enc_cfg->g_bit_depth) {
+ case AOM_BITS_8:
+ enc_cfg->g_input_bit_depth = 8;
+ enc_cfg->g_profile = 0;
+ break;
+ case AOM_BITS_10:
+ enc_cfg->g_input_bit_depth = 10;
+ enc_cfg->g_profile = 0;
+ break;
+ default:
+ die("Error: Invalid bit depth selected (%d)\n", enc_cfg->g_bit_depth);
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ } else if (arg_match(&arg, &dropframe_thresh_arg, argi)) {
+ enc_cfg->rc_dropframe_thresh = arg_parse_uint(&arg);
+ } else if (arg_match(&arg, &error_resilient_arg, argi)) {
+ enc_cfg->g_error_resilient = arg_parse_uint(&arg);
+ if (enc_cfg->g_error_resilient != 0 && enc_cfg->g_error_resilient != 1)
+ die("Invalid value for error resilient (0, 1): %d.",
+ enc_cfg->g_error_resilient);
+ } else if (arg_match(&arg, &output_obu_arg, argi)) {
+ app_input->output_obu = arg_parse_uint(&arg);
+ if (app_input->output_obu != 0 && app_input->output_obu != 1)
+ die("Invalid value for obu output flag (0, 1): %d.",
+ app_input->output_obu);
+ } else if (arg_match(&arg, &test_decode_arg, argi)) {
+ app_input->decode = arg_parse_uint(&arg);
+ if (app_input->decode != 0 && app_input->decode != 1)
+ die("Invalid value for test decode flag (0, 1): %d.",
+ app_input->decode);
+ } else if (arg_match(&arg, &tune_content_arg, argi)) {
+ app_input->tune_content = arg_parse_enum_or_int(&arg);
+ printf("tune content %d\n", app_input->tune_content);
+ } else if (arg_match(&arg, &psnr_arg, argi)) {
+ app_input->show_psnr = 1;
+ } else if (arg_match(&arg, &ext_rc_arg, argi)) {
+ app_input->use_external_rc = true;
+ } else {
+ ++argj;
+ }
+ }
+
+ // Total bitrate needs to be parsed after the number of layers.
+ for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) {
+ arg.argv_step = 1;
+ if (arg_match(&arg, &bitrates_arg, argi)) {
+ aom_codec_err_t res = parse_layer_options_from_string(
+ svc_params, BITRATE, arg.val, svc_params->layer_target_bitrate, NULL);
+ if (res != AOM_CODEC_OK) {
+ die("Failed to parse bitrates: %s\n", aom_codec_err_to_string(res));
+ }
+ } else {
+ ++argj;
+ }
+ }
+
+ // There will be a space in front of the string options
+ if (strlen(string_options) > 0)
+ strncpy(app_input->options, string_options, OPTION_BUFFER_SIZE);
+
+ // Check for unrecognized options
+ for (argi = argv; *argi; ++argi)
+ if (argi[0][0] == '-' && strlen(argi[0]) > 1)
+ die("Error: Unrecognized option %s\n", *argi);
+
+ if (argv[0] == NULL) {
+ usage_exit();
+ }
+
+ app_input->input_ctx.filename = argv[0];
+ free(argv);
+
+ open_input_file(&app_input->input_ctx, AOM_CSP_UNKNOWN);
+ if (app_input->input_ctx.file_type == FILE_TYPE_Y4M) {
+ enc_cfg->g_w = app_input->input_ctx.width;
+ enc_cfg->g_h = app_input->input_ctx.height;
+ }
+
+ if (enc_cfg->g_w < 16 || enc_cfg->g_w % 2 || enc_cfg->g_h < 16 ||
+ enc_cfg->g_h % 2)
+ die("Invalid resolution: %d x %d\n", enc_cfg->g_w, enc_cfg->g_h);
+
+ printf(
+ "Codec %s\n"
+ "layers: %d\n"
+ "width %u, height: %u\n"
+ "num: %d, den: %d, bitrate: %u\n"
+ "gop size: %u\n",
+ aom_codec_iface_name(aom_codec_av1_cx()),
+ svc_params->number_spatial_layers, enc_cfg->g_w, enc_cfg->g_h,
+ enc_cfg->g_timebase.num, enc_cfg->g_timebase.den,
+ enc_cfg->rc_target_bitrate, enc_cfg->kf_max_dist);
+}
+
+static int mode_to_num_temporal_layers[12] = {
+ 1, 2, 3, 3, 2, 1, 1, 3, 3, 3, 3, 3,
+};
+static int mode_to_num_spatial_layers[12] = {
+ 1, 1, 1, 1, 1, 2, 3, 2, 3, 3, 3, 3,
+};
+
+// For rate control encoding stats.
+struct RateControlMetrics {
+ // Number of input frames per layer.
+ int layer_input_frames[AOM_MAX_TS_LAYERS];
+ // Number of encoded non-key frames per layer.
+ int layer_enc_frames[AOM_MAX_TS_LAYERS];
+ // Framerate per layer layer (cumulative).
+ double layer_framerate[AOM_MAX_TS_LAYERS];
+ // Target average frame size per layer (per-frame-bandwidth per layer).
+ double layer_pfb[AOM_MAX_LAYERS];
+ // Actual average frame size per layer.
+ double layer_avg_frame_size[AOM_MAX_LAYERS];
+ // Average rate mismatch per layer (|target - actual| / target).
+ double layer_avg_rate_mismatch[AOM_MAX_LAYERS];
+ // Actual encoding bitrate per layer (cumulative across temporal layers).
+ double layer_encoding_bitrate[AOM_MAX_LAYERS];
+ // Average of the short-time encoder actual bitrate.
+ // TODO(marpan): Should we add these short-time stats for each layer?
+ double avg_st_encoding_bitrate;
+ // Variance of the short-time encoder actual bitrate.
+ double variance_st_encoding_bitrate;
+ // Window (number of frames) for computing short-timee encoding bitrate.
+ int window_size;
+ // Number of window measurements.
+ int window_count;
+ int layer_target_bitrate[AOM_MAX_LAYERS];
+};
+
+static const int REF_FRAMES = 8;
+
+static const int INTER_REFS_PER_FRAME = 7;
+
+// Reference frames used in this example encoder.
+enum {
+ SVC_LAST_FRAME = 0,
+ SVC_LAST2_FRAME,
+ SVC_LAST3_FRAME,
+ SVC_GOLDEN_FRAME,
+ SVC_BWDREF_FRAME,
+ SVC_ALTREF2_FRAME,
+ SVC_ALTREF_FRAME
+};
+
+static int read_frame(struct AvxInputContext *input_ctx, aom_image_t *img) {
+ FILE *f = input_ctx->file;
+ y4m_input *y4m = &input_ctx->y4m;
+ int shortread = 0;
+
+ if (input_ctx->file_type == FILE_TYPE_Y4M) {
+ if (y4m_input_fetch_frame(y4m, f, img) < 1) return 0;
+ } else {
+ shortread = read_yuv_frame(input_ctx, img);
+ }
+
+ return !shortread;
+}
+
+static void close_input_file(struct AvxInputContext *input) {
+ fclose(input->file);
+ if (input->file_type == FILE_TYPE_Y4M) y4m_input_close(&input->y4m);
+}
+
+// Note: these rate control metrics assume only 1 key frame in the
+// sequence (i.e., first frame only). So for temporal pattern# 7
+// (which has key frame for every frame on base layer), the metrics
+// computation will be off/wrong.
+// TODO(marpan): Update these metrics to account for multiple key frames
+// in the stream.
+static void set_rate_control_metrics(struct RateControlMetrics *rc,
+ double framerate, int ss_number_layers,
+ int ts_number_layers) {
+ int ts_rate_decimator[AOM_MAX_TS_LAYERS] = { 1 };
+ ts_rate_decimator[0] = 1;
+ if (ts_number_layers == 2) {
+ ts_rate_decimator[0] = 2;
+ ts_rate_decimator[1] = 1;
+ }
+ if (ts_number_layers == 3) {
+ ts_rate_decimator[0] = 4;
+ ts_rate_decimator[1] = 2;
+ ts_rate_decimator[2] = 1;
+ }
+ // Set the layer (cumulative) framerate and the target layer (non-cumulative)
+ // per-frame-bandwidth, for the rate control encoding stats below.
