From 26a029d407be480d791972afb5975cf62c9360a6 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Fri, 19 Apr 2024 02:47:55 +0200 Subject: Adding upstream version 124.0.1. Signed-off-by: Daniel Baumann --- third_party/aom/av1/common/av1_common_int.h | 1882 +++++++++++++++++++++++++++ 1 file changed, 1882 insertions(+) create mode 100644 third_party/aom/av1/common/av1_common_int.h (limited to 'third_party/aom/av1/common/av1_common_int.h') diff --git a/third_party/aom/av1/common/av1_common_int.h b/third_party/aom/av1/common/av1_common_int.h new file mode 100644 index 0000000000..4c0cb99d2b --- /dev/null +++ b/third_party/aom/av1/common/av1_common_int.h @@ -0,0 +1,1882 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_ +#define AOM_AV1_COMMON_AV1_COMMON_INT_H_ + +#include "config/aom_config.h" +#include "config/av1_rtcd.h" + +#include "aom/internal/aom_codec_internal.h" +#include "aom_dsp/flow_estimation/corner_detect.h" +#include "aom_util/aom_thread.h" +#include "av1/common/alloccommon.h" +#include "av1/common/av1_loopfilter.h" +#include "av1/common/entropy.h" +#include "av1/common/entropymode.h" +#include "av1/common/entropymv.h" +#include "av1/common/enums.h" +#include "av1/common/frame_buffers.h" +#include "av1/common/mv.h" +#include "av1/common/quant_common.h" +#include "av1/common/restoration.h" +#include "av1/common/tile_common.h" +#include "av1/common/timing.h" +#include "aom_dsp/grain_params.h" +#include "aom_dsp/grain_table.h" +#include "aom_dsp/odintrin.h" +#ifdef __cplusplus +extern "C" { +#endif + +#if defined(__clang__) && defined(__has_warning) +#if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough") +#define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT +#endif +#elif defined(__GNUC__) && __GNUC__ >= 7 +#define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT +#endif + +#ifndef AOM_FALLTHROUGH_INTENDED +#define AOM_FALLTHROUGH_INTENDED \ + do { \ + } while (0) +#endif + +#define CDEF_MAX_STRENGTHS 16 + +/* Constant values while waiting for the sequence header */ +#define FRAME_ID_LENGTH 15 +#define DELTA_FRAME_ID_LENGTH 14 + +#define FRAME_CONTEXTS (FRAME_BUFFERS + 1) +// Extra frame context which is always kept at default values +#define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1) +#define PRIMARY_REF_BITS 3 +#define PRIMARY_REF_NONE 7 + +#define NUM_PING_PONG_BUFFERS 2 + +#define MAX_NUM_TEMPORAL_LAYERS 8 +#define MAX_NUM_SPATIAL_LAYERS 4 +/* clang-format off */ +// clang-format seems to think this is a pointer dereference and not a +// multiplication. +#define MAX_NUM_OPERATING_POINTS \ + (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS) +/* clang-format on */ + +// TODO(jingning): Turning this on to set up transform coefficient +// processing timer. +#define TXCOEFF_TIMER 0 +#define TXCOEFF_COST_TIMER 0 + +/*!\cond */ + +enum { + SINGLE_REFERENCE = 0, + COMPOUND_REFERENCE = 1, + REFERENCE_MODE_SELECT = 2, + REFERENCE_MODES = 3, +} UENUM1BYTE(REFERENCE_MODE); + +enum { + /** + * Frame context updates are disabled + */ + REFRESH_FRAME_CONTEXT_DISABLED, + /** + * Update frame context to values resulting from backward probability + * updates based on entropy/counts in the decoded frame + */ + REFRESH_FRAME_CONTEXT_BACKWARD, +} UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE); + +#define MFMV_STACK_SIZE 3 +typedef struct { + int_mv mfmv0; + uint8_t ref_frame_offset; +} TPL_MV_REF; + +typedef struct { + int_mv mv; + MV_REFERENCE_FRAME ref_frame; +} MV_REF; + +typedef struct RefCntBuffer { + // For a RefCntBuffer, the following are reference-holding variables: + // - cm->ref_frame_map[] + // - cm->cur_frame + // - cm->scaled_ref_buf[] (encoder only) + // - pbi->output_frame_index[] (decoder only) + // With that definition, 'ref_count' is the number of reference-holding + // variables that are currently referencing this buffer. + // For example: + // - suppose this buffer is at index 'k' in the buffer pool, and + // - Total 'n' of the variables / array elements above have value 'k' (that + // is, they are pointing to buffer at index 'k'). + // Then, pool->frame_bufs[k].ref_count = n. + int ref_count; + + unsigned