summaryrefslogtreecommitdiffstats
path: root/third_party/rust/zerocopy/src/util.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/zerocopy/src/util.rs')
-rw-r--r--third_party/rust/zerocopy/src/util.rs808
1 files changed, 808 insertions, 0 deletions
diff --git a/third_party/rust/zerocopy/src/util.rs b/third_party/rust/zerocopy/src/util.rs
new file mode 100644
index 0000000000..b35cc079c1
--- /dev/null
+++ b/third_party/rust/zerocopy/src/util.rs
@@ -0,0 +1,808 @@
+// Copyright 2023 The Fuchsia Authors
+//
+// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
+// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
+// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
+// This file may not be copied, modified, or distributed except according to
+// those terms.
+
+#[path = "third_party/rust/layout.rs"]
+pub(crate) mod core_layout;
+
+use core::{mem, num::NonZeroUsize};
+
+pub(crate) mod ptr {
+ use core::{
+ fmt::{Debug, Formatter},
+ marker::PhantomData,
+ ptr::NonNull,
+ };
+
+ use crate::{util::AsAddress, KnownLayout, _CastType};
+
+ /// A raw pointer with more restrictions.
+ ///
+ /// `Ptr<T>` is similar to `NonNull<T>`, but it is more restrictive in the
+ /// following ways:
+ /// - It must derive from a valid allocation
+ /// - It must reference a byte range which is contained inside the
+ /// allocation from which it derives
+ /// - As a consequence, the byte range it references must have a size
+ /// which does not overflow `isize`
+ /// - It must satisfy `T`'s alignment requirement
+ ///
+ /// Thanks to these restrictions, it is easier to prove the soundness of
+ /// some operations using `Ptr`s.
+ ///
+ /// `Ptr<'a, T>` is [covariant] in `'a` and `T`.
+ ///
+ /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
+ pub struct Ptr<'a, T: 'a + ?Sized> {
+ // INVARIANTS:
+ // 1. `ptr` is derived from some valid Rust allocation, `A`
+ // 2. `ptr` has the same provenance as `A`
+ // 3. `ptr` addresses a byte range which is entirely contained in `A`
+ // 4. `ptr` addresses a byte range whose length fits in an `isize`
+ // 5. `ptr` addresses a byte range which does not wrap around the address
+ // space
+ // 6. `ptr` is validly-aligned for `T`
+ // 7. `A` is guaranteed to live for at least `'a`
+ // 8. `T: 'a`
+ ptr: NonNull<T>,
+ _lifetime: PhantomData<&'a ()>,
+ }
+
+ impl<'a, T: ?Sized> Copy for Ptr<'a, T> {}
+ impl<'a, T: ?Sized> Clone for Ptr<'a, T> {
+ #[inline]
+ fn clone(&self) -> Self {
+ *self
+ }
+ }
+
+ impl<'a, T: ?Sized> Ptr<'a, T> {
+ /// Returns a shared reference to the value.
+ ///
+ /// # Safety
+ ///
+ /// For the duration of `'a`:
+ /// - The referenced memory must contain a validly-initialized `T` for
+ /// the duration of `'a`.
+ /// - The referenced memory must not also be referenced by any mutable
+ /// references.
+ /// - The referenced memory must not be mutated, even via an
+ /// [`UnsafeCell`].
+ /// - There must not exist any references to the same memory region
+ /// which contain `UnsafeCell`s at byte ranges which are not identical
+ /// to the byte ranges at which `T` contains `UnsafeCell`s.
+ ///
+ /// [`UnsafeCell`]: core::cell::UnsafeCell
+ // TODO(#429): The safety requirements are likely overly-restrictive.
+ // Notably, mutation via `UnsafeCell`s is probably fine. Once the rules
+ // are more clearly defined, we should relax the safety requirements.
+ // For an example of why this is subtle, see:
+ // https://github.com/rust-lang/unsafe-code-guidelines/issues/463#issuecomment-1736771593
+ #[allow(unused)]
+ pub(crate) unsafe fn as_ref(&self) -> &'a T {
+ // SAFETY:
+ // - By invariant, `self.ptr` is properly-aligned for `T`.
+ // - By invariant, `self.ptr` is "dereferenceable" in that it points
+ // to a single allocation.