+ for (int sl = 0; sl < ss_number_layers; ++sl) {
+ int i = sl * ts_number_layers;
+ rc->layer_framerate[0] = framerate / ts_rate_decimator[0];
+ rc->layer_pfb[i] =
+ 1000.0 * rc->layer_target_bitrate[i] / rc->layer_framerate[0];
+ for (int tl = 0; tl < ts_number_layers; ++tl) {
+ i = sl * ts_number_layers + tl;
+ if (tl > 0) {
+ rc->layer_framerate[tl] = framerate / ts_rate_decimator[tl];
+ rc->layer_pfb[i] =
+ 1000.0 *
+ (rc->layer_target_bitrate[i] - rc->layer_target_bitrate[i - 1]) /
+ (rc->layer_framerate[tl] - rc->layer_framerate[tl - 1]);
+ }
+ rc->layer_input_frames[tl] = 0;
+ rc->layer_enc_frames[tl] = 0;
+ rc->layer_encoding_bitrate[i] = 0.0;
+ rc->layer_avg_frame_size[i] = 0.0;
+ rc->layer_avg_rate_mismatch[i] = 0.0;
+ }
+ }
+ rc->window_count = 0;
+ rc->window_size = 15;
+ rc->avg_st_encoding_bitrate = 0.0;
+ rc->variance_st_encoding_bitrate = 0.0;
+}
+
+static void printout_rate_control_summary(struct RateControlMetrics *rc,
+ int frame_cnt, int ss_number_layers,
+ int ts_number_layers) {
+ int tot_num_frames = 0;
+ double perc_fluctuation = 0.0;
+ printf("Total number of processed frames: %d\n\n", frame_cnt - 1);
+ printf("Rate control layer stats for %d layer(s):\n\n", ts_number_layers);
+ for (int sl = 0; sl < ss_number_layers; ++sl) {
+ tot_num_frames = 0;
+ for (int tl = 0; tl < ts_number_layers; ++tl) {
+ int i = sl * ts_number_layers + tl;
+ const int num_dropped =
+ tl > 0 ? rc->layer_input_frames[tl] - rc->layer_enc_frames[tl]
+ : rc->layer_input_frames[tl] - rc->layer_enc_frames[tl] - 1;
+ tot_num_frames += rc->layer_input_frames[tl];
+ rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[tl] *
+ rc->layer_encoding_bitrate[i] /
+ tot_num_frames;
+ rc->layer_avg_frame_size[i] =
+ rc->layer_avg_frame_size[i] / rc->layer_enc_frames[tl];
+ rc->layer_avg_rate_mismatch[i] =
+ 100.0 * rc->layer_avg_rate_mismatch[i] / rc->layer_enc_frames[tl];
+ printf("For layer#: %d %d \n", sl, tl);
+ printf("Bitrate (target vs actual): %d %f\n", rc->layer_target_bitrate[i],
+ rc->layer_encoding_bitrate[i]);
+ printf("Average frame size (target vs actual): %f %f\n", rc->layer_pfb[i],
+ rc->layer_avg_frame_size[i]);
+ printf("Average rate_mismatch: %f\n", rc->layer_avg_rate_mismatch[i]);
+ printf(
+ "Number of input frames, encoded (non-key) frames, "
+ "and perc dropped frames: %d %d %f\n",
+ rc->layer_input_frames[tl], rc->layer_enc_frames[tl],
+ 100.0 * num_dropped / rc->layer_input_frames[tl]);
+ printf("\n");
+ }
+ }
+ rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count;
+ rc->variance_st_encoding_bitrate =
+ rc->variance_st_encoding_bitrate / rc->window_count -
+ (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate);
+ perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) /
+ rc->avg_st_encoding_bitrate;
+ printf("Short-time stats, for window of %d frames:\n", rc->window_size);
+ printf("Average, rms-variance, and percent-fluct: %f %f %f\n",
+ rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate),
+ perc_fluctuation);
+ if (frame_cnt - 1 != tot_num_frames)
+ die("Error: Number of input frames not equal to output!\n");
+}
+
+// Layer pattern configuration.
+static void set_layer_pattern(
+ int layering_mode, int superframe_cnt, aom_svc_layer_id_t *layer_id,
+ aom_svc_ref_frame_config_t *ref_frame_config,
+ aom_svc_ref_frame_comp_pred_t *ref_frame_comp_pred, int *use_svc_control,
+ int spatial_layer_id, int is_key_frame, int ksvc_mode, int speed) {
+ // Setting this flag to 1 enables simplex example of
+ // RPS (Reference Picture Selection) for 1 layer.
+ int use_rps_example = 0;
+ int i;
+ int enable_longterm_temporal_ref = 1;
+ int shift = (layering_mode == 8) ? 2 : 0;
+ int simulcast_mode = (layering_mode == 11);
+ *use_svc_control = 1;
+ layer_id->spatial_layer_id = spatial_layer_id;
+ int lag_index = 0;
+ int base_count = superframe_cnt >> 2;
+ ref_frame_comp_pred->use_comp_pred[0] = 0; // GOLDEN_LAST
+ ref_frame_comp_pred->use_comp_pred[1] = 0; // LAST2_LAST
+ ref_frame_comp_pred->use_comp_pred[2] = 0; // ALTREF_LAST
+ // Set the reference map buffer idx for the 7 references:
+ // LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3),
+ // BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6).
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = i;
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->reference[i] = 0;
+ for (i = 0; i < REF_FRAMES; i++) ref_frame_config->refresh[i] = 0;
+
+ if (ksvc_mode) {
+ // Same pattern as case 9, but the reference strucutre will be constrained
+ // below.
+ layering_mode = 9;
+ }
+ switch (layering_mode) {
+ case 0:
+ if (use_rps_example == 0) {
+ // 1-layer: update LAST on every frame, reference LAST.
+ layer_id->temporal_layer_id = 0;
+ layer_id->spatial_layer_id = 0;
+ ref_frame_config->refresh[0] = 1;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ } else {
+ // Pattern of 2 references (ALTREF and GOLDEN) trailing
+ // LAST by 4 and 8 frames, with some switching logic to
+ // sometimes only predict from the longer-term reference
+ //(golden here). This is simple example to test RPS
+ // (reference picture selection).
+ int last_idx = 0;
+ int last_idx_refresh = 0;
+ int gld_idx = 0;
+ int alt_ref_idx = 0;
+ int lag_alt = 4;
+ int lag_gld = 8;
+ layer_id->temporal_layer_id = 0;
+ layer_id->spatial_layer_id = 0;
+ int sh = 8; // slots 0 - 7.
+ // Moving index slot for last: 0 - (sh - 1)
+ if (superframe_cnt > 1) last_idx = (superframe_cnt - 1) % sh;
+ // Moving index for refresh of last: one ahead for next frame.
+ last_idx_refresh = superframe_cnt % sh;
+ // Moving index for gld_ref, lag behind current by lag_gld
+ if (superframe_cnt > lag_gld) gld_idx = (superframe_cnt - lag_gld) % sh;
+ // Moving index for alt_ref, lag behind LAST by lag_alt frames.
+ if (superframe_cnt > lag_alt)
+ alt_ref_idx = (superframe_cnt - lag_alt) % sh;
+ // Set the ref_idx.
+ // Default all references to slot for last.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = last_idx;
+ // Set the ref_idx for the relevant references.
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = last_idx;
+ ref_frame_config->ref_idx[SVC_LAST2_FRAME] = last_idx_refresh;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = gld_idx;
+ ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = alt_ref_idx;
+ // Refresh this slot, which will become LAST on next frame.
+ ref_frame_config->refresh[last_idx_refresh] = 1;
+ // Reference LAST, ALTREF, and GOLDEN
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ ref_frame_config->reference[SVC_ALTREF_FRAME] = 1;
+ ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
+ // Switch to only GOLDEN every 300 frames.
+ if (superframe_cnt % 200 == 0 && superframe_cnt > 0) {
+ ref_frame_config->reference[SVC_LAST_FRAME] = 0;
+ ref_frame_config->reference[SVC_ALTREF_FRAME] = 0;
+ ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
+ // Test if the long-term is LAST instead, this is just a renaming
+ // but its tests if encoder behaves the same, whether its
+ // LAST or GOLDEN.
+ if (superframe_cnt % 400 == 0 && superframe_cnt > 0) {
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = gld_idx;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ ref_frame_config->reference[SVC_ALTREF_FRAME] = 0;
+ ref_frame_config->reference[SVC_GOLDEN_FRAME] = 0;
+ }
+ }
+ }
+ break;
+ case 1:
+ // 2-temporal layer.
+ // 1 3 5
+ // 0 2 4
+ // Keep golden fixed at slot 3.
+ base_count = superframe_cnt >> 1;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
+ // Cyclically refresh slots 5, 6, 7, for lag alt ref.
+ lag_index = 5;
+ if (base_count > 0) {
+ lag_index = 5 + (base_count % 3);
+ if (superframe_cnt % 2 != 0) lag_index = 5 + ((base_count + 1) % 3);
+ }
+ // Set the altref slot to lag_index.
+ ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = lag_index;
+ if (superframe_cnt % 2 == 0) {
+ layer_id->temporal_layer_id = 0;
+ // Update LAST on layer 0, reference LAST.
+ ref_frame_config->refresh[0] = 1;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ // Refresh lag_index slot, needed for lagging golen.
+ ref_frame_config->refresh[lag_index] = 1;
+ // Refresh GOLDEN every x base layer frames.
+ if (base_count % 32 == 0) ref_frame_config->refresh[3] = 1;
+ } else {
+ layer_id->temporal_layer_id = 1;
+ // No updates on layer 1, reference LAST (TL0).
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ }
+ // Always reference golden and altref on TL0.
+ if (layer_id->temporal_layer_id == 0) {
+ ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
+ ref_frame_config->reference[SVC_ALTREF_FRAME] = 1;
+ }
+ break;
+ case 2:
+ // 3-temporal layer:
+ // 1 3 5 7
+ // 2 6
+ // 0 4 8
+ if (superframe_cnt % 4 == 0) {
+ // Base layer.
+ layer_id->temporal_layer_id = 0;
+ // Update LAST on layer 0, reference LAST.
+ ref_frame_config->refresh[0] = 1;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ } else if ((superframe_cnt - 1) % 4 == 0) {
+ layer_id->temporal_layer_id = 2;
+ // First top layer: no updates, only reference LAST (TL0).
