summaryrefslogtreecommitdiffstats
path: root/third_party/rust/wast/src/core/resolve/names.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/wast/src/core/resolve/names.rs')
-rw-r--r--third_party/rust/wast/src/core/resolve/names.rs763
1 files changed, 763 insertions, 0 deletions
diff --git a/third_party/rust/wast/src/core/resolve/names.rs b/third_party/rust/wast/src/core/resolve/names.rs
new file mode 100644
index 0000000000..05894e9a1e
--- /dev/null
+++ b/third_party/rust/wast/src/core/resolve/names.rs
@@ -0,0 +1,763 @@
+use crate::core::resolve::Ns;
+use crate::core::*;
+use crate::names::{resolve_error, Namespace};
+use crate::token::{Id, Index};
+use crate::Error;
+use std::collections::HashMap;
+
+pub fn resolve<'a>(fields: &mut Vec<ModuleField<'a>>) -> Result<Resolver<'a>, Error> {
+ let mut resolver = Resolver::default();
+ resolver.process(fields)?;
+ Ok(resolver)
+}
+
+/// Context structure used to perform name resolution.
+#[derive(Default)]
+pub struct Resolver<'a> {
+ // Namespaces within each module. Note that each namespace carries with it
+ // information about the signature of the item in that namespace. The
+ // signature is later used to synthesize the type of a module and inject
+ // type annotations if necessary.
+ funcs: Namespace<'a>,
+ globals: Namespace<'a>,
+ tables: Namespace<'a>,
+ memories: Namespace<'a>,
+ types: Namespace<'a>,
+ tags: Namespace<'a>,
+ datas: Namespace<'a>,
+ elems: Namespace<'a>,
+ fields: HashMap<u32, Namespace<'a>>,
+ type_info: Vec<TypeInfo<'a>>,
+}
+
+impl<'a> Resolver<'a> {
+ fn process(&mut self, fields: &mut Vec<ModuleField<'a>>) -> Result<(), Error> {
+ // Number everything in the module, recording what names correspond to
+ // what indices.
+ for field in fields.iter_mut() {
+ self.register(field)?;
+ }
+
+ // Then we can replace all our `Index::Id` instances with `Index::Num`
+ // in the AST. Note that this also recurses into nested modules.
+ for field in fields.iter_mut() {
+ self.resolve_field(field)?;
+ }
+ Ok(())
+ }
+
+ fn register_type(&mut self, ty: &Type<'a>) -> Result<(), Error> {
+ let type_index = self.types.register(ty.id, "type")?;
+
+ match &ty.def {
+ // For GC structure types we need to be sure to populate the
+ // field namespace here as well.
+ //
+ // The field namespace is relative to the struct fields are defined in
+ TypeDef::Struct(r#struct) => {
+ for (i, field) in r#struct.fields.iter().enumerate() {
+ if let Some(id) = field.id {
+ self.fields
+ .entry(type_index)
+ .or_insert(Namespace::default())
+ .register_specific(id, i as u32, "field")?;
+ }
+ }
+ }
+
+ TypeDef::Array(_) | TypeDef::Func(_) => {}
+ }
+
+ // Record function signatures as we see them to so we can
+ // generate errors for mismatches in references such as
+ // `call_indirect`.