+ // - By invariant, the allocation is live for `'a`.
+ // - The caller promises that no mutable references exist to this
+ // region during `'a`.
+ // - The caller promises that `UnsafeCell`s match exactly.
+ // - The caller promises that no mutation will happen during `'a`,
+ // even via `UnsafeCell`s.
+ // - The caller promises that the memory region contains a
+ // validly-intialized `T`.
+ unsafe { self.ptr.as_ref() }
+ }
+
+ /// Casts to a different (unsized) target type.
+ ///
+ /// # Safety
+ ///
+ /// The caller promises that
+ /// - `cast(p)` is implemented exactly as follows: `|p: *mut T| p as
+ /// *mut U`.
+ /// - The size of the object referenced by the resulting pointer is less
+ /// than or equal to the size of the object referenced by `self`.
+ /// - The alignment of `U` is less than or equal to the alignment of
+ /// `T`.
+ pub(crate) unsafe fn cast_unsized<U: 'a + ?Sized, F: FnOnce(*mut T) -> *mut U>(
+ self,
+ cast: F,
+ ) -> Ptr<'a, U> {
+ let ptr = cast(self.ptr.as_ptr());
+ // SAFETY: Caller promises that `cast` is just an `as` cast. We call
+ // `cast` on `self.ptr.as_ptr()`, which is non-null by construction.
+ let ptr = unsafe { NonNull::new_unchecked(ptr) };
+ // SAFETY:
+ // - By invariant, `self.ptr` is derived from some valid Rust
+ // allocation, and since `ptr` is just `self.ptr as *mut U`, so is
+ // `ptr`.
+ // - By invariant, `self.ptr` has the same provenance as `A`, and so
+ // the same is true of `ptr`.
+ // - By invariant, `self.ptr` addresses a byte range which is
+ // entirely contained in `A`, and so the same is true of `ptr`.
+ // - By invariant, `self.ptr` addresses a byte range whose length
+ // fits in an `isize`, and so the same is true of `ptr`.
+ // - By invariant, `self.ptr` addresses a byte range which does not
+ // wrap around the address space, and so the same is true of
+ // `ptr`.
+ // - By invariant, `self.ptr` is validly-aligned for `T`. Since
+ // `ptr` has the same address, and since the caller promises that
+ // the alignment of `U` is less than or equal to the alignment of
+ // `T`, `ptr` is validly-aligned for `U`.
+ // - By invariant, `A` is guaranteed to live for at least `'a`.
+ // - `U: 'a`
+ Ptr { ptr, _lifetime: PhantomData }
+ }
+ }
+
+ impl<'a> Ptr<'a, [u8]> {
+ /// Attempts to cast `self` to a `U` using the given cast type.
+ ///
+ /// Returns `None` if the resulting `U` would be invalidly-aligned or if
+ /// no `U` can fit in `self`. On success, returns a pointer to the
+ /// largest-possible `U` which fits in `self`.
+ ///
+ /// # Safety
+ ///
+ /// The caller may assume that this implementation is correct, and may
+ /// rely on that assumption for the soundness of their code. In
+ /// particular, the caller may assume that, if `try_cast_into` returns
+ /// `Some((ptr, split_at))`, then:
+ /// - If this is a prefix cast, `ptr` refers to the byte range `[0,
+ /// split_at)` in `self`.
+ /// - If this is a suffix cast, `ptr` refers to the byte range
+ /// `[split_at, self.len())` in `self`.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `U` is a DST whose trailing slice element is zero-sized.
+ pub(crate) fn try_cast_into<U: 'a + ?Sized + KnownLayout>(
+ &self,
+ cast_type: _CastType,
+ ) -> Option<(Ptr<'a, U>, usize)> {
+ // PANICS: By invariant, the byte range addressed by `self.ptr` does
+ // not wrap around the address space. This implies that the sum of
+ // the address (represented as a `usize`) and length do not overflow
+ // `usize`, as required by `validate_cast_and_convert_metadata`.
+ // Thus, this call to `validate_cast_and_convert_metadata` won't
+ // panic.