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ } else if ((superframe_cnt - 2) % 4 == 0) {
+ layer_id->temporal_layer_id = 1;
+ // Middle layer (TL1): update LAST2, only reference LAST (TL0).
+ ref_frame_config->refresh[1] = 1;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ } else if ((superframe_cnt - 3) % 4 == 0) {
+ layer_id->temporal_layer_id = 2;
+ // Second top layer: no updates, only reference LAST.
+ // Set buffer idx for LAST to slot 1, since that was the slot
+ // updated in previous frame. So LAST is TL1 frame.
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
+ ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 0;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ }
+ break;
+ case 3:
+ // 3 TL, same as above, except allow for predicting
+ // off 2 more references (GOLDEN and ALTREF), with
+ // GOLDEN updated periodically, and ALTREF lagging from
+ // LAST from ~4 frames. Both GOLDEN and ALTREF
+ // can only be updated on base temporal layer.
+
+ // Keep golden fixed at slot 3.
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
+ // Cyclically refresh slots 5, 6, 7, for lag altref.
+ lag_index = 5;
+ if (base_count > 0) {
+ lag_index = 5 + (base_count % 3);
+ if (superframe_cnt % 4 != 0) lag_index = 5 + ((base_count + 1) % 3);
+ }
+ // Set the altref slot to lag_index.
+ ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = lag_index;
+ if (superframe_cnt % 4 == 0) {
+ // Base layer.
+ layer_id->temporal_layer_id = 0;
+ // Update LAST on layer 0, reference LAST.
+ ref_frame_config->refresh[0] = 1;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ // Refresh GOLDEN every x ~10 base layer frames.
+ if (base_count % 10 == 0) ref_frame_config->refresh[3] = 1;
+ // Refresh lag_index slot, needed for lagging altref.
+ ref_frame_config->refresh[lag_index] = 1;
+ } else if ((superframe_cnt - 1) % 4 == 0) {
+ layer_id->temporal_layer_id = 2;
+ // First top layer: no updates, only reference LAST (TL0).
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ } else if ((superframe_cnt - 2) % 4 == 0) {
+ layer_id->temporal_layer_id = 1;
+ // Middle layer (TL1): update LAST2, only reference LAST (TL0).
+ ref_frame_config->refresh[1] = 1;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ } else if ((superframe_cnt - 3) % 4 == 0) {
+ layer_id->temporal_layer_id = 2;
+ // Second top layer: no updates, only reference LAST.
+ // Set buffer idx for LAST to slot 1, since that was the slot
+ // updated in previous frame. So LAST is TL1 frame.
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
+ ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 0;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ }
+ // Every frame can reference GOLDEN AND ALTREF.
+ ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
+ ref_frame_config->reference[SVC_ALTREF_FRAME] = 1;
+ // Allow for compound prediction for LAST-ALTREF and LAST-GOLDEN.
+ if (speed >= 7) {
+ ref_frame_comp_pred->use_comp_pred[2] = 1;
+ ref_frame_comp_pred->use_comp_pred[0] = 1;
+ }
+ break;
+ case 4:
+ // 3-temporal layer: but middle layer updates GF, so 2nd TL2 will
+ // only reference GF (not LAST). Other frames only reference LAST.
+ // 1 3 5 7
+ // 2 6
+ // 0 4 8
+ if (superframe_cnt % 4 == 0) {
+ // Base layer.
+ layer_id->temporal_layer_id = 0;
+ // Update LAST on layer 0, only reference LAST.
+ ref_frame_config->refresh[0] = 1;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ } else if ((superframe_cnt - 1) % 4 == 0) {
+ layer_id->temporal_layer_id = 2;
+ // First top layer: no updates, only reference LAST (TL0).
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ } else if ((superframe_cnt - 2) % 4 == 0) {
+ layer_id->temporal_layer_id = 1;
+ // Middle layer (TL1): update GF, only reference LAST (TL0).
+ ref_frame_config->refresh[3] = 1;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ } else if ((superframe_cnt - 3) % 4 == 0) {
+ layer_id->temporal_layer_id = 2;
+ // Second top layer: no updates, only reference GF.
+ ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
+ }
+ break;
+ case 5:
+ // 2 spatial layers, 1 temporal.
+ layer_id->temporal_layer_id = 0;
+ if (layer_id->spatial_layer_id == 0) {
+ // Reference LAST, update LAST.
+ ref_frame_config->refresh[0] = 1;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ } else if (layer_id->spatial_layer_id == 1) {
+ // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1
+ // and GOLDEN to slot 0. Update slot 1 (LAST).
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 0;
+ ref_frame_config->refresh[1] = 1;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
+ }
+ break;
+ case 6:
+ // 3 spatial layers, 1 temporal.
+ // Note for this case, we set the buffer idx for all references to be
+ // either LAST or GOLDEN, which are always valid references, since decoder
+ // will check if any of the 7 references is valid scale in
+ // valid_ref_frame_size().
+ layer_id->temporal_layer_id = 0;
+ if (layer_id->spatial_layer_id == 0) {
+ // Reference LAST, update LAST. Set all buffer_idx to 0.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->refresh[0] = 1;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ } else if (layer_id->spatial_layer_id == 1) {
+ // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1
+ // and GOLDEN (and all other refs) to slot 0.
+ // Update slot 1 (LAST).
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
+ ref_frame_config->refresh[1] = 1;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
+ } else if (layer_id->spatial_layer_id == 2) {
+ // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2
+ // and GOLDEN (and all other refs) to slot 1.
+ // Update slot 2 (LAST).
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 1;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
+ ref_frame_config->refresh[2] = 1;
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
+ // For 3 spatial layer case: allow for top spatial layer to use
+ // additional temporal reference. Update every 10 frames.
+ if (enable_longterm_temporal_ref) {
+ ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = REF_FRAMES - 1;
+ ref_frame_config->reference[SVC_ALTREF_FRAME] = 1;
+ if (base_count % 10 == 0)
+ ref_frame_config->refresh[REF_FRAMES - 1] = 1;
+ }
+ }
+ break;
+ case 7:
+ // 2 spatial and 3 temporal layer.
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ if (superframe_cnt % 4 == 0) {
+ // Base temporal layer
+ layer_id->temporal_layer_id = 0;
+ if (layer_id->spatial_layer_id == 0) {
+ // Reference LAST, update LAST
+ // Set all buffer_idx to 0
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->refresh[0] = 1;
+ } else if (layer_id->spatial_layer_id == 1) {
+ // Reference LAST and GOLDEN.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
+ ref_frame_config->refresh[1] = 1;
+ }
+ } else if ((superframe_cnt - 1) % 4 == 0) {
+ // First top temporal enhancement layer.
+ layer_id->temporal_layer_id = 2;
+ if (layer_id->spatial_layer_id == 0) {
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
+ ref_frame_config->refresh[3] = 1;
+ } else if (layer_id->spatial_layer_id == 1) {
+ // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
+ // GOLDEN (and all other refs) to slot 3.
+ // No update.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 3;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
+ }
+ } else if ((superframe_cnt - 2) % 4 == 0) {
+ // Middle temporal enhancement layer.
+ layer_id->temporal_layer_id = 1;
+ if (layer_id->spatial_layer_id == 0) {
+ // Reference LAST.
+ // Set all buffer_idx to 0.
+ // Set GOLDEN to slot 5 and update slot 5.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 5 - shift;
+ ref_frame_config->refresh[5 - shift] = 1;
+ } else if (layer_id->spatial_layer_id == 1) {
+ // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
+ // GOLDEN (and all other refs) to slot 5.
+ // Set LAST3 to slot 6 and update slot 6.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 5 - shift;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
+ ref_frame_config->ref_idx[SVC_LAST3_FRAME] = 6 - shift;
+ ref_frame_config->refresh[6 - shift] = 1;
+ }
+ } else if ((superframe_cnt - 3) % 4 == 0) {
+ // Second top temporal enhancement layer.
+ layer_id->temporal_layer_id = 2;
+ if (layer_id->spatial_layer_id == 0) {
+ // Set LAST to slot 5 and reference LAST.
+ // Set GOLDEN to slot 3 and update slot 3.
+ // Set all other buffer_idx to 0.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 5 - shift;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
+ ref_frame_config->refresh[3] = 1;
+ } else if (layer_id->spatial_layer_id == 1) {
+ // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 6,
+ // GOLDEN to slot 3. No update.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 6 - shift;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
+ }
+ }
+ break;
+ case 8:
+ // 3 spatial and 3 temporal layer.
+ // Same as case 9 but overalap in the buffer slot updates.
+ // (shift = 2). The slots 3 and 4 updated by first TL2 are
+ // reused for update in TL1 superframe.
+ // Note for this case, frame order hint must be disabled for
+ // lower resolutios (operating points > 0) to be decoedable.
+ case 9:
+ // 3 spatial and 3 temporal layer.
+ // No overlap in buffer updates between TL2 and TL1.
+ // TL2 updates slot 3 and 4, TL1 updates 5, 6, 7.
+ // Set the references via the svc_ref_frame_config control.
+ // Always reference LAST.
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ if (superframe_cnt % 4 == 0) {
+ // Base temporal layer.
+ layer_id->temporal_layer_id = 0;
+ if (layer_id->spatial_layer_id == 0) {
+ // Reference LAST, update LAST.
