From 26a029d407be480d791972afb5975cf62c9360a6 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Fri, 19 Apr 2024 02:47:55 +0200 Subject: Adding upstream version 124.0.1. Signed-off-by: Daniel Baumann --- .../aom/aom_dsp/flow_estimation/x86/disflow_sse4.c | 558 +++++++++++++++++++++ 1 file changed, 558 insertions(+) create mode 100644 third_party/aom/aom_dsp/flow_estimation/x86/disflow_sse4.c (limited to 'third_party/aom/aom_dsp/flow_estimation/x86/disflow_sse4.c') diff --git a/third_party/aom/aom_dsp/flow_estimation/x86/disflow_sse4.c b/third_party/aom/aom_dsp/flow_estimation/x86/disflow_sse4.c new file mode 100644 index 0000000000..d2b04c1973 --- /dev/null +++ b/third_party/aom/aom_dsp/flow_estimation/x86/disflow_sse4.c @@ -0,0 +1,558 @@ +/* + * Copyright (c) 2022, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 3-Clause Clear License + * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear + * License was not distributed with this source code in the LICENSE file, you + * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the + * Alliance for Open Media Patent License 1.0 was not distributed with this + * source code in the PATENTS file, you can obtain it at + * aomedia.org/license/patent-license/. + */ + +#include +#include +#include + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_dsp/flow_estimation/disflow.h" +#include "aom_dsp/x86/synonyms.h" + +#include "config/aom_dsp_rtcd.h" + +// Internal cross-check against C code +// If you set this to 1 and compile in debug mode, then the outputs of the two +// convolution stages will be checked against the plain C version of the code, +// and an assertion will be fired if the results differ. +#define CHECK_RESULTS 0 + +// Note: Max sum(+ve coefficients) = 1.125 * scale +static INLINE void get_cubic_kernel_dbl(double x, double kernel[4]) { + // Check that the fractional position is in range. + // + // Note: x is calculated from (eg.) `u_frac = u - floor(u)`. + // Mathematically, this implies that 0 <= x < 1. However, in practice it is + // possible to have x == 1 due to floating point rounding. This is fine, + // and we still interpolate correctly if we allow x = 1. + assert(0 <= x && x <= 1); + + double x2 = x * x; + double x3 = x2 * x; + kernel[0] = -0.5 * x + x2 - 0.5 * x3; + kernel[1] = 1.0 - 2.5 * x2 + 1.5 * x3; + kernel[2] = 0.5 * x + 2.0 * x2 - 1.5 * x3; + kernel[3] = -0.5 * x2 + 0.5 * x3; +} + +static INLINE void get_cubic_kernel_int(double x, int16_t kernel[4]) { + double kernel_dbl[4]; + get_cubic_kernel_dbl(x, kernel_dbl); + + kernel[0] = (int16_t)rint(kernel_dbl[0] * (1 << DISFLOW_INTERP_BITS)); + kernel[1] = (int16_t)rint(kernel_dbl[1] * (1 << DISFLOW_INTERP_BITS)); + kernel[2] = (int16_t)rint(kernel_dbl[2] * (1 << DISFLOW_INTERP_BITS)); + kernel[3] = (int16_t)rint(kernel_dbl[3] * (1 << DISFLOW_INTERP_BITS)); +} + +#if CHECK_RESULTS +static INLINE int get_cubic_value_int(const int *p, const int16_t kernel[4]) { + return kernel[0] * p[0] + kernel[1] * p[1] + kernel[2] * p[2] + + kernel[3] * p[3]; +} +#endif // CHECK_RESULTS + +// Compare two regions of width x height pixels, one rooted at position +// (x, y) in src and the other at (x + u, y + v) in ref. +// This function returns the sum of squared pixel differences between +// the two regions. +// +// TODO(rachelbarker): Test speed/quality impact of using bilinear interpolation +// instad of bicubic interpolation +static INLINE void compute_flow_vector(const uint8_t *src, const uint8_t *ref, + int width, int height, int stride, int x, + int y, double u, double v, + const int16_t *dx, const int16_t *dy, + int *b) { + // This function is written to do 8x8 