summaryrefslogtreecommitdiffstats
path: root/third_party/aom/tools/gop_bitrate/python/bitrate_accuracy.py
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/aom/tools/gop_bitrate/python/bitrate_accuracy.py185
1 files changed, 185 insertions, 0 deletions
diff --git a/third_party/aom/tools/gop_bitrate/python/bitrate_accuracy.py b/third_party/aom/tools/gop_bitrate/python/bitrate_accuracy.py
new file mode 100644
index 0000000000..2a5da6a794
--- /dev/null
+++ b/third_party/aom/tools/gop_bitrate/python/bitrate_accuracy.py
@@ -0,0 +1,185 @@
+import numpy as np
+
+# Model A only.
+# Uses least squares regression to find the solution
+# when there is one unknown variable.
+def lstsq_solution(A, B):
+ A_inv = np.linalg.pinv(A)
+ x = np.matmul(A_inv, B)
+ return x[0][0]
+
+# Model B only.
+# Uses the pseudoinverse matrix to find the solution
+# when there are two unknown variables.
+def pinv_solution(A, mv, B):
+ new_A = np.concatenate((A, mv), axis=1)
+ new_A_inv = np.linalg.pinv(new_A)
+ new_x = np.matmul(new_A_inv, B)
+ print("pinv solution:", new_x[0][0], new_x[1][0])
+ return (new_x[0][0], new_x[1][0])
+
+# Model A only.
+# Finds the coefficient to multiply A by to minimize
+# the percentage error between A and B.
+def minimize_percentage_error_model_a(A, B):
+ R = np.divide(A, B)
+ num = 0
+ den = 0
+ best_x = 0
+ best_error = 100
+ for r_i in R:
+ num += r_i
+ den += r_i**2
+ if den == 0:
+ return 0
+ return (num/den)[0]
+
+# Model B only.
+# Finds the coefficients to multiply to the frame bitrate
+# and the motion vector bitrate to minimize the percent error.
+def minimize_percentage_error_model_b(r_e, r_m, r_f):
+ r_ef = np.divide(r_e, r_f)
+ r_mf = np.divide(r_m, r_f)
+ sum_ef = np.sum(r_ef)
+ sum_ef_sq = np.sum(np.square(r_ef))
+ sum_mf = np.sum(r_mf)
+ sum_mf_sq = np.sum(np.square(r_mf))
+ sum_ef_mf = np.sum(np.multiply(r_ef, r_mf))
+ # Divides x by y. If y is zero, returns 0.
+ divide = lambda x, y : 0 if y == 0 else x / y
+ # Set up and solve the matrix equation
+ A = np.array([[1, divide(sum_ef_mf, sum_ef_sq)],[divide(sum_ef_mf, sum_mf_sq), 1]])
+ B = np.array([divide(sum_ef, sum_ef_sq), divide(sum_mf, sum_mf_sq)])
+ A_inv = np.linalg.pinv(A)
+ x = np.matmul(A_inv, B)
+ return x
+
+# Model A only.
+# Calculates the least squares error between A and B
+# using coefficients in X.
+def average_lstsq_error(A, B, x):
+ error = 0
+ n = 0
+ for i, a in enumerate(A):
+ a = a[0]
+ b = B[i][0]
+ if b == 0:
+ continue
+ n += 1
+ error += (b - x*a)**2
+ if n == 0:
+ return None
+ error /= n
+ return error
+
+# Model A only.
+# Calculates the average percentage error between A and B.
+def average_percent_error_model_a(A, B, x):
+ error = 0
+ n = 0
+ for i, a in enumerate(A):
+ a = a[0]
+ b = B[i][0]
+ if b == 0:
+ continue
+ n += 1
+ error_i = (abs(x*a-b)/b)*100
+ error += error_i
+ error /= n
+ return error
+
+# Model B only.
+# Calculates the average percentage error between A and B.