+ // Set all buffer_idx to 0.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->refresh[0] = 1;
+ } else if (layer_id->spatial_layer_id == 1) {
+ // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
+ // GOLDEN (and all other refs) to slot 0.
+ // Update slot 1 (LAST).
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
+ ref_frame_config->refresh[1] = 1;
+ } else if (layer_id->spatial_layer_id == 2) {
+ // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
+ // GOLDEN (and all other refs) to slot 1.
+ // Update slot 2 (LAST).
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 1;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
+ ref_frame_config->refresh[2] = 1;
+ }
+ } else if ((superframe_cnt - 1) % 4 == 0) {
+ // First top temporal enhancement layer.
+ layer_id->temporal_layer_id = 2;
+ if (layer_id->spatial_layer_id == 0) {
+ // Reference LAST (slot 0).
+ // Set GOLDEN to slot 3 and update slot 3.
+ // Set all other buffer_idx to slot 0.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
+ ref_frame_config->refresh[3] = 1;
+ } else if (layer_id->spatial_layer_id == 1) {
+ // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
+ // GOLDEN (and all other refs) to slot 3.
+ // Set LAST2 to slot 4 and Update slot 4.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 3;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
+ ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 4;
+ ref_frame_config->refresh[4] = 1;
+ } else if (layer_id->spatial_layer_id == 2) {
+ // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
+ // GOLDEN (and all other refs) to slot 4.
+ // No update.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 4;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
+ }
+ } else if ((superframe_cnt - 2) % 4 == 0) {
+ // Middle temporal enhancement layer.
+ layer_id->temporal_layer_id = 1;
+ if (layer_id->spatial_layer_id == 0) {
+ // Reference LAST.
+ // Set all buffer_idx to 0.
+ // Set GOLDEN to slot 5 and update slot 5.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 5 - shift;
+ ref_frame_config->refresh[5 - shift] = 1;
+ } else if (layer_id->spatial_layer_id == 1) {
+ // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
+ // GOLDEN (and all other refs) to slot 5.
+ // Set LAST3 to slot 6 and update slot 6.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 5 - shift;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
+ ref_frame_config->ref_idx[SVC_LAST3_FRAME] = 6 - shift;
+ ref_frame_config->refresh[6 - shift] = 1;
+ } else if (layer_id->spatial_layer_id == 2) {
+ // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
+ // GOLDEN (and all other refs) to slot 6.
+ // Set LAST3 to slot 7 and update slot 7.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 6 - shift;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
+ ref_frame_config->ref_idx[SVC_LAST3_FRAME] = 7 - shift;
+ ref_frame_config->refresh[7 - shift] = 1;
+ }
+ } else if ((superframe_cnt - 3) % 4 == 0) {
+ // Second top temporal enhancement layer.
+ layer_id->temporal_layer_id = 2;
+ if (layer_id->spatial_layer_id == 0) {
+ // Set LAST to slot 5 and reference LAST.
+ // Set GOLDEN to slot 3 and update slot 3.
+ // Set all other buffer_idx to 0.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 5 - shift;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
+ ref_frame_config->refresh[3] = 1;
+ } else if (layer_id->spatial_layer_id == 1) {
+ // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 6,
+ // GOLDEN to slot 3. Set LAST2 to slot 4 and update slot 4.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 6 - shift;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
+ ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 4;
+ ref_frame_config->refresh[4] = 1;
+ } else if (layer_id->spatial_layer_id == 2) {
+ // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 7,
+ // GOLDEN to slot 4. No update.
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 7 - shift;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 4;
+ }
+ }
+ break;
+ case 11:
+ // Simulcast mode for 3 spatial and 3 temporal layers.
+ // No inter-layer predicton, only prediction is temporal and single
+ // reference (LAST).
+ // No overlap in buffer slots between spatial layers. So for example,
+ // SL0 only uses slots 0 and 1.
+ // SL1 only uses slots 2 and 3.
+ // SL2 only uses slots 4 and 5.
+ // All 7 references for each inter-frame must only access buffer slots
+ // for that spatial layer.
+ // On key (super)frames: SL1 and SL2 must have no references set
+ // and must refresh all the slots for that layer only (so 2 and 3
+ // for SL1, 4 and 5 for SL2). The base SL0 will be labelled internally
+ // as a Key frame (refresh all slots). SL1/SL2 will be labelled
+ // internally as Intra-only frames that allow that stream to be decoded.
+ // These conditions will allow for each spatial stream to be
+ // independently decodeable.
+
+ // Initialize all references to 0 (don't use reference).
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->reference[i] = 0;
+ // Initialize as no refresh/update for all slots.
+ for (i = 0; i < REF_FRAMES; i++) ref_frame_config->refresh[i] = 0;
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+
+ if (is_key_frame) {
+ if (layer_id->spatial_layer_id == 0) {
+ // Assign LAST/GOLDEN to slot 0/1.
+ // Refesh slots 0 and 1 for SL0.
+ // SL0: this will get set to KEY frame internally.
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 0;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 1;
+ ref_frame_config->refresh[0] = 1;
+ ref_frame_config->refresh[1] = 1;
+ } else if (layer_id->spatial_layer_id == 1) {
+ // Assign LAST/GOLDEN to slot 2/3.
+ // Refesh slots 2 and 3 for SL1.
+ // This will get set to Intra-only frame internally.
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
+ ref_frame_config->refresh[2] = 1;
+ ref_frame_config->refresh[3] = 1;
+ } else if (layer_id->spatial_layer_id == 2) {
+ // Assign LAST/GOLDEN to slot 4/5.
+ // Refresh slots 4 and 5 for SL2.
+ // This will get set to Intra-only frame internally.
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 4;
+ ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 5;
+ ref_frame_config->refresh[4] = 1;
+ ref_frame_config->refresh[5] = 1;
+ }
+ } else if (superframe_cnt % 4 == 0) {
+ // Base temporal layer: TL0
+ layer_id->temporal_layer_id = 0;
+ if (layer_id->spatial_layer_id == 0) { // SL0
+ // Reference LAST. Assign all references to either slot
+ // 0 or 1. Here we assign LAST to slot 0, all others to 1.
+ // Update slot 0 (LAST).
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 1;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 0;
+ ref_frame_config->refresh[0] = 1;
+ } else if (layer_id->spatial_layer_id == 1) { // SL1
+ // Reference LAST. Assign all references to either slot
+ // 2 or 3. Here we assign LAST to slot 2, all others to 3.
+ // Update slot 2 (LAST).
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 3;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
+ ref_frame_config->refresh[2] = 1;
+ } else if (layer_id->spatial_layer_id == 2) { // SL2
+ // Reference LAST. Assign all references to either slot
+ // 4 or 5. Here we assign LAST to slot 4, all others to 5.
+ // Update slot 4 (LAST).
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 5;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 4;
+ ref_frame_config->refresh[4] = 1;
+ }
+ } else if ((superframe_cnt - 1) % 4 == 0) {
+ // First top temporal enhancement layer: TL2
+ layer_id->temporal_layer_id = 2;
+ if (layer_id->spatial_layer_id == 0) { // SL0
+ // Reference LAST (slot 0). Assign other references to slot 1.
+ // No update/refresh on any slots.
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 1;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 0;
+ } else if (layer_id->spatial_layer_id == 1) { // SL1
+ // Reference LAST (slot 2). Assign other references to slot 3.
+ // No update/refresh on any slots.
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 3;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
+ } else if (layer_id->spatial_layer_id == 2) { // SL2
+ // Reference LAST (slot 4). Assign other references to slot 4.
+ // No update/refresh on any slots.
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 5;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 4;
+ }
+ } else if ((superframe_cnt - 2) % 4 == 0) {
+ // Middle temporal enhancement layer: TL1
+ layer_id->temporal_layer_id = 1;
+ if (layer_id->spatial_layer_id == 0) { // SL0
+ // Reference LAST (slot 0).
+ // Set GOLDEN to slot 1 and update slot 1.
+ // This will be used as reference for next TL2.
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 1;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 0;
+ ref_frame_config->refresh[1] = 1;
+ } else if (layer_id->spatial_layer_id == 1) { // SL1
+ // Reference LAST (slot 2).
+ // Set GOLDEN to slot 3 and update slot 3.
+ // This will be used as reference for next TL2.
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 3;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
+ ref_frame_config->refresh[3] = 1;
+ } else if (layer_id->spatial_layer_id == 2) { // SL2
+ // Reference LAST (slot 4).
+ // Set GOLDEN to slot 5 and update slot 5.
+ // This will be used as reference for next TL2.
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 5;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 4;
+ ref_frame_config->refresh[5] = 1;
+ }
+ } else if ((superframe_cnt - 3) % 4 == 0) {
+ // Second top temporal enhancement layer: TL2
+ layer_id->temporal_layer_id = 2;
+ if (layer_id->spatial_layer_id == 0) { // SL0
+ // Reference LAST (slot 1). Assign other references to slot 0.
+ // No update/refresh on any slots.
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 0;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
+ } else if (layer_id->spatial_layer_id == 1) { // SL1
+ // Reference LAST (slot 3). Assign other references to slot 2.
+ // No update/refresh on any slots.
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 2;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 3;
+ } else if (layer_id->spatial_layer_id == 2) { // SL2
+ // Reference LAST (slot 5). Assign other references to slot 4.
+ // No update/refresh on any slots.
