diff options
Diffstat (limited to 'third_party/python/typing_extensions')
6 files changed, 3116 insertions, 0 deletions
diff --git a/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/LICENSE b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/LICENSE new file mode 100644 index 0000000000..583f9f6e61 --- /dev/null +++ b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/LICENSE @@ -0,0 +1,254 @@ +A. HISTORY OF THE SOFTWARE +========================== + +Python was created in the early 1990s by Guido van Rossum at Stichting +Mathematisch Centrum (CWI, see http://www.cwi.nl) in the Netherlands +as a successor of a language called ABC. Guido remains Python's +principal author, although it includes many contributions from others. + +In 1995, Guido continued his work on Python at the Corporation for +National Research Initiatives (CNRI, see http://www.cnri.reston.va.us) +in Reston, Virginia where he released several versions of the +software. + +In May 2000, Guido and the Python core development team moved to +BeOpen.com to form the BeOpen PythonLabs team. In October of the same +year, the PythonLabs team moved to Digital Creations (now Zope +Corporation, see http://www.zope.com). In 2001, the Python Software +Foundation (PSF, see http://www.python.org/psf/) was formed, a +non-profit organization created specifically to own Python-related +Intellectual Property. Zope Corporation is a sponsoring member of +the PSF. + +All Python releases are Open Source (see http://www.opensource.org for +the Open Source Definition). Historically, most, but not all, Python +releases have also been GPL-compatible; the table below summarizes +the various releases. + + Release Derived Year Owner GPL- + from compatible? (1) + + 0.9.0 thru 1.2 1991-1995 CWI yes + 1.3 thru 1.5.2 1.2 1995-1999 CNRI yes + 1.6 1.5.2 2000 CNRI no + 2.0 1.6 2000 BeOpen.com no + 1.6.1 1.6 2001 CNRI yes (2) + 2.1 2.0+1.6.1 2001 PSF no + 2.0.1 2.0+1.6.1 2001 PSF yes + 2.1.1 2.1+2.0.1 2001 PSF yes + 2.1.2 2.1.1 2002 PSF yes + 2.1.3 2.1.2 2002 PSF yes + 2.2 and above 2.1.1 2001-now PSF yes + +Footnotes: + +(1) GPL-compatible doesn't mean that we're distributing Python under + the GPL. All Python licenses, unlike the GPL, let you distribute + a modified version without making your changes open source. The + GPL-compatible licenses make it possible to combine Python with + other software that is released under the GPL; the others don't. + +(2) According to Richard Stallman, 1.6.1 is not GPL-compatible, + because its license has a choice of law clause. According to + CNRI, however, Stallman's lawyer has told CNRI's lawyer that 1.6.1 + is "not incompatible" with the GPL. + +Thanks to the many outside volunteers who have worked under Guido's +direction to make these releases possible. + + +B. TERMS AND CONDITIONS FOR ACCESSING OR OTHERWISE USING PYTHON +=============================================================== + +PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2 +-------------------------------------------- + +1. This LICENSE AGREEMENT is between the Python Software Foundation +("PSF"), and the Individual or Organization ("Licensee") accessing and +otherwise using this software ("Python") in source or binary form and +its associated documentation. + +2. Subject to the terms and conditions of this License Agreement, PSF hereby +grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce, +analyze, test, perform and/or display publicly, prepare derivative works, +distribute, and otherwise use Python alone or in any derivative version, +provided, however, that PSF's License Agreement and PSF's notice of copyright, +i.e., "Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, +2011, 2012, 2013, 2014 Python Software Foundation; All Rights Reserved" are +retained in Python alone or in any derivative version prepared by Licensee. + +3. In the event Licensee prepares a derivative work that is based on +or incorporates Python or any part thereof, and wants to make +the derivative work available to others as provided herein, then +Licensee hereby agrees to include in any such work a brief summary of +the changes made to Python. + +4. PSF is making Python available to Licensee on an "AS IS" +basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR +IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND +DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS +FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON WILL NOT +INFRINGE ANY THIRD PARTY RIGHTS. + +5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON +FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS +A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON, +OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. + +6. This License Agreement will automatically terminate upon a material +breach of its terms and conditions. + +7. Nothing in this License Agreement shall be deemed to create any +relationship of agency, partnership, or joint venture between PSF and +Licensee. This License Agreement does not grant permission to use PSF +trademarks or trade name in a trademark sense to endorse or promote +products or services of Licensee, or any third party. + +8. By copying, installing or otherwise using Python, Licensee +agrees to be bound by the terms and conditions of this License +Agreement. + + +BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 +------------------------------------------- + +BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1 + +1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an +office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the +Individual or Organization ("Licensee") accessing and otherwise using +this software in source or binary form and its associated +documentation ("the Software"). + +2. Subject to the terms and conditions of this BeOpen Python License +Agreement, BeOpen hereby grants Licensee a non-exclusive, +royalty-free, world-wide license to reproduce, analyze, test, perform +and/or display publicly, prepare derivative works, distribute, and +otherwise use the Software alone or in any derivative version, +provided, however, that the BeOpen Python License is retained in the +Software, alone or in any derivative version prepared by Licensee. + +3. BeOpen is making the Software available to Licensee on an "AS IS" +basis. BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR +IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND +DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS +FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT +INFRINGE ANY THIRD PARTY RIGHTS. + +4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE +SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS +AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY +DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. + +5. This License Agreement will automatically terminate upon a material +breach of its terms and conditions. + +6. This License Agreement shall be governed by and interpreted in all +respects by the law of the State of California, excluding conflict of +law provisions. Nothing in this License Agreement shall be deemed to +create any relationship of agency, partnership, or joint venture +between BeOpen and Licensee. This License Agreement does not grant +permission to use BeOpen trademarks or trade names in a trademark +sense to endorse or promote products or services of Licensee, or any +third party. As an exception, the "BeOpen Python" logos available at +http://www.pythonlabs.com/logos.html may be used according to the +permissions granted on that web page. + +7. By copying, installing or otherwise using the software, Licensee +agrees to be bound by the terms and conditions of this License +Agreement. + + +CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1 +--------------------------------------- + +1. This LICENSE AGREEMENT is between the Corporation for National +Research Initiatives, having an office at 1895 Preston White Drive, +Reston, VA 20191 ("CNRI"), and the Individual or Organization +("Licensee") accessing and otherwise using Python 1.6.1 software in +source or binary form and its associated documentation. + +2. Subject to the terms and conditions of this License Agreement, CNRI +hereby grants Licensee a nonexclusive, royalty-free, world-wide +license to reproduce, analyze, test, perform and/or display publicly, +prepare derivative works, distribute, and otherwise use Python 1.6.1 +alone or in any derivative version, provided, however, that CNRI's +License Agreement and CNRI's notice of copyright, i.e., "Copyright (c) +1995-2001 Corporation for National Research Initiatives; All Rights +Reserved" are retained in Python 1.6.1 alone or in any derivative +version prepared by Licensee. Alternately, in lieu of CNRI's License +Agreement, Licensee may substitute the following text (omitting the +quotes): "Python 1.6.1 is made available subject to the terms and +conditions in CNRI's License Agreement. This Agreement together with +Python 1.6.1 may be located on the Internet using the following +unique, persistent identifier (known as a handle): 1895.22/1013. This +Agreement may also be obtained from a proxy server on the Internet +using the following URL: http://hdl.handle.net/1895.22/1013". + +3. In the event Licensee prepares a derivative work that is based on +or incorporates Python 1.6.1 or any part thereof, and wants to make +the derivative work available to others as provided herein, then +Licensee hereby agrees to include in any such work a brief summary of +the changes made to Python 1.6.1. + +4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" +basis. CNRI MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR +IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND +DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS +FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT +INFRINGE ANY THIRD PARTY RIGHTS. + +5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON +1.6.1 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS +A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, +OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. + +6. This License Agreement will automatically terminate upon a material +breach of its terms and conditions. + +7. This License Agreement shall be governed by the federal +intellectual property law of the United States, including without +limitation the federal copyright law, and, to the extent such +U.S. federal law does not apply, by the law of the Commonwealth of +Virginia, excluding Virginia's conflict of law provisions. +Notwithstanding the foregoing, with regard to derivative works based +on Python 1.6.1 that incorporate non-separable material that was +previously distributed under the GNU General Public License (GPL), the +law of the Commonwealth of Virginia shall govern this License +Agreement only as to issues arising under or with respect to +Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this +License Agreement shall be deemed to create any relationship of +agency, partnership, or joint venture between CNRI and Licensee. This +License Agreement does not grant permission to use CNRI trademarks or +trade name in a trademark sense to endorse or promote products or +services of Licensee, or any third party. + +8. By clicking on the "ACCEPT" button where indicated, or by copying, +installing or otherwise using Python 1.6.1, Licensee agrees to be +bound by the terms and conditions of this License Agreement. + + ACCEPT + + +CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 +-------------------------------------------------- + +Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, +The Netherlands. All rights reserved. + +Permission to use, copy, modify, and distribute this software and its +documentation for any purpose and without fee is hereby granted, +provided that the above copyright notice appear in all copies and that +both that copyright notice and this permission notice appear in +supporting documentation, and that the name of Stichting Mathematisch +Centrum or CWI not be used in advertising or publicity pertaining to +distribution of the software without specific, written prior +permission. + +STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO +THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND +FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE +FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES +WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN +ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT +OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. diff --git a/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/METADATA b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/METADATA new file mode 100644 index 0000000000..fa314015ef --- /dev/null +++ b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/METADATA @@ -0,0 +1,45 @@ +Metadata-Version: 2.1 +Name: typing-extensions +Version: 3.10.0.0 +Summary: Backported and Experimental Type Hints for Python 3.5+ +Home-page: https://github.com/python/typing/blob/master/typing_extensions/README.rst +Author: Guido van Rossum, Jukka Lehtosalo, Ćukasz Langa, Michael Lee +Author-email: levkivskyi@gmail.com +License: PSF +Keywords: typing function annotations type hints hinting checking checker typehints typehinting typechecking backport +Platform: UNKNOWN +Classifier: Development Status :: 3 - Alpha +Classifier: Environment :: Console +Classifier: Intended Audience :: Developers +Classifier: License :: OSI Approved :: Python Software Foundation License +Classifier: Operating System :: OS Independent +Classifier: Programming Language :: Python :: 2.7 +Classifier: Programming Language :: Python :: 3.4 +Classifier: Programming Language :: Python :: 3.5 +Classifier: Programming Language :: Python :: 3.6 +Classifier: Programming Language :: Python :: 3.7 +Classifier: Programming Language :: Python :: 3.8 +Classifier: Programming Language :: Python :: 3.9 +Classifier: Programming Language :: Python :: 3.10 +Classifier: Topic :: Software Development +Requires-Dist: typing (>=3.7.4) ; python_version < "3.5" + +Typing Extensions -- Backported and Experimental Type Hints for Python + +The ``typing`` module was added to the standard library in Python 3.5, but +many new features have been added to the module since then. +This means users of Python 3.5 - 3.6 who are unable to upgrade will not be +able to take advantage of new types added to the ``typing`` module, such as +``typing.Protocol`` or ``typing.TypedDict``. + +The ``typing_extensions`` module contains backports of these changes. +Experimental types that will eventually be added to the ``typing`` +module are also included in ``typing_extensions``, such as +``typing.ParamSpec`` and ``typing.TypeGuard``. + +Users of Python versions before 3.5 should install and use +the ``typing`` module from PyPI instead of using this one, unless specifically +writing code that must be compatible with multiple Python versions or requires +experimental types. + + diff --git a/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/RECORD b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/RECORD new file mode 100644 index 0000000000..217df4acdd --- /dev/null +++ b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/RECORD @@ -0,0 +1,6 @@ +typing_extensions.py,sha256=upcRc-ygmoZSgbJ4WZa34ZE_PVJsYrOlGM7WWbBrJuo,108429 +typing_extensions-3.10.0.0.dist-info/LICENSE,sha256=_xfOlOECAk3raHc-scx0ynbaTmWPNzUx8Kwi1oprsa0,12755 +typing_extensions-3.10.0.0.dist-info/METADATA,sha256=zjlcNCeUQUETPe37jftee4IwkGKxm8YPKQxFFOMgyqQ,2099 +typing_extensions-3.10.0.0.dist-info/WHEEL,sha256=OqRkF0eY5GHssMorFjlbTIq072vpHpF60fIQA6lS9xA,92 +typing_extensions-3.10.0.0.dist-info/top_level.txt,sha256=hkDmk3VmrfXPOD--jS4aKTCu6kFZo-kVT1cIFfq1eU8,18 +typing_extensions-3.10.0.0.dist-info/RECORD,, diff --git a/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/WHEEL b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/WHEEL new file mode 100644 index 0000000000..385faab052 --- /dev/null +++ b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/WHEEL @@ -0,0 +1,5 @@ +Wheel-Version: 1.0 +Generator: bdist_wheel (0.36.2) +Root-Is-Purelib: true +Tag: py3-none-any + diff --git a/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/top_level.txt b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/top_level.txt new file mode 100644 index 0000000000..5fd4f05f34 --- /dev/null +++ b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/top_level.txt @@ -0,0 +1 @@ +typing_extensions diff --git a/third_party/python/typing_extensions/typing_extensions.py b/third_party/python/typing_extensions/typing_extensions.py new file mode 100644 index 0000000000..82d1c2dc2c --- /dev/null +++ b/third_party/python/typing_extensions/typing_extensions.py @@ -0,0 +1,2805 @@ +import abc +import collections +import contextlib +import sys +import typing +import collections.abc as collections_abc +import operator + +# These are used by Protocol implementation +# We use internal typing helpers here, but this significantly reduces +# code duplication. (Also this is only until Protocol is in typing.) +from typing import Generic, Callable, TypeVar, Tuple + +# After PEP 560, internal typing API was substantially reworked. +# This is especially important for Protocol class which uses internal APIs +# quite extensivelly. +PEP_560 = sys.version_info[:3] >= (3, 7, 0) + +if PEP_560: + GenericMeta = TypingMeta = type +else: + from typing import GenericMeta, TypingMeta +OLD_GENERICS = False +try: + from typing import _type_vars, _next_in_mro, _type_check +except ImportError: + OLD_GENERICS = True +try: + from typing import _subs_tree # noqa + SUBS_TREE = True +except ImportError: + SUBS_TREE = False +try: + from typing import _tp_cache +except ImportError: + def _tp_cache(x): + return x +try: + from typing import _TypingEllipsis, _TypingEmpty +except ImportError: + class _TypingEllipsis: + pass + + class _TypingEmpty: + pass + + +# The two functions below are copies of typing internal helpers. +# They are needed by _ProtocolMeta + + +def _no_slots_copy(dct): + dict_copy = dict(dct) + if '__slots__' in dict_copy: + for slot in dict_copy['__slots__']: + dict_copy.pop(slot, None) + return dict_copy + + +def _check_generic(cls, parameters): + if not cls.__parameters__: + raise TypeError("%s is not a generic class" % repr(cls)) + alen = len(parameters) + elen = len(cls.__parameters__) + if alen != elen: + raise TypeError("Too %s parameters for %s; actual %s, expected %s" % + ("many" if alen > elen else "few", repr(cls), alen, elen)) + + +if hasattr(typing, '_generic_new'): + _generic_new = typing._generic_new +else: + # Note: The '_generic_new(...)' function is used as a part of the + # process of creating a generic type and was added to the typing module + # as of Python 3.5.3. + # + # We've defined '_generic_new(...)' below to exactly match the behavior + # implemented in older versions of 'typing' bundled with Python 3.5.0 to + # 3.5.2. This helps eliminate redundancy when defining collection types + # like 'Deque' later. + # + # See https://github.com/python/typing/pull/308 for more details -- in + # particular, compare and contrast the definition of types like + # 'typing.List' before and after the merge. + + def _generic_new(base_cls, cls, *args, **kwargs): + return base_cls.__new__(cls, *args, **kwargs) + +# See https://github.com/python/typing/pull/439 +if hasattr(typing, '_geqv'): + from typing import _geqv + _geqv_defined = True +else: + _geqv = None + _geqv_defined = False + +if sys.version_info[:2] >= (3, 6): + import _collections_abc + _check_methods_in_mro = _collections_abc._check_methods +else: + def _check_methods_in_mro(C, *methods): + mro = C.__mro__ + for method in methods: + for B in mro: + if method in B.__dict__: + if B.__dict__[method] is None: + return NotImplemented + break + else: + return NotImplemented + return True + + +# Please keep __all__ alphabetized within each category. +__all__ = [ + # Super-special typing primitives. + 'ClassVar', + 'Concatenate', + 'Final', + 'ParamSpec', + 'Type', + + # ABCs (from collections.abc). + # The following are added depending on presence + # of their non-generic counterparts in stdlib: + # 'Awaitable', + # 'AsyncIterator', + # 'AsyncIterable', + # 'Coroutine', + # 'AsyncGenerator', + # 'AsyncContextManager', + # 'ChainMap', + + # Concrete collection types. + 'ContextManager', + 'Counter', + 'Deque', + 'DefaultDict', + 'OrderedDict' + 'TypedDict', + + # Structural checks, a.k.a. protocols. + 'SupportsIndex', + + # One-off things. + 'final', + 'IntVar', + 'Literal', + 'NewType', + 'overload', + 'Text', + 'TypeAlias', + 'TypeGuard', + 'TYPE_CHECKING', +] + +# Annotated relies on substitution trees of pep 560. It will not work for +# versions of typing older than 3.5.3 +HAVE_ANNOTATED = PEP_560 or SUBS_TREE + +if PEP_560: + __all__.extend(["get_args", "get_origin", "get_type_hints"]) + +if HAVE_ANNOTATED: + __all__.append("Annotated") + +# Protocols are hard to backport to the original version of typing 3.5.0 +HAVE_PROTOCOLS = sys.version_info[:3] != (3, 5, 0) + +if HAVE_PROTOCOLS: + __all__.extend(['Protocol', 'runtime', 'runtime_checkable']) + + +# TODO +if hasattr(typing, 'NoReturn'): + NoReturn = typing.NoReturn +elif hasattr(typing, '_FinalTypingBase'): + class _NoReturn(typing._FinalTypingBase, _root=True): + """Special type indicating functions that never return. + Example:: + + from typing import NoReturn + + def stop() -> NoReturn: + raise Exception('no way') + + This type is invalid in other positions, e.g., ``List[NoReturn]`` + will fail in static type checkers. + """ + __slots__ = () + + def __instancecheck__(self, obj): + raise TypeError("NoReturn cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("NoReturn cannot be used with issubclass().") + + NoReturn = _NoReturn(_root=True) +else: + class _NoReturnMeta(typing.TypingMeta): + """Metaclass for NoReturn""" + def __new__(cls, name, bases, namespace, _root=False): + return super().__new__(cls, name, bases, namespace, _root=_root) + + def __instancecheck__(self, obj): + raise TypeError("NoReturn cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("NoReturn cannot be used with issubclass().") + + class NoReturn(typing.Final, metaclass=_NoReturnMeta, _root=True): + """Special type indicating functions that never return. + Example:: + + from typing import NoReturn + + def stop() -> NoReturn: + raise Exception('no way') + + This type is invalid in other positions, e.g., ``List[NoReturn]`` + will fail in static type checkers. + """ + __slots__ = () + + +# Some unconstrained type variables. These are used by the container types. +# (These are not for export.) +T = typing.TypeVar('T') # Any type. +KT = typing.TypeVar('KT') # Key type. +VT = typing.TypeVar('VT') # Value type. +T_co = typing.TypeVar('T_co', covariant=True) # Any type covariant containers. +V_co = typing.TypeVar('V_co', covariant=True) # Any type covariant containers. +VT_co = typing.TypeVar('VT_co', covariant=True) # Value type covariant containers. +T_contra = typing.TypeVar('T_contra', contravariant=True) # Ditto contravariant. + + +if hasattr(typing, 'ClassVar'): + ClassVar = typing.ClassVar +elif hasattr(typing, '_FinalTypingBase'): + class _ClassVar(typing._FinalTypingBase, _root=True): + """Special type construct to mark class variables. + + An annotation wrapped in ClassVar indicates that a given + attribute is intended to be used as a class variable and + should not be set on instances of that class. Usage:: + + class Starship: + stats: ClassVar[Dict[str, int]] = {} # class variable + damage: int = 10 # instance variable + + ClassVar accepts only types and cannot be further subscribed. + + Note that ClassVar is not a class itself, and should not + be used with isinstance() or issubclass(). + """ + + __slots__ = ('__type__',) + + def __init__(self, tp=None, **kwds): + self.__type__ = tp + + def __getitem__(self, item): + cls = type(self) + if self.__type__ is None: + return cls(typing._type_check(item, + '{} accepts only single type.'.format(cls.__name__[1:])), + _root=True) + raise TypeError('{} cannot be further subscripted' + .format(cls.__name__[1:])) + + def _eval_type(self, globalns, localns): + new_tp = typing._eval_type(self.__type__, globalns, localns) + if new_tp == self.__type__: + return self + return type(self)(new_tp, _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__type__ is not None: + r += '[{}]'.format(typing._type_repr(self.__type__)) + return r + + def __hash__(self): + return hash((type(self).__name__, self.__type__)) + + def __eq__(self, other): + if not isinstance(other, _ClassVar): + return NotImplemented + if self.__type__ is not None: + return self.__type__ == other.__type__ + return self is other + + ClassVar = _ClassVar(_root=True) +else: + class _ClassVarMeta(typing.TypingMeta): + """Metaclass for ClassVar""" + + def __new__(cls, name, bases, namespace, tp=None, _root=False): + self = super().__new__(cls, name, bases, namespace, _root=_root) + if tp is not None: + self.__type__ = tp + return self + + def __instancecheck__(self, obj): + raise TypeError("ClassVar cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("ClassVar cannot be used with issubclass().") + + def __getitem__(self, item): + cls = type(self) + if self.__type__ is not None: + raise TypeError('{} cannot be further subscripted' + .format(cls.__name__[1:])) + + param = typing._type_check( + item, + '{} accepts only single type.'.format(cls.__name__[1:])) + return cls(self.__name__, self.__bases__, + dict(self.__dict__), tp=param, _root=True) + + def _eval_type(self, globalns, localns): + new_tp = typing._eval_type(self.__type__, globalns, localns) + if new_tp == self.