int order_hint; + unsigned int ref_order_hints[INTER_REFS_PER_FRAME]; + + // These variables are used only in encoder and compare the absolute + // display order hint to compute the relative distance and overcome + // the limitation of get_relative_dist() which returns incorrect + // distance when a very old frame is used as a reference. + unsigned int display_order_hint; + unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME]; + // Frame's level within the hierarchical structure. + unsigned int pyramid_level; + MV_REF *mvs; + uint8_t *seg_map; + struct segmentation seg; + int mi_rows; + int mi_cols; + // Width and height give the size of the buffer (before any upscaling, unlike + // the sizes that can be derived from the buf structure) + int width; + int height; + WarpedMotionParams global_motion[REF_FRAMES]; + int showable_frame; // frame can be used as show existing frame in future + uint8_t film_grain_params_present; + aom_film_grain_t film_grain_params; + aom_codec_frame_buffer_t raw_frame_buffer; + YV12_BUFFER_CONFIG buf; + int temporal_id; // Temporal layer ID of the frame + int spatial_id; // Spatial layer ID of the frame + FRAME_TYPE frame_type; + + // This is only used in the encoder but needs to be indexed per ref frame + // so it's extremely convenient to keep it here. + int interp_filter_selected[SWITCHABLE]; + + // Inter frame reference frame delta for loop filter + int8_t ref_deltas[REF_FRAMES]; + + // 0 = ZERO_MV, MV + int8_t mode_deltas[MAX_MODE_LF_DELTAS]; + + FRAME_CONTEXT frame_context; +} RefCntBuffer; + +typedef struct BufferPool { +// Protect BufferPool from being accessed by several FrameWorkers at +// the same time during frame parallel decode. +// TODO(hkuang): Try to use atomic variable instead of locking the whole pool. +// TODO(wtc): Remove this. See +// https://chromium-review.googlesource.com/c/webm/libvpx/+/560630. +#if CONFIG_MULTITHREAD + pthread_mutex_t pool_mutex; +#endif + + // Private data associated with the frame buffer callbacks. + void *cb_priv; + + aom_get_frame_buffer_cb_fn_t get_fb_cb; + aom_release_frame_buffer_cb_fn_t release_fb_cb; + + RefCntBuffer *frame_bufs; + uint8_t num_frame_bufs; + + // Frame buffers allocated internally by the codec. + InternalFrameBufferList int_frame_buffers; +} BufferPool; + +/*!\endcond */ + +/*!\brief Parameters related to CDEF */ +typedef struct { + //! CDEF column line buffer + uint16_t *colbuf[MAX_MB_PLANE]; + //! CDEF top & bottom line buffer + uint16_t *linebuf[MAX_MB_PLANE]; + //! CDEF intermediate buffer + uint16_t *srcbuf; + //! CDEF column line buffer sizes + size_t allocated_colbuf_size[MAX_MB_PLANE]; + //! CDEF top and bottom line buffer sizes + size_t allocated_linebuf_size[MAX_MB_PLANE]; + //! CDEF intermediate buffer size + size_t allocated_srcbuf_size; + //! CDEF damping factor + int cdef_damping; + //! Number of CDEF strength values + int nb_cdef_strengths; + //! CDEF strength values for luma + int cdef_strengths[CDEF_MAX_STRENGTHS]; + //! CDEF strength values for chroma + int cdef_uv_strengths[CDEF_MAX_STRENGTHS]; + //! Number of CDEF strength values in bits + int cdef_bits; + //! Number of rows in the frame in 4 pixel + int allocated_mi_rows; + //! Number of CDEF workers + int allocated_num_workers; +} CdefInfo; + +/*!\cond */ + +typedef struct { + int delta_q_present_flag; + // Resolution of delta quant + int delta_q_res; + int delta_lf_present_flag; + // Resolution of delta lf level + int delta_lf_res; + // This is a flag for number of deltas of loop filter level + // 0: use 1 delta, for y_vertical, y_horizontal, u, and v + // 1: use separate deltas for each filter level + int delta_lf_multi; +} DeltaQInfo; + +typedef struct { + int enable_order_hint; // 0 - disable order hint, and related tools + int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs, + // frame_sign_bias + // if 0, enable_dist_wtd_comp and + // enable_ref_frame_mvs must be set as 0. + int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes + // 1 - enable it + int enable_ref_frame_mvs; // 0 - disable ref frame mvs + // 1 - enable it +} OrderHintInfo; + +// Sequence header structure. +// Note: All syntax elements of sequence_header_obu that need to be +// bit-identical across multiple sequence headers must be part of this struct, +// so that consistency is checked by are_seq_headers_consistent() function. +// One exception is the last member 'op_params' that is ignored by +// are_seq_headers_consistent() function. +typedef struct SequenceHeader { + int num_bits_width; + int num_bits_height; + int max_frame_width; + int max_frame_height; + // Whether current and reference frame IDs are signaled in the bitstream. + // Frame id numbers are additional information that do not affect the + // decoding process, but provide decoders with a way of detecting missing + // reference frames so that appropriate action can be taken. + uint8_t frame_id_numbers_present_flag; + int frame_id_length; + int delta_frame_id_length; + BLOCK_SIZE sb_size; // Size of the superblock used for this frame + int mib_size; // Size of the superblock in units of MI blocks + int mib_size_log2; // Log 2 of above. + + OrderHintInfo order_hint_info; + + uint8_t force_screen_content_tools; // 0 - force off + // 1 - force on + // 2 - adaptive + uint8_t still_picture; // Video is a single frame still picture + uint8_t reduced_still_picture_hdr; // Use reduced header for still picture + uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel + // 1 - force to integer + // 2 - adaptive + uint8_t enable_filter_intra; // enables/disables filterintra + uint8_t enable_intra_edge_filter; // enables/disables edge upsampling + uint8_t enable_interintra_compound; // enables/disables interintra_compound + uint8_t enable_masked_compound; // enables/disables masked compound + uint8_t enable_dual_filter; // 0 - disable dual interpolation filter + // 1 - enable vert/horz filter selection + uint8_t enable_warped_motion; // 0 - disable warp for the sequence + // 1 - enable warp for the sequence + uint8_t enable_superres; // 0 - Disable superres for the sequence + // and no frame level superres flag + // 1 - Enable superres for the sequence + // enable per-frame superres flag + uint8_t enable_cdef; // To turn on/off CDEF + uint8_t enable_restoration; // To turn on/off loop restoration + BITSTREAM_PROFILE profile; + + // Color config. + aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1, + // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3. + uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers. + uint8_t monochrome; // Monochrome video + aom_color_primaries_t color_primaries; + aom_transfer_characteristics_t transfer_characteristics; + aom_matrix_coefficients_t matrix_coefficients; + int color_range; + int subsampling_x; // Chroma subsampling for x + int subsampling_y; // Chroma subsampling for y + aom_chroma_sample_position_t chroma_sample_position; + uint8_t separate_uv_delta_q; + uint8_t film_grain_params_present; + + // Operating point info. + int operating_points_cnt_minus_1; + int operating_point_idc[MAX_NUM_OPERATING_POINTS]; + int timing_info_present; + aom_timing_info_t timing_info; + uint8_t decoder_model_info_present_flag; + aom_dec_model_info_t decoder_model_info; + uint8_t display_model_info_present_flag; + AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS]; + uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1. + + // IMPORTANT: the op_params member must be at the end of the struct so that + // are_seq_headers_consistent() can be implemented with a memcmp() call. + // TODO(urvang): We probably don't need the +1 here. + aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1]; +} SequenceHeader; + +typedef struct { + int skip_mode_allowed; + int skip_mode_flag; + int ref_frame_idx_0; + int ref_frame_idx_1; +} SkipModeInfo; + +typedef struct { + FRAME_TYPE frame_type; + REFERENCE_MODE reference_mode; + + unsigned int order_hint; + unsigned int display_order_hint; + // Frame's level within the hierarchical structure. + unsigned int pyramid_level; + unsigned int frame_number; + SkipModeInfo skip_mode_info; + int refresh_frame_flags; // Which ref frames are overwritten by this frame + int frame_refs_short_signaling; +} CurrentFrame; + +/*!