summaryrefslogtreecommitdiffstats
path: root/third_party/aom/test/hadamard_test.cc
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/test/hadamard_test.cc547
1 files changed, 547 insertions, 0 deletions
diff --git a/third_party/aom/test/hadamard_test.cc b/third_party/aom/test/hadamard_test.cc
new file mode 100644
index 0000000000..b01e78faaa
--- /dev/null
+++ b/third_party/aom/test/hadamard_test.cc
@@ -0,0 +1,547 @@
+/*
+ * Copyright (c) 2019, Alliance for Open Media. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <algorithm>
+#include <ostream>
+
+#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
+
+#include "config/aom_dsp_rtcd.h"
+
+#include "test/acm_random.h"
+#include "test/register_state_check.h"
+#include "test/util.h"
+
+namespace {
+
+using libaom_test::ACMRandom;
+
+using HadamardFunc = void (*)(const int16_t *a, ptrdiff_t a_stride,
+ tran_low_t *b);
+// Low precision version of Hadamard Transform
+using HadamardLPFunc = void (*)(const int16_t *a, ptrdiff_t a_stride,
+ int16_t *b);
+// Low precision version of Hadamard Transform 8x8 - Dual
+using HadamardLP8x8DualFunc = void (*)(const int16_t *a, ptrdiff_t a_stride,
+ int16_t *b);
+
+template <typename OutputType>
+void Hadamard4x4(const OutputType *a, OutputType *out) {
+ OutputType b[8];
+ for (int i = 0; i < 4; i += 2) {
+ b[i + 0] = (a[i * 4] + a[(i + 1) * 4]) >> 1;
+ b[i + 1] = (a[i * 4] - a[(i + 1) * 4]) >> 1;
+ }
+
+ out[0] = b[0] + b[2];
+ out[1] = b[1] + b[3];
+ out[2] = b[0] - b[2];
+ out[3] = b[1] - b[3];
+}
+
+template <typename OutputType>
+void ReferenceHadamard4x4(const int16_t *a, int a_stride, OutputType *b) {
+ OutputType input[16];
+ OutputType buf[16];
+ for (int i = 0; i < 4; ++i) {
+ for (int j = 0; j < 4; ++j) {
+ input[i * 4 + j] = static_cast<OutputType>(a[i * a_stride + j]);
+ }
+ }
+ for (int i = 0; i < 4; ++i) Hadamard4x4(input + i, buf + i * 4);
+ for (int i = 0; i < 4; ++i) Hadamard4x4(buf + i, b + i * 4);
+
+ // Extra transpose to match C and SSE2 behavior(i.e., aom_hadamard_4x4).
+ for (int i = 0; i < 4; i++) {
+ for (int j = i + 1; j < 4; j++) {
+ OutputType temp = b[j * 4 + i];
+ b[j * 4 + i] = b[i * 4 + j];
+ b[i * 4 + j] = temp;
+ }
+ }
+}
+
+template <typename OutputType>
+void HadamardLoop(const OutputType *a, OutputType *out) {
+ OutputType b[8];
+ for (int i = 0; i < 8; i += 2) {
+ b[i + 0] = a[i * 8] + a[(i + 1) * 8];
+ b[i + 1] = a[i * 8] - a[(i + 1) * 8];
+ }
+ OutputType c[8];
+ for (int i = 0; i < 8; i += 4) {
+ c[i + 0] = b[i + 0] + b[i + 2];
+ c[i + 1] = b[i + 1] + b[i + 3];
+ c[i + 2] = b[i + 0] - b[i + 2];
+ c[i + 3] = b[i + 1] - b[i + 3];
+ }
+ out[0] = c[0] + c[4];
+ out[7] = c[1] + c[5];
+ out[3] = c[2] + c[6];
+ out[4] = c[3] + c[7];
+ out[2] = c[0] - c[4];
+ out[6] = c[1] - c[5];
+ out[1] = c[2] - c[6];
+ out[5] = c[3] - c[7];
+}
+
+template <typename OutputType>
+void ReferenceHadamard8x8(const int16_t *a, int a_stride, OutputType *b) {
+ OutputType input[64];
+ OutputType buf[64];
+ for (int i = 0; i < 8; ++i) {
+ for (int j = 0; j < 8; ++j) {
+ input[i * 8 + j] = static_cast<OutputType>(a[i * a_stride + j]);
+ }
+ }
+ for (int i = 0; i < 8; ++i) HadamardLoop(input + i, buf + i * 8);
+ for (int i = 0; i < 8; ++i) HadamardLoop(buf + i, b + i * 8);
+
+ // Extra transpose to match SSE2 behavior (i.e., aom_hadamard_8x8 and
+ // aom_hadamard_lp_8x8).