__type__: + return self + return type(self)(self.__name__, self.__bases__, + dict(self.__dict__), tp=self.__type__, + _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__type__ is not None: + r += '[{}]'.format(typing._type_repr(self.__type__)) + return r + + def __hash__(self): + return hash((type(self).__name__, self.__type__)) + + def __eq__(self, other): + if not isinstance(other, ClassVar): + return NotImplemented + if self.__type__ is not None: + return self.__type__ == other.__type__ + return self is other + + class ClassVar(typing.Final, metaclass=_ClassVarMeta, _root=True): + """Special type construct to mark class variables. + + An annotation wrapped in ClassVar indicates that a given + attribute is intended to be used as a class variable and + should not be set on instances of that class. Usage:: + + class Starship: + stats: ClassVar[Dict[str, int]] = {} # class variable + damage: int = 10 # instance variable + + ClassVar accepts only types and cannot be further subscribed. + + Note that ClassVar is not a class itself, and should not + be used with isinstance() or issubclass(). + """ + + __type__ = None + +# On older versions of typing there is an internal class named "Final". +if hasattr(typing, 'Final') and sys.version_info[:2] >= (3, 7): + Final = typing.Final +elif sys.version_info[:2] >= (3, 7): + class _FinalForm(typing._SpecialForm, _root=True): + + def __repr__(self): + return 'typing_extensions.' + self._name + + def __getitem__(self, parameters): + item = typing._type_check(parameters, + '{} accepts only single type'.format(self._name)) + return _GenericAlias(self, (item,)) + + Final = _FinalForm('Final', + doc="""A special typing construct to indicate that a name + cannot be re-assigned or overridden in a subclass. + For example: + + MAX_SIZE: Final = 9000 + MAX_SIZE += 1 # Error reported by type checker + + class Connection: + TIMEOUT: Final[int] = 10 + class FastConnector(Connection): + TIMEOUT = 1 # Error reported by type checker + + There is no runtime checking of these properties.""") +elif hasattr(typing, '_FinalTypingBase'): + class _Final(typing._FinalTypingBase, _root=True): + """A special typing construct to indicate that a name + cannot be re-assigned or overridden in a subclass. + For example: + + MAX_SIZE: Final = 9000 + MAX_SIZE += 1 # Error reported by type checker + + class Connection: + TIMEOUT: Final[int] = 10 + class FastConnector(Connection): + TIMEOUT = 1 # Error reported by type checker + + There is no runtime checking of these properties. + """ + + __slots__ = ('__type__',) + + def __init__(self, tp=None, **kwds): + self.__type__ = tp + + def __getitem__(self, item): + cls = type(self) + if self.__type__ is None: + return cls(typing._type_check(item, + '{} accepts only single type.'.format(cls.__name__[1:])), + _root=True) + raise TypeError('{} cannot be further subscripted' + .format(cls.__name__[1:])) + + def _eval_type(self, globalns, localns): + new_tp = typing._eval_type(self.__type__, globalns, localns) + if new_tp == self.__type__: + return self + return type(self)(new_tp, _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__type__ is not None: + r += '[{}]'.format(typing._type_repr(self.__type__)) + return r + + def __hash__(self): + return hash((type(self).__name__, self.__type__)) + + def __eq__(self, other): + if not isinstance(other, _Final): + return NotImplemented + if self.__type__ is not None: + return self.__type__ == other.__type__ + return self is other + + Final = _Final(_root=True) +else: + class _FinalMeta(typing.TypingMeta): + """Metaclass for Final""" + + def __new__(cls, name, bases, namespace, tp=None, _root=False): + self = super().__new__(cls, name, bases, namespace, _root=_root) + if tp is not None: + self.__type__ = tp + return self + + def __instancecheck__(self, obj): + raise TypeError("Final cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Final cannot be used with issubclass().") + + def __getitem__(self, item): + cls = type(self) + if self.__type__ is not None: + raise TypeError('{} cannot be further subscripted' + .format(cls.__name__[1:])) + + param = typing._type_check( + item, + '{} accepts only single type.'.format(cls.__name__[1:])) + return cls(self.__name__, self.__bases__, + dict(self.__dict__), tp=param, _root=True) + + def _eval_type(self, globalns, localns): + new_tp = typing._eval_type(self.__type__, globalns, localns) + if new_tp == self.__type__: + return self + return type(self)(self.__name__, self.__bases__, + dict(self.__dict__), tp=self.__type__, + _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__type__ is not None: + r += '[{}]'.format(typing._type_repr(self.__type__)) + return r + + def __hash__(self): + return hash((type(self).__name__, self.__type__)) + + def __eq__(self, other): + if not isinstance(other, Final): + return NotImplemented + if self.__type__ is not None: + return self.__type__ == other.__type__ + return self is other + + class Final(typing.Final, metaclass=_FinalMeta, _root=True): + """A special typing construct to indicate that a name + cannot be re-assigned or overridden in a subclass. + For example: + + MAX_SIZE: Final = 9000 + MAX_SIZE += 1 # Error reported by type checker + + class Connection: + TIMEOUT: Final[int] = 10 + class FastConnector(Connection): + TIMEOUT = 1 # Error reported by type checker + + There is no runtime checking of these properties. + """ + + __type__ = None + + +if hasattr(typing, 'final'): + final = typing.final +else: + def final(f): + """This decorator can be used to indicate to type checkers that + the decorated method cannot be overridden, and decorated class + cannot be subclassed. For example: + + class Base: + @final + def done(self) -> None: + ... + class Sub(Base): + def done(self) -> None: # Error reported by type checker + ... + @final + class Leaf: + ... + class Other(Leaf): # Error reported by type checker + ... + + There is no runtime checking of these properties. + """ + return f + + +def IntVar(name): + return TypeVar(name) + + +if hasattr(typing, 'Literal'): + Literal = typing.Literal +elif sys.version_info[:2] >= (3, 7): + class _LiteralForm(typing._SpecialForm, _root=True): + + def __repr__(self): + return 'typing_extensions.' + self._name + + def __getitem__(self, parameters): + return _GenericAlias(self, parameters) + + Literal = _LiteralForm('Literal', + doc="""A type that can be used to indicate to type checkers + that the corresponding value has a value literally equivalent + to the provided parameter. For example: + + var: Literal[4] = 4 + + The type checker understands that 'var' is literally equal to + the value 4 and no other value. + + Literal[...] cannot be subclassed. There is no runtime + checking verifying that the parameter is actually a value + instead of a type.""") +elif hasattr(typing, '_FinalTypingBase'): + class _Literal(typing._FinalTypingBase, _root=True): + """A type that can be used to indicate to type checkers that the + corresponding value has a value literally equivalent to the + provided parameter. For example: + + var: Literal[4] = 4 + + The type checker understands that 'var' is literally equal to the + value 4 and no other value. + + Literal[...] cannot be subclassed. There is no runtime checking + verifying that the parameter is actually a value instead of a type. + """ + + __slots__ = ('__values__',) + + def __init__(self, values=None, **kwds): + self.__values__ = values + + def __getitem__(self, values): + cls = type(self) + if self.__values__ is None: + if not isinstance(values, tuple): + values = (values,) + return cls(values, _root=True) + raise TypeError('{} cannot be further subscripted' + .format(cls.__name__[1:])) + + def _eval_type(self, globalns, localns): + return self + + def __repr__(self): + r = super().__repr__() + if self.__values__ is not None: + r += '[{}]'.format(', '.join(map(typing._type_repr, self.__values__))) + return r + + def __hash__(self): + return hash((type(self).__name__, self.__values__)) + + def __eq__(self, other): + if not isinstance(other, _Literal): + return NotImplemented + if self.__values__ is not None: + return self.__values__ == other.__values__ + return self is other + + Literal = _Literal(_root=True) +else: + class _LiteralMeta(typing.TypingMeta): + """Metaclass for Literal""" + + def __new__(cls, name, bases, namespace, values=None, _root=False): + self = super().__new__(cls, name, bases, namespace, _root=_root) + if values is not None: + self.__values__ = values + return self + + def __instancecheck__(self, obj): + raise TypeError("Literal cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Literal cannot be used with issubclass().") + + def __getitem__(self, item): + cls = type(self) + if self.__values__ is not None: + raise TypeError('{} cannot be further subscripted' + .format(cls.__name__[1:])) + + if not isinstance(item, tuple): + item = (item,) + return cls(self.__name__, self.__bases__, + dict(self.__dict__), values=item, _root=True) + + def _eval_type(self, globalns, localns): + return self + + def __repr__(self): + r = super().__repr__() + if self.__values__ is not None: + r += '[{}]'.format(', '.join(map(typing._type_repr, self.__values__))) + return r + + def __hash__(self): + return hash((type(self).__name__, self.__values__)) + + def __eq__(self, other): + if not isinstance(other, Literal): + return NotImplemented + if self.__values__ is not None: + return self.__values__ == other.__values__ + return self is other + + class Literal(typing.Final, metaclass=_LiteralMeta, _root=True): + """A type that can be used to indicate to type checkers that the + corresponding value has a value literally equivalent to the + provided parameter. For example: + + var: Literal[4] = 4 + + The type checker understands that 'var' is literally equal to the + value 4 and no other value. + + Literal[...] cannot be subclassed. There is no runtime checking + verifying that the parameter is actually a value instead of a type. + """ + + __values__ = None + + +def _overload_dummy(*args, **kwds): + """Helper for @overload to raise when called.""" + raise NotImplementedError( + "You should not call an overloaded function. " + "A series of @overload-decorated functions " + "outside a stub module should always be followed " + "by an implementation that is not @overload-ed.") + + +def overload(func): + """Decorator for overloaded functions/methods. + + In a stub file, place two or more stub definitions for the same + function in a row, each decorated with @overload. For example: + + @overload + def utf8(value: None) -> None: ... + @overload + def utf8(value: bytes) -> bytes: ... + @overload + def utf8(value: str) -> bytes: ... + + In a non-stub file (i.e. a regular .py file), do the same but + follow it with an implementation. The implementation should *not* + be decorated with @overload. For example: + + @overload + def utf8(value: None) -> None: ... + @overload + def utf8(value: bytes) -> bytes: ... + @overload + def utf8(value: str) -> bytes: ... + def utf8(value): + # implementation goes here + """ + return _overload_dummy + + +# This is not a real generic class. Don't use outside annotations. +if hasattr(typing, 'Type'): + Type = typing.Type +else: + # Internal type variable used for Type[]. + CT_co = typing.TypeVar('CT_co', covariant=True, bound=type) + + class Type(typing.Generic[CT_co], extra=type): + """A special construct usable to annotate class objects. + + For example, suppose we have the following classes:: + + class User: ... # Abstract base for User classes + class BasicUser(User): ... + class ProUser(User): ... + class TeamUser(User): ... + + And a function that takes a class argument that's a subclass of + User and returns an instance of the corresponding class:: + + U = TypeVar('U', bound=User) + def new_user(user_class: Type[U]) -> U: + user = user_class() + # (Here we could write the user object to a database) + return user + joe = new_user(BasicUser) + + At this point the type checker knows that joe has type BasicUser. + """ + + __slots__ = () + + +# Various ABCs mimicking those in collections.abc. +# A few are simply re-exported for completeness. + +def _define_guard(type_name): + """ + Returns True if the given type isn't defined in typing but + is defined in collections_abc. + + Adds the type to __all__ if the collection is found in either + typing or collection_abc. + """ + if hasattr(typing, type_name): + __all__.append(type_name) + globals()[type_name] = getattr(typing, type_name) + return False + elif hasattr(collections_abc, type_name): + __all__.append(type_name) + return True + else: + return False + + +class _ExtensionsGenericMeta(GenericMeta): + def __subclasscheck__(self, subclass): + """This mimics a more modern GenericMeta.__subclasscheck__() logic + (that does not have problems with recursion) to work around interactions + between collections, typing, and typing_extensions on older + versions of Python, see https://github.com/python/typing/issues/501. + """ + if sys.version_info[:3] >= (3, 5, 3) or sys.version_info[:3] < (3, 5, 0): + if self.