+ let (elems, split_at) = U::LAYOUT.validate_cast_and_convert_metadata(
+ AsAddress::addr(self.ptr.as_ptr()),
+ self.len(),
+ cast_type,
+ )?;
+ let offset = match cast_type {
+ _CastType::_Prefix => 0,
+ _CastType::_Suffix => split_at,
+ };
+
+ let ptr = self.ptr.cast::<u8>().as_ptr();
+ // SAFETY: `offset` is either `0` or `split_at`.
+ // `validate_cast_and_convert_metadata` promises that `split_at` is
+ // in the range `[0, self.len()]`. Thus, in both cases, `offset` is
+ // in `[0, self.len()]`. Thus:
+ // - The resulting pointer is in or one byte past the end of the
+ // same byte range as `self.ptr`. Since, by invariant, `self.ptr`
+ // addresses a byte range entirely contained within a single
+ // allocation, the pointer resulting from this operation is within
+ // or one byte past the end of that same allocation.
+ // - By invariant, `self.len() <= isize::MAX`. Since `offset <=
+ // self.len()`, `offset <= isize::MAX`.
+ // - By invariant, `self.ptr` addresses a byte range which does not
+ // wrap around the address space. This means that the base pointer
+ // plus the `self.len()` does not overflow `usize`. Since `offset
+ // <= self.len()`, this addition does not overflow `usize`.
+ let base = unsafe { ptr.add(offset) };
+ // SAFETY: Since `add` is not allowed to wrap around, the preceding line
+ // produces a pointer whose address is greater than or equal to that of
+ // `ptr`. Since `ptr` is a `NonNull`, `base` is also non-null.
+ let base = unsafe { NonNull::new_unchecked(base) };
+ let ptr = U::raw_from_ptr_len(base, elems);
+ // SAFETY:
+ // - By invariant, `self.ptr` is derived from some valid Rust
+ // allocation, `A`, and has the same provenance as `A`. All
+ // operations performed on `self.ptr` and values derived from it
+ // in this method preserve provenance, so:
+ // - `ptr` is derived from a valid Rust allocation, `A`.
+ // - `ptr` has the same provenance as `A`.
+ // - `validate_cast_and_convert_metadata` promises that the object
+ // described by `elems` and `split_at` lives at a byte range which
+ // is a subset of the input byte range. Thus:
+ // - Since, by invariant, `self.ptr` addresses a byte range
+ // entirely contained in `A`, so does `ptr`.
+ // - Since, by invariant, `self.ptr` addresses a range whose
+ // length is not longer than `isize::MAX` bytes, so does `ptr`.
+ // - Since, by invariant, `self.ptr` addresses a range which does
+ // not wrap around the address space, so does `ptr`.
+ // - `validate_cast_and_convert_metadata` promises that the object
+ // described by `split_at` is validly-aligned for `U`.
+ // - By invariant on `self`, `A` is guaranteed to live for at least
+ // `'a`.
+ // - `U: 'a` by trait bound.
+ Some((Ptr { ptr, _lifetime: PhantomData }, split_at))
+ }
+
+ /// Attempts to cast `self` into a `U`, failing if all of the bytes of
+ /// `self` cannot be treated as a `U`.
+ ///
+ /// In particular, this method fails if `self` is not validly-aligned
+ /// for `U` or if `self`'s size is not a valid size for `U`.
+ ///
+ /// # Safety
+ ///
+ /// On success, the caller may assume that the returned pointer
+ /// references the same byte range as `self`.
+ #[allow(unused)]
+ #[inline(always)]
+ pub(crate) fn try_cast_into_no_leftover<U: 'a + ?Sized + KnownLayout>(
+ &self,
+ ) -> Option<Ptr<'a, U>> {
+ // TODO(#67): Remove this allow. See NonNulSlicelExt for more
+ // details.
+ #[allow(unstable_name_collisions)]
+ match self.try_cast_into(_CastType::_Prefix) {
+ Some((slf, split_at)) if split_at == self.len() => Some(slf),
+ Some(_) | None => None,
+ }
+ }
+ }
+
+ impl<'a, T> Ptr<'a, [T]> {
+ /// The number of slice elements referenced by `self`.
+ ///
+ /// # Safety
+ ///
+ /// Unsafe code my rely on `len` satisfying the above contract.
