summaryrefslogtreecommitdiffstats
path: root/third_party/rust/litemap/src/map.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/litemap/src/map.rs')
-rw-r--r--third_party/rust/litemap/src/map.rs1248
1 files changed, 1248 insertions, 0 deletions
diff --git a/third_party/rust/litemap/src/map.rs b/third_party/rust/litemap/src/map.rs
new file mode 100644
index 0000000000..195a46d723
--- /dev/null
+++ b/third_party/rust/litemap/src/map.rs
@@ -0,0 +1,1248 @@
+// This file is part of ICU4X. For terms of use, please see the file
+// called LICENSE at the top level of the ICU4X source tree
+// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
+
+use crate::store::*;
+use alloc::borrow::Borrow;
+use alloc::boxed::Box;
+use alloc::vec::Vec;
+use core::cmp::Ordering;
+use core::iter::FromIterator;
+use core::marker::PhantomData;
+use core::mem;
+use core::ops::{Index, IndexMut, Range};
+
+/// A simple "flat" map based on a sorted vector
+///
+/// See the [module level documentation][super] for why one should use this.
+///
+/// The API is roughly similar to that of [`std::collections::BTreeMap`].
+#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
+#[cfg_attr(feature = "yoke", derive(yoke::Yokeable))]
+pub struct LiteMap<K: ?Sized, V: ?Sized, S = alloc::vec::Vec<(K, V)>> {
+ pub(crate) values: S,
+ pub(crate) _key_type: PhantomData<K>,
+ pub(crate) _value_type: PhantomData<V>,
+}
+
+impl<K, V> LiteMap<K, V> {
+ /// Construct a new [`LiteMap`] backed by Vec
+ pub const fn new_vec() -> Self {
+ Self {
+ values: alloc::vec::Vec::new(),
+ _key_type: PhantomData,
+ _value_type: PhantomData,
+ }
+ }
+}
+
+impl<K, V, S> LiteMap<K, V, S> {
+ /// Construct a new [`LiteMap`] using the given values
+ ///
+ /// The store must be sorted and have no duplicate keys.
+ pub const fn from_sorted_store_unchecked(values: S) -> Self {
+ Self {
+ values,
+ _key_type: PhantomData,
+ _value_type: PhantomData,
+ }
+ }
+}
+
+impl<K, V> LiteMap<K, V, Vec<(K, V)>> {
+ /// Convert a [`LiteMap`] into a sorted `Vec<(K, V)>`.
+ #[inline]
+ pub fn into_tuple_vec(self) -> Vec<(K, V)> {
+ self.values
+ }
+}
+
+impl<K: ?Sized, V: ?Sized, S> LiteMap<K, V, S>
+where
+ S: StoreConstEmpty<K, V>,
+{
+ /// Create a new empty [`LiteMap`]
+ pub const fn new() -> Self {
+ Self {
+ values: S::EMPTY,
+ _key_type: PhantomData,
+ _value_type: PhantomData,
+ }
+ }
+}
+
+impl<K: ?Sized, V: ?Sized, S> LiteMap<K, V, S>
+where
+ S: Store<K, V>,
+{
+ /// The number of elements in the [`LiteMap`]
+ pub fn len(&self) -> usize {
+ self.values.lm_len()
+ }
+
+ /// Whether the [`LiteMap`] is empty
+ pub fn is_empty(&self) -> bool {
+ self.values.lm_is_empty()
+ }
+
+ /// Get the key-value pair residing at a particular index
+ ///
+ /// In most cases, prefer [`LiteMap::get()`] over this method.
+ #[inline]
+ pub fn get_indexed(&self, index: usize) -> Option<(&K, &V)> {
+ self.values.lm_get(index)
+ }
+
+ /// Get the lowest-rank key/value pair from the `LiteMap`, if it exists.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map =
+ /// LiteMap::<i32, &str, Vec<_>>::from_iter([(1, "uno"), (3, "tres")]);
+ ///
+ /// assert_eq!(map.first(), Some((&1, &"uno")));
+ /// ```
+ #[inline]
+ pub fn first(&self) -> Option<(&K, &V)> {
+ self.values.lm_get(0)
+ }
+
+ /// Get the highest-rank key/value pair from the `LiteMap`, if it exists.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map =
+ /// LiteMap::<i32, &str, Vec<_>>::from_iter([(1, "uno"), (3, "tres")]);
+ ///
+ /// assert_eq!(map.last(), Some((&3, &"tres")));
+ /// ```
+ #[inline]
+ pub fn last(&self) -> Option<(&K, &V)> {
+ self.values.lm_get(self.len() - 1)
+ }
+
+ /// Returns a new [`LiteMap`] with owned keys and values.
