From 26a029d407be480d791972afb5975cf62c9360a6 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Fri, 19 Apr 2024 02:47:55 +0200 Subject: Adding upstream version 124.0.1. Signed-off-by: Daniel Baumann --- media/libjpeg/jcdctmgr.c | 720 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 720 insertions(+) create mode 100644 media/libjpeg/jcdctmgr.c (limited to 'media/libjpeg/jcdctmgr.c') diff --git a/media/libjpeg/jcdctmgr.c b/media/libjpeg/jcdctmgr.c new file mode 100644 index 0000000000..7dae17a6e1 --- /dev/null +++ b/media/libjpeg/jcdctmgr.c @@ -0,0 +1,720 @@ +/* + * jcdctmgr.c + * + * This file was part of the Independent JPEG Group's software: + * Copyright (C) 1994-1996, Thomas G. Lane. + * libjpeg-turbo Modifications: + * Copyright (C) 1999-2006, MIYASAKA Masaru. + * Copyright 2009 Pierre Ossman for Cendio AB + * Copyright (C) 2011, 2014-2015, D. R. Commander. + * For conditions of distribution and use, see the accompanying README.ijg + * file. + * + * This file contains the forward-DCT management logic. + * This code selects a particular DCT implementation to be used, + * and it performs related housekeeping chores including coefficient + * quantization. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h" /* Private declarations for DCT subsystem */ +#include "jsimddct.h" + + +/* Private subobject for this module */ + +typedef void (*forward_DCT_method_ptr) (DCTELEM *data); +typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data); + +typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data, + JDIMENSION start_col, + DCTELEM *workspace); +typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data, + JDIMENSION start_col, + FAST_FLOAT *workspace); + +typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors, + DCTELEM *workspace); +typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block, + FAST_FLOAT *divisors, + FAST_FLOAT *workspace); + +METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *); + +typedef struct { + struct jpeg_forward_dct pub; /* public fields */ + + /* Pointer to the DCT routine actually in use */ + forward_DCT_method_ptr dct; + convsamp_method_ptr convsamp; + quantize_method_ptr quantize; + + /* The actual post-DCT divisors --- not identical to the quant table + * entries, because of scaling (especially for an unnormalized DCT). + * Each table is given in normal array order. + */ + DCTELEM *divisors[NUM_QUANT_TBLS]; + + /* work area for FDCT subroutine */ + DCTELEM *workspace; + +#ifdef DCT_FLOAT_SUPPORTED + /* Same as above for the floating-point case. */ + float_DCT_method_ptr float_dct; + float_convsamp_method_ptr float_convsamp; + float_quantize_method_ptr float_quantize; + FAST_FLOAT *float_divisors[NUM_QUANT_TBLS]; + FAST_FLOAT *float_workspace; +#endif +} my_fdct_controller; + +typedef my_fdct_controller *my_fdct_ptr; + + +#if BITS_IN_JSAMPLE == 8 + +/* + * Find the highest bit in an integer through binary search. + */ + +LOCAL(int) +flss(UINT16 val) +{ + int bit; + + bit = 16; + + if (!val) + return 0; + + if (!(val & 0xff00)) { + bit -= 8; + val <<= 8; + } + if (!(val & 0xf000)) { + bit -= 4; + val <<= 4; + } + if (!(val & 0xc000)) { + bit -= 2; + val <<= 2; + } + if (!(val & 0x8000)) { + bit -= 1; + val <<= 1; + } + + return bit; +} + + +/* + * Compute values to do a division using reciprocal. + * + * This implementation is based on an algorithm described in + * "How to optimize for the Pentium family of microprocessors" + * (http://www.agner.org/assem/). + * More information about the basic algorithm can be found in + * the paper "Integer Division Using Reciprocals" by Robert Alverson. + * + * The basic idea is to replace x/d by x * d^-1. In order to store + * d^-1 with enough precision we shift it left a few places. It turns + * out that this algoright gives just enough precision, and also fits + * into DCTELEM: + * + * b = (the number of significant bits in divisor) - 1 + * r = (word size) + b + * f = 2^r / divisor + * + * f will not be an integer for most cases, so we need to compensate + * for the rounding error introduced: + * + * no fractional part: + * + * result = input >> r + * + * fractional part of f < 0.5: + * + * round f down to nearest integer + * result = ((input + 