+ fn len(&self) -> usize {
+ #[allow(clippy::as_conversions)]
+ let slc = self.ptr.as_ptr() as *const [()];
+ // SAFETY:
+ // - `()` has alignment 1, so `slc` is trivially aligned.
+ // - `slc` was derived from a non-null pointer.
+ // - The size is 0 regardless of the length, so it is sound to
+ // materialize a reference regardless of location.
+ // - By invariant, `self.ptr` has valid provenance.
+ let slc = unsafe { &*slc };
+ // This is correct because the preceding `as` cast preserves the
+ // number of slice elements. Per
+ // https://doc.rust-lang.org/nightly/reference/expressions/operator-expr.html#slice-dst-pointer-to-pointer-cast:
+ //
+ // For slice types like `[T]` and `[U]`, the raw pointer types
+ // `*const [T]`, `*mut [T]`, `*const [U]`, and `*mut [U]` encode
+ // the number of elements in this slice. Casts between these raw
+ // pointer types preserve the number of elements. Note that, as a
+ // consequence, such casts do *not* necessarily preserve the size
+ // of the pointer's referent (e.g., casting `*const [u16]` to
+ // `*const [u8]` will result in a raw pointer which refers to an
+ // object of half the size of the original). The same holds for
+ // `str` and any compound type whose unsized tail is a slice type,
+ // such as struct `Foo(i32, [u8])` or `(u64, Foo)`.
+ //
+ // TODO(#429),
+ // TODO(https://github.com/rust-lang/reference/pull/1417): Once this
+ // text is available on the Stable docs, cite those instead of the
+ // Nightly docs.
+ slc.len()
+ }
+
+ pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T>> {
+ // TODO(#429): Once `NonNull::cast` documents that it preserves
+ // provenance, cite those docs.
+ let base = self.ptr.cast::<T>().as_ptr();
+ (0..self.len()).map(move |i| {
+ // TODO(https://github.com/rust-lang/rust/issues/74265): Use
+ // `NonNull::get_unchecked_mut`.
+
+ // SAFETY: If the following conditions are not satisfied
+ // `pointer::cast` may induce Undefined Behavior [1]:
+ // > 1. Both the starting and resulting pointer must be either
+ // > in bounds or one byte past the end of the same allocated
+ // > object.
+ // > 2. The computed offset, in bytes, cannot overflow an
+ // > `isize`.
+ // > 3. The offset being in bounds cannot rely on “wrapping
+ // > around” the address space. That is, the
+ // > infinite-precision sum must fit in a `usize`.
+ //
+ // [1] https://doc.rust-lang.org/std/primitive.pointer.html#method.add
+ //
+ // We satisfy all three of these conditions here:
+ // 1. `base` (by invariant on `self`) points to an allocated
+ // object. By contract, `self.len()` accurately reflects the
+ // number of elements in the slice. `i` is in bounds of
+ // `c.len()` by construction, and so the result of this
+ // addition cannot overflow past the end of the allocation
+ // referred to by `c`.
+ // 2. By invariant on `Ptr`, `self` addresses a byte range whose
+ // length fits in an `isize`. Since `elem` is contained in
+ // `self`, the computed offset of `elem` must fit within
+ // `isize.`
+ // 3. By invariant on `Ptr`, `self` addresses a byte range which
+ // does not wrap around the address space. Since `elem` is
+ // contained in `self`, the computed offset of `elem` must
+ // wrap around the address space.
+ //
+ // TODO(#429): Once `pointer::add` documents that it preserves
+ // provenance, cite those docs.
+ let elem = unsafe { base.add(i) };
+
+ // SAFETY:
+ // - `elem` must not be null. `base` is constructed from a
+ // `NonNull` pointer, and the addition that produces `elem`
+ // must not overflow or wrap around, so `elem >= base > 0`.
+ //
+ // TODO(#429): Once `NonNull::new_unchecked` documents that it
+ // preserves provenance, cite those docs.