convolutions only + assert(DISFLOW_PATCH_SIZE == 8); + + // Accumulate 4 32-bit partial sums for each element of b + // These will be flattened at the end. + __m128i b0_acc = _mm_setzero_si128(); + __m128i b1_acc = _mm_setzero_si128(); +#if CHECK_RESULTS + // Also keep a running sum using the C algorithm, for cross-checking + int c_result[2] = { 0 }; +#endif // CHECK_RESULTS + + // Split offset into integer and fractional parts, and compute cubic + // interpolation kernels + const int u_int = (int)floor(u); + const int v_int = (int)floor(v); + const double u_frac = u - floor(u); + const double v_frac = v - floor(v); + + int16_t h_kernel[4]; + int16_t v_kernel[4]; + get_cubic_kernel_int(u_frac, h_kernel); + get_cubic_kernel_int(v_frac, v_kernel); + + // Storage for intermediate values between the two convolution directions + int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 3)]; + int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE; // Offset by one row + + // Clamp coordinates so that all pixels we fetch will remain within the + // allocated border region, but allow them to go far enough out that + // the border pixels' values do not change. + // Since we are calculating an 8x8 block, the bottom-right pixel + // in the block has coordinates (x0 + 7, y0 + 7). Then, the cubic + // interpolation has 4 taps, meaning that the output of pixel + // (x_w, y_w) depends on the pixels in the range + // ([x_w - 1, x_w + 2], [y_w - 1, y_w + 2]). + // + // Thus the most extreme coordinates which will be fetched are + // (x0 - 1, y0 - 1) and (x0 + 9, y0 + 9). + const int x0 = clamp(x + u_int, -9, width); + const int y0 = clamp(y + v_int, -9, height); + + // Horizontal convolution + + // Prepare the kernel vectors + // We split the kernel into two vectors with kernel indices: + // 0, 1, 0, 1, 0, 1, 0, 1, and + // 2, 3, 2, 3, 2, 3, 2, 3 + __m128i h_kernel_01 = xx_set2_epi16(h_kernel[0], h_kernel[1]); + __m128i h_kernel_23 = xx_set2_epi16(h_kernel[2], h_kernel[3]); + + __m128i round_const_h = _mm_set1_epi32(1 << (DISFLOW_INTERP_BITS - 6 - 1)); + + for (int i = -1; i < DISFLOW_PATCH_SIZE + 2; ++i) { + const int y_w = y0 + i; + const uint8_t *ref_row = &ref[y_w * stride + (x0 - 1)]; + int16_t *tmp_row = &tmp[i * DISFLOW_PATCH_SIZE]; + + // Load this row of pixels. + // For an 8x8 patch, we need to load the 8 image pixels + 3 extras, + // for a total of 11 pixels. Here we load 16 pixels, but only use + // the first 11. + __m128i row = _mm_loadu_si128((__m128i *)ref_row); + + // Expand pixels to int16s + __m128i px_0to7_i16 = _mm_cvtepu8_epi16(row); + __m128i px_4to10_i16 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 4)); + + // Relevant multiply instruction + // This multiplies pointwise, then sums in pairs. + //_mm_madd_epi16(); + + // Compute first four outputs + // input pixels 0, 1, 1, 2, 2, 3, 3, 4 + // * kernel 0, 1, 0, 1, 0, 1, 0, 1 + __m128i px0 = + _mm_unpacklo_epi16(px_0to7_i16, _mm_srli_si128(px_0to7_i16, 2)); + // input pixels 2, 3, 3, 4, 4, 5, 5, 6 + // * kernel 2, 3, 2, 3, 2, 3, 2, 3 + __m128i px1 = _mm_unpacklo_epi16(_mm_srli_si128(px_0to7_i16, 4), + _mm_srli_si128(px_0to7_i16, 6)); + // Convolve with kernel and sum 2x2 boxes to form first 4 outputs + __m128i sum0 = _mm_add_epi32(_mm_madd_epi16(px0, h_kernel_01), + _mm_madd_epi16(px1, h_kernel_23)); + + __m128i out0 = _mm_srai_epi32(_mm_add_epi32(sum0, round_const_h), + DISFLOW_INTERP_BITS - 6); + + // Compute second four outputs + __m128i px2 = + _mm_unpacklo_epi16(px_4to10_i16, _mm_srli_si128(px_4to10_i16, 2)); + __m128i px3 = _mm_unpacklo_epi16(_mm_srli_si128(px_4to10_i16, 4), + _mm_srli_si128(px_4to10_i16, 6)); + __m128i