\endcond */ + +/*! + * \brief Frame level features. + */ +typedef struct { + /*! + * If true, CDF update in the symbol encoding/decoding process is disabled. + */ + bool disable_cdf_update; + /*! + * If true, motion vectors are specified to eighth pel precision; and + * if false, motion vectors are specified to quarter pel precision. + */ + bool allow_high_precision_mv; + /*! + * If true, force integer motion vectors; if false, use the default. + */ + bool cur_frame_force_integer_mv; + /*! + * If true, palette tool and/or intra block copy tools may be used. + */ + bool allow_screen_content_tools; + bool allow_intrabc; /*!< If true, intra block copy tool may be used. */ + bool allow_warped_motion; /*!< If true, frame may use warped motion mode. */ + /*! + * If true, using previous frames' motion vectors for prediction is allowed. + */ + bool allow_ref_frame_mvs; + /*! + * If true, frame is fully lossless at coded resolution. + * */ + bool coded_lossless; + /*! + * If true, frame is fully lossless at upscaled resolution. + */ + bool all_lossless; + /*! + * If true, the frame is restricted to a reduced subset of the full set of + * transform types. + */ + bool reduced_tx_set_used; + /*! + * If true, error resilient mode is enabled. + * Note: Error resilient mode allows the syntax of a frame to be parsed + * independently of previously decoded frames. + */ + bool error_resilient_mode; + /*! + * If false, only MOTION_MODE that may be used is SIMPLE_TRANSLATION; + * if true, all MOTION_MODES may be used. + */ + bool switchable_motion_mode; + TX_MODE tx_mode; /*!< Transform mode at frame level. */ + InterpFilter interp_filter; /*!< Interpolation filter at frame level. */ + /*! + * The reference frame that contains the CDF values and other state that + * should be loaded at the start of the frame. + */ + int primary_ref_frame; + /*! + * Byte alignment of the planes in the reference buffers. + */ + int byte_alignment; + /*! + * Flag signaling how frame contexts should be updated at the end of + * a frame decode. + */ + REFRESH_FRAME_CONTEXT_MODE refresh_frame_context; +} FeatureFlags; + +/*! + * \brief Params related to tiles. + */ +typedef struct CommonTileParams { + int cols; /*!< number of tile columns that frame is divided into */ + int rows; /*!< number of tile rows that frame is divided into */ + int max_width_sb; /*!< maximum tile width in superblock units. */ + int max_height_sb; /*!< maximum tile height in superblock units. */ + + /*! + * Min width of non-rightmost tile in MI units. Only valid if cols > 1. + */ + int min_inner_width; + + /*! + * If true, tiles are uniformly spaced with power-of-two number of rows and + * columns. + * If false, tiles have explicitly configured widths and heights. + */ + int uniform_spacing; + + /** + * \name Members only valid when uniform_spacing == 1 + */ + /**@{*/ + int log2_cols; /*!< log2 of 'cols'. */ + int log2_rows; /*!< log2 of 'rows'. */ + int width; /*!< tile width in MI units */ + int height; /*!< tile height in MI units */ + /**@}*/ + + /*! + * Min num of tile columns possible based on 'max_width_sb' and frame width. + */ + int min_log2_cols; + /*! + * Min num of tile rows possible based on 'max_height_sb' and frame height. + */ + int min_log2_rows; + /*! + * Max num of tile columns possible based on frame width. + */ + int max_log2_cols; + /*! + * Max num of tile rows possible based on frame height. + */ + int max_log2_rows; + /*! + * log2 of min number of tiles (same as min_log2_cols + min_log2_rows). + */ + int min_log2; + /*! + * col_start_sb[i] is the start position of tile column i in superblock units. + * valid for 0 <= i <= cols + */ + int col_start_sb[MAX_TILE_COLS + 1]; + /*! + * row_start_sb[i] is the start position of tile row i in superblock units. + * valid for 0 <= i <= rows + */ + int row_start_sb[MAX_TILE_ROWS + 1]; + /*! + * If true, we are using large scale tile mode. + */ + unsigned int large_scale; + /*! + * Only relevant when large_scale == 1. + * If true, the independent decoding of a single tile or a section of a frame + * is allowed. + */ + unsigned int single_tile_decoding; +} CommonTileParams; + +typedef struct CommonModeInfoParams