+ let elem = unsafe { NonNull::new_unchecked(elem) };
+
+ // SAFETY: The safety invariants of `Ptr` (see definition) are
+ // satisfied:
+ // 1. `elem` is derived from a valid Rust allocation, because
+ // `self` is derived from a valid Rust allocation, by
+ // invariant on `Ptr`
+ // 2. `elem` has the same provenance as `self`, because it
+ // derived from `self` using a series of
+ // provenance-preserving operations
+ // 3. `elem` is entirely contained in the allocation of `self`
+ // (see above)
+ // 4. `elem` addresses a byte range whose length fits in an
+ // `isize` (see above)
+ // 5. `elem` addresses a byte range which does not wrap around
+ // the address space (see above)
+ // 6. `elem` is validly-aligned for `T`. `self`, which
+ // represents a `[T]` is validly aligned for `T`, and `elem`
+ // is an element within that `[T]`
+ // 7. The allocation of `elem` is guaranteed to live for at
+ // least `'a`, because `elem` is entirely contained in
+ // `self`, which lives for at least `'a` by invariant on
+ // `Ptr`.
+ // 8. `T: 'a`, because `elem` is an element within `[T]`, and
+ // `[T]: 'a` by invariant on `Ptr`
+ Ptr { ptr: elem, _lifetime: PhantomData }
+ })
+ }
+ }
+
+ impl<'a, T: 'a + ?Sized> From<&'a T> for Ptr<'a, T> {
+ #[inline(always)]
+ fn from(t: &'a T) -> Ptr<'a, T> {
+ // SAFETY: `t` points to a valid Rust allocation, `A`, by
+ // construction. Thus:
+ // - `ptr` is derived from `A`
+ // - Since we use `NonNull::from`, which preserves provenance, `ptr`
+ // has the same provenance as `A`
+ // - Since `NonNull::from` creates a pointer which addresses the
+ // same bytes as `t`, `ptr` addresses a byte range entirely
+ // contained in (in this case, identical to) `A`
+ // - Since `t: &T`, it addresses no more than `isize::MAX` bytes [1]
+ // - Since `t: &T`, it addresses a byte range which does not wrap
+ // around the address space [2]
+ // - Since it is constructed from a valid `&T`, `ptr` is
+ // validly-aligned for `T`
+ // - Since `t: &'a T`, the allocation `A` is guaranteed to live for
+ // at least `'a`
+ // - `T: 'a` by trait bound
+ //
+ // TODO(#429),
+ // TODO(https://github.com/rust-lang/rust/issues/116181): Once it's
+ // documented, reference the guarantee that `NonNull::from`
+ // preserves provenance.
+ //
+ // TODO(#429),
+ // TODO(https://github.com/rust-lang/unsafe-code-guidelines/issues/465):
+ // - [1] Where does the reference document that allocations fit in
+ // `isize`?
+ // - [2] Where does the reference document that allocations don't
+ // wrap around the address space?
+ Ptr { ptr: NonNull::from(t), _lifetime: PhantomData }
+ }
+ }
+
+ impl<'a, T: 'a + ?Sized> Debug for Ptr<'a, T> {
+ #[inline]
+ fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
+ self.ptr.fmt(f)
+ }
+ }
+
+ #[cfg(test)]
+ mod tests {
+ use core::mem::{self, MaybeUninit};
+
+ use super::*;
+ use crate::{util::testutil::AU64, FromBytes};
+
+ #[test]
+ fn test_ptrtry_cast_into_soundness() {
+ // This test is designed so that if `Ptr::try_cast_into_xxx` are
+ // buggy, it will manifest as unsoundness that Miri can detect.
+
+ // - If `size_of::<T>() == 0`, `N == 4`
+ // - Else, `N == 4 * size_of::<T>()`
+ fn test<const N: usize, T: ?Sized + KnownLayout + FromBytes>() {
+ let mut bytes = [MaybeUninit::<u8>::uninit(); N];
+ let initialized = [MaybeUninit::new(0u8); N];
+ for start in 0..=bytes.len() {
+ for end in start..=bytes.len() {
+ // Set all bytes to uninitialized other than those in
+ // the range we're going to pass to `try_cast_from`.
+ // This allows Miri to detect out-of-bounds reads
+ // because they read uninitialized memory. Without this,
+ // some out-of-bounds reads would still be in-bounds of
+ // `bytes`, and so might spuriously be accepted.
+ bytes = [MaybeUninit::<u8>::uninit(); N];
+ let bytes = &mut bytes[start..end];
+ // Initialize only the byte range we're going to pass to
+ // `try_cast_from`.