__origin__ is not None: + if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools']: + raise TypeError("Parameterized generics cannot be used with class " + "or instance checks") + return False + if not self.__extra__: + return super().__subclasscheck__(subclass) + res = self.__extra__.__subclasshook__(subclass) + if res is not NotImplemented: + return res + if self.__extra__ in subclass.__mro__: + return True + for scls in self.__extra__.__subclasses__(): + if isinstance(scls, GenericMeta): + continue + if issubclass(subclass, scls): + return True + return False + + +if _define_guard('Awaitable'): + class Awaitable(typing.Generic[T_co], metaclass=_ExtensionsGenericMeta, + extra=collections_abc.Awaitable): + __slots__ = () + + +if _define_guard('Coroutine'): + class Coroutine(Awaitable[V_co], typing.Generic[T_co, T_contra, V_co], + metaclass=_ExtensionsGenericMeta, + extra=collections_abc.Coroutine): + __slots__ = () + + +if _define_guard('AsyncIterable'): + class AsyncIterable(typing.Generic[T_co], + metaclass=_ExtensionsGenericMeta, + extra=collections_abc.AsyncIterable): + __slots__ = () + + +if _define_guard('AsyncIterator'): + class AsyncIterator(AsyncIterable[T_co], + metaclass=_ExtensionsGenericMeta, + extra=collections_abc.AsyncIterator): + __slots__ = () + + +if hasattr(typing, 'Deque'): + Deque = typing.Deque +elif _geqv_defined: + class Deque(collections.deque, typing.MutableSequence[T], + metaclass=_ExtensionsGenericMeta, + extra=collections.deque): + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Deque): + return collections.deque(*args, **kwds) + return _generic_new(collections.deque, cls, *args, **kwds) +else: + class Deque(collections.deque, typing.MutableSequence[T], + metaclass=_ExtensionsGenericMeta, + extra=collections.deque): + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is Deque: + return collections.deque(*args, **kwds) + return _generic_new(collections.deque, cls, *args, **kwds) + + +if hasattr(typing, 'ContextManager'): + ContextManager = typing.ContextManager +elif hasattr(contextlib, 'AbstractContextManager'): + class ContextManager(typing.Generic[T_co], + metaclass=_ExtensionsGenericMeta, + extra=contextlib.AbstractContextManager): + __slots__ = () +else: + class ContextManager(typing.Generic[T_co]): + __slots__ = () + + def __enter__(self): + return self + + @abc.abstractmethod + def __exit__(self, exc_type, exc_value, traceback): + return None + + @classmethod + def __subclasshook__(cls, C): + if cls is ContextManager: + # In Python 3.6+, it is possible to set a method to None to + # explicitly indicate that the class does not implement an ABC + # (https://bugs.python.org/issue25958), but we do not support + # that pattern here because this fallback class is only used + # in Python 3.5 and earlier. + if (any("__enter__" in B.__dict__ for B in C.__mro__) and + any("__exit__" in B.__dict__ for B in C.__mro__)): + return True + return NotImplemented + + +if hasattr(typing, 'AsyncContextManager'): + AsyncContextManager = typing.AsyncContextManager + __all__.append('AsyncContextManager') +elif hasattr(contextlib, 'AbstractAsyncContextManager'): + class AsyncContextManager(typing.Generic[T_co], + metaclass=_ExtensionsGenericMeta, + extra=contextlib.AbstractAsyncContextManager): + __slots__ = () + + __all__.append('AsyncContextManager') +elif sys.version_info[:2] >= (3, 5): + exec(""" +class AsyncContextManager(typing.Generic[T_co]): + __slots__ = () + + async def __aenter__(self): + return self + + @abc.abstractmethod + async def __aexit__(self, exc_type, exc_value, traceback): + return None + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncContextManager: + return _check_methods_in_mro(C, "__aenter__", "__aexit__") + return NotImplemented + +__all__.append('AsyncContextManager') +""") + + +if hasattr(typing, 'DefaultDict'): + DefaultDict = typing.DefaultDict +elif _geqv_defined: + class DefaultDict(collections.defaultdict, typing.MutableMapping[KT, VT], + metaclass=_ExtensionsGenericMeta, + extra=collections.defaultdict): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, DefaultDict): + return collections.defaultdict(*args, **kwds) + return _generic_new(collections.defaultdict, cls, *args, **kwds) +else: + class DefaultDict(collections.defaultdict, typing.MutableMapping[KT, VT], + metaclass=_ExtensionsGenericMeta, + extra=collections.defaultdict): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is DefaultDict: + return collections.defaultdict(*args, **kwds) + return _generic_new(collections.defaultdict, cls, *args, **kwds) + + +if hasattr(typing, 'OrderedDict'): + OrderedDict = typing.OrderedDict +elif (3, 7, 0) <= sys.version_info[:3] < (3, 7, 2): + OrderedDict = typing._alias(collections.OrderedDict, (KT, VT)) +elif _geqv_defined: + class OrderedDict(collections.OrderedDict, typing.MutableMapping[KT, VT], + metaclass=_ExtensionsGenericMeta, + extra=collections.OrderedDict): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, OrderedDict): + return collections.OrderedDict(*args, **kwds) + return _generic_new(collections.OrderedDict, cls, *args, **kwds) +else: + class OrderedDict(collections.OrderedDict, typing.MutableMapping[KT, VT], + metaclass=_ExtensionsGenericMeta, + extra=collections.OrderedDict): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is OrderedDict: + return collections.OrderedDict(*args, **kwds) + return _generic_new(collections.OrderedDict, cls, *args, **kwds) + + +if hasattr(typing, 'Counter'): + Counter = typing.Counter +elif (3, 5, 0) <= sys.version_info[:3] <= (3, 5, 1): + assert _geqv_defined + _TInt = typing.TypeVar('_TInt') + + class _CounterMeta(typing.GenericMeta): + """Metaclass for Counter""" + def __getitem__(self, item): + return super().__getitem__((item, int)) + + class Counter(collections.Counter, + typing.Dict[T, int], + metaclass=_CounterMeta, + extra=collections.Counter): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Counter): + return collections.Counter(*args, **kwds) + return _generic_new(collections.Counter, cls, *args, **kwds) + +elif _geqv_defined: + class Counter(collections.Counter, + typing.Dict[T, int], + metaclass=_ExtensionsGenericMeta, extra=collections.Counter): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Counter): + return collections.Counter(*args, **kwds) + return _generic_new(collections.Counter, cls, *args, **kwds) + +else: + class Counter(collections.Counter, + typing.Dict[T, int], + metaclass=_ExtensionsGenericMeta, extra=collections.Counter): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is Counter: + return collections.Counter(*args, **kwds) + return _generic_new(collections.Counter, cls, *args, **kwds) + + +if hasattr(typing, 'ChainMap'): + ChainMap = typing.ChainMap + __all__.append('ChainMap') +elif hasattr(collections, 'ChainMap'): + # ChainMap only exists in 3.3+ + if _geqv_defined: + class ChainMap(collections.ChainMap, typing.MutableMapping[KT, VT], + metaclass=_ExtensionsGenericMeta, + extra=collections.ChainMap): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, ChainMap): + return collections.ChainMap(*args, **kwds) + return _generic_new(collections.ChainMap, cls, *args, **kwds) + else: + class ChainMap(collections.ChainMap, typing.MutableMapping[KT, VT], + metaclass=_ExtensionsGenericMeta, + extra=collections.ChainMap): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is ChainMap: + return collections.ChainMap(*args, **kwds) + return _generic_new(collections.ChainMap, cls, *args, **kwds) + + __all__.append('ChainMap') + + +if _define_guard('AsyncGenerator'): + class AsyncGenerator(AsyncIterator[T_co], typing.Generic[T_co, T_contra], + metaclass=_ExtensionsGenericMeta, + extra=collections_abc.AsyncGenerator): + __slots__ = () + + +if hasattr(typing, 'NewType'): + NewType = typing.NewType +else: + def NewType(name, tp): + """NewType creates simple unique types with almost zero + runtime overhead. NewType(name, tp) is considered a subtype of tp + by static type checkers. At runtime, NewType(name, tp) returns + a dummy function that simply returns its argument. Usage:: + + UserId = NewType('UserId', int) + + def name_by_id(user_id: UserId) -> str: + ... + + UserId('user') # Fails type check + + name_by_id(42) # Fails type check + name_by_id(UserId(42)) # OK + + num = UserId(5) + 1 # type: int + """ + + def new_type(x): + return x + + new_type.__name__ = name + new_type.__supertype__ = tp + return new_type + + +if hasattr(typing, 'Text'): + Text = typing.Text +else: + Text = str + + +if hasattr(typing, 'TYPE_CHECKING'): + TYPE_CHECKING = typing.TYPE_CHECKING +else: + # Constant that's True when type checking, but False here. + TYPE_CHECKING = False + + +def _gorg(cls): + """This function exists for compatibility with old typing versions.""" + assert isinstance(cls, GenericMeta) + if hasattr(cls, '_gorg'): + return cls._gorg + while cls.__origin__ is not None: + cls = cls.__origin__ + return cls + + +if OLD_GENERICS: + def _next_in_mro(cls): # noqa + """This function exists for compatibility with old typing versions.""" + next_in_mro = object + for i, c in enumerate(cls.__mro__[:-1]): + if isinstance(c, GenericMeta) and _gorg(c) is Generic: + next_in_mro = cls.__mro__[i + 1] + return next_in_mro + + +_PROTO_WHITELIST = ['Callable', 'Awaitable', + 'Iterable', 'Iterator', 'AsyncIterable', 'AsyncIterator', + 'Hashable', 'Sized', 'Container', 'Collection', 'Reversible', + 'ContextManager', 'AsyncContextManager'] + + +def _get_protocol_attrs(cls): + attrs = set() + for base in cls.__mro__[:-1]: # without object + if base.__name__ in ('Protocol', 'Generic'): + continue + annotations = getattr(base, '__annotations__', {}) + for attr in list(base.__dict__.keys()) + list(annotations.keys()): + if (not attr.startswith('_abc_') and attr not in ( + '__abstractmethods__', '__annotations__', '__weakref__', + '_is_protocol', '_is_runtime_protocol', '__dict__', + '__args__', '__slots__', + '__next_in_mro__', '__parameters__', '__origin__', + '__orig_bases__', '__extra__', '__tree_hash__', + '__doc__', '__subclasshook__', '__init__', '__new__', + '__module__', '_MutableMapping__marker', '_gorg')): + attrs.add(attr) + return attrs + + +def _is_callable_members_only(cls): + return all(callable(getattr(cls, attr, None)) for attr in _get_protocol_attrs(cls)) + + +if hasattr(typing, 'Protocol'): + Protocol = typing.Protocol +elif HAVE_PROTOCOLS and not PEP_560: + + def _no_init(self, *args, **kwargs): + if type(self)._is_protocol: + raise TypeError('Protocols cannot be instantiated') + + class _ProtocolMeta(GenericMeta): + """Internal metaclass for Protocol. + + This exists so Protocol classes can be generic without deriving + from Generic. + """ + if not OLD_GENERICS: + def __new__(cls, name, bases, namespace, + tvars=None, args=None, origin=None, extra=None, orig_bases=None): + # This is just a version copied from GenericMeta.__new__ that + # includes "Protocol" special treatment. (Comments removed for brevity.) + assert extra is None # Protocols should not have extra + if tvars is not None: + assert origin is not None + assert all(isinstance(t, TypeVar) for t in tvars), tvars + else: + tvars = _type_vars(bases) + gvars = None + for base in bases: + if base is Generic: + raise TypeError("Cannot inherit from plain Generic") + if (isinstance(base, GenericMeta) and + base.__origin__ in (Generic, Protocol)): + if gvars is not None: + raise TypeError( + "Cannot inherit from Generic[...] or" + " Protocol[...] multiple times.") + gvars = base.__parameters__ + if gvars is None: + gvars = tvars + else: + tvarset = set(tvars) + gvarset = set(gvars) + if not tvarset <= gvarset: + raise TypeError( + "Some type variables (%s) " + "are not listed in %s[%s]" % + (", ".join(str(t) for t in tvars if t not in gvarset), + "Generic" if any(b.__origin__ is Generic + for b in bases) else "Protocol", + ", ".join(str(g) for g in gvars))) + tvars = gvars + + initial_bases = bases + if (extra is not None and type(extra) is abc.ABCMeta and + extra not in bases): + bases = (extra,) + bases + bases = tuple(_gorg(b) if isinstance(b, GenericMeta) else b + for b in bases) + if any(isinstance(b, GenericMeta) and b is not Generic for b in bases): + bases = tuple(b for b in bases if b is not Generic) + namespace.update({'__origin__': origin, '__extra__': extra}) + self = super(GenericMeta, cls).__new__(cls, name, bases, namespace, + _root=True) + super(GenericMeta, self).__setattr__('_gorg', + self if not origin else + _gorg(origin)) + self.__parameters__ = tvars + self.__args__ = tuple(... if a is _TypingEllipsis else + () if a is _TypingEmpty else + a for a in args) if args else None + self.__next_in_mro__ = _next_in_mro(self) + if orig_bases is None: + self.