summaryrefslogtreecommitdiffstats
path: root/third_party/rust/aho-corasick/src/packed/vector.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/aho-corasick/src/packed/vector.rs')
-rw-r--r--third_party/rust/aho-corasick/src/packed/vector.rs1750
1 files changed, 1750 insertions, 0 deletions
diff --git a/third_party/rust/aho-corasick/src/packed/vector.rs b/third_party/rust/aho-corasick/src/packed/vector.rs
new file mode 100644
index 0000000000..f19b86ce1e
--- /dev/null
+++ b/third_party/rust/aho-corasick/src/packed/vector.rs
@@ -0,0 +1,1750 @@
+// NOTE: The descriptions for each of the vector methods on the traits below
+// are pretty inscrutable. For this reason, there are tests for every method
+// on for every trait impl below. If you're confused about what an op does,
+// consult its test. (They probably should be doc tests, but I couldn't figure
+// out how to write them in a non-annoying way.)
+
+use core::{
+ fmt::Debug,
+ panic::{RefUnwindSafe, UnwindSafe},
+};
+
+/// A trait for describing vector operations used by vectorized searchers.
+///
+/// The trait is highly constrained to low level vector operations needed for
+/// the specific algorithms used in this crate. In general, it was invented
+/// mostly to be generic over x86's __m128i and __m256i types. At time of
+/// writing, it also supports wasm and aarch64 128-bit vector types as well.
+///
+/// # Safety
+///
+/// All methods are not safe since they are intended to be implemented using
+/// vendor intrinsics, which are also not safe. Callers must ensure that
+/// the appropriate target features are enabled in the calling function,
+/// and that the current CPU supports them. All implementations should
+/// avoid marking the routines with `#[target_feature]` and instead mark
+/// them as `#[inline(always)]` to ensure they get appropriately inlined.
+/// (`inline(always)` cannot be used with target_feature.)
+pub(crate) trait Vector:
+ Copy + Debug + Send + Sync + UnwindSafe + RefUnwindSafe
+{
+ /// The number of bits in the vector.
+ const BITS: usize;
+ /// The number of bytes in the vector. That is, this is the size of the
+ /// vector in memory.
+ const BYTES: usize;
+
+ /// Create a vector with 8-bit lanes with the given byte repeated into each
+ /// lane.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn splat(byte: u8) -> Self;
+
+ /// Read a vector-size number of bytes from the given pointer. The pointer
+ /// does not need to be aligned.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ ///
+ /// Callers must guarantee that at least `BYTES` bytes are readable from
+ /// `data`.
+ unsafe fn load_unaligned(data: *const u8) -> Self;
+
+ /// Returns true if and only if this vector has zero in all of its lanes.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn is_zero(self) -> bool;
+
+ /// Do an 8-bit pairwise equality check. If lane `i` is equal in this
+ /// vector and the one given, then lane `i` in the resulting vector is set
+ /// to `0xFF`. Otherwise, it is set to `0x00`.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn cmpeq(self, vector2: Self) -> Self;
+
+ /// Perform a bitwise 'and' of this vector and the one given and return
+ /// the result.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn and(self, vector2: Self) -> Self;
+
+ /// Perform a bitwise 'or' of this vector and the one given and return
+ /// the result.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn or(self, vector2: Self) -> Self;
+
+ /// Shift each 8-bit lane in this vector to the right by the number of
+ /// bits indictated by the `BITS` type parameter.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self;
+
+ /// Shift this vector to the left by one byte and shift the most
+ /// significant byte of `vector2` into the least significant position of
+ /// this vector.
+ ///
+ /// Stated differently, this behaves as if `self` and `vector2` were
+ /// concatenated into a `2 * Self::BITS` temporary buffer and then shifted
+ /// right by `Self::BYTES - 1` bytes.
+ ///
+ /// With respect to the Teddy algorithm, `vector2` is usually a previous
+ /// `Self::BYTES` chunk from the haystack and `self` is the chunk
+ /// immediately following it. This permits combining the last two bytes
+ /// from the previous chunk (`vector2`) with the first `Self::BYTES - 1`
+ /// bytes from the current chunk. This permits aligning the result of
+ /// various shuffles so that they can be and-ed together and a possible
+ /// candidate discovered.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn shift_in_one_byte(self, vector2: Self) -> Self;
+
+ /// Shift this vector to the left by two bytes and shift the two most
+ /// significant bytes of `vector2` into the least significant position of
+ /// this vector.
+ ///
+ /// Stated differently, this behaves as if `self` and `vector2` were
+ /// concatenated into a `2 * Self::BITS` temporary buffer and then shifted
+ /// right by `Self::BYTES - 2` bytes.
+ ///
+ /// With respect to the Teddy algorithm, `vector2` is usually a previous
+ /// `Self::BYTES` chunk from the haystack and `self` is the chunk
+ /// immediately following it. This permits combining the last two bytes
+ /// from the previous chunk (`vector2`) with the first `Self::BYTES - 2`
+ /// bytes from the current chunk. This permits aligning the result of
+ /// various shuffles so that they can be and-ed together and a possible
+ /// candidate discovered.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self;
+
+ /// Shift this vector to the left by three bytes and shift the three most
+ /// significant bytes of `vector2` into the least significant position of
+ /// this vector.
+ ///
+ /// Stated differently, this behaves as if `self` and `vector2` were
+ /// concatenated into a `2 * Self::BITS` temporary buffer and then shifted
+ /// right by `Self::BYTES - 3` bytes.