+ match &ty.def {
+ TypeDef::Func(f) => {
+ let params = f.params.iter().map(|p| p.2).collect();
+ let results = f.results.clone();
+ self.type_info.push(TypeInfo::Func { params, results });
+ }
+ _ => self.type_info.push(TypeInfo::Other),
+ }
+
+ Ok(())
+ }
+
+ fn register(&mut self, item: &ModuleField<'a>) -> Result<(), Error> {
+ match item {
+ ModuleField::Import(i) => match &i.item.kind {
+ ItemKind::Func(_) => self.funcs.register(i.item.id, "func")?,
+ ItemKind::Memory(_) => self.memories.register(i.item.id, "memory")?,
+ ItemKind::Table(_) => self.tables.register(i.item.id, "table")?,
+ ItemKind::Global(_) => self.globals.register(i.item.id, "global")?,
+ ItemKind::Tag(_) => self.tags.register(i.item.id, "tag")?,
+ },
+ ModuleField::Global(i) => self.globals.register(i.id, "global")?,
+ ModuleField::Memory(i) => self.memories.register(i.id, "memory")?,
+ ModuleField::Func(i) => self.funcs.register(i.id, "func")?,
+ ModuleField::Table(i) => self.tables.register(i.id, "table")?,
+
+ ModuleField::Type(i) => {
+ return self.register_type(i);
+ }
+ ModuleField::Rec(i) => {
+ for ty in &i.types {
+ self.register_type(ty)?;
+ }
+ return Ok(());
+ }
+ ModuleField::Elem(e) => self.elems.register(e.id, "elem")?,
+ ModuleField::Data(d) => self.datas.register(d.id, "data")?,
+ ModuleField::Tag(t) => self.tags.register(t.id, "tag")?,
+
+ // These fields don't define any items in any index space.
+ ModuleField::Export(_) | ModuleField::Start(_) | ModuleField::Custom(_) => {
+ return Ok(())
+ }
+ };
+
+ Ok(())
+ }
+
+ fn resolve_type(&self, ty: &mut Type<'a>) -> Result<(), Error> {
+ match &mut ty.def {
+ TypeDef::Func(func) => func.resolve(self)?,
+ TypeDef::Struct(struct_) => {
+ for field in &mut struct_.fields {
+ self.resolve_storagetype(&mut field.ty)?;
+ }
+ }
+ TypeDef::Array(array) => self.resolve_storagetype(&mut array.ty)?,
+ }
+ if let Some(parent) = &mut ty.parent {
+ self.resolve(parent, Ns::Type)?;
+ }
+ Ok(())
+ }
+
+ fn resolve_field(&self, field: &mut ModuleField<'a>) -> Result<(), Error> {
+ match field {
+ ModuleField::Import(i) => {
+ self.resolve_item_sig(&mut i.item)?;
+ Ok(())
+ }
+
+ ModuleField::Type(ty) => self.resolve_type(ty),
+ ModuleField::Rec(rec) => {
+ for ty in &mut rec.types {
+ self.resolve_type(ty)?;
+ }
+ Ok(())
+ }
+
+ ModuleField::Func(f) => {
+ let (idx, inline) = self.resolve_type_use(&mut f.ty)?;
+ let n = match idx {
+ Index::Num(n, _) => *n,
+ Index::Id(_) => panic!("expected `Num`"),
+ };
+ if let FuncKind::Inline { locals, expression } = &mut f.kind {
+ // Resolve (ref T) in locals
+ for local in locals.iter_mut() {
+ self.resolve_valtype(&mut local.ty)?;
+ }
+
+ // Build a scope with a local namespace for the function
+ // body
+ let mut scope = Namespace::default();
+
+ // Parameters come first in the scope...
+ if let Some(inline) = &inline {
+ for (id, _, _) in inline.params.iter() {
+ scope.register(*id, "local")?;
+ }
+ } else if let Some(TypeInfo::Func { params, .. }) =
+ self.type_info.get(n as usize)
+ {
+ for _ in 0..params.len() {
+ scope.register(None, "local")?;
+ }
+ }
+
+ // .. followed by locals themselves
+ for local in locals.iter() {
+ scope.register(local.id, "local")?;
+ }
+
+ // Initialize the expression resolver with this scope
+ let mut resolver = ExprResolver::new(self, scope);
+
+ // and then we can resolve the expression!
+ resolver.resolve(expression)?;
+
+ // specifically save the original `sig`, if it was present,
+ // because that's what we're using for local names.