__orig_bases__ = initial_bases + elif origin is not None: + self._abc_registry = origin._abc_registry + self._abc_cache = origin._abc_cache + if hasattr(self, '_subs_tree'): + self.__tree_hash__ = (hash(self._subs_tree()) if origin else + super(GenericMeta, self).__hash__()) + return self + + def __init__(cls, *args, **kwargs): + super().__init__(*args, **kwargs) + if not cls.__dict__.get('_is_protocol', None): + cls._is_protocol = any(b is Protocol or + isinstance(b, _ProtocolMeta) and + b.__origin__ is Protocol + for b in cls.__bases__) + if cls._is_protocol: + for base in cls.__mro__[1:]: + if not (base in (object, Generic) or + base.__module__ == 'collections.abc' and + base.__name__ in _PROTO_WHITELIST or + isinstance(base, TypingMeta) and base._is_protocol or + isinstance(base, GenericMeta) and + base.__origin__ is Generic): + raise TypeError('Protocols can only inherit from other' + ' protocols, got %r' % base) + + cls.__init__ = _no_init + + def _proto_hook(other): + if not cls.__dict__.get('_is_protocol', None): + return NotImplemented + if not isinstance(other, type): + # Same error as for issubclass(1, int) + raise TypeError('issubclass() arg 1 must be a class') + for attr in _get_protocol_attrs(cls): + for base in other.__mro__: + if attr in base.__dict__: + if base.__dict__[attr] is None: + return NotImplemented + break + annotations = getattr(base, '__annotations__', {}) + if (isinstance(annotations, typing.Mapping) and + attr in annotations and + isinstance(other, _ProtocolMeta) and + other._is_protocol): + break + else: + return NotImplemented + return True + if '__subclasshook__' not in cls.__dict__: + cls.__subclasshook__ = _proto_hook + + def __instancecheck__(self, instance): + # We need this method for situations where attributes are + # assigned in __init__. + if ((not getattr(self, '_is_protocol', False) or + _is_callable_members_only(self)) and + issubclass(instance.__class__, self)): + return True + if self._is_protocol: + if all(hasattr(instance, attr) and + (not callable(getattr(self, attr, None)) or + getattr(instance, attr) is not None) + for attr in _get_protocol_attrs(self)): + return True + return super(GenericMeta, self).__instancecheck__(instance) + + def __subclasscheck__(self, cls): + if self.__origin__ is not None: + if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools']: + raise TypeError("Parameterized generics cannot be used with class " + "or instance checks") + return False + if (self.__dict__.get('_is_protocol', None) and + not self.__dict__.get('_is_runtime_protocol', None)): + if sys._getframe(1).f_globals['__name__'] in ['abc', + 'functools', + 'typing']: + return False + raise TypeError("Instance and class checks can only be used with" + " @runtime protocols") + if (self.__dict__.get('_is_runtime_protocol', None) and + not _is_callable_members_only(self)): + if sys._getframe(1).f_globals['__name__'] in ['abc', + 'functools', + 'typing']: + return super(GenericMeta, self).__subclasscheck__(cls) + raise TypeError("Protocols with non-method members" + " don't support issubclass()") + return super(GenericMeta, self).__subclasscheck__(cls) + + if not OLD_GENERICS: + @_tp_cache + def __getitem__(self, params): + # We also need to copy this from GenericMeta.__getitem__ to get + # special treatment of "Protocol". (Comments removed for brevity.) + if not isinstance(params, tuple): + params = (params,) + if not params and _gorg(self) is not Tuple: + raise TypeError( + "Parameter list to %s[...] cannot be empty" % self.__qualname__) + msg = "Parameters to generic types must be types." + params = tuple(_type_check(p, msg) for p in params) + if self in (Generic, Protocol): + if not all(isinstance(p, TypeVar) for p in params): + raise TypeError( + "Parameters to %r[...] must all be type variables" % self) + if len(set(params)) != len(params): + raise TypeError( + "Parameters to %r[...] must all be unique" % self) + tvars = params + args = params + elif self in (Tuple, Callable): + tvars = _type_vars(params) + args = params + elif self.__origin__ in (Generic, Protocol): + raise TypeError("Cannot subscript already-subscripted %s" % + repr(self)) + else: + _check_generic(self, params) + tvars = _type_vars(params) + args = params + + prepend = (self,) if self.__origin__ is None else () + return self.__class__(self.__name__, + prepend + self.__bases__, + _no_slots_copy(self.__dict__), + tvars=tvars, + args=args, + origin=self, + extra=self.__extra__, + orig_bases=self.__orig_bases__) + + class Protocol(metaclass=_ProtocolMeta): + """Base class for protocol classes. Protocol classes are defined as:: + + class Proto(Protocol): + def meth(self) -> int: + ... + + Such classes are primarily used with static type checkers that recognize + structural subtyping (static duck-typing), for example:: + + class C: + def meth(self) -> int: + return 0 + + def func(x: Proto) -> int: + return x.meth() + + func(C()) # Passes static type check + + See PEP 544 for details. Protocol classes decorated with + @typing_extensions.runtime act as simple-minded runtime protocol that checks + only the presence of given attributes, ignoring their type signatures. + + Protocol classes can be generic, they are defined as:: + + class GenProto({bases}): + def meth(self) -> T: + ... + """ + __slots__ = () + _is_protocol = True + + def __new__(cls, *args, **kwds): + if _gorg(cls) is Protocol: + raise TypeError("Type Protocol cannot be instantiated; " + "it can be used only as a base class") + if OLD_GENERICS: + return _generic_new(_next_in_mro(cls), cls, *args, **kwds) + return _generic_new(cls.__next_in_mro__, cls, *args, **kwds) + if Protocol.__doc__ is not None: + Protocol.__doc__ = Protocol.__doc__.format(bases="Protocol, Generic[T]" if + OLD_GENERICS else "Protocol[T]") + + +elif PEP_560: + from typing import _type_check, _GenericAlias, _collect_type_vars # noqa + + def _no_init(self, *args, **kwargs): + if type(self)._is_protocol: + raise TypeError('Protocols cannot be instantiated') + + class _ProtocolMeta(abc.ABCMeta): + # This metaclass is a bit unfortunate and exists only because of the lack + # of __instancehook__. + def __instancecheck__(cls, instance): + # We need this method for situations where attributes are + # assigned in __init__. + if ((not getattr(cls, '_is_protocol', False) or + _is_callable_members_only(cls)) and + issubclass(instance.__class__, cls)): + return True + if cls._is_protocol: + if all(hasattr(instance, attr) and + (not callable(getattr(cls, attr, None)) or + getattr(instance, attr) is not None) + for attr in _get_protocol_attrs(cls)): + return True + return super().__instancecheck__(instance) + + class Protocol(metaclass=_ProtocolMeta): + # There is quite a lot of overlapping code with typing.Generic. + # Unfortunately it is hard to avoid this while these live in two different + # modules. The duplicated code will be removed when Protocol is moved to typing. + """Base class for protocol classes. Protocol classes are defined as:: + + class Proto(Protocol): + def meth(self) -> int: + ... + + Such classes are primarily used with static type checkers that recognize + structural subtyping (static duck-typing), for example:: + + class C: + def meth(self) -> int: + return 0 + + def func(x: Proto) -> int: + return x.meth() + + func(C()) # Passes static type check + + See PEP 544 for details. Protocol classes decorated with + @typing_extensions.runtime act as simple-minded runtime protocol that checks + only the presence of given attributes, ignoring their type signatures. + + Protocol classes can be generic, they are defined as:: + + class GenProto(Protocol[T]): + def meth(self) -> T: + ... + """ + __slots__ = () + _is_protocol = True + + def __new__(cls, *args, **kwds): + if cls is Protocol: + raise TypeError("Type Protocol cannot be instantiated; " + "it can only be used as a base class") + return super().__new__(cls) + + @_tp_cache + def __class_getitem__(cls, params): + if not isinstance(params, tuple): + params = (params,) + if not params and cls is not Tuple: + raise TypeError( + "Parameter list to {}[...] cannot be empty".format(cls.__qualname__)) + msg = "Parameters to generic types must be types." + params = tuple(_type_check(p, msg) for p in params) + if cls is Protocol: + # Generic can only be subscripted with unique type variables. + if not all(isinstance(p, TypeVar) for p in params): + i = 0 + while isinstance(params[i], TypeVar): + i += 1 + raise TypeError( + "Parameters to Protocol[...] must all be type variables." + " Parameter {} is {}".format(i + 1, params[i])) + if len(set(params)) != len(params): + raise TypeError( + "Parameters to Protocol[...] must all be unique") + else: + # Subscripting a regular Generic subclass. + _check_generic(cls, params) + return _GenericAlias(cls, params) + + def __init_subclass__(cls, *args, **kwargs): + tvars = [] + if '__orig_bases__' in cls.__dict__: + error = Generic in cls.__orig_bases__ + else: + error = Generic in cls.__bases__ + if error: + raise TypeError("Cannot inherit from plain Generic") + if '__orig_bases__' in cls.__dict__: + tvars = _collect_type_vars(cls.__orig_bases__) + # Look for Generic[T1, ..., Tn] or Protocol[T1, ..., Tn]. + # If found, tvars must be a subset of it. + # If not found, tvars is it. + # Also check for and reject plain Generic, + # and reject multiple Generic[...] and/or Protocol[...]. + gvars = None + for base in cls.__orig_bases__: + if (isinstance(base, _GenericAlias) and + base.__origin__ in (Generic, Protocol)): + # for error messages + the_base = 'Generic' if base.__origin__ is Generic else 'Protocol' + if gvars is not None: + raise TypeError( + "Cannot inherit from Generic[...]" + " and/or Protocol[...] multiple types.") + gvars = base.__parameters__ + if gvars is None: + gvars = tvars + else: + tvarset = set(tvars) + gvarset = set(gvars) + if not tvarset <= gvarset: + s_vars = ', '.join(str(t) for t in tvars if t not in gvarset) + s_args = ', '.join(str(g) for g in gvars) + raise TypeError("Some type variables ({}) are" + " not listed in {}[{}]".format(s_vars, + the_base, s_args)) + tvars = gvars + cls.__parameters__ = tuple(tvars) + + # Determine if this is a protocol or a concrete subclass. + if not cls.__dict__.get('_is_protocol', None): + cls._is_protocol = any(b is Protocol for b in cls.__bases__) + + # Set (or override) the protocol subclass hook. + def _proto_hook(other): + if not cls.__dict__.get('_is_protocol', None): + return NotImplemented + if not getattr(cls, '_is_runtime_protocol', False): + if sys._getframe(2).f_globals['__name__'] in ['abc', 'functools']: + return NotImplemented + raise TypeError("Instance and class checks can only be used with" + " @runtime protocols") + if not _is_callable_members_only(cls): + if sys._getframe(2).f_globals['__name__'] in ['abc', 'functools']: + return NotImplemented + raise TypeError("Protocols with non-method members" + " don't support issubclass()") + if not isinstance(other, type): + # Same error as for issubclass(1, int) + raise TypeError('issubclass() arg 1 must be a class') + for attr in _get_protocol_attrs(cls): + for base in other.__mro__: + if attr in base.__dict__: + if base.__dict__[attr] is None: + return NotImplemented + break + annotations = getattr(base, '__annotations__', {}) + if (isinstance(annotations, typing.Mapping) and + attr in annotations and + isinstance(other, _ProtocolMeta) and + other._is_protocol): + break + else: + return NotImplemented + return True + if '__subclasshook__' not in cls.__dict__: + cls.__subclasshook__ = _proto_hook + + # We have nothing more to do for non-protocols. + if not cls._is_protocol: + return + + # Check consistency of bases. + for base in cls.__bases__: + if not (base in (object, Generic) or + base.__module__ == 'collections.abc' and + base.__name__ in _PROTO_WHITELIST or + isinstance(base, _ProtocolMeta) and base._is_protocol): + raise TypeError('Protocols can only inherit from other' + ' protocols, got %r' % base) + cls.__init__ = _no_init + + +if hasattr(typing, 'runtime_checkable'): + runtime_checkable = typing.runtime_checkable +elif HAVE_PROTOCOLS: + def runtime_checkable(cls): + """Mark a protocol class as a runtime protocol, so that it + can be used with isinstance() and issubclass(). Raise TypeError + if applied to a non-protocol class. + + This allows a simple-minded structural check very similar to the + one-offs in collections.abc such as Hashable. + """ + if not isinstance(cls, _ProtocolMeta) or not cls._is_protocol: + raise TypeError('@runtime_checkable can be only applied to protocol classes,' + ' got %r' % cls) + cls._is_runtime_protocol = True + return cls + + +if HAVE_PROTOCOLS: + # Exists for backwards compatibility. + runtime = runtime_checkable + + +if hasattr(typing, 'SupportsIndex'): + SupportsIndex = typing.SupportsIndex +elif HAVE_PROTOCOLS: + @runtime_checkable + class SupportsIndex(Protocol): + __slots__ = () + + @abc.abstractmethod + def __index__(self) -> int: + pass + + +if sys.version_info >= (3, 9, 2): + # The standard library TypedDict in Python 3.8 does not store runtime information + # about which (if any) keys are optional. See https://bugs.python.org/issue38834 + # The standard library TypedDict in Python 3.9.0/1 does not honour the "total" + # keyword with old-style TypedDict(). See https://bugs.python.org/issue42059 + TypedDict = typing.TypedDict +else: + def _check_fails(cls, other): + try: + if sys._getframe(1).f_globals['__name__'] not in ['abc', + 'functools', + 'typing']: + # Typed dicts are only for static structural subtyping. + raise TypeError('TypedDict does not support instance and class checks') + except (AttributeError, ValueError): + pass + return False + + def _dict_new(*args, **kwargs): + if not args: + raise TypeError('TypedDict.