+ ///
+ /// With respect to the Teddy algorithm, `vector2` is usually a previous
+ /// `Self::BYTES` chunk from the haystack and `self` is the chunk
+ /// immediately following it. This permits combining the last three bytes
+ /// from the previous chunk (`vector2`) with the first `Self::BYTES - 3`
+ /// bytes from the current chunk. This permits aligning the result of
+ /// various shuffles so that they can be and-ed together and a possible
+ /// candidate discovered.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self;
+
+ /// Shuffles the bytes in this vector according to the indices in each of
+ /// the corresponding lanes in `indices`.
+ ///
+ /// If `i` is the index of corresponding lanes, `A` is this vector, `B` is
+ /// indices and `C` is the resulting vector, then `C = A[B[i]]`.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn shuffle_bytes(self, indices: Self) -> Self;
+
+ /// Call the provided function for each 64-bit lane in this vector. The
+ /// given function is provided the lane index and lane value as a `u64`.
+ ///
+ /// If `f` returns `Some`, then iteration over the lanes is stopped and the
+ /// value is returned. Otherwise, this returns `None`.
+ ///
+ /// # Notes
+ ///
+ /// Conceptually it would be nice if we could have a
+ /// `unpack64(self) -> [u64; BITS / 64]` method, but defining that is
+ /// tricky given Rust's [current support for const generics][support].
+ /// And even if we could, it would be tricky to write generic code over
+ /// it. (Not impossible. We could introduce another layer that requires
+ /// `AsRef<[u64]>` or something.)
+ ///
+ /// [support]: https://github.com/rust-lang/rust/issues/60551
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn for_each_64bit_lane<T>(
+ self,
+ f: impl FnMut(usize, u64) -> Option<T>,
+ ) -> Option<T>;
+}
+
+/// This trait extends the `Vector` trait with additional operations to support
+/// Fat Teddy.
+///
+/// Fat Teddy uses 16 buckets instead of 8, but reads half as many bytes (as
+/// the vector size) instead of the full size of a vector per iteration. For
+/// example, when using a 256-bit vector, Slim Teddy reads 32 bytes at a timr
+/// but Fat Teddy reads 16 bytes at a time.
+///
+/// Fat Teddy is useful when searching for a large number of literals.
+/// The extra number of buckets spreads the literals out more and reduces
+/// verification time.
+///
+/// Currently we only implement this for AVX on x86_64. It would be nice to
+/// implement this for SSE on x86_64 and NEON on aarch64, with the latter two
+/// only reading 8 bytes at a time. It's not clear how well it would work, but
+/// there are some tricky things to figure out in terms of implementation. The
+/// `half_shift_in_{one,two,three}_bytes` methods in particular are probably
+/// the trickiest of the bunch. For AVX2, these are implemented by taking
+/// advantage of the fact that `_mm256_alignr_epi8` operates on each 128-bit
+/// half instead of the full 256-bit vector. (Where as `_mm_alignr_epi8`
+/// operates on the full 128-bit vector and not on each 64-bit half.) I didn't
+/// do a careful survey of NEON to see if it could easily support these
+/// operations.
+pub(crate) trait FatVector: Vector {
+ type Half: Vector;
+
+ /// Read a half-vector-size number of bytes from the given pointer, and
+ /// broadcast it across both halfs of a full vector. The pointer does not
+ /// need to be aligned.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ ///
+ /// Callers must guarantee that at least `Self::HALF::BYTES` bytes are
+ /// readable from `data`.
+ unsafe fn load_half_unaligned(data: *const u8) -> Self;
+
+ /// Like `Vector::shift_in_one_byte`, except this is done for each half
+ /// of the vector instead.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn half_shift_in_one_byte(self, vector2: Self) -> Self;
+
+ /// Like `Vector::shift_in_two_bytes`, except this is done for each half
+ /// of the vector instead.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn half_shift_in_two_bytes(self, vector2: Self) -> Self;
+
+ /// Like `Vector::shift_in_two_bytes`, except this is done for each half
+ /// of the vector instead.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn half_shift_in_three_bytes(self, vector2: Self) -> Self;
+
+ /// Swap the 128-bit lanes in this vector.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn swap_halves(self) -> Self;
+
+ /// Unpack and interleave the 8-bit lanes from the low 128 bits of each
+ /// vector and return the result.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn interleave_low_8bit_lanes(self, vector2: Self) -> Self;
+
+ /// Unpack and interleave the 8-bit lanes from the high 128 bits of each
+ /// vector and return the result.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn interleave_high_8bit_lanes(self, vector2: Self) -> Self;
+
+ /// Call the provided function for each 64-bit lane in the lower half
+ /// of this vector and then in the other vector. The given function is
+ /// provided the lane index and lane value as a `u64`. (The high 128-bits
+ /// of each vector are ignored.)
+ ///
+ /// If `f` returns `Some`, then iteration over the lanes is stopped and the
+ /// value is returned. Otherwise, this returns `None`.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this is okay to call in the current target for
+ /// the current CPU.