sum1 = _mm_add_epi32(_mm_madd_epi16(px2, h_kernel_01), + _mm_madd_epi16(px3, h_kernel_23)); + + // Round by just enough bits that the result is + // guaranteed to fit into an i16. Then the next stage can use 16 x 16 -> 32 + // bit multiplies, which should be a fair bit faster than 32 x 32 -> 32 + // as it does now + // This means shifting down so we have 6 extra bits, for a maximum value + // of +18360, which can occur if u_frac == 0.5 and the input pixels are + // {0, 255, 255, 0}. + __m128i out1 = _mm_srai_epi32(_mm_add_epi32(sum1, round_const_h), + DISFLOW_INTERP_BITS - 6); + + _mm_storeu_si128((__m128i *)tmp_row, _mm_packs_epi32(out0, out1)); + +#if CHECK_RESULTS && !defined(NDEBUG) + // Cross-check + for (int j = 0; j < DISFLOW_PATCH_SIZE; ++j) { + const int x_w = x0 + j; + int arr[4]; + + arr[0] = (int)ref[y_w * stride + (x_w - 1)]; + arr[1] = (int)ref[y_w * stride + (x_w + 0)]; + arr[2] = (int)ref[y_w * stride + (x_w + 1)]; + arr[3] = (int)ref[y_w * stride + (x_w + 2)]; + + // Apply kernel and round, keeping 6 extra bits of precision. + // + // 6 is the maximum allowable number of extra bits which will avoid + // the intermediate values overflowing an int16_t. The most extreme + // intermediate value occurs when: + // * The input pixels are [0, 255, 255, 0] + // * u_frac = 0.5 + // In this case, the un-scaled output is 255 * 1.125 = 286.875. + // As an integer with 6 fractional bits, that is 18360, which fits + // in an int16_t. But with 7 fractional bits it would be 36720, + // which is too large. + const int c_value = ROUND_POWER_OF_TWO(get_cubic_value_int(arr, h_kernel), + DISFLOW_INTERP_BITS - 6); + (void)c_value; // Suppress warnings + assert(tmp_row[j] == c_value); + } +#endif // CHECK_RESULTS + } + + // Vertical convolution + const int round_bits = DISFLOW_INTERP_BITS + 6 - DISFLOW_DERIV_SCALE_LOG2; + __m128i round_const_v = _mm_set1_epi32(1 << (round_bits - 1)); + + __m128i v_kernel_01 = xx_set2_epi16(v_kernel[0], v_kernel[1]); + __m128i v_kernel_23 = xx_set2_epi16(v_kernel[2], v_kernel[3]); + + for (int i = 0; i < DISFLOW_PATCH_SIZE; ++i) { + int16_t *tmp_row = &tmp[i * DISFLOW_PATCH_SIZE]; + + // Load 4 rows of 8 x 16-bit values + __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE)); + __m128i px1 = _mm_loadu_si128((__m128i *)tmp_row); + __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE)); + __m128i px3 = + _mm_loadu_si128((__m128i *)(tmp_row + 2 * DISFLOW_PATCH_SIZE)); + + // We want to calculate px0 * v_kernel[0] + px1 * v_kernel[1] + ... , + // but each multiply expands its output to 32 bits. So we need to be + // a little clever about how we do this + __m128i sum0 = _mm_add_epi32( + _mm_madd_epi16(_mm_unpacklo_epi16(px0, px1), v_kernel_01), + _mm_madd_epi16(_mm_unpacklo_epi16(px2, px3), v_kernel_23)); + __m128i sum1 = _mm_add_epi32( + _mm_madd_epi16(_mm_unpackhi_epi16(px0, px1), v_kernel_01), + _mm_madd_epi16(_mm_unpackhi_epi16(px2, px3), v_kernel_23)); + + __m128i sum0_rounded = + _mm_srai_epi32(_mm_add_epi32(sum0, round_const_v), round_bits); + __m128i sum1_rounded = + _mm_srai_epi32(_mm_add_epi32(sum1, round_const_v), round_bits); + + __m128i warped = _mm_packs_epi32(sum0_rounded, sum1_rounded); + __m128i src_pixels_u8 = + _mm_loadl_epi64((__m128i *)&src[(y + i) * stride + x]); + __m128i src_pixels = _mm_slli_epi16(_mm_cvtepu8_epi16(src_pixels_u8), 3); + + // Calculate delta from the target patch + __m128i dt = _mm_sub_epi16(warped, src_pixels); + + // Load 8 elements each of dx and dt, to pair with the 8 elements of dt + // that we have just computed. Then compute 8 partial sums of dx * dt + // and dy * dt, implicitly sum to give 4 partial sums