__new__(): not enough arguments') + _, args = args[0], args[1:] # allow the "cls" keyword be passed + return dict(*args, **kwargs) + + _dict_new.__text_signature__ = '($cls, _typename, _fields=None, /, **kwargs)' + + def _typeddict_new(*args, total=True, **kwargs): + if not args: + raise TypeError('TypedDict.__new__(): not enough arguments') + _, args = args[0], args[1:] # allow the "cls" keyword be passed + if args: + typename, args = args[0], args[1:] # allow the "_typename" keyword be passed + elif '_typename' in kwargs: + typename = kwargs.pop('_typename') + import warnings + warnings.warn("Passing '_typename' as keyword argument is deprecated", + DeprecationWarning, stacklevel=2) + else: + raise TypeError("TypedDict.__new__() missing 1 required positional " + "argument: '_typename'") + if args: + try: + fields, = args # allow the "_fields" keyword be passed + except ValueError: + raise TypeError('TypedDict.__new__() takes from 2 to 3 ' + 'positional arguments but {} ' + 'were given'.format(len(args) + 2)) + elif '_fields' in kwargs and len(kwargs) == 1: + fields = kwargs.pop('_fields') + import warnings + warnings.warn("Passing '_fields' as keyword argument is deprecated", + DeprecationWarning, stacklevel=2) + else: + fields = None + + if fields is None: + fields = kwargs + elif kwargs: + raise TypeError("TypedDict takes either a dict or keyword arguments," + " but not both") + + ns = {'__annotations__': dict(fields)} + try: + # Setting correct module is necessary to make typed dict classes pickleable. + ns['__module__'] = sys._getframe(1).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + + return _TypedDictMeta(typename, (), ns, total=total) + + _typeddict_new.__text_signature__ = ('($cls, _typename, _fields=None,' + ' /, *, total=True, **kwargs)') + + class _TypedDictMeta(type): + def __init__(cls, name, bases, ns, total=True): + # In Python 3.4 and 3.5 the __init__ method also needs to support the keyword arguments. + # See https://www.python.org/dev/peps/pep-0487/#implementation-details + super(_TypedDictMeta, cls).__init__(name, bases, ns) + + def __new__(cls, name, bases, ns, total=True): + # Create new typed dict class object. + # This method is called directly when TypedDict is subclassed, + # or via _typeddict_new when TypedDict is instantiated. This way + # TypedDict supports all three syntaxes described in its docstring. + # Subclasses and instances of TypedDict return actual dictionaries + # via _dict_new. + ns['__new__'] = _typeddict_new if name == 'TypedDict' else _dict_new + tp_dict = super(_TypedDictMeta, cls).__new__(cls, name, (dict,), ns) + + annotations = {} + own_annotations = ns.get('__annotations__', {}) + own_annotation_keys = set(own_annotations.keys()) + msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type" + own_annotations = { + n: typing._type_check(tp, msg) for n, tp in own_annotations.items() + } + required_keys = set() + optional_keys = set() + + for base in bases: + annotations.update(base.__dict__.get('__annotations__', {})) + required_keys.update(base.__dict__.get('__required_keys__', ())) + optional_keys.update(base.__dict__.get('__optional_keys__', ())) + + annotations.update(own_annotations) + if total: + required_keys.update(own_annotation_keys) + else: + optional_keys.update(own_annotation_keys) + + tp_dict.__annotations__ = annotations + tp_dict.__required_keys__ = frozenset(required_keys) + tp_dict.__optional_keys__ = frozenset(optional_keys) + if not hasattr(tp_dict, '__total__'): + tp_dict.__total__ = total + return tp_dict + + __instancecheck__ = __subclasscheck__ = _check_fails + + TypedDict = _TypedDictMeta('TypedDict', (dict,), {}) + TypedDict.__module__ = __name__ + TypedDict.__doc__ = \ + """A simple typed name space. At runtime it is equivalent to a plain dict. + + TypedDict creates a dictionary type that expects all of its + instances to have a certain set of keys, with each key + associated with a value of a consistent type. This expectation + is not checked at runtime but is only enforced by type checkers. + Usage:: + + class Point2D(TypedDict): + x: int + y: int + label: str + + a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK + b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check + + assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first') + + The type info can be accessed via the Point2D.__annotations__ dict, and + the Point2D.__required_keys__ and Point2D.__optional_keys__ frozensets. + TypedDict supports two additional equivalent forms:: + + Point2D = TypedDict('Point2D', x=int, y=int, label=str) + Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str}) + + The class syntax is only supported in Python 3.6+, while two other + syntax forms work for Python 2.7 and 3.2+ + """ + + +# Python 3.9+ has PEP 593 (Annotated and modified get_type_hints) +if hasattr(typing, 'Annotated'): + Annotated = typing.Annotated + get_type_hints = typing.get_type_hints + # Not exported and not a public API, but needed for get_origin() and get_args() + # to work. + _AnnotatedAlias = typing._AnnotatedAlias +elif PEP_560: + class _AnnotatedAlias(typing._GenericAlias, _root=True): + """Runtime representation of an annotated type. + + At its core 'Annotated[t, dec1, dec2, ...]' is an alias for the type 't' + with extra annotations. The alias behaves like a normal typing alias, + instantiating is the same as instantiating the underlying type, binding + it to types is also the same. + """ + def __init__(self, origin, metadata): + if isinstance(origin, _AnnotatedAlias): + metadata = origin.__metadata__ + metadata + origin = origin.__origin__ + super().__init__(origin, origin) + self.__metadata__ = metadata + + def copy_with(self, params): + assert len(params) == 1 + new_type = params[0] + return _AnnotatedAlias(new_type, self.__metadata__) + + def __repr__(self): + return "typing_extensions.Annotated[{}, {}]".format( + typing._type_repr(self.__origin__), + ", ".join(repr(a) for a in self.__metadata__) + ) + + def __reduce__(self): + return operator.getitem, ( + Annotated, (self.__origin__,) + self.__metadata__ + ) + + def __eq__(self, other): + if not isinstance(other, _AnnotatedAlias): + return NotImplemented + if self.__origin__ != other.__origin__: + return False + return self.__metadata__ == other.__metadata__ + + def __hash__(self): + return hash((self.__origin__, self.__metadata__)) + + class Annotated: + """Add context specific metadata to a type. + + Example: Annotated[int, runtime_check.Unsigned] indicates to the + hypothetical runtime_check module that this type is an unsigned int. + Every other consumer of this type can ignore this metadata and treat + this type as int. + + The first argument to Annotated must be a valid type (and will be in + the __origin__ field), the remaining arguments are kept as a tuple in + the __extra__ field. + + Details: + + - It's an error to call `Annotated` with less than two arguments. + - Nested Annotated are flattened:: + + Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3] + + - Instantiating an annotated type is equivalent to instantiating the + underlying type:: + + Annotated[C, Ann1](5) == C(5) + + - Annotated can be used as a generic type alias:: + + Optimized = Annotated[T, runtime.Optimize()] + Optimized[int] == Annotated[int, runtime.Optimize()] + + OptimizedList = Annotated[List[T], runtime.Optimize()] + OptimizedList[int] == Annotated[List[int], runtime.Optimize()] + """ + + __slots__ = () + + def __new__(cls, *args, **kwargs): + raise TypeError("Type Annotated cannot be instantiated.") + + @_tp_cache + def __class_getitem__(cls, params): + if not isinstance(params, tuple) or len(params) < 2: + raise TypeError("Annotated[...] should be used " + "with at least two arguments (a type and an " + "annotation).") + msg = "Annotated[t, ...]: t must be a type." + origin = typing._type_check(params[0], msg) + metadata = tuple(params[1:]) + return _AnnotatedAlias(origin, metadata) + + def __init_subclass__(cls, *args, **kwargs): + raise TypeError( + "Cannot subclass {}.Annotated".format(cls.__module__) + ) + + def _strip_annotations(t): + """Strips the annotations from a given type. + """ + if isinstance(t, _AnnotatedAlias): + return _strip_annotations(t.__origin__) + if isinstance(t, typing._GenericAlias): + stripped_args = tuple(_strip_annotations(a) for a in t.__args__) + if stripped_args == t.__args__: + return t + res = t.copy_with(stripped_args) + res._special = t._special + return res + return t + + def get_type_hints(obj, globalns=None, localns=None, include_extras=False): + """Return type hints for an object. + + This is often the same as obj.__annotations__, but it handles + forward references encoded as string literals, adds Optional[t] if a + default value equal to None is set and recursively replaces all + 'Annotated[T, ...]' with 'T' (unless 'include_extras=True'). + + The argument may be a module, class, method, or function. The annotations + are returned as a dictionary. For classes, annotations include also + inherited members. + + TypeError is raised if the argument is not of a type that can contain + annotations, and an empty dictionary is returned if no annotations are + present. + + BEWARE -- the behavior of globalns and localns is counterintuitive + (unless you are familiar with how eval() and exec() work). The + search order is locals first, then globals. + + - If no dict arguments are passed, an attempt is made to use the + globals from obj (or the respective module's globals for classes), + and these are also used as the locals. If the object does not appear + to have globals, an empty dictionary is used. + + - If one dict argument is passed, it is used for both globals and + locals. + + - If two dict arguments are passed, they specify globals and + locals, respectively. + """ + hint = typing.get_type_hints(obj, globalns=globalns, localns=localns) + if include_extras: + return hint + return {k: _strip_annotations(t) for k, t in hint.items()} + +elif HAVE_ANNOTATED: + + def _is_dunder(name): + """Returns True if name is a __dunder_variable_name__.""" + return len(name) > 4 and name.startswith('__') and name.endswith('__') + + # Prior to Python 3.7 types did not have `copy_with`. A lot of the equality + # checks, argument expansion etc. are done on the _subs_tre. As a result we + # can't provide a get_type_hints function that strips out annotations. + + class AnnotatedMeta(typing.GenericMeta): + """Metaclass for Annotated""" + + def __new__(cls, name, bases, namespace, **kwargs): + if any(b is not object for b in bases): + raise TypeError("Cannot subclass " + str(Annotated)) + return super().__new__(cls, name, bases, namespace, **kwargs) + + @property + def __metadata__(self): + return self._subs_tree()[2] + + def _tree_repr(self, tree): + cls, origin, metadata = tree + if not isinstance(origin, tuple): + tp_repr = typing._type_repr(origin) + else: + tp_repr = origin[0]._tree_repr(origin) + metadata_reprs = ", ".join(repr(arg) for arg in metadata) + return '%s[%s, %s]' % (cls, tp_repr, metadata_reprs) + + def _subs_tree(self, tvars=None, args=None): # noqa + if self is Annotated: + return Annotated + res = super()._subs_tree(tvars=tvars, args=args) + # Flatten nested Annotated + if isinstance(res[1], tuple) and res[1][0] is Annotated: + sub_tp = res[1][1] + sub_annot = res[1][2] + return (Annotated, sub_tp, sub_annot + res[2]) + return res + + def _get_cons(self): + """Return the class used to create instance of this type.""" + if self.__origin__ is None: + raise TypeError("Cannot get the underlying type of a " + "non-specialized Annotated type.") + tree = self._subs_tree() + while isinstance(tree, tuple) and tree[0] is Annotated: + tree = tree[1] + if isinstance(tree, tuple): + return tree[0] + else: + return tree + + @_tp_cache + def __getitem__(self, params): + if not isinstance(params, tuple): + params = (params,) + if self.__origin__ is not None: # specializing an instantiated type + return super().