+ for (int i = 0; i < 8; i++) {
+ for (int j = i + 1; j < 8; j++) {
+ OutputType temp = b[j * 8 + i];
+ b[j * 8 + i] = b[i * 8 + j];
+ b[i * 8 + j] = temp;
+ }
+ }
+}
+
+template <typename OutputType>
+void ReferenceHadamard8x8Dual(const int16_t *a, int a_stride, OutputType *b) {
+ /* The source is a 8x16 block. The destination is rearranged to 8x16.
+ * Input is 9 bit. */
+ ReferenceHadamard8x8(a, a_stride, b);
+ ReferenceHadamard8x8(a + 8, a_stride, b + 64);
+}
+
+template <typename OutputType>
+void ReferenceHadamard16x16(const int16_t *a, int a_stride, OutputType *b,
+ bool shift) {
+ /* The source is a 16x16 block. The destination is rearranged to 8x32.
+ * Input is 9 bit. */
+ ReferenceHadamard8x8(a + 0 + 0 * a_stride, a_stride, b + 0);
+ ReferenceHadamard8x8(a + 8 + 0 * a_stride, a_stride, b + 64);
+ ReferenceHadamard8x8(a + 0 + 8 * a_stride, a_stride, b + 128);
+ ReferenceHadamard8x8(a + 8 + 8 * a_stride, a_stride, b + 192);
+
+ /* Overlay the 8x8 blocks and combine. */
+ for (int i = 0; i < 64; ++i) {
+ /* 8x8 steps the range up to 15 bits. */
+ const OutputType a0 = b[0];
+ const OutputType a1 = b[64];
+ const OutputType a2 = b[128];
+ const OutputType a3 = b[192];
+
+ /* Prevent the result from escaping int16_t. */
+ const OutputType b0 = (a0 + a1) >> 1;
+ const OutputType b1 = (a0 - a1) >> 1;
+ const OutputType b2 = (a2 + a3) >> 1;
+ const OutputType b3 = (a2 - a3) >> 1;
+
+ /* Store a 16 bit value. */
+ b[0] = b0 + b2;
+ b[64] = b1 + b3;
+ b[128] = b0 - b2;
+ b[192] = b1 - b3;
+
+ ++b;
+ }
+
+ if (shift) {
+ b -= 64;
+ // Extra shift to match aom_hadamard_16x16_c and aom_hadamard_16x16_avx2.
+ for (int i = 0; i < 16; i++) {
+ for (int j = 0; j < 4; j++) {
+ OutputType temp = b[i * 16 + 4 + j];
+ b[i * 16 + 4 + j] = b[i * 16 + 8 + j];
+ b[i * 16 + 8 + j] = temp;
+ }
+ }
+ }
+}
+
+template <typename OutputType>
+void ReferenceHadamard32x32(const int16_t *a, int a_stride, OutputType *b,
+ bool shift) {
+ ReferenceHadamard16x16(a + 0 + 0 * a_stride, a_stride, b + 0, shift);
+ ReferenceHadamard16x16(a + 16 + 0 * a_stride, a_stride, b + 256, shift);
+ ReferenceHadamard16x16(a + 0 + 16 * a_stride, a_stride, b + 512, shift);
+ ReferenceHadamard16x16(a + 16 + 16 * a_stride, a_stride, b + 768, shift);
+
+ for (int i = 0; i < 256; ++i) {
+ const OutputType a0 = b[0];
+ const OutputType a1 = b[256];
+ const OutputType a2 = b[512];
+ const OutputType a3 = b[768];
+
+ const OutputType b0 = (a0 + a1) >> 2;
+ const OutputType b1 = (a0 - a1) >> 2;
+ const OutputType b2 = (a2 + a3) >> 2;
+ const OutputType b3 = (a2 - a3) >> 2;
+
+ b[0] = b0 + b2;
+ b[256] = b1 + b3;