CommonModeInfoParams; +/*! + * \brief Params related to MB_MODE_INFO arrays and related info. + */ +struct CommonModeInfoParams { + /*! + * Number of rows in the frame in 16 pixel units. + * This is computed from frame height aligned to a multiple of 8. + */ + int mb_rows; + /*! + * Number of cols in the frame in 16 pixel units. + * This is computed from frame width aligned to a multiple of 8. + */ + int mb_cols; + + /*! + * Total MBs = mb_rows * mb_cols. + */ + int MBs; + + /*! + * Number of rows in the frame in 4 pixel (MB_MODE_INFO) units. + * This is computed from frame height aligned to a multiple of 8. + */ + int mi_rows; + /*! + * Number of cols in the frame in 4 pixel (MB_MODE_INFO) units. + * This is computed from frame width aligned to a multiple of 8. + */ + int mi_cols; + + /*! + * An array of MB_MODE_INFO structs for every 'mi_alloc_bsize' sized block + * in the frame. + * Note: This array should be treated like a scratch memory, and should NOT be + * accessed directly, in most cases. Please use 'mi_grid_base' array instead. + */ + MB_MODE_INFO *mi_alloc; + /*! + * Number of allocated elements in 'mi_alloc'. + */ + int mi_alloc_size; + /*! + * Stride for 'mi_alloc' array. + */ + int mi_alloc_stride; + /*! + * The minimum block size that each element in 'mi_alloc' can correspond to. + * For decoder, this is always BLOCK_4X4. + * For encoder, this is BLOCK_8X8 for resolution >= 4k case or REALTIME mode + * case. Otherwise, this is BLOCK_4X4. + */ + BLOCK_SIZE mi_alloc_bsize; + + /*! + * Grid of pointers to 4x4 MB_MODE_INFO structs allocated in 'mi_alloc'. + * It's possible that: + * - Multiple pointers in the grid point to the same element in 'mi_alloc' + * (for example, for all 4x4 blocks that belong to the same partition block). + * - Some pointers can be NULL (for example, for blocks outside visible area). + */ + MB_MODE_INFO **mi_grid_base; + /*! + * Number of allocated elements in 'mi_grid_base' (and 'tx_type_map' also). + */ + int mi_grid_size; + /*! + * Stride for 'mi_grid_base' (and 'tx_type_map' also). + */ + int mi_stride; + + /*! + * An array of tx types for each 4x4 block in the frame. + * Number of allocated elements is same as 'mi_grid_size', and stride is + * same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of + * 'mi_grid_base'. + */ + TX_TYPE *tx_type_map; + + /** + * \name Function pointers to allow separate logic for encoder and decoder. + */ + /**@{*/ + /*! + * Free the memory allocated to arrays in 'mi_params'. + * \param[in,out] mi_params object containing common mode info parameters + */ + void (*free_mi)(struct CommonModeInfoParams *mi_params); + /*! + * Initialize / reset appropriate arrays in 'mi_params'. + * \param[in,out] mi_params object containing common mode info parameters + */ + void (*setup_mi)(struct CommonModeInfoParams *mi_params); + /*! + * Allocate required memory for arrays in 'mi_params'. + * \param[in,out] mi_params object containing common mode info + * parameters + * \param width frame width + * \param height frame height + * \param min_partition_size minimum partition size allowed while + * encoding + */ + void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width, + int height, BLOCK_SIZE min_partition_size); + /**@}*/ +}; + +typedef struct CommonQuantParams CommonQuantParams; +/*! + * \brief Parameters related to quantization at the frame level. + */ +struct CommonQuantParams { + /*! + * Base qindex of the frame in the range 0 to 255. + */ + int base_qindex; + + /*! + * Delta of qindex (from base_qindex) for Y plane DC coefficient. + * Note: y_ac_delta_q is implicitly 0. + */ + int y_dc_delta_q; + + /*! + * Delta of qindex (from base_qindex) for U plane DC coefficients. + */ + int u_dc_delta_q; + /*! + * Delta of qindex (from base_qindex) for U plane AC coefficients. + */ + int v_dc_delta_q; + + /*! + * Delta of qindex (from base_qindex) for V plane DC coefficients. + * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0. + */ + int u_ac_delta_q; + /*! + * Delta of qindex (from base_qindex) for V plane AC coefficients. + * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0. + */ + int v_ac_delta_q; + + /* + * Note: The qindex per superblock may have a delta from the qindex obtained + * at frame level from parameters above, based on 'cm->delta_q_info'. + */ + + /** + * \name True dequantizers. + * The dequantizers below are true dequantizers used only in the + * dequantization process. They have the same coefficient + * shift/scale as TX. + */ + /**@{*/ + int16_t y_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for Y plane */ + int16_t u_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for U plane */ + int16_t v_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for V plane */ + /**@}*/ + + /** + * \name Global quantization matrix tables. + */ + /**@{*/ + /*! + * Global dequantization matrix table. + */ + const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL]; + /*! + * Global quantization matrix table. + */ + const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL]; + /**@}*/ + + /** + * \name Local dequantization matrix tables for each frame. + */ + /**@{*/ + /*! + * Local dequant matrix for Y plane. + */ + const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; + /*! + * Local dequant matrix for U plane. + */ + const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; + /*! + * Local dequant matrix for V plane. + */ + const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; + /**@}*/ + + /*! + * Flag indicating whether quantization matrices are being used: + * - If true, qm_level_y, qm_level_u and qm_level_v indicate the level + * indices to be used to access appropriate global quant matrix tables. + * - If false, we implicitly use level index 'NUM_QM_LEVELS - 1'. + */ + bool using_qmatrix; + /** + * \name Valid only when using_qmatrix == true + * Indicate the level indices to be used to access appropriate global quant + * matrix tables. + */ + /**@{*/ + int qmatrix_level_y; /*!< Level index for Y plane */ + int qmatrix_level_u; /*!< Level index for U plane */ + int qmatrix_level_v; /*!< Level index for V plane */ + /**@}*/ +}; + +typedef struct CommonContexts CommonContexts; +/*! + * \brief Contexts used for transmitting various symbols in the bitstream. + */ +struct CommonContexts { + /*! + * Context used by 'FRAME_CONTEXT.partition_cdf' to transmit partition type. + * partition[i][j] is the context for ith tile row, jth mi_col. + */ + PARTITION_CONTEXT **partition; + + /*! + * Context used to derive context for multiple symbols: + * - 'TXB_CTX.txb_skip_ctx' used by 'FRAME_CONTEXT.txb_skip_cdf' to transmit + * to transmit skip_txfm flag. + * - 'TXB_CTX.dc_sign_ctx' used by 'FRAME_CONTEXT.dc_sign_cdf' to transmit + * sign. + * entropy[i][j][k] is the context for ith plane, jth tile row, kth mi_col. + */ + ENTROPY_CONTEXT **entropy[MAX_MB_PLANE]; + + /*! + * Context used to derive context for 'FRAME_CONTEXT.txfm_partition_cdf' to + * transmit 'is_split' flag to indicate if this transform block should be + * split into smaller sub-blocks. + * txfm[i][j] is the context for ith tile row, jth mi_col. + */ + TXFM_CONTEXT **txfm; + + /*! + * Dimensions that were used to allocate the arrays above. + * If these dimensions change, the arrays may have to be re-allocated. + */ + int num_planes; /*!< Corresponds to av1_num_planes(cm) */ + int num_tile_rows; /*!< Corresponds to cm->tiles.row */ + int num_mi_cols; /*!< Corresponds to cm->mi_params.mi_cols */ +}; + +/*! + * \brief Top level common structure used by both encoder and decoder. + */ +typedef struct AV1Common { + /*! + * Information about the current frame that is being coded. + */ + CurrentFrame current_frame; + /*! + * Code and details about current error status. + */ + struct aom_internal_error_info *error; + + /*! + * AV1 allows two types of frame scaling operations: + * 1. Frame super-resolution: that allows coding a frame at lower resolution + * and after decoding the frame, normatively scales and restores the frame -- + * inside the coding loop. + * 2. Frame resize: that allows coding frame at lower/higher resolution, and + * then non-normatively upscale the frame at the time of rendering -- outside + * the coding loop. + * Hence, the need for 3 types of dimensions. + */ + + /** + * \name Coded frame dimensions. + */ + /**@{*/ + int width; /*!