+ unsafe fn for_each_low_64bit_lane<T>(
+ self,
+ vector2: Self,
+ f: impl FnMut(usize, u64) -> Option<T>,
+ ) -> Option<T>;
+}
+
+#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
+mod x86_64_ssse3 {
+ use core::arch::x86_64::*;
+
+ use crate::util::int::{I32, I64, I8};
+
+ use super::Vector;
+
+ impl Vector for __m128i {
+ const BITS: usize = 128;
+ const BYTES: usize = 16;
+
+ #[inline(always)]
+ unsafe fn splat(byte: u8) -> __m128i {
+ _mm_set1_epi8(i8::from_bits(byte))
+ }
+
+ #[inline(always)]
+ unsafe fn load_unaligned(data: *const u8) -> __m128i {
+ _mm_loadu_si128(data.cast::<__m128i>())
+ }
+
+ #[inline(always)]
+ unsafe fn is_zero(self) -> bool {
+ let cmp = self.cmpeq(Self::splat(0));
+ _mm_movemask_epi8(cmp).to_bits() == 0xFFFF
+ }
+
+ #[inline(always)]
+ unsafe fn cmpeq(self, vector2: Self) -> __m128i {
+ _mm_cmpeq_epi8(self, vector2)
+ }
+
+ #[inline(always)]
+ unsafe fn and(self, vector2: Self) -> __m128i {
+ _mm_and_si128(self, vector2)
+ }
+
+ #[inline(always)]
+ unsafe fn or(self, vector2: Self) -> __m128i {
+ _mm_or_si128(self, vector2)
+ }
+
+ #[inline(always)]
+ unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self {
+ // Apparently there is no _mm_srli_epi8, so we emulate it by
+ // shifting 16-bit integers and masking out the high nybble of each
+ // 8-bit lane (since that nybble will contain bits from the low
+ // nybble of the previous lane).
+ let lomask = Self::splat(0xF);
+ _mm_srli_epi16(self, BITS).and(lomask)
+ }
+
+ #[inline(always)]
+ unsafe fn shift_in_one_byte(self, vector2: Self) -> Self {
+ _mm_alignr_epi8(self, vector2, 15)
+ }
+
+ #[inline(always)]
+ unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self {
+ _mm_alignr_epi8(self, vector2, 14)
+ }
+
+ #[inline(always)]
+ unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self {
+ _mm_alignr_epi8(self, vector2, 13)
+ }
+
+ #[inline(always)]
+ unsafe fn shuffle_bytes(self, indices: Self) -> Self {
+ _mm_shuffle_epi8(self, indices)
+ }
+
+ #[inline(always)]
+ unsafe fn for_each_64bit_lane<T>(
+ self,
+ mut f: impl FnMut(usize, u64) -> Option<T>,
+ ) -> Option<T> {
+ let lane = _mm_extract_epi64(self, 0).to_bits();
+ if let Some(t) = f(0, lane) {
+ return Some(t);
+ }
+ let lane = _mm_extract_epi64(self, 1).to_bits();
+ if let Some(t) = f(1, lane) {
+ return Some(t);
+ }
+ None
+ }
+ }
+}
+
+#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
+mod x86_64_avx2 {
+ use core::arch::x86_64::*;
+
+ use crate::util::int::{I32, I64, I8};
+
+ use super::{FatVector, Vector};
+
+ impl Vector for __m256i {
+ const BITS: usize = 256;
+ const BYTES: usize = 32;
+
+ #[inline(always)]
+ unsafe fn splat(byte: u8) -> __m256i {
+ _mm256_set1_epi8(i8::from_bits(byte))
+ }
+
+ #[inline(always)]
+ unsafe fn load_unaligned(data: *const u8) -> __m256i {
+ _mm256_loadu_si256(data.cast::<__m256i>())
+ }
+
+ #[inline(always)]
+ unsafe fn is_zero(self) -> bool {
+ let cmp = self.cmpeq(Self::splat(0));
+ _mm256_movemask_epi8(cmp).to_bits() == 0xFFFFFFFF
+ }
+
+ #[inline(always)]
+ unsafe fn cmpeq(self, vector2: Self) -> __m256i {
+ _mm256_cmpeq_epi8(self, vector2)
+ }
+
+ #[inline(always)]
+ unsafe fn and(self, vector2: Self) -> __m256i {
+ _mm256_and_si256(self, vector2)
+ }
+
+ #[inline(always)]
+ unsafe fn or(self, vector2: Self) -> __m256i {
+ _mm256_or_si256(self, vector2)
+ }
+
+ #[inline(always)]
+ unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self {
+ let lomask = Self::splat(0xF);
+ _mm256_srli_epi16(self, BITS).and(lomask)
+ }
+
+ #[inline(always)]
+ unsafe fn shift_in_one_byte(self, vector2: Self) -> Self {
+ // Credit goes to jneem for figuring this out:
+ // https://github.com/jneem/teddy/blob/9ab5e899ad6ef6911aecd3cf1033f1abe6e1f66c/src/x86/teddy_simd.rs#L145-L184
+ //
+ // TL;DR avx2's PALIGNR instruction is actually just two 128-bit
+ // PALIGNR instructions, which is not what we want, so we need to
+ // do some extra shuffling.
+ let v = _mm256_permute2x128_si256(vector2, self, 0x21);
+ _mm256_alignr_epi8(self, v, 15)
+ }
+
+ #[inline(always)]
+ unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self {
+ // Credit goes to jneem for figuring this out:
+ // https://github.com/jneem/teddy/blob/9ab5e899ad6ef6911aecd3cf1033f1abe6e1f66c/src/x86/teddy_simd.rs#L145-L184
+ //
+ // TL;DR avx2's PALIGNR instruction is actually just two 128-bit
+ // PALIGNR instructions, which is not what we want, so we need to
+ // do some extra shuffling.
