summaryrefslogtreecommitdiffstats
path: root/third_party/rust/prio/documentation
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/prio/documentation')
-rwxr-xr-xthird_party/rust/prio/documentation/field_parameters.sage117
1 files changed, 117 insertions, 0 deletions
diff --git a/third_party/rust/prio/documentation/field_parameters.sage b/third_party/rust/prio/documentation/field_parameters.sage
new file mode 100755
index 0000000000..b83505baac
--- /dev/null
+++ b/third_party/rust/prio/documentation/field_parameters.sage
@@ -0,0 +1,117 @@
+#!/usr/bin/env sage
+
+# This file recomputes the values in src/fp.rs for each FFT-friendly finite
+# field.
+
+import pprint
+
+
+class Field:
+ # The name of the field.
+ name: str
+
+ # The prime modulus that defines the field.
+ modulus: Integer
+
+ # A generator element that generates a large subgroup with an order that's
+ # a power of two. This is _not_ in Montgomery representation.
+ generator_element: Integer
+
+ # The base 2 logarithm of the order of the FFT-friendly multiplicative
+ # subgroup. The generator element will be a 2^num_roots-th root of unity.
+ num_roots: Integer
+
+ def __init__(self, name, modulus, generator_element):
+ assert is_prime(modulus)
+ self.name = name
+ self.modulus = modulus
+ self.generator_element = generator_element
+
+ self.num_roots = None
+ for (prime, power) in factor(modulus - 1):
+ if prime == 2:
+ self.num_roots = power
+ break
+ else:
+ raise Exception(
+ "Multiplicative subgroup order is not a multiple of two"
+ )
+
+ def mu(self):
+ """
+ Computes mu, a constant used during multiplication. It is defined by
+ mu = (-p)^-1 mod r, where r is the modulus implicitly used in wrapping
+ machine word operations.
+ """
+ r = 2 ^ 64
+ return (-self.modulus).inverse_mod(r)
+
+ def r2(self):
+ """
+ Computes R^2 mod p. This constant is used when converting into
+ Montgomery representation. R is the machine word-friendly modulus
+ used in the Montgomery representation.
+ """
+ R = 2 ^ 128
+ return R ^ 2 % self.modulus
+
+ def to_montgomery(self, element):
+ """
+ Transforms an element into its Montgomery representation.
+ """
+ R = 2 ^ 128
+ return element * R % self.modulus
+
+ def bit_mask(self):
+ """
+ An integer with the same bit length as the prime modulus, but with all
+ bits set.
+ """
+ return 2 ^ (self.modulus.nbits()) - 1
+
+ def roots(self):
+ """
+ Returns a list of roots of unity, in Montgomery representation. The
+ value at index i is a 2^i-th root of unity. Note that the first array
+ element will thus be the Montgomery representation of one.
+ """
+ return [
+ self.to_montgomery(
+ pow(
+ self.generator_element,
+ 2 ^ (self.num_roots - i),
+ self.modulus,
+ )
+ )
+ for i in range(min(self.num_roots, 20) + 1)
+ ]
+
+
+FIELDS = [
+ Field(
+ "FieldPrio2",
+ 2 ^ 20 * 4095 + 1,
+ 3925978153,
+ ),
+ Field(
+ "Field64",
+ 2 ^ 32 * 4294967295 + 1,
+ pow(7, 4294967295, 2 ^ 32 * 4294967295 + 1),
+ ),
+ Field(
+ "Field128",
+ 2 ^ 66 * 4611686018427387897 + 1,
+ pow(7, 4611686018427387897, 2 ^ 66 * 4611686018427387897 + 1),
+ ),
+]
+for field in FIELDS:
+ print(field.name)
+ print(f"p: {field.modulus}")
+ print(f"mu: {field.mu()}")
+ print(f"r2: {field.r2()}")
+ print(f"g: {field.to_montgomery(field.generator_element)}")
+ print(f"num_roots: {field.num_roots}")
+ print(f"bit_mask: {field.bit_mask()}")
+ print("roots:")
+ pprint.pprint(field.roots())
+ print()