+ f.ty.inline = inline;
+ }
+ Ok(())
+ }
+
+ ModuleField::Elem(e) => {
+ match &mut e.kind {
+ ElemKind::Active { table, offset } => {
+ self.resolve(table, Ns::Table)?;
+ self.resolve_expr(offset)?;
+ }
+ ElemKind::Passive { .. } | ElemKind::Declared { .. } => {}
+ }
+ match &mut e.payload {
+ ElemPayload::Indices(elems) => {
+ for idx in elems {
+ self.resolve(idx, Ns::Func)?;
+ }
+ }
+ ElemPayload::Exprs { exprs, ty } => {
+ for expr in exprs {
+ self.resolve_expr(expr)?;
+ }
+ self.resolve_heaptype(&mut ty.heap)?;
+ }
+ }
+ Ok(())
+ }
+
+ ModuleField::Data(d) => {
+ if let DataKind::Active { memory, offset } = &mut d.kind {
+ self.resolve(memory, Ns::Memory)?;
+ self.resolve_expr(offset)?;
+ }
+ Ok(())
+ }
+
+ ModuleField::Start(i) => {
+ self.resolve(i, Ns::Func)?;
+ Ok(())
+ }
+
+ ModuleField::Export(e) => {
+ self.resolve(
+ &mut e.item,
+ match e.kind {
+ ExportKind::Func => Ns::Func,
+ ExportKind::Table => Ns::Table,
+ ExportKind::Memory => Ns::Memory,
+ ExportKind::Global => Ns::Global,
+ ExportKind::Tag => Ns::Tag,
+ },
+ )?;
+ Ok(())
+ }
+
+ ModuleField::Global(g) => {
+ self.resolve_valtype(&mut g.ty.ty)?;
+ if let GlobalKind::Inline(expr) = &mut g.kind {
+ self.resolve_expr(expr)?;
+ }
+ Ok(())
+ }
+
+ ModuleField::Tag(t) => {
+ match &mut t.ty {
+ TagType::Exception(ty) => {
+ self.resolve_type_use(ty)?;
+ }
+ }
+ Ok(())
+ }
+
+ ModuleField::Table(t) => {
+ if let TableKind::Normal { ty, init_expr } = &mut t.kind {
+ self.resolve_heaptype(&mut ty.elem.heap)?;
+ if let Some(init_expr) = init_expr {
+ self.resolve_expr(init_expr)?;
+ }
+ }
+ Ok(())
+ }
+
+ ModuleField::Memory(_) | ModuleField::Custom(_) => Ok(()),
+ }
+ }
+
+ fn resolve_valtype(&self, ty: &mut ValType<'a>) -> Result<(), Error> {
+ match ty {
+ ValType::Ref(ty) => self.resolve_heaptype(&mut ty.heap)?,
+ _ => {}
+ }
+ Ok(())
+ }
+
+ fn resolve_reftype(&self, ty: &mut RefType<'a>) -> Result<(), Error> {
+ self.resolve_heaptype(&mut ty.heap)
+ }
+
+ fn resolve_heaptype(&self, ty: &mut HeapType<'a>) -> Result<(), Error> {
+ match ty {
+ HeapType::Concrete(i) => {
+ self.resolve(i, Ns::Type)?;
+ }
+ _ => {}
+ }
+ Ok(())
+ }
+
+ fn resolve_storagetype(&self, ty: &mut StorageType<'a>) -> Result<(), Error> {
+ match ty {
+ StorageType::Val(ty) => self.resolve_valtype(ty)?,
+ _ => {}
+ }
+ Ok(())
+ }
+
+ fn resolve_item_sig(&self, item: &mut ItemSig<'a>) -> Result<(), Error> {
+ match &mut item.kind {
+ ItemKind::Func(t) | ItemKind::Tag(TagType::Exception(t)) => {
+ self.resolve_type_use(t)?;
+ }
+ ItemKind::Global(t) => self.resolve_valtype(&mut t.ty)?,
+ ItemKind::Table(t) => {
+ self.resolve_heaptype(&mut t.elem.heap)?;
+ }
+ ItemKind::Memory(_) => {}
+ }
+ Ok(())
+ }
+
+ fn resolve_type_use<'b, T>(
+ &self,
+ ty: &'b mut TypeUse<'a, T>,
+ ) -> Result<(&'b Index<'a>, Option<T>), Error>
+ where
+ T: TypeReference<'a>,
+ {
+ let idx = ty.index.as_mut().unwrap();
+ self.resolve(idx, Ns::Type)?;
+
+ // If the type was listed inline *and* it was specified via a type index
+ // we need to assert they're the same.