+ ///
+ /// The trait bounds allow transforming most slice and string types.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map: LiteMap<&str, &str> = LiteMap::new_vec();
+ /// map.insert("one", "uno");
+ /// map.insert("two", "dos");
+ ///
+ /// let boxed_map: LiteMap<Box<str>, Box<str>> = map.to_boxed_keys_values();
+ ///
+ /// assert_eq!(boxed_map.get("one"), Some(&Box::from("uno")));
+ /// ```
+ pub fn to_boxed_keys_values<KB: ?Sized, VB: ?Sized, SB>(&self) -> LiteMap<Box<KB>, Box<VB>, SB>
+ where
+ SB: StoreMut<Box<KB>, Box<VB>>,
+ K: Borrow<KB>,
+ V: Borrow<VB>,
+ Box<KB>: for<'a> From<&'a KB>,
+ Box<VB>: for<'a> From<&'a VB>,
+ {
+ let mut values = SB::lm_with_capacity(self.len());
+ for i in 0..self.len() {
+ #[allow(clippy::unwrap_used)] // iterating over our own length
+ let (k, v) = self.values.lm_get(i).unwrap();
+ values.lm_push(Box::from(k.borrow()), Box::from(v.borrow()))
+ }
+ LiteMap {
+ values,
+ _key_type: PhantomData,
+ _value_type: PhantomData,
+ }
+ }
+
+ /// Returns a new [`LiteMap`] with owned keys and cloned values.
+ ///
+ /// The trait bounds allow transforming most slice and string types.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map: LiteMap<&str, usize> = LiteMap::new_vec();
+ /// map.insert("one", 11);
+ /// map.insert("two", 22);
+ ///
+ /// let boxed_map: LiteMap<Box<str>, usize> = map.to_boxed_keys();
+ ///
+ /// assert_eq!(boxed_map.get("one"), Some(&11));
+ /// ```
+ pub fn to_boxed_keys<KB: ?Sized, SB>(&self) -> LiteMap<Box<KB>, V, SB>
+ where
+ V: Clone,
+ SB: StoreMut<Box<KB>, V>,
+ K: Borrow<KB>,
+ Box<KB>: for<'a> From<&'a KB>,
+ {
+ let mut values = SB::lm_with_capacity(self.len());
+ for i in 0..self.len() {
+ #[allow(clippy::unwrap_used)] // iterating over our own length
+ let (k, v) = self.values.lm_get(i).unwrap();
+ values.lm_push(Box::from(k.borrow()), v.clone())
+ }
+ LiteMap {
+ values,
+ _key_type: PhantomData,
+ _value_type: PhantomData,
+ }
+ }
+
+ /// Returns a new [`LiteMap`] with cloned keys and owned values.
+ ///
+ /// The trait bounds allow transforming most slice and string types.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map: LiteMap<usize, &str> = LiteMap::new_vec();
+ /// map.insert(11, "uno");
+ /// map.insert(22, "dos");
+ ///
+ /// let boxed_map: LiteMap<usize, Box<str>> = map.to_boxed_values();
+ ///
+ /// assert_eq!(boxed_map.get(&11), Some(&Box::from("uno")));
+ /// ```
+ pub fn to_boxed_values<VB: ?Sized, SB>(&self) -> LiteMap<K, Box<VB>, SB>
+ where
+ K: Clone,
+ SB: StoreMut<K, Box<VB>>,
+ V: Borrow<VB>,
+ Box<VB>: for<'a> From<&'a VB>,
+ {
+ let mut values = SB::lm_with_capacity(self.len());
+ for i in 0..self.len() {
+ #[allow(clippy::unwrap_used)] // iterating over our own length
+ let (k, v) = self.values.lm_get(i).unwrap();
+ values.lm_push(k.clone(), Box::from(v.borrow()))
+ }
+ LiteMap {
+ values,
+ _key_type: PhantomData,
+ _value_type: PhantomData,
+ }
+ }
+}
+
+impl<K: ?Sized, V: ?Sized, S> LiteMap<K, V, S>
+where
+ K: Ord,
+ S: Store<K, V>,
+{
+ /// Get the value associated with `key`, if it exists.
+ ///
+ /// ```rust
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map = LiteMap::new_vec();
+ /// map.insert(1, "one");
+ /// map.insert(2, "two");
+ /// assert_eq!(map.get(&1), Some(&"one"));
+ /// assert_eq!(map.get(&3), None);
+ /// ```
+ pub fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V>
+ where
+ K: Borrow<Q>,
+ Q: Ord,
+ {
+ match self.find_index(key) {
+ #[allow(clippy::unwrap_used)] // find_index returns a valid index
+ Ok(found) => Some(self.values.lm_get(found).unwrap().1),
+ Err(_) => None,
+ }
+ }
+
+ /// Binary search the map with `predicate` to find a key, returning the value.
+ pub fn get_by(&self, predicate: impl FnMut(&K) -> Ordering) -> Option<&V> {
+ let index = self.values.lm_binary_search_by(predicate).ok()?;
+ self.values.lm_get(index).map(|(_, v)| v)
+ }
+
+ /// Returns whether `key` is contained in this map
+ ///
+ /// ```rust
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map = LiteMap::new_vec();
+ /// map.insert(1, "one");
+ /// map.insert(2, "two");
+ /// assert!(map.contains_key(&1));
+ /// assert!(!map.contains_key(&3));
+ /// ```
+ pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool
+ where
+ K: Borrow<Q>,
+ Q: Ord,
+ {
+ self.find_index(key).is_ok()
+ }
+
+ /// Obtain the index for a given key, or if the key is not found, the index
+ /// at which it would be inserted.
+ ///
+ /// (The return value works equivalently to [`slice::binary_search_by()`])
+ ///
+ /// The indices returned can be used with [`Self::get_indexed()`]. Prefer using
+ /// [`Self::get()`] directly where possible.