+ b[512] = b0 - b2;
+ b[768] = b1 - b3;
+
+ ++b;
+ }
+}
+
+template <typename OutputType>
+void ReferenceHadamard(const int16_t *a, int a_stride, OutputType *b, int bw,
+ int bh, bool shift) {
+ if (bw == 32 && bh == 32) {
+ ReferenceHadamard32x32(a, a_stride, b, shift);
+ } else if (bw == 16 && bh == 16) {
+ ReferenceHadamard16x16(a, a_stride, b, shift);
+ } else if (bw == 8 && bh == 8) {
+ ReferenceHadamard8x8(a, a_stride, b);
+ } else if (bw == 4 && bh == 4) {
+ ReferenceHadamard4x4(a, a_stride, b);
+ } else if (bw == 8 && bh == 16) {
+ ReferenceHadamard8x8Dual(a, a_stride, b);
+ } else {
+ GTEST_FAIL() << "Invalid Hadamard transform size " << bw << bh << std::endl;
+ }
+}
+
+template <typename HadamardFuncType>
+struct FuncWithSize {
+ FuncWithSize(HadamardFuncType f, int bw, int bh)
+ : func(f), block_width(bw), block_height(bh) {}
+ HadamardFuncType func;
+ int block_width;
+ int block_height;
+};
+
+using HadamardFuncWithSize = FuncWithSize<HadamardFunc>;
+using HadamardLPFuncWithSize = FuncWithSize<HadamardLPFunc>;
+using HadamardLP8x8DualFuncWithSize = FuncWithSize<HadamardLP8x8DualFunc>;
+
+template <typename OutputType, typename HadamardFuncType>
+class HadamardTestBase
+ : public ::testing::TestWithParam<FuncWithSize<HadamardFuncType>> {
+ public:
+ HadamardTestBase(const FuncWithSize<HadamardFuncType> &func_param,
+ bool do_shift) {
+ h_func_ = func_param.func;
+ bw_ = func_param.block_width;
+ bh_ = func_param.block_height;
+ shift_ = do_shift;
+ }
+
+ void SetUp() override { rnd_.Reset(ACMRandom::DeterministicSeed()); }
+
+ // The Rand() function generates values in the range [-((1 << BitDepth) - 1),
+ // (1 << BitDepth) - 1]. This is because the input to the Hadamard transform
+ // is the residual pixel, which is defined as 'source pixel - predicted
+ // pixel'. Source pixel and predicted pixel take values in the range
+ // [0, (1 << BitDepth) - 1] and thus the residual pixel ranges from
+ // -((1 << BitDepth) - 1) to ((1 << BitDepth) - 1).
+ virtual int16_t Rand() = 0;
+
+ void CompareReferenceRandom() {
+ const int kMaxBlockSize = 32 * 32;
+ const int block_size = bw_ * bh_;
+
+ DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize]);
+ DECLARE_ALIGNED(16, OutputType, b[kMaxBlockSize]);
+ memset(a, 0, sizeof(a));
+ memset(b, 0, sizeof(b));
+
+ OutputType b_ref[kMaxBlockSize];
+ memset(b_ref, 0, sizeof(b_ref));
+
+ for (int i = 0; i < block_size; ++i) a[i] = Rand();
+ ReferenceHadamard(a, bw_, b_ref, bw_, bh_, shift_);
+ API_REGISTER_STATE_CHECK(h_func_(a, bw_, b));
+
+ // The order of the output is not important. Sort before checking.