+ //
+ // Note that we resolve the type first to transform all names to
+ // indices to ensure that all the indices line up.
+ if let Some(inline) = &mut ty.inline {
+ inline.resolve(self)?;
+ inline.check_matches(idx, self)?;
+ }
+
+ Ok((idx, ty.inline.take()))
+ }
+
+ fn resolve_expr(&self, expr: &mut Expression<'a>) -> Result<(), Error> {
+ ExprResolver::new(self, Namespace::default()).resolve(expr)
+ }
+
+ pub fn resolve(&self, idx: &mut Index<'a>, ns: Ns) -> Result<u32, Error> {
+ match ns {
+ Ns::Func => self.funcs.resolve(idx, "func"),
+ Ns::Table => self.tables.resolve(idx, "table"),
+ Ns::Global => self.globals.resolve(idx, "global"),
+ Ns::Memory => self.memories.resolve(idx, "memory"),
+ Ns::Tag => self.tags.resolve(idx, "tag"),
+ Ns::Type => self.types.resolve(idx, "type"),
+ }
+ }
+}
+
+#[derive(Debug, Clone)]
+struct ExprBlock<'a> {
+ // The label of the block
+ label: Option<Id<'a>>,
+ // Whether this block pushed a new scope for resolving locals
+ pushed_scope: bool,
+}
+
+struct ExprResolver<'a, 'b> {
+ resolver: &'b Resolver<'a>,
+ // Scopes tracks the local namespace and dynamically grows as we enter/exit
+ // `let` blocks
+ scopes: Vec<Namespace<'a>>,
+ blocks: Vec<ExprBlock<'a>>,
+}
+
+impl<'a, 'b> ExprResolver<'a, 'b> {
+ fn new(resolver: &'b Resolver<'a>, initial_scope: Namespace<'a>) -> ExprResolver<'a, 'b> {
+ ExprResolver {
+ resolver,
+ scopes: vec![initial_scope],
+ blocks: Vec::new(),
+ }
+ }
+
+ fn resolve(&mut self, expr: &mut Expression<'a>) -> Result<(), Error> {
+ for instr in expr.instrs.iter_mut() {
+ self.resolve_instr(instr)?;
+ }
+ Ok(())
+ }
+
+ fn resolve_block_type(&mut self, bt: &mut BlockType<'a>) -> Result<(), Error> {
+ // If the index is specified on this block type then that's the source
+ // of resolution and the resolver step here will verify the inline type
+ // matches. Note that indexes may come from the source text itself but
+ // may also come from being injected as part of the type expansion phase
+ // of resolution.
+ //
+ // If no type is present then that means that the inline type is not
+ // present or has 0-1 results. In that case the nested value types are
+ // resolved, if they're there, to get encoded later on.