+ #[inline]
+ pub fn find_index<Q: ?Sized>(&self, key: &Q) -> Result<usize, usize>
+ where
+ K: Borrow<Q>,
+ Q: Ord,
+ {
+ self.values.lm_binary_search_by(|k| k.borrow().cmp(key))
+ }
+}
+
+impl<K: ?Sized, V: ?Sized, S> LiteMap<K, V, S>
+where
+ S: StoreSlice<K, V>,
+{
+ /// Creates a new [`LiteMap`] from a range of the current [`LiteMap`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map = LiteMap::new_vec();
+ /// map.insert(1, "one");
+ /// map.insert(2, "two");
+ /// map.insert(3, "three");
+ ///
+ /// let mut sub_map = map.get_indexed_range(1..3).expect("valid range");
+ /// assert_eq!(sub_map.get(&1), None);
+ /// assert_eq!(sub_map.get(&2), Some(&"two"));
+ /// assert_eq!(sub_map.get(&3), Some(&"three"));
+ /// ```
+ pub fn get_indexed_range(&self, range: Range<usize>) -> Option<LiteMap<K, V, &S::Slice>> {
+ let subslice = self.values.lm_get_range(range)?;
+ Some(LiteMap {
+ values: subslice,
+ _key_type: PhantomData,
+ _value_type: PhantomData,
+ })
+ }
+
+ /// Borrows this [`LiteMap`] as one of its slice type.
+ ///
+ /// This can be useful in situations where you need a `LiteMap` by value but do not want
+ /// to clone the owned version.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map = LiteMap::new_vec();
+ /// map.insert(1, "one");
+ /// map.insert(2, "two");
+ ///
+ /// let borrowed_map = map.as_sliced();
+ /// assert_eq!(borrowed_map.get(&1), Some(&"one"));
+ /// assert_eq!(borrowed_map.get(&2), Some(&"two"));
+ /// ```
+ pub fn as_sliced(&self) -> LiteMap<K, V, &S::Slice> {
+ // Won't panic: 0..self.len() is within range
+ #[allow(clippy::unwrap_used)]
+ let subslice = self.values.lm_get_range(0..self.len()).unwrap();
+ LiteMap {
+ values: subslice,
+ _key_type: PhantomData,
+ _value_type: PhantomData,
+ }
+ }
+
+ /// Borrows the backing buffer of this [`LiteMap`] as its slice type.
+ ///
+ /// The slice will be sorted.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map = LiteMap::new_vec();
+ /// map.insert(1, "one");
+ /// map.insert(2, "two");
+ ///
+ /// let slice = map.as_slice();
+ /// assert_eq!(slice, &[(1, "one"), (2, "two")]);
+ /// ```
+ pub fn as_slice(&self) -> &S::Slice {
+ // Won't panic: 0..self.len() is within range
+ #[allow(clippy::unwrap_used)]
+ self.values.lm_get_range(0..self.len()).unwrap()
+ }
+}
+
+impl<'a, K: 'a, V: 'a, S> LiteMap<K, V, S>
+where
+ S: Store<K, V>,
+{
+ /// Returns a new [`LiteMap`] with keys and values borrowed from this one.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map: LiteMap<Box<usize>, String> = LiteMap::new_vec();
+ /// map.insert(Box::new(1), "one".to_string());
+ /// map.insert(Box::new(2), "two".to_string());
+ ///
+ /// let borrowed_map: LiteMap<&usize, &str> = map.to_borrowed_keys_values();
+ ///
+ /// assert_eq!(borrowed_map.get(&1), Some(&"one"));
+ /// ```
+ pub fn to_borrowed_keys_values<KB: ?Sized, VB: ?Sized, SB>(
+ &'a self,
+ ) -> LiteMap<&'a KB, &'a VB, SB>
+ where
+ K: Borrow<KB>,
+ V: Borrow<VB>,
+ SB: StoreMut<&'a KB, &'a VB>,
+ {
+ let mut values = SB::lm_with_capacity(self.len());
+ for i in 0..self.len() {
+ #[allow(clippy::unwrap_used)] // iterating over our own length
+ let (k, v) = self.values.lm_get(i).unwrap();
+ values.lm_push(k.borrow(), v.borrow())
+ }
+ LiteMap {
+ values,
+ _key_type: PhantomData,
+ _value_type: PhantomData,
+ }
+ }
+
+ /// Returns a new [`LiteMap`] with keys borrowed from this one and cloned values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map: LiteMap<Box<usize>, String> = LiteMap::new_vec();
+ /// map.insert(Box::new(1), "one".to_string());
+ /// map.insert(Box::new(2), "two".to_string());
+ ///
+ /// let borrowed_map: LiteMap<&usize, String> = map.to_borrowed_keys();
+ ///
+ /// assert_eq!(borrowed_map.get(&1), Some(&"one".to_string()));
+ /// ```
+ pub fn to_borrowed_keys<KB: ?Sized, SB>(&'a self) -> LiteMap<&'a KB, V, SB>
+ where
+ K: Borrow<KB>,
+ V: Clone,
+ SB: StoreMut<&'a KB, V>,
+ {
+ let mut values = SB::lm_with_capacity(self.len());
+ for i in 0..self.len() {
+ #[allow(clippy::unwrap_used)] // iterating over our own length
+ let (k, v) = self.values.lm_get(i).unwrap();
+ values.lm_push(k.borrow(), v.clone())