+ let v = _mm256_permute2x128_si256(vector2, self, 0x21);
+ _mm256_alignr_epi8(self, v, 14)
+ }
+
+ #[inline(always)]
+ unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self {
+ // Credit goes to jneem for figuring this out:
+ // https://github.com/jneem/teddy/blob/9ab5e899ad6ef6911aecd3cf1033f1abe6e1f66c/src/x86/teddy_simd.rs#L145-L184
+ //
+ // TL;DR avx2's PALIGNR instruction is actually just two 128-bit
+ // PALIGNR instructions, which is not what we want, so we need to
+ // do some extra shuffling.
+ let v = _mm256_permute2x128_si256(vector2, self, 0x21);
+ _mm256_alignr_epi8(self, v, 13)
+ }
+
+ #[inline(always)]
+ unsafe fn shuffle_bytes(self, indices: Self) -> Self {
+ _mm256_shuffle_epi8(self, indices)
+ }
+
+ #[inline(always)]
+ unsafe fn for_each_64bit_lane<T>(
+ self,
+ mut f: impl FnMut(usize, u64) -> Option<T>,
+ ) -> Option<T> {
+ // NOTE: At one point in the past, I used transmute to this to
+ // get a [u64; 4], but it turned out to lead to worse codegen IIRC.
+ // I've tried it more recently, and it looks like that's no longer
+ // the case. But since there's no difference, we stick with the
+ // slightly more complicated but transmute-free version.
+ let lane = _mm256_extract_epi64(self, 0).to_bits();
+ if let Some(t) = f(0, lane) {
+ return Some(t);
+ }
+ let lane = _mm256_extract_epi64(self, 1).to_bits();
+ if let Some(t) = f(1, lane) {
+ return Some(t);
+ }
+ let lane = _mm256_extract_epi64(self, 2).to_bits();
+ if let Some(t) = f(2, lane) {
+ return Some(t);
+ }
+ let lane = _mm256_extract_epi64(self, 3).to_bits();
+ if let Some(t) = f(3, lane) {
+ return Some(t);
+ }
+ None
+ }
+ }
+
+ impl FatVector for __m256i {
+ type Half = __m128i;
+
+ #[inline(always)]
+ unsafe fn load_half_unaligned(data: *const u8) -> Self {
+ let half = Self::Half::load_unaligned(data);
+ _mm256_broadcastsi128_si256(half)
+ }
+
+ #[inline(always)]
+ unsafe fn half_shift_in_one_byte(self, vector2: Self) -> Self {
+ _mm256_alignr_epi8(self, vector2, 15)
+ }
+
+ #[inline(always)]
+ unsafe fn half_shift_in_two_bytes(self, vector2: Self) -> Self {
+ _mm256_alignr_epi8(self, vector2, 14)
+ }
+
+ #[inline(always)]
+ unsafe fn half_shift_in_three_bytes(self, vector2: Self) -> Self {
+ _mm256_alignr_epi8(self, vector2, 13)
+ }
+
+ #[inline(always)]
+ unsafe fn swap_halves(self) -> Self {
+ _mm256_permute4x64_epi64(self, 0x4E)
+ }
+
+ #[inline(always)]
+ unsafe fn interleave_low_8bit_lanes(self, vector2: Self) -> Self {
+ _mm256_unpacklo_epi8(self, vector2)
+ }
+
+ #[inline(always)]
+ unsafe fn interleave_high_8bit_lanes(self, vector2: Self) -> Self {
+ _mm256_unpackhi_epi8(self, vector2)
+ }
+
+ #[inline(always)]
+ unsafe fn for_each_low_64bit_lane<T>(
+ self,
+ vector2: Self,
+ mut f: impl FnMut(usize, u64) -> Option<T>,
+ ) -> Option<T> {
+ let lane = _mm256_extract_epi64(self, 0).to_bits();
+ if let Some(t) = f(0, lane) {
+ return Some(t);
+ }
+ let lane = _mm256_extract_epi64(self, 1).to_bits();
+ if let Some(t) = f(1, lane) {
+ return Some(t);
+ }
+ let lane = _mm256_extract_epi64(vector2, 0).to_bits();
+ if let Some(t) = f(2, lane) {
+ return Some(t);
+ }
+ let lane = _mm256_extract_epi64(vector2, 1).to_bits();
+ if let Some(t) = f(3, lane) {
+ return Some(t);
+ }
+ None
+ }
+ }
+}
+
+#[cfg(target_arch = "aarch64")]
+mod aarch64_neon {
+ use core::arch::aarch64::*;
+
+ use super::Vector;
+
+ impl Vector for uint8x16_t {
+ const BITS: usize = 128;
+ const BYTES: usize = 16;
+
+ #[inline(always)]
+ unsafe fn splat(byte: u8) -> uint8x16_t {
+ vdupq_n_u8(byte)
+ }
+
+ #[inline(always)]
+ unsafe fn load_unaligned(data: *const u8) -> uint8x16_t {
+ vld1q_u8(data)
+ }
+
+ #[inline(always)]
+ unsafe fn is_zero(self) -> bool {
+ // Could also use vmaxvq_u8.
+ // ... I tried that and couldn't observe any meaningful difference
+ // in benchmarks.