+ if bt.ty.index.is_some() {
+ self.resolver.resolve_type_use(&mut bt.ty)?;
+ } else if let Some(inline) = &mut bt.ty.inline {
+ inline.resolve(self.resolver)?;
+ }
+
+ Ok(())
+ }
+
+ fn resolve_instr(&mut self, instr: &mut Instruction<'a>) -> Result<(), Error> {
+ use Instruction::*;
+
+ if let Some(m) = instr.memarg_mut() {
+ self.resolver.resolve(&mut m.memory, Ns::Memory)?;
+ }
+
+ match instr {
+ MemorySize(i) | MemoryGrow(i) | MemoryFill(i) | MemoryDiscard(i) => {
+ self.resolver.resolve(&mut i.mem, Ns::Memory)?;
+ }
+ MemoryInit(i) => {
+ self.resolver.datas.resolve(&mut i.data, "data")?;
+ self.resolver.resolve(&mut i.mem, Ns::Memory)?;
+ }
+ MemoryCopy(i) => {
+ self.resolver.resolve(&mut i.src, Ns::Memory)?;
+ self.resolver.resolve(&mut i.dst, Ns::Memory)?;
+ }
+ DataDrop(i) => {
+ self.resolver.datas.resolve(i, "data")?;
+ }
+
+ TableInit(i) => {
+ self.resolver.elems.resolve(&mut i.elem, "elem")?;
+ self.resolver.resolve(&mut i.table, Ns::Table)?;
+ }
+ ElemDrop(i) => {
+ self.resolver.elems.resolve(i, "elem")?;
+ }
+
+ TableCopy(i) => {
+ self.resolver.resolve(&mut i.dst, Ns::Table)?;
+ self.resolver.resolve(&mut i.src, Ns::Table)?;
+ }
+
+ TableFill(i) | TableSet(i) | TableGet(i) | TableSize(i) | TableGrow(i) => {
+ self.resolver.resolve(&mut i.dst, Ns::Table)?;
+ }
+
+ GlobalSet(i) | GlobalGet(i) => {
+ self.resolver.resolve(i, Ns::Global)?;
+ }
+
+ LocalSet(i) | LocalGet(i) | LocalTee(i) => {
+ assert!(self.scopes.len() > 0);
+ // Resolve a local by iterating over scopes from most recent
+ // to less recent. This allows locals added by `let` blocks to
+ // shadow less recent locals.
+ for (depth, scope) in self.scopes.iter().enumerate().rev() {
+ if let Err(e) = scope.resolve(i, "local") {
+ if depth == 0 {
+ // There are no more scopes left, report this as
+ // the result
+ return Err(e);
+ }
+ } else {
+ break;
+ }
+ }
+ // We must have taken the `break` and resolved the local
+ assert!(i.is_resolved());
+ }
+
+ Call(i) | RefFunc(i) | ReturnCall(i) => {
+ self.resolver.resolve(i, Ns::Func)?;
+ }
+
+ CallIndirect(c) | ReturnCallIndirect(c) => {
+ self.resolver.resolve(&mut c.table, Ns::Table)?;
+ self.resolver.resolve_type_use(&mut c.ty)?;
+ }
+
+ CallRef(i) | ReturnCallRef(i) => {
+ self.resolver.resolve(i, Ns::Type)?;
+ }
+
+ FuncBind(b) => {
+ self.resolver.resolve_type_use(&mut b.ty)?;
+ }
+
+ Let(t) => {
+ // Resolve (ref T) in locals
+ for local in t.locals.iter_mut() {
+ self.resolver.resolve_valtype(&mut local.ty)?;
+ }
+
+ // Register all locals defined in this let
+ let mut scope = Namespace::default();
+ for local in t.locals.iter() {
+ scope.register(local.id, "local")?;
+ }
+ self.scopes.push(scope);
+ self.blocks.push(ExprBlock {
+ label: t.block.label,
+ pushed_scope: true,
+ });
+
+ self.resolve_block_type(&mut t.block)?;
+ }
+
+ Block(bt) | If(bt) | Loop(bt) | Try(bt) => {
+ self.blocks.push(ExprBlock {
+ label: bt.label,
+ pushed_scope: false,
+ });
+ self.resolve_block_type(bt)?;
+ }
+ TryTable(try_table) => {
+ self.resolve_block_type(&mut try_table.block)?;
+ for catch in &mut try_table.catches {
+ if let Some(tag) = catch.kind.tag_index_mut() {
+ self.resolver.resolve(tag, Ns::Tag)?;
+ }
+ self.resolve_label(&mut catch.label)?;
+ }
+ self.blocks.push(ExprBlock {
+ label: try_table.block.label,
+ pushed_scope: false,
+ });
+ }
+
+ // On `End` instructions we pop a label from the stack, and for both
+ // `End` and `Else` instructions if they have labels listed we
+ // verify that they match the label at the beginning of the block.