+ std::sort(b, b + block_size);
+ std::sort(b_ref, b_ref + block_size);
+ EXPECT_EQ(memcmp(b, b_ref, sizeof(b)), 0);
+ }
+
+ void CompareReferenceExtreme() {
+ const int kMaxBlockSize = 32 * 32;
+ const int block_size = bw_ * bh_;
+ const int kBitDepth = 8;
+ DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize]);
+ DECLARE_ALIGNED(16, OutputType, b[kMaxBlockSize]);
+ memset(b, 0, sizeof(b));
+
+ OutputType b_ref[kMaxBlockSize];
+ memset(b_ref, 0, sizeof(b_ref));
+ for (int i = 0; i < 2; ++i) {
+ const int sign = (i == 0) ? 1 : -1;
+ for (int j = 0; j < block_size; ++j) a[j] = sign * ((1 << kBitDepth) - 1);
+
+ ReferenceHadamard(a, bw_, b_ref, bw_, bh_, shift_);
+ API_REGISTER_STATE_CHECK(h_func_(a, bw_, b));
+
+ // The order of the output is not important. Sort before checking.
+ std::sort(b, b + block_size);
+ std::sort(b_ref, b_ref + block_size);
+ EXPECT_EQ(memcmp(b, b_ref, sizeof(b)), 0);
+ }
+ }
+
+ void VaryStride() {
+ const int kMaxBlockSize = 32 * 32;
+ const int block_size = bw_ * bh_;
+
+ DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize * 8]);
+ DECLARE_ALIGNED(16, OutputType, b[kMaxBlockSize]);
+ memset(a, 0, sizeof(a));
+ for (int i = 0; i < block_size * 8; ++i) a[i] = Rand();
+
+ OutputType b_ref[kMaxBlockSize];
+ for (int i = 8; i < 64; i += 8) {
+ memset(b, 0, sizeof(b));
+ memset(b_ref, 0, sizeof(b_ref));
+
+ ReferenceHadamard(a, i, b_ref, bw_, bh_, shift_);
+ API_REGISTER_STATE_CHECK(h_func_(a, i, b));
+
+ // The order of the output is not important. Sort before checking.
+ std::sort(b, b + block_size);
+ std::sort(b_ref, b_ref + block_size);
+ EXPECT_EQ(0, memcmp(b, b_ref, sizeof(b)));
+ }
+ }
+
+ void SpeedTest(int times) {
+ const int kMaxBlockSize = 32 * 32;
+ DECLARE_ALIGNED(16, int16_t, input[kMaxBlockSize]);
+ DECLARE_ALIGNED(16, OutputType, output[kMaxBlockSize]);
+ memset(input, 1, sizeof(input));
+ memset(output, 0, sizeof(output));
+
+ aom_usec_timer timer;
+ aom_usec_timer_start(&timer);
+ for (int i = 0; i < times; ++i) {
+ h_func_(input, bw_, output);
+ }
+ aom_usec_timer_mark(&timer);
+
+ const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer));
+ printf("Hadamard%dx%d[%12d runs]: %d us\n", bw_, bh_, times, elapsed_time);
+ }
+
+ protected:
+ ACMRandom rnd_;
+
+ private:
+ HadamardFuncType h_func_;
+ int bw_;
+ int bh_;
+ bool shift_;
+};
+
+class HadamardLowbdTest : public HadamardTestBase<tran_low_t, HadamardFunc> {
+ public:
+ HadamardLowbdTest() : HadamardTestBase(GetParam(), /*do_shift=*/true) {}
+ // Use values between -255 (0xFF01) and 255 (0x00FF)
+ int16_t Rand() override {
+ int16_t src = rnd_.Rand8();
+ int16_t pred = rnd_.Rand8();
+ return src - pred;
+ }
+};
+
+TEST_P(HadamardLowbdTest, CompareReferenceRandom) { CompareReferenceRandom(); }
+
+TEST_P(HadamardLowbdTest, CompareReferenceExtreme) {
+ CompareReferenceExtreme();
+}
+
+TEST_P(HadamardLowbdTest, VaryStride) { VaryStride(); }
+
+TEST_P(HadamardLowbdTest, DISABLED_SpeedTest) { SpeedTest(1000000); }
+
+INSTANTIATE_TEST_SUITE_P(
+ C, HadamardLowbdTest,
+ ::testing::Values(HadamardFuncWithSize(&aom_hadamard_4x4_c, 4, 4),
+ HadamardFuncWithSize(&aom_hadamard_8x8_c, 8, 8),
+ HadamardFuncWithSize(&aom_hadamard_16x16_c, 16, 16),
+ HadamardFuncWithSize(&aom_hadamard_32x32_c, 32, 32)));
+
+#if HAVE_SSE2
+INSTANTIATE_TEST_SUITE_P(
+ SSE2, HadamardLowbdTest,
+ ::testing::Values(HadamardFuncWithSize(&aom_hadamard_4x4_sse2, 4, 4),
+ HadamardFuncWithSize(&aom_hadamard_8x8_sse2, 8, 8),
+ HadamardFuncWithSize(&aom_hadamard_16x16_sse2, 16, 16),
+ HadamardFuncWithSize(&aom_hadamard_32x32_sse2, 32, 32)));
+#endif // HAVE_SSE2
+
+#if HAVE_AVX2
+INSTANTIATE_TEST_SUITE_P(
+ AVX2, HadamardLowbdTest,
+ ::testing::Values(HadamardFuncWithSize(&aom_hadamard_16x16_avx2, 16, 16),
+ HadamardFuncWithSize(&aom_hadamard_32x32_avx2, 32, 32)));
+#endif // HAVE_AVX2
+
+// TODO(aomedia:3314): Disable NEON unit test for now, since hadamard 16x16 NEON
+// need modifications to match C/AVX2 behavior.