+ ref_frame_config->reference[SVC_LAST_FRAME] = 1;
+ for (i = 0; i < INTER_REFS_PER_FRAME; i++)
+ ref_frame_config->ref_idx[i] = 4;
+ ref_frame_config->ref_idx[SVC_LAST_FRAME] = 5;
+ }
+ }
+ if (!simulcast_mode && layer_id->spatial_layer_id > 0) {
+ // Always reference GOLDEN (inter-layer prediction).
+ ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
+ if (ksvc_mode) {
+ // KSVC: only keep the inter-layer reference (GOLDEN) for
+ // superframes whose base is key.
+ if (!is_key_frame) ref_frame_config->reference[SVC_GOLDEN_FRAME] = 0;
+ }
+ if (is_key_frame && layer_id->spatial_layer_id > 1) {
+ // On superframes whose base is key: remove LAST to avoid prediction
+ // off layer two levels below.
+ ref_frame_config->reference[SVC_LAST_FRAME] = 0;
+ }
+ }
+ // For 3 spatial layer case 8 (where there is free buffer slot):
+ // allow for top spatial layer to use additional temporal reference.
+ // Additional reference is only updated on base temporal layer, every
+ // 10 TL0 frames here.
+ if (!simulcast_mode && enable_longterm_temporal_ref &&
+ layer_id->spatial_layer_id == 2 && layering_mode == 8) {
+ ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = REF_FRAMES - 1;
+ if (!is_key_frame) ref_frame_config->reference[SVC_ALTREF_FRAME] = 1;
+ if (base_count % 10 == 0 && layer_id->temporal_layer_id == 0)
+ ref_frame_config->refresh[REF_FRAMES - 1] = 1;
+ }
+ break;
+ default: assert(0); die("Error: Unsupported temporal layering mode!\n");
+ }
+}
+
+#if CONFIG_AV1_DECODER
+// Returns whether there is a mismatch between the encoder's new frame and the
+// decoder's new frame.
+static int test_decode(aom_codec_ctx_t *encoder, aom_codec_ctx_t *decoder,
+ const int frames_out) {
+ aom_image_t enc_img, dec_img;
+ int mismatch = 0;
+
+ /* Get the internal new frame */
+ AOM_CODEC_CONTROL_TYPECHECKED(encoder, AV1_GET_NEW_FRAME_IMAGE, &enc_img);
+ AOM_CODEC_CONTROL_TYPECHECKED(decoder, AV1_GET_NEW_FRAME_IMAGE, &dec_img);
+
+#if CONFIG_AV1_HIGHBITDEPTH
+ if ((enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) !=
+ (dec_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH)) {
+ if (enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) {
+ aom_image_t enc_hbd_img;
+ aom_img_alloc(
+ &enc_hbd_img,
+ static_cast<aom_img_fmt_t>(enc_img.fmt - AOM_IMG_FMT_HIGHBITDEPTH),
+ enc_img.d_w, enc_img.d_h, 16);
+ aom_img_truncate_16_to_8(&enc_hbd_img, &enc_img);
+ enc_img = enc_hbd_img;
+ }
+ if (dec_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) {
+ aom_image_t dec_hbd_img;
+ aom_img_alloc(
+ &dec_hbd_img,
+ static_cast<aom_img_fmt_t>(dec_img.fmt - AOM_IMG_FMT_HIGHBITDEPTH),
+ dec_img.d_w, dec_img.d_h, 16);
+ aom_img_truncate_16_to_8(&dec_hbd_img, &dec_img);
+ dec_img = dec_hbd_img;
+ }
+ }
+#endif
+
+ if (!aom_compare_img(&enc_img, &dec_img)) {
+ int y[4], u[4], v[4];
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) {
+ aom_find_mismatch_high(&enc_img, &dec_img, y, u, v);
+ } else {
+ aom_find_mismatch(&enc_img, &dec_img, y, u, v);
+ }
+#else
+ aom_find_mismatch(&enc_img, &dec_img, y, u, v);
+#endif
+ fprintf(stderr,
+ "Encode/decode mismatch on frame %d at"
+ " Y[%d, %d] {%d/%d},"
+ " U[%d, %d] {%d/%d},"
+ " V[%d, %d] {%d/%d}\n",
+ frames_out, y[0], y[1], y[2], y[3], u[0], u[1], u[2], u[3], v[0],
+ v[1], v[2], v[3]);
+ mismatch = 1;
+ }
+
+ aom_img_free(&enc_img);
+ aom_img_free(&dec_img);
+ return mismatch;
+}
+#endif // CONFIG_AV1_DECODER
+
+struct psnr_stats {
+ // The second element of these arrays is reserved for high bitdepth.
+ uint64_t psnr_sse_total[2];
+ uint64_t psnr_samples_total[2];
+ double psnr_totals[2][4];
+ int psnr_count[2];
+};
+
+static void show_psnr(struct psnr_stats *psnr_stream, double peak) {
+ double ovpsnr;
+
+ if (!psnr_stream->psnr_count[0]) return;
+
+ fprintf(stderr, "\nPSNR (Overall/Avg/Y/U/V)");
+ ovpsnr = sse_to_psnr((double)psnr_stream->psnr_samples_total[0], peak,
+ (double)psnr_stream->psnr_sse_total[0]);
+ fprintf(stderr, " %.3f", ovpsnr);
+
+ for (int i = 0; i < 4; i++) {
+ fprintf(stderr, " %.3f",
+ psnr_stream->psnr_totals[0][i] / psnr_stream->psnr_count[0]);
+ }
+ fprintf(stderr, "\n");
+}
+
+static aom::AV1RateControlRtcConfig create_rtc_rc_config(
+ const aom_codec_enc_cfg_t &cfg, const AppInput &app_input) {
+ aom::AV1RateControlRtcConfig rc_cfg;
+ rc_cfg.width = cfg.g_w;
+ rc_cfg.height = cfg.g_h;
+ rc_cfg.max_quantizer = cfg.rc_max_quantizer;
+ rc_cfg.min_quantizer = cfg.rc_min_quantizer;
+ rc_cfg.target_bandwidth = cfg.rc_target_bitrate;
+ rc_cfg.buf_initial_sz = cfg.rc_buf_initial_sz;
+ rc_cfg.buf_optimal_sz = cfg.rc_buf_optimal_sz;
+ rc_cfg.buf_sz = cfg.rc_buf_sz;
+ rc_cfg.overshoot_pct = cfg.rc_overshoot_pct;
+ rc_cfg.undershoot_pct = cfg.rc_undershoot_pct;
+ // This is hardcoded as AOME_SET_MAX_INTRA_BITRATE_PCT
+ rc_cfg.max_intra_bitrate_pct = 300;
+ rc_cfg.framerate = cfg.g_timebase.den;
+ // TODO(jianj): Add suppor for SVC.
+ rc_cfg.ss_number_layers = 1;
+ rc_cfg.ts_number_layers = 1;
+ rc_cfg.scaling_factor_num[0] = 1;
+ rc_cfg.scaling_factor_den[0] = 1;
+ rc_cfg.layer_target_bitrate[0] = static_cast<int>(rc_cfg.target_bandwidth);
+ rc_cfg.max_quantizers[0] = rc_cfg.max_quantizer;
+ rc_cfg.min_quantizers[0] = rc_cfg.min_quantizer;
+ rc_cfg.aq_mode = app_input.aq_mode;
+
+ return rc_cfg;
+}
+
+static int qindex_to_quantizer(int qindex) {
+ // Table that converts 0-63 range Q values passed in outside to the 0-255
+ // range Qindex used internally.
+ static const int quantizer_to_qindex[] = {
+ 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48,
+ 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100,
+ 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152,
+ 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204,
+ 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255,
+ };
+ for (int quantizer = 0; quantizer < 64; ++quantizer)
+ if (quantizer_to_qindex[quantizer] >= qindex) return quantizer;
+
+ return 63;
+}
+
+int main(int argc, const char **argv) {
+ AppInput app_input;
+ AvxVideoWriter *outfile[AOM_MAX_LAYERS] = { NULL };
+ FILE *obu_files[AOM_MAX_LAYERS] = { NULL };
+ AvxVideoWriter *total_layer_file = NULL;
+ FILE *total_layer_obu_file = NULL;
+ aom_codec_enc_cfg_t cfg;
+ int frame_cnt = 0;
+ aom_image_t raw;
+ int frame_avail;
+ int got_data = 0;
+ int flags = 0;
+ int i;
+ int pts = 0; // PTS starts at 0.
+ int frame_duration = 1; // 1 timebase tick per frame.
+ aom_svc_layer_id_t layer_id;
+ aom_svc_params_t svc_params;
+ aom_svc_ref_frame_config_t ref_frame_config;
+ aom_svc_ref_frame_comp_pred_t ref_frame_comp_pred;
+
+#if CONFIG_INTERNAL_STATS
+ FILE *stats_file = fopen("opsnr.stt", "a");
+ if (stats_file == NULL) {
+ die("Cannot open opsnr.stt\n");
+ }
+#endif
+#if CONFIG_AV1_DECODER
+ aom_codec_ctx_t decoder;
+#endif
+
+ struct RateControlMetrics rc;
+ int64_t cx_time = 0;
+ int64_t cx_time_layer[AOM_MAX_LAYERS]; // max number of layers.