+ Else(_) | End(_) => {
+ let (matching_block, label) = match &instr {
+ Else(label) => (self.blocks.last().cloned(), label),
+ End(label) => (self.blocks.pop(), label),
+ _ => unreachable!(),
+ };
+ let matching_block = match matching_block {
+ Some(l) => l,
+ None => return Ok(()),
+ };
+
+ // Reset the local scopes to before this block was entered
+ if matching_block.pushed_scope {
+ if let End(_) = instr {
+ self.scopes.pop();
+ }
+ }
+
+ let label = match label {
+ Some(l) => l,
+ None => return Ok(()),
+ };
+ if Some(*label) == matching_block.label {
+ return Ok(());
+ }
+ return Err(Error::new(
+ label.span(),
+ "mismatching labels between end and block".to_string(),
+ ));
+ }
+
+ Br(i) | BrIf(i) | BrOnNull(i) | BrOnNonNull(i) => {
+ self.resolve_label(i)?;
+ }
+
+ BrTable(i) => {
+ for label in i.labels.iter_mut() {
+ self.resolve_label(label)?;
+ }
+ self.resolve_label(&mut i.default)?;
+ }
+
+ Throw(i) | Catch(i) => {
+ self.resolver.resolve(i, Ns::Tag)?;
+ }
+
+ Rethrow(i) => {
+ self.resolve_label(i)?;
+ }
+
+ Delegate(i) => {
+ // Since a delegate starts counting one layer out from the
+ // current try-delegate block, we pop before we resolve labels.
+ self.blocks.pop();
+ self.resolve_label(i)?;
+ }
+
+ Select(s) => {
+ if let Some(list) = &mut s.tys {
+ for ty in list {
+ self.resolver.resolve_valtype(ty)?;
+ }
+ }
+ }
+
+ RefTest(i) => {
+ self.resolver.resolve_reftype(&mut i.r#type)?;
+ }
+ RefCast(i) => {
+ self.resolver.resolve_reftype(&mut i.r#type)?;
+ }
+ BrOnCast(i) => {
+ self.resolve_label(&mut i.label)?;
+ self.resolver.resolve_reftype(&mut i.to_type)?;
+ self.resolver.resolve_reftype(&mut i.from_type)?;
+ }
+ BrOnCastFail(i) => {
+ self.resolve_label(&mut i.label)?;
+ self.resolver.resolve_reftype(&mut i.to_type)?;
+ self.resolver.resolve_reftype(&mut i.from_type)?;
+ }
+
+ StructNew(i) | StructNewDefault(i) | ArrayNew(i) | ArrayNewDefault(i) | ArrayGet(i)
+ | ArrayGetS(i) | ArrayGetU(i) | ArraySet(i) => {
+ self.resolver.resolve(i, Ns::Type)?;
+ }
+
+ StructSet(s) | StructGet(s) | StructGetS(s) | StructGetU(s) => {
+ let type_index = self.resolver.resolve(&mut s.r#struct, Ns::Type)?;
+ if let Index::Id(field_id) = s.field {
+ self.resolver
+ .fields
+ .get(&type_index)
+ .ok_or(Error::new(field_id.span(), format!("accessing a named field `{}` in a struct without named fields, type index {}", field_id.name(), type_index)))?