< Coded frame width */ + int height; /*!< Coded frame height */ + /**@}*/ + + /** + * \name Rendered frame dimensions. + * Dimensions after applying both super-resolution and resize to the coded + * frame. Different from coded dimensions if super-resolution and/or resize + * are being used for this frame. + */ + /**@{*/ + int render_width; /*!< Rendered frame width */ + int render_height; /*!< Rendered frame height */ + /**@}*/ + + /** + * \name Super-resolved frame dimensions. + * Frame dimensions after applying super-resolution to the coded frame (if + * present), but before applying resize. + * Larger than the coded dimensions if super-resolution is being used for + * this frame. + * Different from rendered dimensions if resize is being used for this frame. + */ + /**@{*/ + int superres_upscaled_width; /*!< Super-resolved frame width */ + int superres_upscaled_height; /*!< Super-resolved frame height */ + /**@}*/ + + /*! + * The denominator of the superres scale used by this frame. + * Note: The numerator is fixed to be SCALE_NUMERATOR. + */ + uint8_t superres_scale_denominator; + + /*! + * buffer_removal_times[op_num] specifies the frame removal time in units of + * DecCT clock ticks counted from the removal time of the last random access + * point for operating point op_num. + * TODO(urvang): We probably don't need the +1 here. + */ + uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1]; + /*! + * Presentation time of the frame in clock ticks DispCT counted from the + * removal time of the last random access point for the operating point that + * is being decoded. + */ + uint32_t frame_presentation_time; + + /*! + * Buffer where previous frame is stored. + */ + RefCntBuffer *prev_frame; + + /*! + * Buffer into which the current frame will be stored and other related info. + * TODO(hkuang): Combine this with cur_buf in macroblockd. + */ + RefCntBuffer *cur_frame; + + /*! + * For encoder, we have a two-level mapping from reference frame type to the + * corresponding buffer in the buffer pool: + * * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ... + * EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1) + * * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to + * the reference counted buffer structure RefCntBuffer, taken from the buffer + * pool cm->buffer_pool->frame_bufs. + * + * LAST_FRAME, ..., EXTREF_FRAME + * | | + * v v + * remapped_ref_idx[LAST_FRAME - 1], ..., remapped_ref_idx[EXTREF_FRAME - 1] + * | | + * v v + * ref_frame_map[], ..., ref_frame_map[] + * + * Note: INTRA_FRAME always refers to the current frame, so there's no need to + * have a remapped index for the same. + */ + int remapped_ref_idx[REF_FRAMES]; + + /*! + * Scale of the current frame with respect to itself. + * This is currently used for intra block copy, which behaves like an inter + * prediction mode, where the reference frame is the current frame itself. + */ + struct scale_factors sf_identity; + + /*! + * Scale factors of the reference frame with respect to the current frame. + * This is required for generating inter prediction and will be non-identity + * for a reference frame, if it has different dimensions than the coded + * dimensions of the current frame. + */ + struct scale_factors ref_scale_factors[REF_FRAMES]; + + /*! + * For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to + * the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'. + * For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps + * remapped reference index 'j' (that is, original reference type 'i') to + * a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'. + */ + RefCntBuffer *ref_frame_map[REF_FRAMES]; + + /*! + * If true, this frame is actually shown after decoding. + * If false, this frame is coded in the bitstream, but not shown. It is only + * used as a reference for other frames coded later. + */ + int show_frame; + + /*! + * If true, this frame can be used as a show-existing frame for other frames + * coded later. + * When 'show_frame' is true, this is always true for all non-keyframes. + * When 'show_frame' is false, this