__getitem__(params) + elif not isinstance(params, tuple) or len(params) < 2: + raise TypeError("Annotated[...] should be instantiated " + "with at least two arguments (a type and an " + "annotation).") + else: + msg = "Annotated[t, ...]: t must be a type." + tp = typing._type_check(params[0], msg) + metadata = tuple(params[1:]) + return self.__class__( + self.__name__, + self.__bases__, + _no_slots_copy(self.__dict__), + tvars=_type_vars((tp,)), + # Metadata is a tuple so it won't be touched by _replace_args et al. + args=(tp, metadata), + origin=self, + ) + + def __call__(self, *args, **kwargs): + cons = self._get_cons() + result = cons(*args, **kwargs) + try: + result.__orig_class__ = self + except AttributeError: + pass + return result + + def __getattr__(self, attr): + # For simplicity we just don't relay all dunder names + if self.__origin__ is not None and not _is_dunder(attr): + return getattr(self._get_cons(), attr) + raise AttributeError(attr) + + def __setattr__(self, attr, value): + if _is_dunder(attr) or attr.startswith('_abc_'): + super().__setattr__(attr, value) + elif self.__origin__ is None: + raise AttributeError(attr) + else: + setattr(self._get_cons(), attr, value) + + def __instancecheck__(self, obj): + raise TypeError("Annotated cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Annotated cannot be used with issubclass().") + + class Annotated(metaclass=AnnotatedMeta): + """Add context specific metadata to a type. + + Example: Annotated[int, runtime_check.Unsigned] indicates to the + hypothetical runtime_check module that this type is an unsigned int. + Every other consumer of this type can ignore this metadata and treat + this type as int. + + The first argument to Annotated must be a valid type, the remaining + arguments are kept as a tuple in the __metadata__ field. + + Details: + + - It's an error to call `Annotated` with less than two arguments. + - Nested Annotated are flattened:: + + Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3] + + - Instantiating an annotated type is equivalent to instantiating the + underlying type:: + + Annotated[C, Ann1](5) == C(5) + + - Annotated can be used as a generic type alias:: + + Optimized = Annotated[T, runtime.Optimize()] + Optimized[int] == Annotated[int, runtime.Optimize()] + + OptimizedList = Annotated[List[T], runtime.Optimize()] + OptimizedList[int] == Annotated[List[int], runtime.Optimize()] + """ + +# Python 3.8 has get_origin() and get_args() but those implementations aren't +# Annotated-aware, so we can't use those, only Python 3.9 versions will do. +# Similarly, Python 3.9's implementation doesn't support ParamSpecArgs and +# ParamSpecKwargs. +if sys.version_info[:2] >= (3, 10): + get_origin = typing.get_origin + get_args = typing.get_args +elif PEP_560: + from typing import _GenericAlias + try: + # 3.9+ + from typing import _BaseGenericAlias + except ImportError: + _BaseGenericAlias = _GenericAlias + try: + # 3.9+ + from typing import GenericAlias + except ImportError: + GenericAlias = _GenericAlias + + def get_origin(tp): + """Get the unsubscripted version of a type. + + This supports generic types, Callable, Tuple, Union, Literal, Final, ClassVar + and Annotated. Return None for unsupported types. Examples:: + + get_origin(Literal[42]) is Literal + get_origin(int) is None + get_origin(ClassVar[int]) is ClassVar + get_origin(Generic) is Generic + get_origin(Generic[T]) is Generic + get_origin(Union[T, int]) is Union + get_origin(List[Tuple[T, T]][int]) == list + get_origin(P.args) is P + """ + if isinstance(tp, _AnnotatedAlias): + return Annotated + if isinstance(tp, (_GenericAlias, GenericAlias, _BaseGenericAlias, + ParamSpecArgs, ParamSpecKwargs)): + return tp.__origin__ + if tp is Generic: + return Generic + return None + + def get_args(tp): + """Get type arguments with all substitutions performed. + + For unions, basic simplifications used by Union constructor are performed. + Examples:: + get_args(Dict[str, int]) == (str, int) + get_args(int) == () + get_args(Union[int, Union[T, int], str][int]) == (int, str) + get_args(Union[int, Tuple[T, int]][str]) == (int, Tuple[str, int]) + get_args(Callable[[], T][int]) == ([], int) + """ + if isinstance(tp, _AnnotatedAlias): + return (tp.__origin__,) + tp.__metadata__ + if isinstance(tp, (_GenericAlias, GenericAlias)): + if getattr(tp, "_special", False): + return () + res = tp.__args__ + if get_origin(tp) is collections.abc.Callable and res[0] is not Ellipsis: + res = (list(res[:-1]), res[-1]) + return res + return () + + +if hasattr(typing, 'TypeAlias'): + TypeAlias = typing.TypeAlias +elif sys.version_info[:2] >= (3, 9): + class _TypeAliasForm(typing._SpecialForm, _root=True): + def __repr__(self): + return 'typing_extensions.' + self._name + + @_TypeAliasForm + def TypeAlias(self, parameters): + """Special marker indicating that an assignment should + be recognized as a proper type alias definition by type + checkers. + + For example:: + + Predicate: TypeAlias = Callable[..., bool] + + It's invalid when used anywhere except as in the example above. + """ + raise TypeError("{} is not subscriptable".format(self)) + +elif sys.version_info[:2] >= (3, 7): + class _TypeAliasForm(typing._SpecialForm, _root=True): + def __repr__(self): + return 'typing_extensions.' + self._name + + TypeAlias = _TypeAliasForm('TypeAlias', + doc="""Special marker indicating that an assignment should + be recognized as a proper type alias definition by type + checkers. + + For example:: + + Predicate: TypeAlias = Callable[..., bool] + + It's invalid when used anywhere except as in the example + above.""") + +elif hasattr(typing, '_FinalTypingBase'): + class _TypeAliasMeta(typing.TypingMeta): + """Metaclass for TypeAlias""" + + def __repr__(self): + return 'typing_extensions.TypeAlias' + + class _TypeAliasBase(typing._FinalTypingBase, metaclass=_TypeAliasMeta, _root=True): + """Special marker indicating that an assignment should + be recognized as a proper type alias definition by type + checkers. + + For example:: + + Predicate: TypeAlias = Callable[..., bool] + + It's invalid when used anywhere except as in the example above. + """ + __slots__ = () + + def __instancecheck__(self, obj): + raise TypeError("TypeAlias cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("TypeAlias cannot be used with issubclass().") + + def __repr__(self): + return 'typing_extensions.TypeAlias' + + TypeAlias = _TypeAliasBase(_root=True) +else: + class _TypeAliasMeta(typing.TypingMeta): + """Metaclass for TypeAlias""" + + def __instancecheck__(self, obj): + raise TypeError("TypeAlias cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("TypeAlias cannot be used with issubclass().") + + def __call__(self, *args, **kwargs): + raise TypeError("Cannot instantiate TypeAlias") + + class TypeAlias(metaclass=_TypeAliasMeta, _root=True): + """Special marker indicating that an assignment should + be recognized as a proper type alias definition by type + checkers. + + For example:: + + Predicate: TypeAlias = Callable[..., bool] + + It's invalid when used anywhere except as in the example above. + """ + __slots__ = () + + +# Python 3.10+ has PEP 612 +if hasattr(typing, 'ParamSpecArgs'): + ParamSpecArgs = typing.ParamSpecArgs + ParamSpecKwargs = typing.ParamSpecKwargs +else: + class _Immutable: + """Mixin to indicate that object should not be copied.""" + __slots__ = () + + def __copy__(self): + return self + + def __deepcopy__(self, memo): + return self + + class ParamSpecArgs(_Immutable): + """The args for a ParamSpec object. + + Given a ParamSpec object P, P.args is an instance of ParamSpecArgs. + + ParamSpecArgs objects have a reference back to their ParamSpec: + + P.args.__origin__ is P + + This type is meant for runtime introspection and has no special meaning to + static type checkers. + """ + def __init__(self, origin): + self.__origin__ = origin + + def __repr__(self): + return "{}.args".format(self.__origin__.__name__) + + class ParamSpecKwargs(_Immutable): + """The kwargs for a ParamSpec object. + + Given a ParamSpec object P, P.kwargs is an instance of ParamSpecKwargs. + + ParamSpecKwargs objects have a reference back to their ParamSpec: + + P.kwargs.__origin__ is P + + This type is meant for runtime introspection and has no special meaning to + static type checkers. + """ + def __init__(self, origin): + self.__origin__ = origin + + def __repr__(self): + return "{}.kwargs".format(self.__origin__.__name__) + +if hasattr(typing, 'ParamSpec'): + ParamSpec = typing.ParamSpec +else: + + # Inherits from list as a workaround for Callable checks in Python < 3.9.2. + class ParamSpec(list): + """Parameter specification variable. + + Usage:: + + P = ParamSpec('P') + + Parameter specification variables exist primarily for the benefit of static + type checkers. They are used to forward the parameter types of one + callable to another callable, a pattern commonly found in higher order + functions and decorators. They are only valid when used in ``Concatenate``, + or s the first argument to ``Callable``. In Python 3.10 and higher, + they are also supported in user-defined Generics at runtime. + See class Generic for more information on generic types. An + example for annotating a decorator:: + + T = TypeVar('T') + P = ParamSpec('P') + + def add_logging(f: Callable[P, T]) -> Callable[P, T]: + '''A type-safe decorator to add logging to a function.''' + def inner(*args: P.args, **kwargs: P.kwargs) -> T: + logging.info(f'{f.__name__} was called') + return f(*args, **kwargs) + return inner + + @add_logging + def add_two(x: float, y: float) -> float: + '''Add two numbers together.''' + return x + y + + Parameter specification variables defined with covariant=True or + contravariant=True can be used to declare covariant or contravariant + generic types. These keyword arguments are valid, but their actual semantics + are yet to be decided. See PEP 612 for details. + + Parameter specification variables can be introspected. e.g.: + + P.__name__ == 'T' + P.__bound__ == None + P.__covariant__ == False + P.__contravariant__ == False + + Note that only parameter specification variables defined in global scope can + be pickled. + """ + + @property + def args(self): + return ParamSpecArgs(self) + + @property + def kwargs(self): + return ParamSpecKwargs(self) + + def __init__(self, name, *, bound=None, covariant=False, contravariant=False): + super().__init__([self]) + self.__name__ = name + self.__covariant__ = bool(covariant) + self.__contravariant__ = bool(contravariant) + if bound: + self.__bound__ = typing._type_check(bound, 'Bound must be a type.') + else: + self.__bound__ = None + + # for pickling: + try: + def_mod = sys._getframe(1).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + def_mod = None + if def_mod != 'typing_extensions': + self.__module__ = def_mod + + def __repr__(self): + if self.__covariant__: + prefix = '+' + elif self.__contravariant__: + prefix = '-' + else: + prefix = '~' + return prefix + self.__name__ + + def __hash__(self): + return object.__hash__(self) + + def __eq__(self, other): + return self is other + + def __reduce__(self): + return self.__name__ + + # Hack to get typing._type_check to pass. + def __call__(self, *args, **kwargs): + pass + + # Note: Can't fake ParamSpec as a TypeVar to get it to work + # with Generics. ParamSpec isn't an instance of TypeVar in 3.10. + # So encouraging code like isinstance(ParamSpec('P'), TypeVar)) + # will lead to breakage in 3.10. + # This also means no accurate __parameters__ for GenericAliases. + +# Inherits from list as a workaround for Callable checks in Python < 3.9.2. +class _ConcatenateGenericAlias(list): + def __init__(self, origin, args): + super().__init__(args) + self.__origin__ = origin + self.__args__ = args + + def __repr__(self): + _type_repr = typing._type_repr + return '{origin}[{args}]' \ + .format(origin=_type_repr(self.__origin__), + args=', '.join(_type_repr(arg) for arg in self.__args__)) + + def __hash__(self): + return hash((self.__origin__, self.