+ let maxes = vreinterpretq_u64_u8(vpmaxq_u8(self, self));
+ vgetq_lane_u64(maxes, 0) == 0
+ }
+
+ #[inline(always)]
+ unsafe fn cmpeq(self, vector2: Self) -> uint8x16_t {
+ vceqq_u8(self, vector2)
+ }
+
+ #[inline(always)]
+ unsafe fn and(self, vector2: Self) -> uint8x16_t {
+ vandq_u8(self, vector2)
+ }
+
+ #[inline(always)]
+ unsafe fn or(self, vector2: Self) -> uint8x16_t {
+ vorrq_u8(self, vector2)
+ }
+
+ #[inline(always)]
+ unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self {
+ debug_assert!(BITS <= 7);
+ vshrq_n_u8(self, BITS)
+ }
+
+ #[inline(always)]
+ unsafe fn shift_in_one_byte(self, vector2: Self) -> Self {
+ vextq_u8(vector2, self, 15)
+ }
+
+ #[inline(always)]
+ unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self {
+ vextq_u8(vector2, self, 14)
+ }
+
+ #[inline(always)]
+ unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self {
+ vextq_u8(vector2, self, 13)
+ }
+
+ #[inline(always)]
+ unsafe fn shuffle_bytes(self, indices: Self) -> Self {
+ vqtbl1q_u8(self, indices)
+ }
+
+ #[inline(always)]
+ unsafe fn for_each_64bit_lane<T>(
+ self,
+ mut f: impl FnMut(usize, u64) -> Option<T>,
+ ) -> Option<T> {
+ let this = vreinterpretq_u64_u8(self);
+ let lane = vgetq_lane_u64(this, 0);
+ if let Some(t) = f(0, lane) {
+ return Some(t);
+ }
+ let lane = vgetq_lane_u64(this, 1);
+ if let Some(t) = f(1, lane) {
+ return Some(t);
+ }
+ None
+ }
+ }
+}
+
+#[cfg(all(test, target_arch = "x86_64", target_feature = "sse2"))]
+mod tests_x86_64_ssse3 {
+ use core::arch::x86_64::*;
+
+ use crate::util::int::{I32, U32};
+
+ use super::*;
+
+ fn is_runnable() -> bool {
+ std::is_x86_feature_detected!("ssse3")
+ }
+
+ #[target_feature(enable = "ssse3")]
+ unsafe fn load(lanes: [u8; 16]) -> __m128i {
+ __m128i::load_unaligned(&lanes as *const u8)
+ }
+
+ #[target_feature(enable = "ssse3")]
+ unsafe fn unload(v: __m128i) -> [u8; 16] {
+ [
+ _mm_extract_epi8(v, 0).to_bits().low_u8(),
+ _mm_extract_epi8(v, 1).to_bits().low_u8(),
+ _mm_extract_epi8(v, 2).to_bits().low_u8(),
+ _mm_extract_epi8(v, 3).to_bits().low_u8(),
+ _mm_extract_epi8(v, 4).to_bits().low_u8(),
+ _mm_extract_epi8(v, 5).to_bits().low_u8(),
+ _mm_extract_epi8(v, 6).to_bits().low_u8(),
+ _mm_extract_epi8(v, 7).to_bits().low_u8(),
+ _mm_extract_epi8(v, 8).to_bits().low_u8(),
+ _mm_extract_epi8(v, 9).to_bits().low_u8(),
+ _mm_extract_epi8(v, 10).to_bits().low_u8(),
+ _mm_extract_epi8(v, 11).to_bits().low_u8(),
+ _mm_extract_epi8(v, 12).to_bits().low_u8(),
+ _mm_extract_epi8(v, 13).to_bits().low_u8(),
+ _mm_extract_epi8(v, 14).to_bits().low_u8(),
+ _mm_extract_epi8(v, 15).to_bits().low_u8(),
+ ]
+ }
+
+ #[test]
+ fn vector_splat() {
+ #[target_feature(enable = "ssse3")]
+ unsafe fn test() {
+ let v = __m128i::splat(0xAF);
+ assert_eq!(
+ unload(v),
+ [
+ 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF,
+ 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF
+ ]
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_is_zero() {
+ #[target_feature(enable = "ssse3")]
+ unsafe fn test() {
+ let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ assert!(!v.is_zero());
+ let v = load([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ assert!(v.is_zero());
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_cmpeq() {
+ #[target_feature(enable = "ssse3")]
+ unsafe fn test() {
+ let v1 =
+ load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1]);
+ let v2 =
+ load([16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]);
+ assert_eq!(
+ unload(v1.cmpeq(v2)),
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF]
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_and() {
+ #[target_feature(enable = "ssse3")]
+ unsafe fn test() {
+ let v1 =
+ load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ let v2 =
+ load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ assert_eq!(
+ unload(v1.and(v2)),
+ [0, 0, 0, 0, 0, 0b1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_or() {
+ #[target_feature(enable = "ssse3")]
+ unsafe fn test() {
+ let v1 =
+ load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ let v2 =
+ load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ assert_eq!(
+ unload(v1.or(v2)),
+ [0, 0, 0, 0, 0, 0b1011, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shift_8bit_lane_right() {
+ #[target_feature(enable = "ssse3")]
+ unsafe fn test() {
+ let v = load([
+ 0, 0, 0, 0, 0b1011, 0b0101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ ]);
+ assert_eq!(
+ unload(v.shift_8bit_lane_right::<2>()),
+ [0, 0, 0, 0, 0b0010, 0b0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shift_in_one_byte() {
+ #[target_feature(enable = "ssse3")]
+ unsafe fn test() {
+ let v1 =
+ load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
+ let v2 = load([
+ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ assert_eq!(
+ unload(v1.shift_in_one_byte(v2)),
+ [32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shift_in_two_bytes() {
+ #[target_feature(enable = "ssse3")]
+ unsafe fn test() {
+ let v1 =
+ load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
+ let v2 = load([
+ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ assert_eq!(
+ unload(v1.shift_in_two_bytes(v2)),
+ [31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shift_in_three_bytes() {
+ #[target_feature(enable = "ssse3")]
+ unsafe fn test() {
+ let v1 =
+ load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
+ let v2 = load([
+ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ assert_eq!(
+ unload(v1.shift_in_three_bytes(v2)),
+ [30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shuffle_bytes() {
+ #[target_feature(enable = "ssse3")]
+ unsafe fn test() {
+ let v1 =
+ load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
+ let v2 =
+ load([0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12]);
+ assert_eq!(
+ unload(v1.shuffle_bytes(v2)),
+ [1, 1, 1, 1, 5, 5, 5, 5, 9, 9, 9, 9, 13, 13, 13, 13],
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_for_each_64bit_lane() {
+ #[target_feature(enable = "ssse3")]
+ unsafe fn test() {
+ let v = load([
+ 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A,
+ 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