of each, and + // accumulate. + __m128i dx_row = _mm_loadu_si128((__m128i *)&dx[i * DISFLOW_PATCH_SIZE]); + __m128i dy_row = _mm_loadu_si128((__m128i *)&dy[i * DISFLOW_PATCH_SIZE]); + b0_acc = _mm_add_epi32(b0_acc, _mm_madd_epi16(dx_row, dt)); + b1_acc = _mm_add_epi32(b1_acc, _mm_madd_epi16(dy_row, dt)); + +#if CHECK_RESULTS + int16_t dt_arr[8]; + memcpy(dt_arr, &dt, 8 * sizeof(*dt_arr)); + for (int j = 0; j < DISFLOW_PATCH_SIZE; ++j) { + int16_t *p = &tmp[i * DISFLOW_PATCH_SIZE + j]; + int arr[4] = { p[-DISFLOW_PATCH_SIZE], p[0], p[DISFLOW_PATCH_SIZE], + p[2 * DISFLOW_PATCH_SIZE] }; + const int result = get_cubic_value_int(arr, v_kernel); + + // Apply kernel and round. + // This time, we have to round off the 6 extra bits which were kept + // earlier, but we also want to keep DISFLOW_DERIV_SCALE_LOG2 extra bits + // of precision to match the scale of the dx and dy arrays. + const int c_warped = ROUND_POWER_OF_TWO(result, round_bits); + const int c_src_px = src[(x + j) + (y + i) * stride] << 3; + const int c_dt = c_warped - c_src_px; + + assert(dt_arr[j] == c_dt); + + c_result[0] += dx[i * DISFLOW_PATCH_SIZE + j] * c_dt; + c_result[1] += dy[i * DISFLOW_PATCH_SIZE + j] * c_dt; + } +#endif // CHECK_RESULTS + } + + // Flatten the two sets of partial sums to find the final value of b + // We need to set b[0] = sum(b0_acc), b[1] = sum(b1_acc). + // We need to do 6 additions in total; a `hadd` instruction can take care + // of four of them, leaving two scalar additions. + __m128i partial_sum = _mm_hadd_epi32(b0_acc, b1_acc); + b[0] = _mm_extract_epi32(partial_sum, 0) + _mm_extract_epi32(partial_sum, 1); + b[1] = _mm_extract_epi32(partial_sum, 2) + _mm_extract_epi32(partial_sum, 3); + +#if CHECK_RESULTS + assert(b[0] == c_result[0]); + assert(b[1] == c_result[1]); +#endif // CHECK_RESULTS +} + +static INLINE void sobel_filter_x(const uint8_t *src, int src_stride, + int16_t *dst, int dst_stride) { + int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 2)]; + int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE; +#if CHECK_RESULTS + const int taps = 3; +#endif // CHECK_RESULTS + + // Horizontal filter + // As the kernel is simply {1, 0, -1}, we implement this as simply + // out[x] = image[x-1] - image[x+1] + // rather than doing a "proper" convolution operation + for (int y = -1; y < DISFLOW_PATCH_SIZE + 1; ++y) { + const uint8_t *src_row = src + y * src_stride; + int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE; + + // Load pixels and expand to 16 bits + __m128i row = _mm_loadu_si128((__m128i *)(src_row - 1)); + __m128i px0 = _mm_cvtepu8_epi16(row); + __m128i px2 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 2)); + + __m128i out = _mm_sub_epi16(px0, px2); + + // Store to intermediate array + _mm_storeu_si128((__m128i *)tmp_row, out); + +#if CHECK_RESULTS + // Cross-check + static const int16_t h_kernel[3] = { 1, 0, -1 }; + for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) { + int sum = 0; + for (int k = 0; k < taps; ++k) { + sum += h_kernel[k] * src_row[x + k - 1]; + } + (void)sum; + assert(tmp_row[x] == sum); + } +#endif // CHECK_RESULTS + } + + // Vertical filter + // Here the kernel is {1, 2, 1}, which can be implemented + // with simple sums rather than multiplies and adds. + // In order to minimize dependency chains, we evaluate in the order + // (image[y - 1] + image[y + 1]) + (image[y] << 1) + // This way, the first addition and the shift can happen in parallel + for (int y = 0; y < DISFLOW_PATCH_SIZE; ++y) { + const int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE; + int16_t *dst_row = dst + y * dst_stride; + + __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE)); + __m128i