+def average_percent_error_model_b(A, M, B, x):
+ error = 0
+ for i, a in enumerate(A):
+ a = a[0]
+ mv = M[i]
+ b = B[i][0]
+ if b == 0:
+ continue
+ estimate = x[0]*a
+ estimate += x[1]*mv
+ error += abs(estimate - b) / b
+ error *= 100
+ error /= A.shape[0]
+ return error
+
+def average_squared_error_model_a(A, B, x):
+ error = 0
+ n = 0
+ for i, a in enumerate(A):
+ a = a[0]
+ b = B[i][0]
+ if b == 0:
+ continue
+ n += 1
+ error_i = (1 - x*(a/b))**2
+ error += error_i
+ error /= n
+ error = error**0.5
+ return error * 100
+
+def average_squared_error_model_b(A, M, B, x):
+ error = 0
+ n = 0
+ for i, a in enumerate(A):
+ a = a[0]
+ b = B[i][0]
+ mv = M[i]
+ if b == 0:
+ continue
+ n += 1
+ error_i = 1 - ((x[0]*a + x[1]*mv)/b)
+ error_i = error_i**2
+ error += error_i
+ error /= n
+ error = error**0.5
+ return error * 100
+
+# Traverses the data and prints out one value for
+# each update type.
+def print_solutions(file_path):
+ data = np.genfromtxt(file_path, delimiter="\t")
+ prev_update = 0
+ split_list_indices = list()
+ for i, val in enumerate(data):
+ if prev_update != val[3]:
+ split_list_indices.append(i)
+ prev_update = val[3]
+ split = np.split(data, split_list_indices)
+ for array in split:
+ A, mv, B, update = np.hsplit(array, 4)
+ z = np.where(B == 0)[0]
+ r_e = np.delete(A, z, axis=0)
+ r_m = np.delete(mv, z, axis=0)
+ r_f = np.delete(B, z, axis=0)
+ A = r_e
+ mv = r_m
+ B = r_f
+ all_zeros = not A.any()
+ if all_zeros:
+ continue
+ print("update type:", update[0][0])
+ x_ls = lstsq_solution(A, B)
+ x_a = minimize_percentage_error_model_a(A, B)
+ x_b = minimize_percentage_error_model_b(A, mv, B)
+ percent_error_a = average_percent_error_model_a(A, B, x_a)
+ percent_error_b = average_percent_error_model_b(A, mv, B, x_b)[0]
+ baseline_percent_error_a = average_percent_error_model_a(A, B, 1)
+ baseline_percent_error_b = average_percent_error_model_b(A, mv, B, [1, 1])[0]
+
+ squared_error_a = average_squared_error_model_a(A, B, x_a)
+ squared_error_b = average_squared_error_model_b(A, mv, B, x_b)[0]
+ baseline_squared_error_a = average_squared_error_model_a(A, B, 1)
+ baseline_squared_error_b = average_squared_error_model_b(A, mv, B, [1, 1])[0]
+
+ print("model,\tframe_coeff,\tmv_coeff,\terror,\tbaseline_error")
+ print("Model A %_error,\t" + str(x_a) + ",\t" + str(0) + ",\t" + str(percent_error_a) + ",\t" + str(baseline_percent_error_a))
+ print("Model A sq_error,\t" + str(x_a) + ",\t" + str(0) + ",\t" + str(squared_error_a) + ",\t" + str(baseline_squared_error_a))
+ print("Model B %_error,\t" + str(x_b[0]) + ",\t" + str(x_b[1]) + ",\t" + str(percent_error_b) + ",\t" + str(baseline_percent_error_b))
+ print("Model B sq_error,\t" + str(x_b[0]) + ",\t" + str(x_b[1]) + ",\t" + str(squared_error_b) + ",\t" + str(baseline_squared_error_b))
+ print()
+
+if __name__ == "__main__":
+ print_solutions("data2/all_lowres_target_lt600_data.txt")