+ int frame_cnt_layer[AOM_MAX_LAYERS];
+ double sum_bitrate = 0.0;
+ double sum_bitrate2 = 0.0;
+ double framerate = 30.0;
+ int use_svc_control = 1;
+ int set_err_resil_frame = 0;
+ int test_changing_bitrate = 0;
+ zero(rc.layer_target_bitrate);
+ memset(&layer_id, 0, sizeof(aom_svc_layer_id_t));
+ memset(&app_input, 0, sizeof(AppInput));
+ memset(&svc_params, 0, sizeof(svc_params));
+
+ // Flag to test dynamic scaling of source frames for single
+ // spatial stream, using the scaling_mode control.
+ const int test_dynamic_scaling_single_layer = 0;
+
+ // Flag to test setting speed per layer.
+ const int test_speed_per_layer = 0;
+
+ /* Setup default input stream settings */
+ app_input.input_ctx.framerate.numerator = 30;
+ app_input.input_ctx.framerate.denominator = 1;
+ app_input.input_ctx.only_i420 = 0;
+ app_input.input_ctx.bit_depth = AOM_BITS_8;
+ app_input.speed = 7;
+ exec_name = argv[0];
+
+ // start with default encoder configuration
+ aom_codec_err_t res = aom_codec_enc_config_default(aom_codec_av1_cx(), &cfg,
+ AOM_USAGE_REALTIME);
+ if (res != AOM_CODEC_OK) {
+ die("Failed to get config: %s\n", aom_codec_err_to_string(res));
+ }
+
+ // Real time parameters.
+ cfg.g_usage = AOM_USAGE_REALTIME;
+
+ cfg.rc_end_usage = AOM_CBR;
+ cfg.rc_min_quantizer = 2;
+ cfg.rc_max_quantizer = 52;
+ cfg.rc_undershoot_pct = 50;
+ cfg.rc_overshoot_pct = 50;
+ cfg.rc_buf_initial_sz = 600;
+ cfg.rc_buf_optimal_sz = 600;
+ cfg.rc_buf_sz = 1000;
+ cfg.rc_resize_mode = 0; // Set to RESIZE_DYNAMIC for dynamic resize.
+ cfg.g_lag_in_frames = 0;
+ cfg.kf_mode = AOM_KF_AUTO;
+
+ parse_command_line(argc, argv, &app_input, &svc_params, &cfg);
+
+ int ts_number_layers = svc_params.number_temporal_layers;
+ int ss_number_layers = svc_params.number_spatial_layers;
+
+ unsigned int width = cfg.g_w;
+ unsigned int height = cfg.g_h;
+
+ if (app_input.layering_mode >= 0) {
+ if (ts_number_layers !=
+ mode_to_num_temporal_layers[app_input.layering_mode] ||
+ ss_number_layers !=
+ mode_to_num_spatial_layers[app_input.layering_mode]) {
+ die("Number of layers doesn't match layering mode.");
+ }
+ }
+
+ // Y4M reader has its own allocation.
+ if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) {
+ if (!aom_img_alloc(&raw, AOM_IMG_FMT_I420, width, height, 32)) {
+ die("Failed to allocate image (%dx%d)", width, height);
+ }
+ }
+
+ aom_codec_iface_t *encoder = aom_codec_av1_cx();
+
+ memcpy(&rc.layer_target_bitrate[0], &svc_params.layer_target_bitrate[0],
+ sizeof(svc_params.layer_target_bitrate));
+
+ unsigned int total_rate = 0;
+ for (i = 0; i < ss_number_layers; i++) {
+ total_rate +=
+ svc_params
+ .layer_target_bitrate[i * ts_number_layers + ts_number_layers - 1];
+ }
+ if (total_rate != cfg.rc_target_bitrate) {
+ die("Incorrect total target bitrate");
+ }
+
+ svc_params.framerate_factor[0] = 1;
+ if (ts_number_layers == 2) {
+ svc_params.framerate_factor[0] = 2;
+ svc_params.framerate_factor[1] = 1;
+ } else if (ts_number_layers == 3) {
+ svc_params.framerate_factor[0] = 4;
+ svc_params.framerate_factor[1] = 2;
+ svc_params.framerate_factor[2] = 1;
+ }
+
+ if (app_input.input_ctx.file_type == FILE_TYPE_Y4M) {
+ // Override these settings with the info from Y4M file.
+ cfg.g_w = app_input.input_ctx.width;
+ cfg.g_h = app_input.input_ctx.height;
+ // g_timebase is the reciprocal of frame rate.
+ cfg.g_timebase.num = app_input.input_ctx.framerate.denominator;
+ cfg.g_timebase.den = app_input.input_ctx.framerate.numerator;
+ }
+ framerate = cfg.g_timebase.den / cfg.g_timebase.num;
+ set_rate_control_metrics(&rc, framerate, ss_number_layers, ts_number_layers);
+
+ AvxVideoInfo info;
+ info.codec_fourcc = get_fourcc_by_aom_encoder(encoder);
+ info.frame_width = cfg.g_w;
+ info.frame_height = cfg.g_h;
+ info.time_base.numerator = cfg.g_timebase.num;
+ info.time_base.denominator = cfg.g_timebase.den;
+ // Open an output file for each stream.
+ for (int sl = 0; sl < ss_number_layers; ++sl) {
+ for (int tl = 0; tl < ts_number_layers; ++tl) {
+ i = sl * ts_number_layers + tl;
+ char file_name[PATH_MAX];
+ snprintf(file_name, sizeof(file_name), "%s_%d.av1",
+ app_input.output_filename, i);
+ if (app_input.output_obu) {
+ obu_files[i] = fopen(file_name, "wb");
+ if (!obu_files[i]) die("Failed to open %s for writing", file_name);
+ } else {
+ outfile[i] = aom_video_writer_open(file_name, kContainerIVF, &info);
+ if (!outfile[i]) die("Failed to open %s for writing", file_name);
+ }
+ }
+ }
+ if (app_input.output_obu) {
+ total_layer_obu_file = fopen(app_input.output_filename, "wb");
+ if (!total_layer_obu_file)
+ die("Failed to open %s for writing", app_input.output_filename);
+ } else {
+ total_layer_file =
+ aom_video_writer_open(app_input.output_filename, kContainerIVF, &info);
+ if (!total_layer_file)
+ die("Failed to open %s for writing", app_input.output_filename);
+ }
+
+ // Initialize codec.
+ aom_codec_ctx_t codec;
+ aom_codec_flags_t flag = 0;
+ flag |= cfg.g_input_bit_depth == AOM_BITS_8 ? 0 : AOM_CODEC_USE_HIGHBITDEPTH;
+ flag |= app_input.show_psnr ? AOM_CODEC_USE_PSNR : 0;
+ if (aom_codec_enc_init(&codec, encoder, &cfg, flag))
+ die_codec(&codec, "Failed to initialize encoder");
+
+#if CONFIG_AV1_DECODER
+ if (app_input.decode) {
+ if (aom_codec_dec_init(&decoder, get_aom_decoder_by_index(0), NULL, 0))
+ die_codec(&decoder, "Failed to initialize decoder");
+ }
+#endif
+
+ aom_codec_control(&codec, AOME_SET_CPUUSED, app_input.speed);
+ aom_codec_control(&codec, AV1E_SET_AQ_MODE, app_input.aq_mode ? 3 : 0);
+ aom_codec_control(&codec, AV1E_SET_GF_CBR_BOOST_PCT, 0);
+ aom_codec_control(&codec, AV1E_SET_ENABLE_CDEF, 1);
+ aom_codec_control(&codec, AV1E_SET_LOOPFILTER_CONTROL, 1);
+ aom_codec_control(&codec, AV1E_SET_ENABLE_WARPED_MOTION, 0);
+ aom_codec_control(&codec, AV1E_SET_ENABLE_OBMC, 0);
+ aom_codec_control(&codec, AV1E_SET_ENABLE_GLOBAL_MOTION, 0);
+ aom_codec_control(&codec, AV1E_SET_ENABLE_ORDER_HINT, 0);
+ aom_codec_control(&codec, AV1E_SET_ENABLE_TPL_MODEL, 0);
+ aom_codec_control(&codec, AV1E_SET_DELTAQ_MODE, 0);
+ aom_codec_control(&codec, AV1E_SET_COEFF_COST_UPD_FREQ, 3);
+ aom_codec_control(&codec, AV1E_SET_MODE_COST_UPD_FREQ, 3);
+ aom_codec_control(&codec, AV1E_SET_MV_COST_UPD_FREQ, 3);
+ aom_codec_control(&codec, AV1E_SET_DV_COST_UPD_FREQ, 3);
+ aom_codec_control(&codec, AV1E_SET_CDF_UPDATE_MODE, 1);
+
+ // Settings to reduce key frame encoding time.
+ aom_codec_control(&codec, AV1E_SET_ENABLE_CFL_INTRA, 0);
+ aom_codec_control(&codec, AV1E_SET_ENABLE_SMOOTH_INTRA, 0);
+ aom_codec_control(&codec, AV1E_SET_ENABLE_ANGLE_DELTA, 0);
+ aom_codec_control(&codec, AV1E_SET_ENABLE_FILTER_INTRA, 0);
+ aom_codec_control(&codec, AV1E_SET_INTRA_DEFAULT_TX_ONLY, 1);
+
+ if (cfg.g_threads > 1) {
+ aom_codec_control(&codec, AV1E_SET_TILE_COLUMNS,
+ (unsigned int)log2(cfg.g_threads));
+ }
+
+ aom_codec_control(&codec, AV1E_SET_TUNE_CONTENT, app_input.tune_content);
+ if (app_input.tune_content == AOM_CONTENT_SCREEN) {
+ aom_codec_control(&codec, AV1E_SET_ENABLE_PALETTE, 1);
+ aom_codec_control(&codec, AV1E_SET_ENABLE_CFL_INTRA, 1);
+ // INTRABC is currently disabled for rt mode, as it's too slow.