+ ]);
+ let mut lanes = [0u64; 2];
+ v.for_each_64bit_lane(|i, lane| {
+ lanes[i] = lane;
+ None::<()>
+ });
+ assert_eq!(lanes, [0x0807060504030201, 0x100F0E0D0C0B0A09],);
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+}
+
+#[cfg(all(test, target_arch = "x86_64", target_feature = "sse2"))]
+mod tests_x86_64_avx2 {
+ use core::arch::x86_64::*;
+
+ use crate::util::int::{I32, U32};
+
+ use super::*;
+
+ fn is_runnable() -> bool {
+ std::is_x86_feature_detected!("avx2")
+ }
+
+ #[target_feature(enable = "avx2")]
+ unsafe fn load(lanes: [u8; 32]) -> __m256i {
+ __m256i::load_unaligned(&lanes as *const u8)
+ }
+
+ #[target_feature(enable = "avx2")]
+ unsafe fn load_half(lanes: [u8; 16]) -> __m256i {
+ __m256i::load_half_unaligned(&lanes as *const u8)
+ }
+
+ #[target_feature(enable = "avx2")]
+ unsafe fn unload(v: __m256i) -> [u8; 32] {
+ [
+ _mm256_extract_epi8(v, 0).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 1).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 2).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 3).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 4).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 5).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 6).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 7).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 8).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 9).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 10).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 11).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 12).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 13).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 14).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 15).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 16).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 17).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 18).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 19).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 20).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 21).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 22).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 23).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 24).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 25).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 26).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 27).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 28).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 29).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 30).to_bits().low_u8(),
+ _mm256_extract_epi8(v, 31).to_bits().low_u8(),
+ ]
+ }
+
+ #[test]
+ fn vector_splat() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v = __m256i::splat(0xAF);
+ assert_eq!(
+ unload(v),
+ [
+ 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF,
+ 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF,
+ 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF,
+ 0xAF, 0xAF, 0xAF, 0xAF, 0xAF,
+ ]
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_is_zero() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v = load([
+ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ ]);
+ assert!(!v.is_zero());
+ let v = load([
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ ]);
+ assert!(v.is_zero());
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_cmpeq() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v1 = load([
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
+ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1,
+ ]);
+ let v2 = load([
+ 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18,
+ 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
+ ]);
+ assert_eq!(
+ unload(v1.cmpeq(v2)),
+ [
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF
+ ]
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_and() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v1 = load([
+ 0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ ]);
+ let v2 = load([
+ 0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ ]);
+ assert_eq!(
+ unload(v1.and(v2)),
+ [
+ 0, 0, 0, 0, 0, 0b1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ ]
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_or() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v1 = load([
+ 0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ ]);
+ let v2 = load([
+ 0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ ]);
+ assert_eq!(
+ unload(v1.or(v2)),
+ [
+ 0, 0, 0, 0, 0, 0b1011, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ ]
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shift_8bit_lane_right() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v = load([
+ 0, 0, 0, 0, 0b1011, 0b0101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ ]);
+ assert_eq!(
+ unload(v.shift_8bit_lane_right::<2>()),
+ [
+ 0, 0, 0, 0, 0b0010, 0b0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ ]
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shift_in_one_byte() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v1 = load([
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
+ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ let v2 = load([
+ 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
+ 63, 64,
+ ]);
+ assert_eq!(
+ unload(v1.shift_in_one_byte(v2)),
+ [
+ 64, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 31,
+ ],
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shift_in_two_bytes() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v1 = load([
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
+ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ let v2 = load([
+ 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
+ 63, 64,
+ ]);
+ assert_eq!(
+ unload(v1.shift_in_two_bytes(v2)),
+ [
+ 63, 64, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
+ 30,
+ ],
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shift_in_three_bytes() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v1 = load([
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
+ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ let v2 = load([