1) * f) >> r + * + * fractional part of f > 0.5: + * + * round f up to nearest integer + * result = (input * f) >> r + * + * This is the original algorithm that gives truncated results. But we + * want properly rounded results, so we replace "input" with + * "input + divisor/2". + * + * In order to allow SIMD implementations we also tweak the values to + * allow the same calculation to be made at all times: + * + * dctbl[0] = f rounded to nearest integer + * dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) + * dctbl[2] = 1 << ((word size) * 2 - r) + * dctbl[3] = r - (word size) + * + * dctbl[2] is for stupid instruction sets where the shift operation + * isn't member wise (e.g. MMX). + * + * The reason dctbl[2] and dctbl[3] reduce the shift with (word size) + * is that most SIMD implementations have a "multiply and store top + * half" operation. + * + * Lastly, we store each of the values in their own table instead + * of in a consecutive manner, yet again in order to allow SIMD + * routines. + */ + +LOCAL(int) +compute_reciprocal(UINT16 divisor, DCTELEM *dtbl) +{ + UDCTELEM2 fq, fr; + UDCTELEM c; + int b, r; + + if (divisor == 1) { + /* divisor == 1 means unquantized, so these reciprocal/correction/shift + * values will cause the C quantization algorithm to act like the + * identity function. Since only the C quantization algorithm is used in + * these cases, the scale value is irrelevant. + */ + dtbl[DCTSIZE2 * 0] = (DCTELEM)1; /* reciprocal */ + dtbl[DCTSIZE2 * 1] = (DCTELEM)0; /* correction */ + dtbl[DCTSIZE2 * 2] = (DCTELEM)1; /* scale */ + dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8); /* shift */ + return 0; + } + + b = flss(divisor) - 1; + r = sizeof(DCTELEM) * 8 + b; + + fq = ((UDCTELEM2)1 << r) / divisor; + fr = ((UDCTELEM2)1 << r) % divisor; + + c = divisor / 2; /* for rounding */ + + if (fr == 0) { /* divisor is power of two */ + /* fq will be one bit too large to fit in DCTELEM, so adjust */ + fq >>= 1; + r--; + } else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */ + c++; + } else { /* fractional part is > 0.5 */ + fq++; + } + + dtbl[DCTSIZE2 * 0] = (DCTELEM)fq; /* reciprocal */ + dtbl[DCTSIZE2 * 1] = (DCTELEM)c; /* correction + roundfactor */ +#ifdef WITH_SIMD + dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */ +#else + dtbl[DCTSIZE2 * 2] = 1; +#endif + dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */ + + if (r <= 16) return 0; + else return 1; +} + +#endif + + +/* + * Initialize for a processing pass. + * Verify that all referenced Q-tables are present, and set up + * the divisor table for each one. + * In the current implementation, DCT of all components is done during + * the first pass, even if only some components will be output in the + * first scan. Hence all components should be examined here. + */ + +METHODDEF(void) +start_pass_fdctmgr(j_compress_ptr cinfo) +{ + my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; + int ci, qtblno, i; + jpeg_component_info *compptr; + JQUANT_TBL *qtbl; + DCTELEM *dtbl; + + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; + ci++, compptr++) { + qtblno = compptr->quant_tbl_no; + /* Make sure specified quantization table is present */ + if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || + cinfo->quant_tbl_ptrs[qtblno] == NULL) + ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); + qtbl = cinfo->quant_tbl_ptrs[qtblno]; + /* Compute divisors for this quant table */ + /* We may do this more than once for same table, but it's not a big deal */ + switch (cinfo->dct_method) { +#ifdef DCT_ISLOW_SUPPORTED + case JDCT_ISLOW: + /* For LL&M IDCT method, divisors are equal to raw quantization + * coefficients multiplied by 8 (to counteract scaling). + */ + if (fdct->divisors[qtblno] == NULL) { + fdct->divisors[qtblno] = (DCTELEM *) + (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, + (DCTSIZE2 * 4) * sizeof(DCTELEM)); + } + dtbl = fdct->divisors[qtblno]; + for (i = 0; i < DCTSIZE2; i++) { +#if BITS_IN_JSAMPLE == 8 + if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) && + fdct->quantize == jsimd_quantize) + fdct->quantize = quantize; +#else + dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3; +#endif + } + break; +#endif +#ifdef DCT_IFAST_SUPPORTED + case JDCT_IFAST: + { + /* For AA&N IDCT method, divisors are equal to quantization + * coefficients scaled by scalefactor[row]*scalefactor[col], where + * scalefactor[0] = 1 + * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 + * We apply a further scale factor of 8. + */ +#define CONST_BITS 14 + static const INT16 aanscales[DCTSIZE2] = { + /* precomputed values scaled up by 14 bits */ + 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, + 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, + 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, + 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, + 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, + 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, + 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, + 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 + }; + SHIFT_TEMPS + + if (fdct->divisors[qtblno] == NULL) { + fdct->divisors[qtblno] = (DCTELEM *) + (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, + (DCTSIZE2 * 4) * sizeof(DCTELEM)); + } + dtbl = fdct->divisors[qtblno]; + for (i = 0; i < DCTSIZE2; i++) { +#if BITS_IN_JSAMPLE == 8 + if (!compute_reciprocal( + DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], + (JLONG)aanscales[i]), + CONST_BITS - 3), &dtbl[i]) && + fdct->quantize == jsimd_quantize) + fdct->quantize = quantize; +#else + dtbl[i] = (DCTELEM) + DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], + (JLONG)aanscales[i]), + CONST_BITS - 3); +#endif + } + } + break; +#endif +#ifdef DCT_FLOAT_SUPPORTED + case JDCT_FLOAT: + { + /* For float AA&N IDCT method, divisors are equal to quantization + * coefficients scaled by scalefactor[row]*scalefactor[col], where + * scalefactor[0] = 1 + * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 + * We apply a further scale factor of 8. + * What's actually stored is 1/divisor so that the inner loop can + * use a multiplication rather than a division. + */ + FAST_FLOAT *fdtbl; + int row, col; + static const double aanscalefactor[DCTSIZE] = { + 1.0, 1.387039845, 1.306562965, 1.175875602, + 1.0, 0.785694958, 0.541196100, 0.275899379 + }; + + if (fdct->float_divisors[qtblno] == NULL) { + fdct->float_divisors[qtblno] = (FAST_FLOAT *) + (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, + DCTSIZE2 * sizeof(FAST_FLOAT)); + } + fdtbl = fdct->float_divisors[qtblno]; + i = 0; + for (row = 0; row < DCTSIZE; row++) { + for (col = 0; col < DCTSIZE; col++) { + fdtbl[i] = (FAST_FLOAT) + (1.0 / (((double)qtbl->quantval[i] * + aanscalefactor[row] * aanscalefactor[col] * 8.0))); + i++; + } + } + } + break; +#endif + default: + ERREXIT(cinfo, JERR_NOT_COMPILED); + break; + } + } +} + + +/* + * Load data into workspace, applying unsigned->signed conversion. + */ + +METHODDEF(void) +convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) +{ + register DCTELEM *workspaceptr; + register JSAMPROW elemptr; + register int elemr; + + workspaceptr = workspace; + for (elemr = 0; elemr < DCTSIZE; elemr++) { + elemptr = sample_data[elemr] + start_col; + +#if DCTSIZE == 8 /* unroll the inner loop */ + *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; + *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; + *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; + *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; + *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; + *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; + *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; + *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; +#else + { + register int elemc; + for (elemc = DCTSIZE; elemc > 0; elemc--) + *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; + } +#endif + } +} + + +/* + * Quantize/descale the coefficients, and store into coef_blocks[]. + */ + +METHODDEF(void) +quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) +{ + int i; + DCTELEM temp; + JCOEFPTR output_ptr = coef_block; + +#if BITS_IN_JSAMPLE == 8 + + UDCTELEM recip, corr; + int shift; + UDCTELEM2 product; + + for (i = 0; i < DCTSIZE2; i++) { + temp = workspace[i]; + recip = divisors[i + DCTSIZE2 * 0]; + corr = divisors[i + DCTSIZE2 * 1]; + shift = divisors[i + DCTSIZE2 * 3]; + + if (temp < 0) { + temp = -temp; + product = (UDCTELEM2)(temp + corr) * recip; + product >>= shift + sizeof(DCTELEM) * 8; + temp = (DCTELEM)product; + temp = -temp; + } else { + product = (UDCTELEM2)(temp + corr) * recip; + product >>= shift + sizeof(DCTELEM) * 8; + temp = (DCTELEM)product; + } + output_ptr[i] = (JCOEF)temp; + } + +#else + + register DCTELEM qval; + + for (i = 0; i < DCTSIZE2; i++) { + qval = divisors[i]; + temp = workspace[i]; + /* Divide the coefficient value by qval, ensuring proper rounding. + * Since C does not specify the direction of rounding for negative + * quotients, we have to force the dividend positive for portability. + * + * In most files, at least half of the output values will be zero + * (at default quantization settings, more like three-quarters...) + * so we should ensure that this case is fast. On many machines, + * a comparison is enough cheaper than a divide to make a special test + * a win. Since both inputs will be nonnegative, we need only test + * for a < b to discover whether a/b is 0. + * If your machine's division is fast enough, define FAST_DIVIDE. + */ +#ifdef FAST_DIVIDE +#define DIVIDE_BY(a, b) a /= b +#else +#define DIVIDE_BY(a, b) if (a >= b) a /= b; else a = 0 +#endif + if (temp < 0) { + temp = -temp; + temp += qval >> 1; /* for rounding */ + DIVIDE_BY(temp, qval); + temp = -temp; + } else { + temp += qval >> 1; /* for rounding */ + DIVIDE_BY(temp, qval); + } + output_ptr[i] = (JCOEF)temp; + } + +#endif + +} + + +/* + * Perform forward DCT on one or more blocks of a component. + * + * The input samples are taken from the sample_data[] array starting at + * position start_row/start_col, and moving to the right for any additional + * blocks. The quantized coefficients are returned in coef_blocks[]. + */ + +METHODDEF(void) +forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr, + JSAMPARRAY sample_data, JBLOCKROW coef_blocks, + JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks) +/* This version is used for integer DCT implementations. */ +{ + /* This routine is heavily used, so it's worth coding it tightly. */ + my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; + DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no]; + DCTELEM *workspace; + JDIMENSION bi; + + /* Make sure the compiler doesn't look up these every pass */ + forward_DCT_method_ptr do_dct = fdct->dct; + convsamp_method_ptr do_convsamp = fdct->convsamp; + quantize_method_ptr do_quantize = fdct->quantize; + workspace = fdct->workspace; + + sample_data += start_row; /* fold in the vertical offset once */ + + for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { + /* Load data into workspace, applying unsigned->signed conversion */ + (*do_convsamp) (sample_data, start_col, workspace); + + /* Perform the DCT */ + (*do_dct) (workspace); + + /* Quantize/descale the coefficients, and store into coef_blocks[] */ + (*do_quantize) (coef_blocks[bi], divisors, workspace); + } +} + + +#ifdef DCT_FLOAT_SUPPORTED + +METHODDEF(void) +convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col, + FAST_FLOAT *workspace) +{ + register FAST_FLOAT *workspaceptr; + register JSAMPROW elemptr; + register int elemr; + + workspaceptr = workspace; + for (elemr = 0; elemr < DCTSIZE; elemr++) { + elemptr = sample_data[elemr] + start_col; +#if DCTSIZE == 8 /* unroll the inner loop */ + *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); + *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); + *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); + *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); + *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); + *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); + *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); + *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); +#else + { + register int elemc; + for (elemc = DCTSIZE; elemc > 0; elemc--) + *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); + } +#endif + } +} + + +METHODDEF(void) +quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, + FAST_FLOAT *workspace) +{ + register FAST_FLOAT temp; + register int i; + register JCOEFPTR output_ptr = coef_block; + + for (i = 0; i < DCTSIZE2; i++) { + /* Apply