+ }
+ LiteMap {
+ values,
+ _key_type: PhantomData,
+ _value_type: PhantomData,
+ }
+ }
+
+ /// Returns a new [`LiteMap`] with values borrowed from this one and cloned keys.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map: LiteMap<Box<usize>, String> = LiteMap::new_vec();
+ /// map.insert(Box::new(1), "one".to_string());
+ /// map.insert(Box::new(2), "two".to_string());
+ ///
+ /// let borrowed_map: LiteMap<Box<usize>, &str> = map.to_borrowed_values();
+ ///
+ /// assert_eq!(borrowed_map.get(&1), Some(&"one"));
+ /// ```
+ pub fn to_borrowed_values<VB: ?Sized, SB>(&'a self) -> LiteMap<K, &'a VB, SB>
+ where
+ K: Clone,
+ V: Borrow<VB>,
+ SB: StoreMut<K, &'a VB>,
+ {
+ let mut values = SB::lm_with_capacity(self.len());
+ for i in 0..self.len() {
+ #[allow(clippy::unwrap_used)] // iterating over our own length
+ let (k, v) = self.values.lm_get(i).unwrap();
+ values.lm_push(k.clone(), v.borrow())
+ }
+ LiteMap {
+ values,
+ _key_type: PhantomData,
+ _value_type: PhantomData,
+ }
+ }
+}
+
+impl<K, V, S> LiteMap<K, V, S>
+where
+ S: StoreMut<K, V>,
+{
+ /// Construct a new [`LiteMap`] with a given capacity
+ pub fn with_capacity(capacity: usize) -> Self {
+ Self {
+ values: S::lm_with_capacity(capacity),
+ _key_type: PhantomData,
+ _value_type: PhantomData,
+ }
+ }
+
+ /// Remove all elements from the [`LiteMap`]
+ pub fn clear(&mut self) {
+ self.values.lm_clear()
+ }
+
+ /// Reserve capacity for `additional` more elements to be inserted into
+ /// the [`LiteMap`] to avoid frequent reallocations.
+ ///
+ /// See [`Vec::reserve()`] for more information.
+ ///
+ /// [`Vec::reserve()`]: alloc::vec::Vec::reserve
+ pub fn reserve(&mut self, additional: usize) {
+ self.values.lm_reserve(additional)
+ }
+}
+
+impl<K, V, S> LiteMap<K, V, S>
+where
+ K: Ord,
+ S: StoreMut<K, V>,
+{
+ /// Get the value associated with `key`, if it exists, as a mutable reference.
+ ///
+ /// ```rust
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map = LiteMap::new_vec();
+ /// map.insert(1, "one");
+ /// map.insert(2, "two");
+ /// if let Some(mut v) = map.get_mut(&1) {
+ /// *v = "uno";
+ /// }
+ /// assert_eq!(map.get(&1), Some(&"uno"));
+ /// ```
+ pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V>
+ where
+ K: Borrow<Q>,
+ Q: Ord,
+ {
+ match self.find_index(key) {
+ #[allow(clippy::unwrap_used)] // find_index returns a valid index
+ Ok(found) => Some(self.values.lm_get_mut(found).unwrap().1),
+ Err(_) => None,
+ }
+ }
+
+ /// Appends `value` with `key` to the end of the underlying vector, returning
+ /// `key` and `value` _if it failed_. Useful for extending with an existing
+ /// sorted list.
+ /// ```rust
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map = LiteMap::new_vec();
+ /// assert!(map.try_append(1, "uno").is_none());
+ /// assert!(map.try_append(3, "tres").is_none());
+ ///
+ /// assert!(
+ /// matches!(map.try_append(3, "tres-updated"), Some((3, "tres-updated"))),
+ /// "append duplicate of last key",
+ /// );
+ ///
+ /// assert!(
+ /// matches!(map.try_append(2, "dos"), Some((2, "dos"))),
+ /// "append out of order"
+ /// );
+ ///
+ /// assert_eq!(map.get(&1), Some(&"uno"));
+ ///
+ /// // contains the original value for the key: 3
+ /// assert_eq!(map.get(&3), Some(&"tres"));
+ ///
+ /// // not appended since it wasn't in order
+ /// assert_eq!(map.get(&2), None);
+ /// ```
+ #[must_use]
+ pub fn try_append(&mut self, key: K, value: V) -> Option<(K, V)> {
+ if let Some(last) = self.values.lm_last() {
+ if last.0 >= &key {
+ return Some((key, value));
+ }
+ }
+
+ self.values.lm_push(key, value);
+ None
+ }
+
+ /// Insert `value` with `key`, returning the existing value if it exists.
+ ///
+ /// ```rust
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map = LiteMap::new_vec();
+ /// map.insert(1, "one");
+ /// map.insert(2, "two");
+ /// assert_eq!(map.get(&1), Some(&"one"));
+ /// assert_eq!(map.get(&3), None);
+ /// ```
+ pub fn insert(&mut self, key: K, value: V) -> Option<V> {
+ self.insert_save_key(key, value).map(|(_, v)| v)
+ }
+
+ /// Version of [`Self::insert()`] that returns both the key and the old value.