+ 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
+ 63, 64,
+ ]);
+ assert_eq!(
+ unload(v1.shift_in_three_bytes(v2)),
+ [
+ 62, 63, 64, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
+ 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
+ 29,
+ ],
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shuffle_bytes() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v1 = load([
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
+ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ let v2 = load([
+ 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16,
+ 16, 16, 20, 20, 20, 20, 24, 24, 24, 24, 28, 28, 28, 28,
+ ]);
+ assert_eq!(
+ unload(v1.shuffle_bytes(v2)),
+ [
+ 1, 1, 1, 1, 5, 5, 5, 5, 9, 9, 9, 9, 13, 13, 13, 13, 17,
+ 17, 17, 17, 21, 21, 21, 21, 25, 25, 25, 25, 29, 29, 29,
+ 29
+ ],
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_for_each_64bit_lane() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v = load([
+ 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A,
+ 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14,
+ 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E,
+ 0x1F, 0x20,
+ ]);
+ let mut lanes = [0u64; 4];
+ v.for_each_64bit_lane(|i, lane| {
+ lanes[i] = lane;
+ None::<()>
+ });
+ assert_eq!(
+ lanes,
+ [
+ 0x0807060504030201,
+ 0x100F0E0D0C0B0A09,
+ 0x1817161514131211,
+ 0x201F1E1D1C1B1A19
+ ]
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn fat_vector_half_shift_in_one_byte() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v1 = load_half([
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ ]);
+ let v2 = load_half([
+ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ assert_eq!(
+ unload(v1.half_shift_in_one_byte(v2)),
+ [
+ 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
+ ],
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn fat_vector_half_shift_in_two_bytes() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v1 = load_half([
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ ]);
+ let v2 = load_half([
+ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ assert_eq!(
+ unload(v1.half_shift_in_two_bytes(v2)),
+ [
+ 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31,
+ 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
+ ],
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn fat_vector_half_shift_in_three_bytes() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v1 = load_half([
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ ]);
+ let v2 = load_half([
+ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ assert_eq!(
+ unload(v1.half_shift_in_three_bytes(v2)),
+ [
+ 30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 30,
+ 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
+ ],
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn fat_vector_swap_halves() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v = load([
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
+ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ assert_eq!(
+ unload(v.swap_halves()),
+ [
+ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16,
+ ],
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn fat_vector_interleave_low_8bit_lanes() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v1 = load([
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
+ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ let v2 = load([
+ 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
+ 63, 64,
+ ]);
+ assert_eq!(
+ unload(v1.interleave_low_8bit_lanes(v2)),
+ [
+ 1, 33, 2, 34, 3, 35, 4, 36, 5, 37, 6, 38, 7, 39, 8, 40,
+ 17, 49, 18, 50, 19, 51, 20, 52, 21, 53, 22, 54, 23, 55,
+ 24, 56,
+ ],
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn fat_vector_interleave_high_8bit_lanes() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v1 = load([
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
+ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ let v2 = load([
+ 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
+ 63, 64,
+ ]);
+ assert_eq!(
+ unload(v1.interleave_high_8bit_lanes(v2)),
+ [
+ 9, 41, 10, 42, 11, 43, 12, 44, 13, 45, 14, 46, 15, 47, 16,
+ 48, 25, 57, 26, 58, 27, 59, 28, 60, 29, 61, 30, 62, 31,
+ 63, 32, 64,
+ ],
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn fat_vector_for_each_low_64bit_lane() {
+ #[target_feature(enable = "avx2")]
+ unsafe fn test() {
+ let v1 = load([
+ 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A,
+ 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14,
+ 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E,
+ 0x1F, 0x20,
+ ]);
+ let v2 = load([
+ 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A,
+ 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34,
+ 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E,
+ 0x3F, 0x40,
+ ]);
+ let mut lanes = [0u64; 4];
+ v1.for_each_low_64bit_lane(v2, |i, lane| {
+ lanes[i] = lane;
+ None::<()>
+ });
+ assert_eq!(
+ lanes,
+ [
+ 0x0807060504030201,
+ 0x100F0E0D0C0B0A09,
+ 0x2827262524232221,
+ 0x302F2E2D2C2B2A29
+ ]
+ );
+ }
+ if !is_runnable() {
+ return;
+ }
+ unsafe { test() }
+ }
+}
+
+#[cfg(all(test, target_arch = "aarch64", target_feature = "neon"))]
+mod tests_aarch64_neon {
+ use core::arch::aarch64::*;
+
+ use super::*;
+
+ #[target_feature(enable = "neon")]
+ unsafe fn load(lanes: [u8; 16]) -> uint8x16_t {
+ uint8x16_t::load_unaligned(&lanes as *const u8)
+ }
+
+ #[target_feature(enable = "neon")]
+ unsafe fn unload(v: uint8x16_t) -> [u8; 16] {
+ [
+ vgetq_lane_u8(v, 0),
+ vgetq_lane_u8(v, 1),
+ vgetq_lane_u8(v, 2),
+ vgetq_lane_u8(v, 3),
+ vgetq_lane_u8(v, 4),
+ vgetq_lane_u8(v, 5),
+ vgetq_lane_u8(v, 6),
+ vgetq_lane_u8(v, 7),
+ vgetq_lane_u8(v, 8),
+ vgetq_lane_u8(v, 9),
+ vgetq_lane_u8(v, 10),
+ vgetq_lane_u8(v, 11),
+ vgetq_lane_u8(v, 12),
+ vgetq_lane_u8(v, 13),
+ vgetq_lane_u8(v, 14),
+ vgetq_lane_u8(v, 15),
+ ]
+ }
+
+ // Example functions. These don't test the Vector traits, but rather,
+ // specific NEON instructions. They are basically little experiments I
+ // wrote to figure out what an instruction does since their descriptions
+ // are so dense. I decided to keep the experiments around as example tests
+ // in case there' useful.