px1 = _mm_loadu_si128((__m128i *)tmp_row); + __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE)); + + __m128i out = + _mm_add_epi16(_mm_add_epi16(px0, px2), _mm_slli_epi16(px1, 1)); + + _mm_storeu_si128((__m128i *)dst_row, out); + +#if CHECK_RESULTS + static const int16_t v_kernel[3] = { 1, 2, 1 }; + for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) { + int sum = 0; + for (int k = 0; k < taps; ++k) { + sum += v_kernel[k] * tmp[(y + k - 1) * DISFLOW_PATCH_SIZE + x]; + } + (void)sum; + assert(dst_row[x] == sum); + } +#endif // CHECK_RESULTS + } +} + +static INLINE void sobel_filter_y(const uint8_t *src, int src_stride, + int16_t *dst, int dst_stride) { + int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 2)]; + int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE; +#if CHECK_RESULTS + const int taps = 3; +#endif // CHECK_RESULTS + + // Horizontal filter + // Here the kernel is {1, 2, 1}, which can be implemented + // with simple sums rather than multiplies and adds. + // In order to minimize dependency chains, we evaluate in the order + // (image[y - 1] + image[y + 1]) + (image[y] << 1) + // This way, the first addition and the shift can happen in parallel + for (int y = -1; y < DISFLOW_PATCH_SIZE + 1; ++y) { + const uint8_t *src_row = src + y * src_stride; + int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE; + + // Load pixels and expand to 16 bits + __m128i row = _mm_loadu_si128((__m128i *)(src_row - 1)); + __m128i px0 = _mm_cvtepu8_epi16(row); + __m128i px1 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 1)); + __m128i px2 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 2)); + + __m128i out = + _mm_add_epi16(_mm_add_epi16(px0, px2), _mm_slli_epi16(px1, 1)); + + // Store to intermediate array + _mm_storeu_si128((__m128i *)tmp_row, out); + +#if CHECK_RESULTS + // Cross-check + static const int16_t h_kernel[3] = { 1, 2, 1 }; + for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) { + int sum = 0; + for (int k = 0; k < taps; ++k) { + sum += h_kernel[k] * src_row[x + k - 1]; + } + (void)sum; + assert(tmp_row[x] == sum); + } +#endif // CHECK_RESULTS + } + + // Vertical filter + // As the kernel is simply {1, 0, -1}, we implement this as simply + // out[x] = image[x-1] - image[x+1] + // rather than doing a "proper" convolution operation + for (int y = 0; y < DISFLOW_PATCH_SIZE; ++y) { + const int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE; + int16_t *dst_row = dst + y * dst_stride; + + __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE)); + __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE)); + + __m128i out = _mm_sub_epi16(px0, px2); + + _mm_storeu_si128((__m128i *)dst_row, out); + +#if CHECK_RESULTS + static const int16_t v_kernel[3] = { 1, 0, -1 }; + for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) { + int sum = 0; + for (int k = 0; k < taps; ++k) { + sum += v_kernel[k] * tmp[(y + k - 1) * DISFLOW_PATCH_SIZE + x]; + } + (void)sum; + assert(dst_row[x] == sum); + } +#endif // CHECK_RESULTS + } +} + +static INLINE void compute_flow_matrix(const int16_t *dx, int dx_stride, + const int16_t *dy, int dy_stride, + double *M) { + __m128i acc[4] = { 0 }; + + for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { + __m128i dx_row = _mm_loadu_si128((__m128i *)&dx[i * dx_stride]); + __m128i dy_row = _mm_loadu_si128((__m128i *)&dy[i * dy_stride]); + + acc[0] = _mm_add_epi32(acc[0], _mm_madd_epi16(dx_row, dx_row)); + acc[1] = _mm_add_epi32(acc[1], _mm_madd_epi16(dx_row, dy_row)); + // Don't compute acc[2], as it should be equal to