+ aom_codec_control(&codec, AV1E_SET_ENABLE_INTRABC, 0);
+ }
+
+ if (app_input.use_external_rc) {
+ aom_codec_control(&codec, AV1E_SET_RTC_EXTERNAL_RC, 1);
+ }
+
+ aom_codec_control(&codec, AV1E_SET_MAX_CONSEC_FRAME_DROP_CBR, INT_MAX);
+
+ aom_codec_control(&codec, AV1E_SET_SVC_FRAME_DROP_MODE,
+ AOM_FULL_SUPERFRAME_DROP);
+
+ svc_params.number_spatial_layers = ss_number_layers;
+ svc_params.number_temporal_layers = ts_number_layers;
+ for (i = 0; i < ss_number_layers * ts_number_layers; ++i) {
+ svc_params.max_quantizers[i] = cfg.rc_max_quantizer;
+ svc_params.min_quantizers[i] = cfg.rc_min_quantizer;
+ }
+ for (i = 0; i < ss_number_layers; ++i) {
+ svc_params.scaling_factor_num[i] = 1;
+ svc_params.scaling_factor_den[i] = 1;
+ }
+ if (ss_number_layers == 2) {
+ svc_params.scaling_factor_num[0] = 1;
+ svc_params.scaling_factor_den[0] = 2;
+ } else if (ss_number_layers == 3) {
+ svc_params.scaling_factor_num[0] = 1;
+ svc_params.scaling_factor_den[0] = 4;
+ svc_params.scaling_factor_num[1] = 1;
+ svc_params.scaling_factor_den[1] = 2;
+ }
+ aom_codec_control(&codec, AV1E_SET_SVC_PARAMS, &svc_params);
+ // TODO(aomedia:3032): Configure KSVC in fixed mode.
+
+ // This controls the maximum target size of the key frame.
+ // For generating smaller key frames, use a smaller max_intra_size_pct
+ // value, like 100 or 200.
+ {
+ const int max_intra_size_pct = 300;
+ aom_codec_control(&codec, AOME_SET_MAX_INTRA_BITRATE_PCT,
+ max_intra_size_pct);
+ }
+
+ for (int lx = 0; lx < ts_number_layers * ss_number_layers; lx++) {
+ cx_time_layer[lx] = 0;
+ frame_cnt_layer[lx] = 0;
+ }
+
+ std::unique_ptr<aom::AV1RateControlRTC> rc_api;
+ if (app_input.use_external_rc) {
+ const aom::AV1RateControlRtcConfig rc_cfg =
+ create_rtc_rc_config(cfg, app_input);
+ rc_api = aom::AV1RateControlRTC::Create(rc_cfg);
+ }
+
+ frame_avail = 1;
+ struct psnr_stats psnr_stream;
+ memset(&psnr_stream, 0, sizeof(psnr_stream));
+ while (frame_avail || got_data) {
+ struct aom_usec_timer timer;
+ frame_avail = read_frame(&(app_input.input_ctx), &raw);
+ // Loop over spatial layers.
+ for (int slx = 0; slx < ss_number_layers; slx++) {
+ aom_codec_iter_t iter = NULL;
+ const aom_codec_cx_pkt_t *pkt;
+ int layer = 0;
+ // Flag for superframe whose base is key.
+ int is_key_frame = (frame_cnt % cfg.kf_max_dist) == 0;
+ // For flexible mode:
+ if (app_input.layering_mode >= 0) {
+ // Set the reference/update flags, layer_id, and reference_map
+ // buffer index.
+ set_layer_pattern(app_input.layering_mode, frame_cnt, &layer_id,
+ &ref_frame_config, &ref_frame_comp_pred,
+ &use_svc_control, slx, is_key_frame,
+ (app_input.layering_mode == 10), app_input.speed);
+ aom_codec_control(&codec, AV1E_SET_SVC_LAYER_ID, &layer_id);
+ if (use_svc_control) {
+ aom_codec_control(&codec, AV1E_SET_SVC_REF_FRAME_CONFIG,
+ &ref_frame_config);
+ aom_codec_control(&codec, AV1E_SET_SVC_REF_FRAME_COMP_PRED,
+ &ref_frame_comp_pred);
+ }
+ // Set the speed per layer.
+ if (test_speed_per_layer) {
+ int speed_per_layer = 10;
+ if (layer_id.spatial_layer_id == 0) {
+ if (layer_id.temporal_layer_id == 0) speed_per_layer = 6;
+ if (layer_id.temporal_layer_id == 1) speed_per_layer = 7;
+ if (layer_id.temporal_layer_id == 2) speed_per_layer = 8;
+ } else if (layer_id.spatial_layer_id == 1) {
+ if (layer_id.temporal_layer_id == 0) speed_per_layer = 7;
+ if (layer_id.temporal_layer_id == 1) speed_per_layer = 8;
+ if (layer_id.temporal_layer_id == 2) speed_per_layer = 9;
+ } else if (layer_id.spatial_layer_id == 2) {
+ if (layer_id.temporal_layer_id == 0) speed_per_layer = 8;
+ if (layer_id.temporal_layer_id == 1) speed_per_layer = 9;
+ if (layer_id.temporal_layer_id == 2) speed_per_layer = 10;
+ }
+ aom_codec_control(&codec, AOME_SET_CPUUSED, speed_per_layer);
+ }
+ } else {
+ // Only up to 3 temporal layers supported in fixed mode.
+ // Only need to set spatial and temporal layer_id: reference
+ // prediction, refresh, and buffer_idx are set internally.
+ layer_id.spatial_layer_id = slx;
+ layer_id.temporal_layer_id = 0;
+ if (ts_number_layers == 2) {
+ layer_id.temporal_layer_id = (frame_cnt % 2) != 0;
+ } else if (ts_number_layers == 3) {
+ if (frame_cnt % 2 != 0)
+ layer_id.temporal_layer_id = 2;
+ else if ((frame_cnt > 1) && ((frame_cnt - 2) % 4 == 0))
+ layer_id.temporal_layer_id = 1;
+ }
+ aom_codec_control(&codec, AV1E_SET_SVC_LAYER_ID, &layer_id);
+ }
+
+ if (set_err_resil_frame && cfg.g_error_resilient == 0) {
+ // Set error_resilient per frame: off/0 for base layer and
+ // on/1 for enhancement layer frames.
+ // Note that this is can only be done on the fly/per-frame/layer
+ // if the config error_resilience is off/0. See the logic for updating
+ // in set_encoder_config():
+ // tool_cfg->error_resilient_mode =
+ // cfg->g_error_resilient | extra_cfg->error_resilient_mode;
+ const int err_resil_mode =
+ layer_id.spatial_layer_id > 0 || layer_id.temporal_layer_id > 0;
+ aom_codec_control(&codec, AV1E_SET_ERROR_RESILIENT_MODE,
+ err_resil_mode);
+ }
+
+ layer = slx * ts_number_layers + layer_id.temporal_layer_id;
+ if (frame_avail && slx == 0) ++rc.layer_input_frames[layer];
+
+ if (test_dynamic_scaling_single_layer) {
+ // Example to scale source down by 2x2, then 4x4, and then back up to
+ // 2x2, and then back to original.
+ int frame_2x2 = 200;
+ int frame_4x4 = 400;
+ int frame_2x2up = 600;
+ int frame_orig = 800;
+ if (frame_cnt >= frame_2x2 && frame_cnt < frame_4x4) {
+ // Scale source down by 2x2.
+ struct aom_scaling_mode mode = { AOME_ONETWO, AOME_ONETWO };
+ aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode);
+ } else if (frame_cnt >= frame_4x4 && frame_cnt < frame_2x2up) {
+ // Scale source down by 4x4.
+ struct aom_scaling_mode mode = { AOME_ONEFOUR, AOME_ONEFOUR };
+ aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode);
+ } else if (frame_cnt >= frame_2x2up && frame_cnt < frame_orig) {
+ // Source back up to 2x2.
+ struct aom_scaling_mode mode = { AOME_ONETWO, AOME_ONETWO };
+ aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode);
+ } else if (frame_cnt >= frame_orig) {
+ // Source back up to original resolution (no scaling).
+ struct aom_scaling_mode mode = { AOME_NORMAL, AOME_NORMAL };
+ aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode);
+ }
+ if (frame_cnt == frame_2x2 || frame_cnt == frame_4x4 ||
+ frame_cnt == frame_2x2up || frame_cnt == frame_orig) {
+ // For dynamic resize testing on single layer: refresh all references
+ // on the resized frame: this is to avoid decode error:
+ // if resize goes down by >= 4x4 then libaom decoder will throw an
+ // error that some reference (even though not used) is beyond the
+ // limit size (must be smaller than 4x4).