+ .resolve(&mut s.field, "field")?;
+ }
+ }
+
+ ArrayNewFixed(a) => {
+ self.resolver.resolve(&mut a.array, Ns::Type)?;
+ }
+ ArrayNewData(a) => {
+ self.resolver.resolve(&mut a.array, Ns::Type)?;
+ self.resolver.datas.resolve(&mut a.data_idx, "data")?;
+ }
+ ArrayNewElem(a) => {
+ self.resolver.resolve(&mut a.array, Ns::Type)?;
+ self.resolver.elems.resolve(&mut a.elem_idx, "elem")?;
+ }
+ ArrayFill(a) => {
+ self.resolver.resolve(&mut a.array, Ns::Type)?;
+ }
+ ArrayCopy(a) => {
+ self.resolver.resolve(&mut a.dest_array, Ns::Type)?;
+ self.resolver.resolve(&mut a.src_array, Ns::Type)?;
+ }
+ ArrayInitData(a) => {
+ self.resolver.resolve(&mut a.array, Ns::Type)?;
+ self.resolver.datas.resolve(&mut a.segment, "data")?;
+ }
+ ArrayInitElem(a) => {
+ self.resolver.resolve(&mut a.array, Ns::Type)?;
+ self.resolver.elems.resolve(&mut a.segment, "elem")?;
+ }
+
+ RefNull(ty) => self.resolver.resolve_heaptype(ty)?,
+
+ _ => {}
+ }
+ Ok(())
+ }
+
+ fn resolve_label(&self, label: &mut Index<'a>) -> Result<(), Error> {
+ let id = match label {
+ Index::Num(..) => return Ok(()),
+ Index::Id(id) => *id,
+ };
+ let idx = self
+ .blocks
+ .iter()
+ .rev()
+ .enumerate()
+ .filter_map(|(i, b)| b.label.map(|l| (i, l)))
+ .find(|(_, l)| *l == id);
+ match idx {
+ Some((idx, _)) => {
+ *label = Index::Num(idx as u32, id.span());
+ Ok(())
+ }
+ None => Err(resolve_error(id, "label")),
+ }
+ }
+}
+
+enum TypeInfo<'a> {
+ Func {
+ params: Box<[ValType<'a>]>,
+ results: Box<[ValType<'a>]>,
+ },
+ Other,
+}
+
+trait TypeReference<'a> {
+ fn check_matches(&mut self, idx: &Index<'a>, cx: &Resolver<'a>) -> Result<(), Error>;
+ fn resolve(&mut self, cx: &Resolver<'a>) -> Result<(), Error>;
+}
+
+impl<'a> TypeReference<'a> for FunctionType<'a> {
+ fn check_matches(&mut self, idx: &Index<'a>, cx: &Resolver<'a>) -> Result<(), Error> {
+ let n = match idx {
+ Index::Num(n, _) => *n,
+ Index::Id(_) => panic!("expected `Num`"),
+ };
+ let (params, results) = match cx.type_info.get(n as usize) {
+ Some(TypeInfo::Func { params, results }) => (params, results),
+ _ => return Ok(()),
+ };
+
+ // Here we need to check that the inline type listed (ourselves) matches
+ // what was listed in the module itself (the `params` and `results`
+ // above). The listed values in `types` are not resolved yet, although
+ // we should be resolved. In any case we do name resolution
+ // opportunistically here to see if the values are equal.
+
+ let types_not_equal = |a: &ValType, b: &ValType| {
+ let mut a = a.clone();
+ let mut b = b.clone();
+ drop(cx.resolve_valtype(&mut a));
+ drop(cx.resolve_valtype(&mut b));
+ a != b
+ };
+
+ let not_equal = params.len() != self.params.len()
+ || results.len() != self.results.len()
+ || params
+ .iter()
+ .zip(self.params.iter())
+ .any(|(a, (_, _, b))| types_not_equal(a, b))
+ || results
+ .iter()
+ .zip(self.results.iter())
+ .any(|(a, b)| types_not_equal(a, b));
+ if not_equal {
+ return Err(Error::new(
+ idx.span(),
+ format!("inline function type doesn't match type reference"),
+ ));
+ }
+
+ Ok(())
+ }
+
+ fn resolve(&mut self, cx: &Resolver<'a>) -> Result<(), Error> {
+ // Resolve the (ref T) value types in the final function type
+ for param in self.params.iter_mut() {
+ cx.resolve_valtype(&mut param.2)?;
+ }
+ for result in self.results.iter_mut() {
+ cx.resolve_valtype(result)?;
+ }
+ Ok(())
+ }
+}