the quantization and scaling factor */ + temp = workspace[i] * divisors[i]; + + /* Round to nearest integer. + * Since C does not specify the direction of rounding for negative + * quotients, we have to force the dividend positive for portability. + * The maximum coefficient size is +-16K (for 12-bit data), so this + * code should work for either 16-bit or 32-bit ints. + */ + output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384); + } +} + + +METHODDEF(void) +forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr, + JSAMPARRAY sample_data, JBLOCKROW coef_blocks, + JDIMENSION start_row, JDIMENSION start_col, + JDIMENSION num_blocks) +/* This version is used for floating-point DCT implementations. */ +{ + /* This routine is heavily used, so it's worth coding it tightly. */ + my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; + FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no]; + FAST_FLOAT *workspace; + JDIMENSION bi; + + + /* Make sure the compiler doesn't look up these every pass */ + float_DCT_method_ptr do_dct = fdct->float_dct; + float_convsamp_method_ptr do_convsamp = fdct->float_convsamp; + float_quantize_method_ptr do_quantize = fdct->float_quantize; + workspace = fdct->float_workspace; + + sample_data += start_row; /* fold in the vertical offset once */ + + for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { + /* Load data into workspace, applying unsigned->signed conversion */ + (*do_convsamp) (sample_data, start_col, workspace); + + /* Perform the DCT */ + (*do_dct) (workspace); + + /* Quantize/descale the coefficients, and store into coef_blocks[] */ + (*do_quantize) (coef_blocks[bi], divisors, workspace); + } +} + +#endif /* DCT_FLOAT_SUPPORTED */ + + +/* + * Initialize FDCT manager. + */ + +GLOBAL(void) +jinit_forward_dct(j_compress_ptr cinfo) +{ + my_fdct_ptr fdct; + int i; + + fdct = (my_fdct_ptr) + (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, + sizeof(my_fdct_controller)); + cinfo->fdct = (struct jpeg_forward_dct *)fdct; + fdct->pub.start_pass = start_pass_fdctmgr; + + /* First determine the DCT... */ + switch (cinfo->dct_method) { +#ifdef DCT_ISLOW_SUPPORTED + case JDCT_ISLOW: + fdct->pub.forward_DCT = forward_DCT; + if (jsimd_can_fdct_islow()) + fdct->dct = jsimd_fdct_islow; + else + fdct->dct = jpeg_fdct_islow; + break; +#endif +#ifdef DCT_IFAST_SUPPORTED + case JDCT_IFAST: + fdct->pub.forward_DCT = forward_DCT; + if (jsimd_can_fdct_ifast()) + fdct->dct = jsimd_fdct_ifast; + else + fdct->dct = jpeg_fdct_ifast; + break; +#endif +#ifdef DCT_FLOAT_SUPPORTED + case JDCT_FLOAT: + fdct->pub.forward_DCT = forward_DCT_float; + if (jsimd_can_fdct_float()) + fdct->float_dct = jsimd_fdct_float; + else + fdct->float_dct = jpeg_fdct_float; + break; +#endif + default: + ERREXIT(cinfo, JERR_NOT_COMPILED); + break; + } + + /* ...then the supporting stages. */ + switch (cinfo->dct_method) { +#ifdef DCT_ISLOW_SUPPORTED + case JDCT_ISLOW: +#endif +#ifdef DCT_IFAST_SUPPORTED + case JDCT_IFAST: +#endif +#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) + if (jsimd_can_convsamp()) + fdct->convsamp = jsimd_convsamp; + else + fdct->convsamp = convsamp; + if (jsimd_can_quantize()) + fdct->quantize = jsimd_quantize; + else + fdct->quantize = quantize; + break; +#endif +#ifdef DCT_FLOAT_SUPPORTED + case JDCT_FLOAT: + if (jsimd_can_convsamp_float()) + fdct->float_convsamp = jsimd_convsamp_float; + else + fdct->float_convsamp = convsamp_float; + if (jsimd_can_quantize_float()) + fdct->float_quantize = jsimd_quantize_float; + else + fdct->float_quantize = quantize_float; + break; +#endif + default: + ERREXIT(cinfo, JERR_NOT_COMPILED); + break; + } + + /* Allocate workspace memory */ +#ifdef DCT_FLOAT_SUPPORTED + if (cinfo->dct_method == JDCT_FLOAT) + fdct->float_workspace = (FAST_FLOAT *) + (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, + sizeof(FAST_FLOAT) * DCTSIZE2); + else +#endif + fdct->workspace = (DCTELEM *) + (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, + sizeof(DCTELEM) * DCTSIZE2); + + /* Mark divisor tables unallocated */ + for (i = 0; i < NUM_QUANT_TBLS; i++) { + fdct->divisors[i] = NULL; +#ifdef DCT_FLOAT_SUPPORTED + fdct->float_divisors[i] = NULL; +#endif + } +} -- cgit v1.2.3