+ fn insert_save_key(&mut self, key: K, value: V) -> Option<(K, V)> {
+ match self.values.lm_binary_search_by(|k| k.cmp(&key)) {
+ #[allow(clippy::unwrap_used)] // Index came from binary_search
+ Ok(found) => Some((
+ key,
+ mem::replace(self.values.lm_get_mut(found).unwrap().1, value),
+ )),
+ Err(ins) => {
+ self.values.lm_insert(ins, key, value);
+ None
+ }
+ }
+ }
+
+ /// Attempts to insert a unique entry into the map.
+ ///
+ /// If `key` is not already in the map, inserts it with the corresponding `value`
+ /// and returns `None`.
+ ///
+ /// If `key` is already in the map, no change is made to the map, and the key and value
+ /// are returned back to the caller.
+ ///
+ /// ```
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map = LiteMap::new_vec();
+ /// map.insert(1, "one");
+ /// map.insert(3, "three");
+ ///
+ /// // 2 is not yet in the map...
+ /// assert_eq!(map.try_insert(2, "two"), None);
+ /// assert_eq!(map.len(), 3);
+ ///
+ /// // ...but now it is.
+ /// assert_eq!(map.try_insert(2, "TWO"), Some((2, "TWO")));
+ /// assert_eq!(map.len(), 3);
+ /// ```
+ pub fn try_insert(&mut self, key: K, value: V) -> Option<(K, V)> {
+ match self.values.lm_binary_search_by(|k| k.cmp(&key)) {
+ Ok(_) => Some((key, value)),
+ Err(ins) => {
+ self.values.lm_insert(ins, key, value);
+ None
+ }
+ }
+ }
+
+ /// Attempts to insert a unique entry into the map.
+ ///
+ /// If `key` is not already in the map, invokes the closure to compute `value`, inserts
+ /// the pair into the map, and returns a reference to the value. The closure is passed
+ /// a reference to the `key` argument.
+ ///
+ /// If `key` is already in the map, a reference to the existing value is returned.
+ ///
+ /// Additionally, the index of the value in the map is returned. If it is not desirable
+ /// to hold on to the mutable reference's lifetime, the index can be used to access the
+ /// element via [`LiteMap::get_indexed()`].
+ ///
+ /// The closure returns a `Result` to allow for a fallible insertion function. If the
+ /// creation of `value` is infallible, you can use [`core::convert::Infallible`].
+ ///
+ /// ```
+ /// use litemap::LiteMap;
+ ///
+ /// /// Helper function to unwrap an `Infallible` result from the insertion function
+ /// fn unwrap_infallible<T>(result: Result<T, core::convert::Infallible>) -> T {
+ /// result.unwrap_or_else(|never| match never {})
+ /// }
+ ///
+ /// let mut map = LiteMap::new_vec();
+ /// map.insert(1, "one");
+ /// map.insert(3, "three");
+ ///
+ /// // 2 is not yet in the map...
+ /// let result1 = unwrap_infallible(
+ /// map.try_get_or_insert(2, |_| Ok("two"))
+ /// );
+ /// assert_eq!(result1.1, &"two");
+ /// assert_eq!(map.len(), 3);
+ ///
+ /// // ...but now it is.
+ /// let result1 = unwrap_infallible(
+ /// map.try_get_or_insert(2, |_| Ok("TWO"))
+ /// );
+ /// assert_eq!(result1.1, &"two");
+ /// assert_eq!(map.len(), 3);
+ /// ```
+ pub fn try_get_or_insert<E>(
+ &mut self,
+ key: K,
+ value: impl FnOnce(&K) -> Result<V, E>,
+ ) -> Result<(usize, &V), E> {
+ let idx = match self.values.lm_binary_search_by(|k| k.cmp(&key)) {
+ Ok(idx) => idx,
+ Err(idx) => {
+ let value = value(&key)?;
+ self.values.lm_insert(idx, key, value);
+ idx
+ }
+ };
+ #[allow(clippy::unwrap_used)] // item at idx found or inserted above
+ Ok((idx, self.values.lm_get(idx).unwrap().1))
+ }
+
+ /// Remove the value at `key`, returning it if it exists.
+ ///
+ /// ```rust
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map = LiteMap::new_vec();
+ /// map.insert(1, "one");
+ /// map.insert(2, "two");
+ /// assert_eq!(map.remove(&1), Some("one"));
+ /// assert_eq!(map.get(&1), None);
+ /// ```
+ pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
+ where
+ K: Borrow<Q>,
+ Q: Ord,
+ {
+ match self.values.lm_binary_search_by(|k| k.borrow().cmp(key)) {
+ Ok(found) => Some(self.values.lm_remove(found).1),
+ Err(_) => None,
+ }
+ }
+}
+
+impl<'a, K: 'a, V: 'a, S> LiteMap<K, V, S>
+where
+ K: Ord,
+ S: StoreIterableMut<'a, K, V> + StoreFromIterator<K, V>,
+{
+ /// Insert all elements from `other` into this `LiteMap`.
+ ///
+ /// If `other` contains keys that already exist in `self`, the values in `other` replace the
+ /// corresponding ones in `self`, and the rejected items from `self` are returned as a new
+ /// `LiteMap`. Otherwise, `None` is returned.