+ for (i = 0; i < REF_FRAMES; i++) ref_frame_config.refresh[i] = 1;
+ if (use_svc_control) {
+ aom_codec_control(&codec, AV1E_SET_SVC_REF_FRAME_CONFIG,
+ &ref_frame_config);
+ aom_codec_control(&codec, AV1E_SET_SVC_REF_FRAME_COMP_PRED,
+ &ref_frame_comp_pred);
+ }
+ }
+ }
+
+ // Change target_bitrate every other frame.
+ if (test_changing_bitrate && frame_cnt % 2 == 0) {
+ if (frame_cnt < 500)
+ cfg.rc_target_bitrate += 10;
+ else
+ cfg.rc_target_bitrate -= 10;
+ // Do big increase and decrease.
+ if (frame_cnt == 100) cfg.rc_target_bitrate <<= 1;
+ if (frame_cnt == 600) cfg.rc_target_bitrate >>= 1;
+ if (cfg.rc_target_bitrate < 100) cfg.rc_target_bitrate = 100;
+ // Call change_config, or bypass with new control.
+ // res = aom_codec_enc_config_set(&codec, &cfg);
+ if (aom_codec_control(&codec, AV1E_SET_BITRATE_ONE_PASS_CBR,
+ cfg.rc_target_bitrate))
+ die_codec(&codec, "Failed to SET_BITRATE_ONE_PASS_CBR");
+ }
+
+ if (rc_api) {
+ aom::AV1FrameParamsRTC frame_params;
+ // TODO(jianj): Add support for SVC.
+ frame_params.spatial_layer_id = 0;
+ frame_params.temporal_layer_id = 0;
+ frame_params.frame_type =
+ is_key_frame ? aom::kKeyFrame : aom::kInterFrame;
+ rc_api->ComputeQP(frame_params);
+ const int current_qp = rc_api->GetQP();
+ if (aom_codec_control(&codec, AV1E_SET_QUANTIZER_ONE_PASS,
+ qindex_to_quantizer(current_qp))) {
+ die_codec(&codec, "Failed to SET_QUANTIZER_ONE_PASS");
+ }
+ }
+
+ // Do the layer encode.
+ aom_usec_timer_start(&timer);
+ if (aom_codec_encode(&codec, frame_avail ? &raw : NULL, pts, 1, flags))
+ die_codec(&codec, "Failed to encode frame");
+ aom_usec_timer_mark(&timer);
+ cx_time += aom_usec_timer_elapsed(&timer);
+ cx_time_layer[layer] += aom_usec_timer_elapsed(&timer);
+ frame_cnt_layer[layer] += 1;
+
+ got_data = 0;
+ // For simulcast (mode 11): write out each spatial layer to the file.
+ int ss_layers_write = (app_input.layering_mode == 11)
+ ? layer_id.spatial_layer_id + 1
+ : ss_number_layers;
+ while ((pkt = aom_codec_get_cx_data(&codec, &iter))) {
+ switch (pkt->kind) {
+ case AOM_CODEC_CX_FRAME_PKT:
+ for (int sl = layer_id.spatial_layer_id; sl < ss_layers_write;
+ ++sl) {
+ for (int tl = layer_id.temporal_layer_id; tl < ts_number_layers;
+ ++tl) {
+ int j = sl * ts_number_layers + tl;
+ if (app_input.output_obu) {
+ fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz,
+ obu_files[j]);
+ } else {
+ aom_video_writer_write_frame(
+ outfile[j],
+ reinterpret_cast<const uint8_t *>(pkt->data.frame.buf),
+ pkt->data.frame.sz, pts);
+ }
+ if (sl == layer_id.spatial_layer_id)
+ rc.layer_encoding_bitrate[j] += 8.0 * pkt->data.frame.sz;
+ }
+ }
+ got_data = 1;
+ // Write everything into the top layer.
+ if (app_input.output_obu) {
+ fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz,
+ total_layer_obu_file);
+ } else {
+ aom_video_writer_write_frame(
+ total_layer_file,
+ reinterpret_cast<const uint8_t *>(pkt->data.frame.buf),
+ pkt->data.frame.sz, pts);
+ }
+ // Keep count of rate control stats per layer (for non-key).
+ if (!(pkt->data.frame.flags & AOM_FRAME_IS_KEY)) {
+ int j = layer_id.spatial_layer_id * ts_number_layers +
+ layer_id.temporal_layer_id;
+ assert(j >= 0);
+ rc.layer_avg_frame_size[j] += 8.0 * pkt->data.frame.sz;
+ rc.layer_avg_rate_mismatch[j] +=
+ fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[j]) /
+ rc.layer_pfb[j];
+ if (slx == 0) ++rc.layer_enc_frames[layer_id.temporal_layer_id];
+ }
+
+ if (rc_api) {
+ rc_api->PostEncodeUpdate(pkt->data.frame.sz);
+ }
+ // Update for short-time encoding bitrate states, for moving window
+ // of size rc->window, shifted by rc->window / 2.
+ // Ignore first window segment, due to key frame.
+ // For spatial layers: only do this for top/highest SL.
+ if (frame_cnt > rc.window_size && slx == ss_number_layers - 1) {
+ sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
+ rc.window_size = (rc.window_size <= 0) ? 1 : rc.window_size;
+ if (frame_cnt % rc.window_size == 0) {
+ rc.window_count += 1;
+ rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size;
+ rc.variance_st_encoding_bitrate +=
+ (sum_bitrate / rc.window_size) *
+ (sum_bitrate / rc.window_size);
+ sum_bitrate = 0.0;
+ }
+ }
+ // Second shifted window.
+ if (frame_cnt > rc.window_size + rc.window_size / 2 &&
+ slx == ss_number_layers - 1) {
+ sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
+ if (frame_cnt > 2 * rc.window_size &&
+ frame_cnt % rc.window_size == 0) {
+ rc.window_count += 1;
+ rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size;
+ rc.variance_st_encoding_bitrate +=
+ (sum_bitrate2 / rc.window_size) *
+ (sum_bitrate2 / rc.window_size);
+ sum_bitrate2 = 0.0;
+ }
+ }
+
+#if CONFIG_AV1_DECODER
+ if (app_input.decode) {
+ if (aom_codec_decode(
+ &decoder,
+ reinterpret_cast<const uint8_t *>(pkt->data.frame.buf),
+ pkt->data.frame.sz, NULL))
+ die_codec(&decoder, "Failed to decode frame");
+ }
+#endif
+
+ break;
+ case AOM_CODEC_PSNR_PKT:
+ if (app_input.show_psnr) {
+ psnr_stream.psnr_sse_total[0] += pkt->data.psnr.sse[0];
+ psnr_stream.psnr_samples_total[0] += pkt->data.psnr.samples[0];
+ for (int plane = 0; plane < 4; plane++) {
+ psnr_stream.psnr_totals[0][plane] += pkt->data.psnr.psnr[plane];
+ }
+ psnr_stream.psnr_count[0]++;
+ }
+ break;
+ default: break;
+ }
+ }
+#if CONFIG_AV1_DECODER
+ if (got_data && app_input.decode) {
+ // Don't look for mismatch on top spatial and top temporal layers as
+ // they are non reference frames.
+ if ((ss_number_layers > 1 || ts_number_layers > 1) &&
+ !(layer_id.temporal_layer_id > 0 &&
+ layer_id.temporal_layer_id == ts_number_layers - 1)) {
+ if (test_decode(&codec, &decoder, frame_cnt)) {
+#if CONFIG_INTERNAL_STATS
+ fprintf(stats_file, "First mismatch occurred in frame %d\n",
+ frame_cnt);
+ fclose(stats_file);
+#endif
+ fatal("Mismatch seen");
+ }
+ }
+ }
+#endif
+ } // loop over spatial layers
+ ++frame_cnt;
+ pts += frame_duration;
+ }
+
+ close_input_file(&(app_input.input_ctx));
+ printout_rate_control_summary(&rc, frame_cnt, ss_number_layers,
+ ts_number_layers);
+
+ printf("\n");
+ for (int slx = 0; slx < ss_number_layers; slx++)
+ for (int tlx = 0; tlx < ts_number_layers; tlx++) {
+ int lx = slx * ts_number_layers + tlx;
+ printf("Per layer encoding time/FPS stats for encoder: %d %d %d %f %f \n",
+ slx, tlx, frame_cnt_layer[lx],
+ (float)cx_time_layer[lx] / (double)(frame_cnt_layer[lx] * 1000),
+ 1000000 * (double)frame_cnt_layer[lx] / (double)cx_time_layer[lx]);
+ }
+
+ printf("\n");
+ printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f\n",
+ frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000),
+ 1000000 * (double)frame_cnt / (double)cx_time);
+
+ if (app_input.show_psnr) {
+ show_psnr(&psnr_stream, 255.0);
+ }
+
+ if (aom_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy encoder");
+
+#if CONFIG_AV1_DECODER
+ if (app_input.decode) {
+ if (aom_codec_destroy(&decoder))
+ die_codec(&decoder, "Failed to destroy decoder");
+ }
+#endif
+
+#if CONFIG_INTERNAL_STATS
+ fprintf(stats_file, "No mismatch detected in recon buffers\n");
+ fclose(stats_file);
+#endif
+
+ // Try to rewrite the output file headers with the actual frame count.
+ for (i = 0; i < ss_number_layers * ts_number_layers; ++i)
+ aom_video_writer_close(outfile[i]);
+ aom_video_writer_close(total_layer_file);
+
+ if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) {
+ aom_img_free(&raw);
+ }
+ return EXIT_SUCCESS;
+}