+#if HAVE_NEON
+INSTANTIATE_TEST_SUITE_P(
+ NEON, HadamardLowbdTest,
+ ::testing::Values(HadamardFuncWithSize(&aom_hadamard_4x4_neon, 4, 4),
+ HadamardFuncWithSize(&aom_hadamard_8x8_neon, 8, 8),
+ HadamardFuncWithSize(&aom_hadamard_16x16_neon, 16, 16),
+ HadamardFuncWithSize(&aom_hadamard_32x32_neon, 32, 32)));
+#endif // HAVE_NEON
+
+#if CONFIG_AV1_HIGHBITDEPTH
+class HadamardHighbdTest : public HadamardTestBase<tran_low_t, HadamardFunc> {
+ protected:
+ HadamardHighbdTest() : HadamardTestBase(GetParam(), /*do_shift=*/true) {}
+ // Use values between -4095 (0xF001) and 4095 (0x0FFF)
+ int16_t Rand() override {
+ int16_t src = rnd_.Rand12();
+ int16_t pred = rnd_.Rand12();
+ return src - pred;
+ }
+};
+
+TEST_P(HadamardHighbdTest, CompareReferenceRandom) { CompareReferenceRandom(); }
+
+TEST_P(HadamardHighbdTest, VaryStride) { VaryStride(); }
+
+TEST_P(HadamardHighbdTest, DISABLED_Speed) {
+ SpeedTest(10);
+ SpeedTest(10000);
+ SpeedTest(10000000);
+}
+
+INSTANTIATE_TEST_SUITE_P(
+ C, HadamardHighbdTest,
+ ::testing::Values(
+ HadamardFuncWithSize(&aom_highbd_hadamard_8x8_c, 8, 8),
+ HadamardFuncWithSize(&aom_highbd_hadamard_16x16_c, 16, 16),
+ HadamardFuncWithSize(&aom_highbd_hadamard_32x32_c, 32, 32)));
+
+#if HAVE_AVX2
+INSTANTIATE_TEST_SUITE_P(
+ AVX2, HadamardHighbdTest,
+ ::testing::Values(
+ HadamardFuncWithSize(&aom_highbd_hadamard_8x8_avx2, 8, 8),
+ HadamardFuncWithSize(&aom_highbd_hadamard_16x16_avx2, 16, 16),
+ HadamardFuncWithSize(&aom_highbd_hadamard_32x32_avx2, 32, 32)));
+#endif // HAVE_AVX2
+
+#if HAVE_NEON
+INSTANTIATE_TEST_SUITE_P(
+ NEON, HadamardHighbdTest,
+ ::testing::Values(
+ HadamardFuncWithSize(&aom_highbd_hadamard_8x8_neon, 8, 8),
+ HadamardFuncWithSize(&aom_highbd_hadamard_16x16_neon, 16, 16),
+ HadamardFuncWithSize(&aom_highbd_hadamard_32x32_neon, 32, 32)));
+#endif // HAVE_NEON
+
+#endif // CONFIG_AV1_HIGHBITDEPTH
+
+// Tests for low precision
+class HadamardLowbdLPTest : public HadamardTestBase<int16_t, HadamardLPFunc> {
+ public:
+ HadamardLowbdLPTest() : HadamardTestBase(GetParam(), /*do_shift=*/false) {}
+ // Use values between -255 (0xFF01) and 255 (0x00FF)
+ int16_t Rand() override {
+ int16_t src = rnd_.Rand8();
+ int16_t pred = rnd_.Rand8();
+ return src - pred;
+ }
+};
+
+TEST_P(HadamardLowbdLPTest, CompareReferenceRandom) {
+ CompareReferenceRandom();
+}
+