acc[1] + acc[3] = _mm_add_epi32(acc[3], _mm_madd_epi16(dy_row, dy_row)); + } + + // Condense sums + __m128i partial_sum_0 = _mm_hadd_epi32(acc[0], acc[1]); + __m128i partial_sum_1 = _mm_hadd_epi32(acc[1], acc[3]); + __m128i result = _mm_hadd_epi32(partial_sum_0, partial_sum_1); + + // Apply regularization + // We follow the standard regularization method of adding `k * I` before + // inverting. This ensures that the matrix will be invertible. + // + // Setting the regularization strength k to 1 seems to work well here, as + // typical values coming from the other equations are very large (1e5 to + // 1e6, with an upper limit of around 6e7, at the time of writing). + // It also preserves the property that all matrix values are whole numbers, + // which is convenient for integerized SIMD implementation. + result = _mm_add_epi32(result, _mm_set_epi32(1, 0, 0, 1)); + +#if CHECK_RESULTS + int tmp[4] = { 0 }; + + for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { + for (int j = 0; j < DISFLOW_PATCH_SIZE; j++) { + tmp[0] += dx[i * dx_stride + j] * dx[i * dx_stride + j]; + tmp[1] += dx[i * dx_stride + j] * dy[i * dy_stride + j]; + // Don't compute tmp[2], as it should be equal to tmp[1] + tmp[3] += dy[i * dy_stride + j] * dy[i * dy_stride + j]; + } + } + + // Apply regularization + tmp[0] += 1; + tmp[3] += 1; + + tmp[2] = tmp[1]; + + assert(tmp[0] == _mm_extract_epi32(result, 0)); + assert(tmp[1] == _mm_extract_epi32(result, 1)); + assert(tmp[2] == _mm_extract_epi32(result, 2)); + assert(tmp[3] == _mm_extract_epi32(result, 3)); +#endif // CHECK_RESULTS + + // Convert results to doubles and store + _mm_storeu_pd(M, _mm_cvtepi32_pd(result)); + _mm_storeu_pd(M + 2, _mm_cvtepi32_pd(_mm_srli_si128(result, 8))); +} + +// Try to invert the matrix M +// Note: Due to the nature of how a least-squares matrix is constructed, all of +// the eigenvalues will be >= 0, and therefore det M >= 0 as well. +// The regularization term `+ k * I` further ensures that det M >= k^2. +// As mentioned in compute_flow_matrix(), here we use k = 1, so det M >= 1. +// So we don't have to worry about non-invertible matrices here. +static INLINE void invert_2x2(const double *M, double *M_inv) { + double det = (M[0] * M[3]) - (M[1] * M[2]); + assert(det >= 1); + const double det_inv = 1 / det; + + M_inv[0] = M[3] * det_inv; + M_inv[1] = -M[1] * det_inv; + M_inv[2] = -M[2] * det_inv; + M_inv[3] = M[0] * det_inv; +} + +void aom_compute_flow_at_point_sse4_1(const uint8_t *src, const uint8_t *ref, + int x, int y, int width, int height, + int stride, double *u, double *v) { + double M[4]; + double M_inv[4]; + int b[2]; + int16_t dx[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]; + int16_t dy[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]; + + // Compute gradients within this patch + const uint8_t *src_patch = &src[y * stride + x]; + sobel_filter_x(src_patch, stride, dx, DISFLOW_PATCH_SIZE); + sobel_filter_y(src_patch, stride, dy, DISFLOW_PATCH_SIZE); + + compute_flow_matrix(dx, DISFLOW_PATCH_SIZE, dy, DISFLOW_PATCH_SIZE, M); + invert_2x2(M, M_inv); + + for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) { + compute_flow_vector(src, ref, width, height, stride, x, y, *u, *v, dx, dy, + b); + + // Solve flow equations to find a better estimate for the flow vector + // at this point + const double step_u = M_inv[0] * b[0] + M_inv[1] * b[1]; + const double step_v = M_inv[2] * b[0] + M_inv[3] * b[1]; + *u += fclamp(step_u * DISFLOW_STEP_SIZE, -2, 2); + *v += fclamp(step_v * DISFLOW_STEP_SIZE, -2, 2); + + if (fabs(step_u) + fabs(step_v) < DISFLOW_STEP_SIZE_THRESOLD) { + // Stop iteration when we're close to convergence + break; + } + } +} -- cgit v1.2.3