+ ///
+ /// The implementation of this function is optimized if `self` and `other` have no overlap.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map1 = LiteMap::new_vec();
+ /// map1.insert(1, "one");
+ /// map1.insert(2, "two");
+ ///
+ /// let mut map2 = LiteMap::new_vec();
+ /// map2.insert(2, "TWO");
+ /// map2.insert(4, "FOUR");
+ ///
+ /// let leftovers = map1.extend_from_litemap(map2);
+ ///
+ /// assert_eq!(map1.len(), 3);
+ /// assert_eq!(map1.get(&1), Some("one").as_ref());
+ /// assert_eq!(map1.get(&2), Some("TWO").as_ref());
+ /// assert_eq!(map1.get(&4), Some("FOUR").as_ref());
+ ///
+ /// let map3 = leftovers.expect("Duplicate keys");
+ /// assert_eq!(map3.len(), 1);
+ /// assert_eq!(map3.get(&2), Some("two").as_ref());
+ /// ```
+ pub fn extend_from_litemap(&mut self, other: Self) -> Option<Self> {
+ if self.is_empty() {
+ self.values = other.values;
+ return None;
+ }
+ if other.is_empty() {
+ return None;
+ }
+ if self.last().map(|(k, _)| k) < other.first().map(|(k, _)| k) {
+ // append other to self
+ self.values.lm_extend_end(other.values);
+ None
+ } else if self.first().map(|(k, _)| k) > other.last().map(|(k, _)| k) {
+ // prepend other to self
+ self.values.lm_extend_start(other.values);
+ None
+ } else {
+ // insert every element
+ let leftover_tuples = other
+ .values
+ .lm_into_iter()
+ .filter_map(|(k, v)| self.insert_save_key(k, v))
+ .collect();
+ let ret = LiteMap {
+ values: leftover_tuples,
+ _key_type: PhantomData,
+ _value_type: PhantomData,
+ };
+ if ret.is_empty() {
+ None
+ } else {
+ Some(ret)
+ }
+ }
+ }
+}
+
+impl<K, V, S> Default for LiteMap<K, V, S>
+where
+ S: Store<K, V> + Default,
+{
+ fn default() -> Self {
+ Self {
+ values: S::default(),
+ _key_type: PhantomData,
+ _value_type: PhantomData,
+ }
+ }
+}
+impl<K, V, S> Index<&'_ K> for LiteMap<K, V, S>
+where
+ K: Ord,
+ S: Store<K, V>,
+{
+ type Output = V;
+ fn index(&self, key: &K) -> &V {
+ #[allow(clippy::panic)] // documented
+ match self.get(key) {
+ Some(v) => v,
+ None => panic!("no entry found for key"),
+ }
+ }
+}
+impl<K, V, S> IndexMut<&'_ K> for LiteMap<K, V, S>
+where
+ K: Ord,
+ S: StoreMut<K, V>,
+{
+ fn index_mut(&mut self, key: &K) -> &mut V {
+ #[allow(clippy::panic)] // documented
+ match self.get_mut(key) {
+ Some(v) => v,
+ None => panic!("no entry found for key"),
+ }
+ }
+}
+impl<K, V, S> FromIterator<(K, V)> for LiteMap<K, V, S>
+where
+ K: Ord,
+ S: StoreFromIterable<K, V>,
+{
+ fn from_iter<I: IntoIterator<Item = (K, V)>>(iter: I) -> Self {
+ let values = S::lm_sort_from_iter(iter);
+ Self::from_sorted_store_unchecked(values)
+ }
+}
+
+impl<'a, K: 'a, V: 'a, S> LiteMap<K, V, S>
+where
+ S: StoreIterable<'a, K, V>,
+{
+ /// Produce an ordered iterator over key-value pairs
+ pub fn iter(&'a self) -> impl DoubleEndedIterator<Item = (&'a K, &'a V)> {
+ self.values.lm_iter()
+ }
+
+ /// Produce an ordered iterator over keys
+ pub fn iter_keys(&'a self) -> impl DoubleEndedIterator<Item = &'a K> {
+ self.values.lm_iter().map(|val| val.0)
+ }
+
+ /// Produce an iterator over values, ordered by their keys
+ pub fn iter_values(&'a self) -> impl DoubleEndedIterator<Item = &'a V> {
+ self.values.lm_iter().map(|val| val.1)
+ }
+}
+
+impl<'a, K: 'a, V: 'a, S> LiteMap<K, V, S>
+where
+ S: StoreIterableMut<'a, K, V>,
+{
+ /// Produce an ordered mutable iterator over key-value pairs
+ pub fn iter_mut(&'a mut self) -> impl DoubleEndedIterator<Item = (&'a K, &'a mut V)> {
+ self.values.lm_iter_mut()
+ }
+}
+
+impl<K, V, S> LiteMap<K, V, S>
+where
+ S: StoreMut<K, V>,
+{
+ /// Retains only the elements specified by the predicate.
+ ///
+ /// In other words, remove all elements such that `f((&k, &v))` returns `false`.
+ ///
+ /// # Example
+ ///
+ /// ```rust
+ /// use litemap::LiteMap;
+ ///
+ /// let mut map = LiteMap::new_vec();
+ /// map.insert(1, "one");
+ /// map.insert(2, "two");
+ /// map.insert(3, "three");
+ ///
+ /// // Retain elements with odd keys
+ /// map.retain(|k, _| k % 2 == 1);
+ ///
+ /// assert_eq!(map.get(&1), Some(&"one"));
+ /// assert_eq!(map.get(&2), None);
+ /// ```
+ #[inline]
+ pub fn retain<F>(&mut self, predicate: F)
+ where
+ F: FnMut(&K, &V) -> bool,
+ {
+ self.values.lm_retain(predicate)
+ }
+}
+
+impl<'a, K, V> LiteMap<K, V, &'a [(K, V)]> {
+ /// Const version of [`LiteMap::len()`] for a slice store.