__args__)) + +@_tp_cache +def _concatenate_getitem(self, parameters): + if parameters == (): + raise TypeError("Cannot take a Concatenate of no types.") + if not isinstance(parameters, tuple): + parameters = (parameters,) + if not isinstance(parameters[-1], ParamSpec): + raise TypeError("The last parameter to Concatenate should be a " + "ParamSpec variable.") + msg = "Concatenate[arg, ...]: each arg must be a type." + parameters = tuple(typing._type_check(p, msg) for p in parameters) + return _ConcatenateGenericAlias(self, parameters) + + +if hasattr(typing, 'Concatenate'): + Concatenate = typing.Concatenate + _ConcatenateGenericAlias = typing._ConcatenateGenericAlias # noqa +elif sys.version_info[:2] >= (3, 9): + @_TypeAliasForm + def Concatenate(self, parameters): + """Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a + higher order function which adds, removes or transforms parameters of a + callable. + + For example:: + + Callable[Concatenate[int, P], int] + + See PEP 612 for detailed information. + """ + return _concatenate_getitem(self, parameters) + +elif sys.version_info[:2] >= (3, 7): + class _ConcatenateForm(typing._SpecialForm, _root=True): + def __repr__(self): + return 'typing_extensions.' + self._name + + def __getitem__(self, parameters): + return _concatenate_getitem(self, parameters) + + Concatenate = _ConcatenateForm('Concatenate', + doc="""Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a + higher order function which adds, removes or transforms parameters of a + callable. + + For example:: + + Callable[Concatenate[int, P], int] + + See PEP 612 for detailed information. + """) + +elif hasattr(typing, '_FinalTypingBase'): + class _ConcatenateAliasMeta(typing.TypingMeta): + """Metaclass for Concatenate.""" + + def __repr__(self): + return 'typing_extensions.Concatenate' + + class _ConcatenateAliasBase(typing._FinalTypingBase, + metaclass=_ConcatenateAliasMeta, + _root=True): + """Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a + higher order function which adds, removes or transforms parameters of a + callable. + + For example:: + + Callable[Concatenate[int, P], int] + + See PEP 612 for detailed information. + """ + __slots__ = () + + def __instancecheck__(self, obj): + raise TypeError("Concatenate cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Concatenate cannot be used with issubclass().") + + def __repr__(self): + return 'typing_extensions.Concatenate' + + def __getitem__(self, parameters): + return _concatenate_getitem(self, parameters) + + Concatenate = _ConcatenateAliasBase(_root=True) +# For 3.5.0 - 3.5.2 +else: + class _ConcatenateAliasMeta(typing.TypingMeta): + """Metaclass for Concatenate.""" + + def __instancecheck__(self, obj): + raise TypeError("TypeAlias cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("TypeAlias cannot be used with issubclass().") + + def __call__(self, *args, **kwargs): + raise TypeError("Cannot instantiate TypeAlias") + + def __getitem__(self, parameters): + return _concatenate_getitem(self, parameters) + + class Concatenate(metaclass=_ConcatenateAliasMeta, _root=True): + """Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a + higher order function which adds, removes or transforms parameters of a + callable. + + For example:: + + Callable[Concatenate[int, P], int] + + See PEP 612 for detailed information. + """ + __slots__ = () + +if hasattr(typing, 'TypeGuard'): + TypeGuard = typing.TypeGuard +elif sys.version_info[:2] >= (3, 9): + class _TypeGuardForm(typing._SpecialForm, _root=True): + def __repr__(self): + return 'typing_extensions.' + self._name + + @_TypeGuardForm + def TypeGuard(self, parameters): + """Special typing form used to annotate the return type of a user-defined + type guard function. ``TypeGuard`` only accepts a single type argument. + At runtime, functions marked this way should return a boolean. + + ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static + type checkers to determine a more precise type of an expression within a + program's code flow. Usually type narrowing is done by analyzing + conditional code flow and applying the narrowing to a block of code. The + conditional expression here is sometimes referred to as a "type guard". + + Sometimes it would be convenient to use a user-defined boolean function + as a type guard. Such a function should use ``TypeGuard[...]`` as its + return type to alert static type checkers to this intention. + + Using ``-> TypeGuard`` tells the static type checker that for a given + function: + + 1. The return value is a boolean. + 2. If the return value is ``True``, the type of its argument + is the type inside ``TypeGuard``. + + For example:: + + def is_str(val: Union[str, float]): + # "isinstance" type guard + if isinstance(val, str): + # Type of ``val`` is narrowed to ``str`` + ... + else: + # Else, type of ``val`` is narrowed to ``float``. + ... + + Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower + form of ``TypeA`` (it can even be a wider form) and this may lead to + type-unsafe results. The main reason is to allow for things like + narrowing ``List[object]`` to ``List[str]`` even though the latter is not + a subtype of the former, since ``List`` is invariant. The responsibility of + writing type-safe type guards is left to the user. + + ``TypeGuard`` also works with type variables. For more information, see + PEP 647 (User-Defined Type Guards). + """ + item = typing._type_check(parameters, '{} accepts only single type.'.format(self)) + return _GenericAlias(self, (item,)) + +elif sys.version_info[:2] >= (3, 7): + class _TypeGuardForm(typing._SpecialForm, _root=True): + + def __repr__(self): + return 'typing_extensions.' + self._name + + def __getitem__(self, parameters): + item = typing._type_check(parameters, + '{} accepts only a single type'.format(self._name)) + return _GenericAlias(self, (item,)) + + TypeGuard = _TypeGuardForm( + 'TypeGuard', + doc="""Special typing form used to annotate the return type of a user-defined + type guard function. ``TypeGuard`` only accepts a single type argument. + At runtime, functions marked this way should return a boolean. + + ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static + type checkers to determine a more precise type of an expression within a + program's code flow. Usually type narrowing is done by analyzing + conditional code flow and applying the narrowing to a block of code. The + conditional expression here is sometimes referred to as a "type guard". + + Sometimes it would be convenient to use a user-defined boolean function + as a type guard. Such a function should use ``TypeGuard[...]`` as its + return type to alert static type checkers to this intention. + + Using ``-> TypeGuard`` tells the static type checker that for a given + function: + + 1. The return value is a boolean. + 2. If the return value is ``True``, the type of its argument + is the type inside ``TypeGuard``. + + For example:: + + def is_str(val: Union[str, float]): + # "isinstance" type guard + if isinstance(val, str): + # Type of ``val`` is narrowed to ``str`` + ... + else: + # Else, type of ``val`` is narrowed to ``float``. + ... + + Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower + form of ``TypeA`` (it can even be a wider form) and this may lead to + type-unsafe results. The main reason is to allow for things like + narrowing ``List[object]`` to ``List[str]`` even though the latter is not + a subtype of the former, since ``List`` is invariant. The responsibility of + writing type-safe type guards is left to the user. + + ``TypeGuard`` also works with type variables. For more information, see + PEP 647 (User-Defined Type Guards). + """) +elif hasattr(typing, '_FinalTypingBase'): + class _TypeGuard(typing._FinalTypingBase, _root=True): + """Special typing form used to annotate the return type of a user-defined + type guard function. ``TypeGuard`` only accepts a single type argument. + At runtime, functions marked this way should return a boolean. + + ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static + type checkers to determine a more precise type of an expression within a + program's code flow. Usually type narrowing is done by analyzing + conditional code flow and applying the narrowing to a block of code. The + conditional expression here is sometimes referred to as a "type guard". + + Sometimes it would be convenient to use a user-defined boolean function + as a type guard. Such a function should use ``TypeGuard[...]`` as its + return type to alert static type checkers to this intention. + + Using ``-> TypeGuard`` tells the static type checker that for a given + function: + + 1. The return value is a boolean. + 2. If the return value is ``True``, the type of its argument + is the type inside ``TypeGuard``. + + For example:: + + def is_str(val: Union[str, float]): + # "isinstance" type guard + if isinstance(val, str): + # Type of ``val`` is narrowed to ``str`` + ... + else: + # Else, type of ``val`` is narrowed to ``float``. + ... + + Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower + form of ``TypeA`` (it can even be a wider form) and this may lead to + type-unsafe results. The main reason is to allow for things like + narrowing ``List[object]`` to ``List[str]`` even though the latter is not + a subtype of the former, since ``List`` is invariant. The responsibility of + writing type-safe type guards is left to the user. + + ``TypeGuard`` also works with type variables. For more information, see + PEP 647 (User-Defined Type Guards). + """ + + __slots__ = ('__type__',) + + def __init__(self, tp=None, **kwds): + self.__type__ = tp + + def __getitem__(self, item): + cls = type(self) + if self.__type__ is None: + return cls(typing._type_check(item, + '{} accepts only a single type.'.format(cls.__name__[1:])), + _root=True) + raise TypeError('{} cannot be further subscripted' + .format(cls.__name__[1:])) + + def _eval_type(self, globalns, localns): + new_tp = typing._eval_type(self.__type__, globalns, localns) + if new_tp == self.__type__: + return self + return type(self)(new_tp, _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__type__ is not None: + r += '[{}]'.format(typing._type_repr(self.__type__)) + return r + + def __hash__(self): + return hash((type(self).__name__, self.__type__)) + + def __eq__(self, other): + if not isinstance(other, _TypeGuard): + return NotImplemented + if self.__type__ is not None: + return self.__type__ == other.__type__ + return self is other + + TypeGuard = _TypeGuard(_root=True) +else: + class _TypeGuardMeta(typing.TypingMeta): + """Metaclass for TypeGuard""" + + def __new__(cls, name, bases, namespace, tp=None, _root=False): + self = super().__new__(cls, name, bases, namespace, _root=_root) + if tp is not None: + self.__type__ = tp + return self + + def __instancecheck__(self, obj): + raise TypeError("TypeGuard cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("TypeGuard cannot be used with issubclass().") + + def __getitem__(self, item): + cls = type(self) + if self.__type__ is not None: + raise TypeError('{} cannot be further subscripted' + .format(cls.__name__[1:])) + + param = typing._type_check( + item, + '{} accepts only single type.'.format(cls.__name__[1:])) + return cls(self.__name__, self.__bases__, + dict(self.__dict__), tp=param, _root=True) + + def _eval_type(self, globalns, localns): + new_tp = typing._eval_type(self.__type__, globalns, localns) + if new_tp == self.__type__: + return self + return type(self)(self.__name__, self.__bases__, + dict(self.__dict__), tp=self.__type__, + _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__type__ is not None: + r += '[{}]'.format(typing._type_repr(self.__type__)) + return r + + def __hash__(self): + return hash((type(self).__name__, self.__type__)) + + def __eq__(self, other): + if not hasattr(other, "__type__"): + return NotImplemented + if self.__type__ is not None: + return self.__type__ == other.__type__ + return self is other + + class TypeGuard(typing.Final, metaclass=_TypeGuardMeta, _root=True): + """Special typing form used to annotate the return type of a user-defined + type guard function. ``TypeGuard`` only accepts a single type argument. + At runtime, functions marked this way should return a boolean. + + ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static + type checkers to determine a more precise type of an expression within a + program's code flow. Usually type narrowing is done by analyzing + conditional code flow and applying the narrowing to a block of code. The + conditional expression here is sometimes referred to as a "type guard". + + Sometimes it would be convenient to use a user-defined boolean function + as a type guard. Such a function should use ``TypeGuard[...]`` as its + return type to alert static type checkers to this intention. + + Using ``-> TypeGuard`` tells the static type checker that for a given + function: + + 1. The return value is a boolean. + 2. If the return value is ``True``, the type of its argument + is the type inside ``TypeGuard``. + + For example:: + + def is_str(val: Union[str, float]): + # "isinstance" type guard + if isinstance(val, str): + # Type of ``val`` is narrowed to ``str`` + ... + else: + # Else, type of ``val`` is narrowed to ``float``. + ... + + Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower + form of ``TypeA`` (it can even be a wider form) and this may lead to + type-unsafe results. The main reason is to allow for things like + narrowing ``List[object]`` to ``List[str]`` even though the latter is not + a subtype of the former, since ``List`` is invariant. The responsibility of + writing type-safe type guards is left to the user. + + ``TypeGuard`` also works with type variables. For more information, see + PEP 647 (User-Defined Type Guards). + """ + __type__ = None |