+ bytes.copy_from_slice(&initialized[start..end]);
+
+ let bytes = {
+ let bytes: *const [MaybeUninit<u8>] = bytes;
+ #[allow(clippy::as_conversions)]
+ let bytes = bytes as *const [u8];
+ // SAFETY: We just initialized these bytes to valid
+ // `u8`s.
+ unsafe { &*bytes }
+ };
+
+ /// # Safety
+ ///
+ /// - `slf` must reference a byte range which is
+ /// entirely initialized.
+ /// - `slf` must reference a byte range which is only
+ /// referenced by shared references which do not
+ /// contain `UnsafeCell`s during its lifetime.
+ unsafe fn validate_and_get_len<T: ?Sized + KnownLayout + FromBytes>(
+ slf: Ptr<'_, T>,
+ ) -> usize {
+ // SAFETY:
+ // - Since all bytes in `slf` are initialized and
+ // `T: FromBytes`, `slf` contains a valid `T`.
+ // - The caller promises that the referenced memory
+ // is not also referenced by any mutable
+ // references.
+ // - The caller promises that the referenced memory
+ // is not also referenced as a type which contains
+ // `UnsafeCell`s.
+ let t = unsafe { slf.as_ref() };
+
+ let bytes = {
+ let len = mem::size_of_val(t);
+ let t: *const T = t;
+ // SAFETY:
+ // - We know `t`'s bytes are all initialized
+ // because we just read it from `slf`, which
+ // points to an initialized range of bytes. If
+ // there's a bug and this doesn't hold, then
+ // that's exactly what we're hoping Miri will
+ // catch!
+ // - Since `T: FromBytes`, `T` doesn't contain
+ // any `UnsafeCell`s, so it's okay for `t: T`
+ // and a `&[u8]` to the same memory to be
+ // alive concurrently.
+ unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) }
+ };
+
+ // This assertion ensures that `t`'s bytes are read
+ // and compared to another value, which in turn
+ // ensures that Miri gets a chance to notice if any
+ // of `t`'s bytes are uninitialized, which they
+ // shouldn't be (see the comment above).
+ assert_eq!(bytes, vec![0u8; bytes.len()]);
+
+ mem::size_of_val(t)
+ }
+
+ for cast_type in [_CastType::_Prefix, _CastType::_Suffix] {
+ if let Some((slf, split_at)) =
+ Ptr::from(bytes).try_cast_into::<T>(cast_type)
+ {
+ // SAFETY: All bytes in `bytes` have been
+ // initialized.
+ let len = unsafe { validate_and_get_len(slf) };
+ match cast_type {
+ _CastType::_Prefix => assert_eq!(split_at, len),
+ _CastType::_Suffix => assert_eq!(split_at, bytes.len() - len),
+ }
+ }
+ }
+
+ if let Some(slf) = Ptr::from(bytes).try_cast_into_no_leftover::<T>() {
+ // SAFETY: All bytes in `bytes` have been
+ // initialized.
+ let len = unsafe { validate_and_get_len(slf) };
+ assert_eq!(len, bytes.len());
+ }
+ }
+ }
+ }
+
+ macro_rules! test {
+ ($($ty:ty),*) => {
+ $({
+ const S: usize = core::mem::size_of::<$ty>();
+ const N: usize = if S == 0 { 4 } else { S * 4 };
+ test::<N, $ty>();
+ // We don't support casting into DSTs whose trailing slice
+ // element is a ZST.
+ if S > 0 {
+ test::<N, [$ty]>();
+ }
+ // TODO: Test with a slice DST once we have any that
+ // implement `KnownLayout + FromBytes`.
+ })*
+ };
+ }
+
+ test!(());
+ test!(u8, u16, u32, u64, u128, usize, AU64);
+ test!(i8, i16, i32, i64, i128, isize);
+ test!(f32, f64);
+ }
+ }
+}
+
+pub(crate) trait AsAddress {
+ fn addr(self) -> usize;
+}
+
+impl<'a, T: ?Sized> AsAddress for &'a T {
+ #[inline(always)]
+ fn addr(self) -> usize {
+ let ptr: *const T = self;
+ AsAddress::addr(ptr)
+ }
+}
+
+impl<'a, T: ?Sized> AsAddress for &'a mut T {
+ #[inline(always)]
+ fn addr(self) -> usize {
+ let ptr: *const T = self;
+ AsAddress::addr(ptr)
+ }
+}
+
+impl<T: ?Sized> AsAddress for *const T {
+ #[inline(always)]
+ fn addr(self) -> usize {
+ // TODO(#181), TODO(https://github.com/rust-lang/rust/issues/95228): Use
+ // `.addr()` instead of `as usize` once it's stable, and get rid of this
+ // `allow`. Currently, `as usize` is the only way to accomplish this.