+ ///
+ /// Note: This function will no longer be needed if const trait behavior is stabilized.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use litemap::LiteMap;
+ ///
+ /// static map: LiteMap<&str, usize, &[(&str, usize)]> =
+ /// LiteMap::from_sorted_store_unchecked(&[("a", 11), ("b", 22)]);
+ /// static len: usize = map.const_len();
+ /// assert_eq!(len, 2);
+ /// ```
+ #[inline]
+ pub const fn const_len(&self) -> usize {
+ self.values.len()
+ }
+
+ /// Const version of [`LiteMap::is_empty()`] for a slice store.
+ ///
+ /// Note: This function will no longer be needed if const trait behavior is stabilized.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use litemap::LiteMap;
+ ///
+ /// static map: LiteMap<&str, usize, &[(&str, usize)]> =
+ /// LiteMap::from_sorted_store_unchecked(&[]);
+ /// static is_empty: bool = map.const_is_empty();
+ /// assert!(is_empty);
+ /// ```
+ #[inline]
+ pub const fn const_is_empty(&self) -> bool {
+ self.values.is_empty()
+ }
+
+ /// Const version of [`LiteMap::get_indexed()`] for a slice store.
+ ///
+ /// Note: This function will no longer be needed if const trait behavior is stabilized.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the index is out of bounds.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use litemap::LiteMap;
+ ///
+ /// static map: LiteMap<&str, usize, &[(&str, usize)]> =
+ /// LiteMap::from_sorted_store_unchecked(&[("a", 11), ("b", 22)]);
+ /// static t: &(&str, usize) = map.const_get_indexed_or_panic(0);
+ /// assert_eq!(t.0, "a");
+ /// assert_eq!(t.1, 11);
+ /// ```
+ #[inline]
+ #[allow(clippy::indexing_slicing)] // documented
+ pub const fn const_get_indexed_or_panic(&self, index: usize) -> &'a (K, V) {
+ &self.values[index]
+ }
+}
+
+const fn const_cmp_bytes(a: &[u8], b: &[u8]) -> Ordering {
+ let (max, default) = if a.len() == b.len() {
+ (a.len(), Ordering::Equal)
+ } else if a.len() < b.len() {
+ (a.len(), Ordering::Less)
+ } else {
+ (b.len(), Ordering::Greater)
+ };
+ let mut i = 0;
+ #[allow(clippy::indexing_slicing)] // indexes in range by above checks
+ while i < max {
+ if a[i] == b[i] {
+ i += 1;
+ continue;
+ } else if a[i] < b[i] {
+ return Ordering::Less;
+ } else {
+ return Ordering::Greater;
+ }
+ }
+ default
+}
+
+impl<'a, V> LiteMap<&'a str, V, &'a [(&'a str, V)]> {
+ /// Const function to get the value associated with a `&str` key, if it exists.
+ ///
+ /// Also returns the index of the value.
+ ///
+ /// Note: This function will no longer be needed if const trait behavior is stabilized.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use litemap::LiteMap;
+ ///
+ /// static map: LiteMap<&str, usize, &[(&str, usize)]> =
+ /// LiteMap::from_sorted_store_unchecked(&[
+ /// ("abc", 11),
+ /// ("bcd", 22),
+ /// ("cde", 33),
+ /// ("def", 44),
+ /// ("efg", 55),
+ /// ]);
+ ///
+ /// static d: Option<(usize, &usize)> = map.const_get_with_index("def");
+ /// assert_eq!(d, Some((3, &44)));
+ ///
+ /// static n: Option<(usize, &usize)> = map.const_get_with_index("dng");
+ /// assert_eq!(n, None);
+ /// ```
+ pub const fn const_get_with_index(&self, key: &str) -> Option<(usize, &'a V)> {
+ let mut i = 0;
+ let mut j = self.const_len();
+ while i < j {
+ let mid = (i + j) / 2;
+ #[allow(clippy::indexing_slicing)] // in range
+ let x = &self.values[mid];
+ match const_cmp_bytes(key.as_bytes(), x.0.as_bytes()) {
+ Ordering::Equal => return Some((mid, &x.1)),
+ Ordering::Greater => i = mid + 1,
+ Ordering::Less => j = mid,
+ };
+ }
+ None
+ }
+}
+
+impl<'a, V> LiteMap<&'a [u8], V, &'a [(&'a [u8], V)]> {
+ /// Const function to get the value associated with a `&[u8]` key, if it exists.
+ ///
+ /// Also returns the index of the value.