+
+ #[test]
+ fn example_vmaxvq_u8_non_zero() {
+ #[target_feature(enable = "neon")]
+ unsafe fn example() {
+ let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ assert_eq!(vmaxvq_u8(v), 1);
+ }
+ unsafe { example() }
+ }
+
+ #[test]
+ fn example_vmaxvq_u8_zero() {
+ #[target_feature(enable = "neon")]
+ unsafe fn example() {
+ let v = load([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ assert_eq!(vmaxvq_u8(v), 0);
+ }
+ unsafe { example() }
+ }
+
+ #[test]
+ fn example_vpmaxq_u8_non_zero() {
+ #[target_feature(enable = "neon")]
+ unsafe fn example() {
+ let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ let r = vpmaxq_u8(v, v);
+ assert_eq!(
+ unload(r),
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+ );
+ }
+ unsafe { example() }
+ }
+
+ #[test]
+ fn example_vpmaxq_u8_self() {
+ #[target_feature(enable = "neon")]
+ unsafe fn example() {
+ let v =
+ load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
+ let r = vpmaxq_u8(v, v);
+ assert_eq!(
+ unload(r),
+ [2, 4, 6, 8, 10, 12, 14, 16, 2, 4, 6, 8, 10, 12, 14, 16]
+ );
+ }
+ unsafe { example() }
+ }
+
+ #[test]
+ fn example_vpmaxq_u8_other() {
+ #[target_feature(enable = "neon")]
+ unsafe fn example() {
+ let v1 =
+ load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
+ let v2 = load([
+ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ let r = vpmaxq_u8(v1, v2);
+ assert_eq!(
+ unload(r),
+ [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32]
+ );
+ }
+ unsafe { example() }
+ }
+
+ // Now we test the actual methods on the Vector trait.
+
+ #[test]
+ fn vector_splat() {
+ #[target_feature(enable = "neon")]
+ unsafe fn test() {
+ let v = uint8x16_t::splat(0xAF);
+ assert_eq!(
+ unload(v),
+ [
+ 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF,
+ 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF
+ ]
+ );
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_is_zero() {
+ #[target_feature(enable = "neon")]
+ unsafe fn test() {
+ let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ assert!(!v.is_zero());
+ let v = load([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ assert!(v.is_zero());
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_cmpeq() {
+ #[target_feature(enable = "neon")]
+ unsafe fn test() {
+ let v1 =
+ load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1]);
+ let v2 =
+ load([16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]);
+ assert_eq!(
+ unload(v1.cmpeq(v2)),
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF]
+ );
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_and() {
+ #[target_feature(enable = "neon")]
+ unsafe fn test() {
+ let v1 =
+ load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ let v2 =
+ load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ assert_eq!(
+ unload(v1.and(v2)),
+ [0, 0, 0, 0, 0, 0b1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
+ );
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_or() {
+ #[target_feature(enable = "neon")]
+ unsafe fn test() {
+ let v1 =
+ load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ let v2 =
+ load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
+ assert_eq!(
+ unload(v1.or(v2)),
+ [0, 0, 0, 0, 0, 0b1011, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
+ );
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shift_8bit_lane_right() {
+ #[target_feature(enable = "neon")]
+ unsafe fn test() {
+ let v = load([
+ 0, 0, 0, 0, 0b1011, 0b0101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ ]);
+ assert_eq!(
+ unload(v.shift_8bit_lane_right::<2>()),
+ [0, 0, 0, 0, 0b0010, 0b0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
+ );
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shift_in_one_byte() {
+ #[target_feature(enable = "neon")]
+ unsafe fn test() {
+ let v1 =
+ load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
+ let v2 = load([
+ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ assert_eq!(
+ unload(v1.shift_in_one_byte(v2)),
+ [32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
+ );
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shift_in_two_bytes() {
+ #[target_feature(enable = "neon")]
+ unsafe fn test() {
+ let v1 =
+ load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
+ let v2 = load([
+ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ assert_eq!(
+ unload(v1.shift_in_two_bytes(v2)),
+ [31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
+ );
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shift_in_three_bytes() {
+ #[target_feature(enable = "neon")]
+ unsafe fn test() {
+ let v1 =
+ load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
+ let v2 = load([
+ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ ]);
+ assert_eq!(
+ unload(v1.shift_in_three_bytes(v2)),
+ [30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
+ );
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_shuffle_bytes() {
+ #[target_feature(enable = "neon")]
+ unsafe fn test() {
+ let v1 =
+ load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
+ let v2 =
+ load([0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12]);
+ assert_eq!(
+ unload(v1.shuffle_bytes(v2)),
+ [1, 1, 1, 1, 5, 5, 5, 5, 9, 9, 9, 9, 13, 13, 13, 13],
+ );
+ }
+ unsafe { test() }
+ }
+
+ #[test]
+ fn vector_for_each_64bit_lane() {
+ #[target_feature(enable = "neon")]
+ unsafe fn test() {
+ let v = load([
+ 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A,
+ 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
+ ]);
+ let mut lanes = [0u64; 2];
+ v.for_each_64bit_lane(|i, lane| {
+ lanes[i] = lane;
+ None::<()>
+ });
+ assert_eq!(lanes, [0x0807060504030201, 0x100F0E0D0C0B0A09],);
+ }
+ unsafe { test() }
+ }
+}