+TEST_P(HadamardLowbdLPTest, VaryStride) { VaryStride(); }
+
+TEST_P(HadamardLowbdLPTest, DISABLED_SpeedTest) { SpeedTest(1000000); }
+
+INSTANTIATE_TEST_SUITE_P(
+ C, HadamardLowbdLPTest,
+ ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_c, 8, 8),
+ HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_c, 16,
+ 16)));
+
+#if HAVE_SSE2
+INSTANTIATE_TEST_SUITE_P(
+ SSE2, HadamardLowbdLPTest,
+ ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_sse2, 8, 8),
+ HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_sse2, 16,
+ 16)));
+#endif // HAVE_SSE2
+
+#if HAVE_AVX2
+INSTANTIATE_TEST_SUITE_P(AVX2, HadamardLowbdLPTest,
+ ::testing::Values(HadamardLPFuncWithSize(
+ &aom_hadamard_lp_16x16_avx2, 16, 16)));
+#endif // HAVE_AVX2
+
+#if HAVE_NEON
+INSTANTIATE_TEST_SUITE_P(
+ NEON, HadamardLowbdLPTest,
+ ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_neon, 8, 8),
+ HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_neon, 16,
+ 16)));
+#endif // HAVE_NEON
+
+// Tests for 8x8 dual low precision
+class HadamardLowbdLP8x8DualTest
+ : public HadamardTestBase<int16_t, HadamardLP8x8DualFunc> {
+ public:
+ HadamardLowbdLP8x8DualTest()
+ : HadamardTestBase(GetParam(), /*do_shift=*/false) {}
+ // Use values between -255 (0xFF01) and 255 (0x00FF)
+ int16_t Rand() override {
+ int16_t src = rnd_.Rand8();
+ int16_t pred = rnd_.Rand8();
+ return src - pred;
+ }
+};
+
+TEST_P(HadamardLowbdLP8x8DualTest, CompareReferenceRandom) {
+ CompareReferenceRandom();
+}
+
+TEST_P(HadamardLowbdLP8x8DualTest, VaryStride) { VaryStride(); }
+
+TEST_P(HadamardLowbdLP8x8DualTest, DISABLED_SpeedTest) { SpeedTest(1000000); }
+
+INSTANTIATE_TEST_SUITE_P(C, HadamardLowbdLP8x8DualTest,
+ ::testing::Values(HadamardLP8x8DualFuncWithSize(
+ &aom_hadamard_lp_8x8_dual_c, 8, 16)));
+
+#if HAVE_SSE2
+INSTANTIATE_TEST_SUITE_P(SSE2, HadamardLowbdLP8x8DualTest,
+ ::testing::Values(HadamardLP8x8DualFuncWithSize(
+ &aom_hadamard_lp_8x8_dual_sse2, 8, 16)));
+#endif // HAVE_SSE2
+
+#if HAVE_AVX2
+INSTANTIATE_TEST_SUITE_P(AVX2, HadamardLowbdLP8x8DualTest,
+ ::testing::Values(HadamardLP8x8DualFuncWithSize(
+ &aom_hadamard_lp_8x8_dual_avx2, 8, 16)));
+#endif // HAVE_AVX2
+
+#if HAVE_NEON
+INSTANTIATE_TEST_SUITE_P(NEON, HadamardLowbdLP8x8DualTest,
+ ::testing::Values(HadamardLP8x8DualFuncWithSize(
+ &aom_hadamard_lp_8x8_dual_neon, 8, 16)));
+#endif // HAVE_NEON
+
+} // namespace