+ #[allow(clippy::as_conversions)]
+ #[cfg_attr(__INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS, allow(lossy_provenance_casts))]
+ return self.cast::<()>() as usize;
+ }
+}
+
+impl<T: ?Sized> AsAddress for *mut T {
+ #[inline(always)]
+ fn addr(self) -> usize {
+ let ptr: *const T = self;
+ AsAddress::addr(ptr)
+ }
+}
+
+/// Is `t` aligned to `mem::align_of::<U>()`?
+#[inline(always)]
+pub(crate) fn aligned_to<T: AsAddress, U>(t: T) -> bool {
+ // `mem::align_of::<U>()` is guaranteed to return a non-zero value, which in
+ // turn guarantees that this mod operation will not panic.
+ #[allow(clippy::arithmetic_side_effects)]
+ let remainder = t.addr() % mem::align_of::<U>();
+ remainder == 0
+}
+
+/// Round `n` down to the largest value `m` such that `m <= n` and `m % align ==
+/// 0`.
+///
+/// # Panics
+///
+/// May panic if `align` is not a power of two. Even if it doesn't panic in this
+/// case, it will produce nonsense results.
+#[inline(always)]
+pub(crate) const fn round_down_to_next_multiple_of_alignment(
+ n: usize,
+ align: NonZeroUsize,
+) -> usize {
+ let align = align.get();
+ debug_assert!(align.is_power_of_two());
+
+ // Subtraction can't underflow because `align.get() >= 1`.
+ #[allow(clippy::arithmetic_side_effects)]
+ let mask = !(align - 1);
+ n & mask
+}
+
+pub(crate) const fn max(a: NonZeroUsize, b: NonZeroUsize) -> NonZeroUsize {
+ if a.get() < b.get() {
+ b
+ } else {
+ a
+ }
+}
+
+pub(crate) const fn min(a: NonZeroUsize, b: NonZeroUsize) -> NonZeroUsize {
+ if a.get() > b.get() {
+ b
+ } else {
+ a
+ }
+}
+
+/// Since we support multiple versions of Rust, there are often features which
+/// have been stabilized in the most recent stable release which do not yet
+/// exist (stably) on our MSRV. This module provides polyfills for those
+/// features so that we can write more "modern" code, and just remove the
+/// polyfill once our MSRV supports the corresponding feature. Without this,
+/// we'd have to write worse/more verbose code and leave TODO comments sprinkled
+/// throughout the codebase to update to the new pattern once it's stabilized.
+///
+/// Each trait is imported as `_` at the crate root; each polyfill should "just
+/// work" at usage sites.
+pub(crate) mod polyfills {
+ use core::ptr::{self, NonNull};
+
+ // A polyfill for `NonNull::slice_from_raw_parts` that we can use before our
+ // MSRV is 1.70, when that function was stabilized.
+ //
+ // TODO(#67): Once our MSRV is 1.70, remove this.
+ pub(crate) trait NonNullExt<T> {
+ fn slice_from_raw_parts(data: Self, len: usize) -> NonNull<[T]>;
+ }
+
+ impl<T> NonNullExt<T> for NonNull<T> {
+ #[inline(always)]
+ fn slice_from_raw_parts(data: Self, len: usize) -> NonNull<[T]> {
+ let ptr = ptr::slice_from_raw_parts_mut(data.as_ptr(), len);
+ // SAFETY: `ptr` is converted from `data`, which is non-null.
+ unsafe { NonNull::new_unchecked(ptr) }
+ }
+ }
+}
+
+#[cfg(test)]
+pub(crate) mod testutil {
+ use core::fmt::{self, Display, Formatter};
+
+ use crate::*;
+
+ /// A `T` which is aligned to at least `align_of::<A>()`.