+ ///
+ /// Note: This function will no longer be needed if const trait behavior is stabilized.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use litemap::LiteMap;
+ ///
+ /// static map: LiteMap<&[u8], usize, &[(&[u8], usize)]> =
+ /// LiteMap::from_sorted_store_unchecked(&[
+ /// (b"abc", 11),
+ /// (b"bcd", 22),
+ /// (b"cde", 33),
+ /// (b"def", 44),
+ /// (b"efg", 55),
+ /// ]);
+ ///
+ /// static d: Option<(usize, &usize)> = map.const_get_with_index(b"def");
+ /// assert_eq!(d, Some((3, &44)));
+ ///
+ /// static n: Option<(usize, &usize)> = map.const_get_with_index(b"dng");
+ /// assert_eq!(n, None);
+ /// ```
+ pub const fn const_get_with_index(&self, key: &[u8]) -> Option<(usize, &'a V)> {
+ let mut i = 0;
+ let mut j = self.const_len();
+ while i < j {
+ let mid = (i + j) / 2;
+ #[allow(clippy::indexing_slicing)] // in range
+ let x = &self.values[mid];
+ match const_cmp_bytes(key, x.0) {
+ Ordering::Equal => return Some((mid, &x.1)),
+ Ordering::Greater => i = mid + 1,
+ Ordering::Less => j = mid,
+ };
+ }
+ None
+ }
+}
+
+macro_rules! impl_const_get_with_index_for_integer {
+ ($integer:ty) => {
+ impl<'a, V> LiteMap<$integer, V, &'a [($integer, V)]> {
+ /// Const function to get the value associated with an integer key, if it exists.
+ ///
+ /// Note: This function will no longer be needed if const trait behavior is stabilized.
+ ///
+ /// Also returns the index of the value.
+ pub const fn const_get_with_index(&self, key: $integer) -> Option<(usize, &'a V)> {
+ let mut i = 0;
+ let mut j = self.const_len();
+ while i < j {
+ let mid = (i + j) / 2;
+ #[allow(clippy::indexing_slicing)] // in range
+ let x = &self.values[mid];
+ if key == x.0 {
+ return Some((mid, &x.1));
+ } else if key > x.0 {
+ i = mid + 1;
+ } else {
+ j = mid;
+ }
+ }
+ return None;
+ }
+ }
+ };
+}
+
+impl_const_get_with_index_for_integer!(u8);
+impl_const_get_with_index_for_integer!(u16);
+impl_const_get_with_index_for_integer!(u32);
+impl_const_get_with_index_for_integer!(u64);
+impl_const_get_with_index_for_integer!(u128);
+impl_const_get_with_index_for_integer!(usize);
+impl_const_get_with_index_for_integer!(i8);
+impl_const_get_with_index_for_integer!(i16);
+impl_const_get_with_index_for_integer!(i32);
+impl_const_get_with_index_for_integer!(i64);
+impl_const_get_with_index_for_integer!(i128);
+impl_const_get_with_index_for_integer!(isize);
+
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ #[test]
+ fn from_iterator() {
+ let mut expected = LiteMap::with_capacity(4);
+ expected.insert(1, "updated-one");
+ expected.insert(2, "original-two");
+ expected.insert(3, "original-three");
+ expected.insert(4, "updated-four");
+
+ let actual = [
+ (1, "original-one"),
+ (2, "original-two"),
+ (4, "original-four"),
+ (4, "updated-four"),
+ (1, "updated-one"),
+ (3, "original-three"),
+ ]
+ .into_iter()
+ .collect::<LiteMap<_, _>>();
+
+ assert_eq!(expected, actual);
+ }
+ fn make_13() -> LiteMap<usize, &'static str> {
+ let mut result = LiteMap::new();
+ result.insert(1, "one");
+ result.insert(3, "three");
+ result
+ }
+
+ fn make_24() -> LiteMap<usize, &'static str> {
+ let mut result = LiteMap::new();
+ result.insert(2, "TWO");
+ result.insert(4, "FOUR");
+ result
+ }
+
+ fn make_46() -> LiteMap<usize, &'static str> {
+ let mut result = LiteMap::new();
+ result.insert(4, "four");
+ result.insert(6, "six");
+ result
+ }
+
+ #[test]
+ fn extend_from_litemap_append() {
+ let mut map = LiteMap::new();
+ map.extend_from_litemap(make_13())
+ .ok_or(())
+ .expect_err("Append to empty map");
+ map.extend_from_litemap(make_46())
+ .ok_or(())
+ .expect_err("Append to lesser map");
+ assert_eq!(map.len(), 4);
+ }
+
+ #[test]
+ fn extend_from_litemap_prepend() {
+ let mut map = LiteMap::new();
+ map.extend_from_litemap(make_46())
+ .ok_or(())
+ .expect_err("Prepend to empty map");
+ map.extend_from_litemap(make_13())
+ .ok_or(())
+ .expect_err("Prepend to lesser map");
+ assert_eq!(map.len(), 4);
+ }
+
+ #[test]
+ fn extend_from_litemap_insert() {
+ let mut map = LiteMap::new();
+ map.extend_from_litemap(make_13())
+ .ok_or(())
+ .expect_err("Append to empty map");
+ map.extend_from_litemap(make_24())
+ .ok_or(())
+ .expect_err("Insert with no conflict");
+ map.extend_from_litemap(make_46())
+ .ok_or(())
+ .expect("Insert with conflict");
+ assert_eq!(map.len(), 5);
+ }
+
+ #[test]
+ fn test_const_cmp_bytes() {
+ let strs = &["a", "aa", "abc", "abde", "bcd", "bcde"];
+ for i in 0..strs.len() {
+ for j in 0..strs.len() {
+ let a = strs[i].as_bytes();
+ let b = strs[j].as_bytes();
+ assert_eq!(a.cmp(b), const_cmp_bytes(a, b));
+ }
+ }
+ }
+}