+ #[derive(Default)]
+ pub(crate) struct Align<T, A> {
+ pub(crate) t: T,
+ _a: [A; 0],
+ }
+
+ impl<T: Default, A> Align<T, A> {
+ pub(crate) fn set_default(&mut self) {
+ self.t = T::default();
+ }
+ }
+
+ impl<T, A> Align<T, A> {
+ pub(crate) const fn new(t: T) -> Align<T, A> {
+ Align { t, _a: [] }
+ }
+ }
+
+ // A `u64` with alignment 8.
+ //
+ // Though `u64` has alignment 8 on some platforms, it's not guaranteed.
+ // By contrast, `AU64` is guaranteed to have alignment 8.
+ #[derive(
+ KnownLayout,
+ FromZeroes,
+ FromBytes,
+ AsBytes,
+ Eq,
+ PartialEq,
+ Ord,
+ PartialOrd,
+ Default,
+ Debug,
+ Copy,
+ Clone,
+ )]
+ #[repr(C, align(8))]
+ pub(crate) struct AU64(pub(crate) u64);
+
+ impl AU64 {
+ // Converts this `AU64` to bytes using this platform's endianness.
+ pub(crate) fn to_bytes(self) -> [u8; 8] {
+ crate::transmute!(self)
+ }
+ }
+
+ impl Display for AU64 {
+ fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
+ Display::fmt(&self.0, f)
+ }
+ }
+
+ #[derive(
+ FromZeroes, FromBytes, Eq, PartialEq, Ord, PartialOrd, Default, Debug, Copy, Clone,
+ )]
+ #[repr(C)]
+ pub(crate) struct Nested<T, U: ?Sized> {
+ _t: T,
+ _u: U,
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn test_round_down_to_next_multiple_of_alignment() {
+ fn alt_impl(n: usize, align: NonZeroUsize) -> usize {
+ let mul = n / align.get();
+ mul * align.get()
+ }
+
+ for align in [1, 2, 4, 8, 16] {
+ for n in 0..256 {
+ let align = NonZeroUsize::new(align).unwrap();
+ let want = alt_impl(n, align);
+ let got = round_down_to_next_multiple_of_alignment(n, align);
+ assert_eq!(got, want, "round_down_to_next_multiple_of_alignment({n}, {align})");
+ }
+ }
+ }
+}
+
+#[cfg(kani)]
+mod proofs {
+ use super::*;
+
+ #[kani::proof]
+ fn prove_round_down_to_next_multiple_of_alignment() {
+ fn model_impl(n: usize, align: NonZeroUsize) -> usize {
+ assert!(align.get().is_power_of_two());
+ let mul = n / align.get();
+ mul * align.get()
+ }
+
+ let align: NonZeroUsize = kani::any();
+ kani::assume(align.get().is_power_of_two());
+ let n: usize = kani::any();
+
+ let expected = model_impl(n, align);
+ let actual = round_down_to_next_multiple_of_alignment(n, align);
+ assert_eq!(expected, actual, "round_down_to_next_multiple_of_alignment({n}, {align})");
+ }
+
+ // Restricted to nightly since we use the unstable `usize::next_multiple_of`
+ // in our model implementation.
+ #[cfg(__INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS)]
+ #[kani::proof]
+ fn prove_padding_needed_for() {
+ fn model_impl(len: usize, align: NonZeroUsize) -> usize {
+ let padded = len.next_multiple_of(align.get());
+ let padding = padded - len;
+ padding
+ }
+
+ let align: NonZeroUsize = kani::any();
+ kani::assume(align.get().is_power_of_two());
+ let len: usize = kani::any();
+ // Constrain `len` to valid Rust lengths, since our model implementation
+ // isn't robust to overflow.
+ kani::assume(len <= isize::MAX as usize);
+ kani::assume(align.get() < 1 << 29);
+
+ let expected = model_impl(len, align);
+ let actual = core_layout::padding_needed_for(len, align);
+ assert_eq!(expected, actual, "padding_needed_for({len}, {align})");
+
+ let padded_len = actual + len;
+ assert_eq!(padded_len % align, 0);
+ assert!(padded_len / align >= len / align);
+ }
+}