value is transmitted in the bitstream. + */ + int showable_frame; + + /*! + * If true, show an existing frame coded before, instead of actually coding a + * frame. The existing frame comes from one of the existing reference buffers, + * as signaled in the bitstream. + */ + int show_existing_frame; + + /*! + * Whether some features are allowed or not. + */ + FeatureFlags features; + + /*! + * Params related to MB_MODE_INFO arrays and related info. + */ + CommonModeInfoParams mi_params; + +#if CONFIG_ENTROPY_STATS + /*! + * Context type used by token CDFs, in the range 0 .. (TOKEN_CDF_Q_CTXS - 1). + */ + int coef_cdf_category; +#endif // CONFIG_ENTROPY_STATS + + /*! + * Quantization params. + */ + CommonQuantParams quant_params; + + /*! + * Segmentation info for current frame. + */ + struct segmentation seg; + + /*! + * Segmentation map for previous frame. + */ + uint8_t *last_frame_seg_map; + + /** + * \name Deblocking filter parameters. + */ + /**@{*/ + loop_filter_info_n lf_info; /*!< Loop filter info */ + struct loopfilter lf; /*!< Loop filter parameters */ + /**@}*/ + + /** + * \name Loop Restoration filter parameters. + */ + /**@{*/ + RestorationInfo rst_info[MAX_MB_PLANE]; /*!< Loop Restoration filter info */ + int32_t *rst_tmpbuf; /*!< Scratch buffer for self-guided restoration */ + RestorationLineBuffers *rlbs; /*!< Line buffers needed by loop restoration */ + YV12_BUFFER_CONFIG rst_frame; /*!< Stores the output of loop restoration */ + /**@}*/ + + /*! + * CDEF (Constrained Directional Enhancement Filter) parameters. + */ + CdefInfo cdef_info; + + /*! + * Parameters for film grain synthesis. + */ + aom_film_grain_t film_grain_params; + + /*! + * Parameters for delta quantization and delta loop filter level. + */ + DeltaQInfo delta_q_info; + + /*! + * Global motion parameters for each reference frame. + */ + WarpedMotionParams global_motion[REF_FRAMES]; + + /*! + * Elements part of the sequence header, that are applicable for all the + * frames in the video. + */ + SequenceHeader *seq_params; + + /*! + * Current CDFs of all the symbols for the current frame. + */ + FRAME_CONTEXT *fc; + /*! + * Default CDFs used when features.primary_ref_frame = PRIMARY_REF_NONE + * (e.g. for a keyframe). These default CDFs are defined by the bitstream and + * copied from default CDF tables for each symbol. + */ + FRAME_CONTEXT *default_frame_context; + + /*! + * Parameters related to tiling. + */ + CommonTileParams tiles; + + /*! + * External BufferPool passed from outside. + */ + BufferPool *buffer_pool; + + /*! + * Above context buffers and their sizes. + * Note: above contexts are allocated in this struct, as their size is + * dependent on frame width, while left contexts are declared and allocated in + * MACROBLOCKD struct, as they have a fixed size. + */ + CommonContexts above_contexts; + + /** + * \name Signaled when cm->seq_params->frame_id_numbers_present_flag == 1 + */ + /**@{*/ + int current_frame_id; /*!< frame ID for the current frame. */ + int ref_frame_id[REF_FRAMES]; /*!< frame IDs for the reference frames. */ + /**@}*/ + + /*! + * Motion vectors provided by motion field estimation. + * tpl_mvs[row * stride + col] stores MV for block at [mi_row, mi_col] where: + * mi_row = 2 * row, + * mi_col = 2 * col, and + * stride = cm->mi_params.mi_stride / 2 + */ + TPL_MV_REF *tpl_mvs; + /*! + * Allocated size of 'tpl_mvs' array. Refer to 'ensure_mv_buffer()' function. + */ + int tpl_mvs_mem_size; + /*! + * ref_frame_sign_bias[k] is 1 if relative distance between reference 'k' and + * current frame is positive; and 0 otherwise. + */ + int ref_frame_sign_bias[REF_FRAMES]; + /*! + * ref_frame_side[k] is 1 if relative distance between reference 'k' and + * current frame is positive, -1 if relative distance is 0; and 0 otherwise. + * TODO(jingning): This can be combined with sign_bias later. + */ + int8_t ref_frame_side[REF_FRAMES]; + + /*! + * Temporal layer ID of this frame + * (in the range 0 ... (number_temporal_layers - 1)). + */ + int temporal_layer_id; + + /*! + * Spatial layer ID of this frame + * (in the range 0 ... (number_spatial_layers - 1)). + */ + int spatial_layer_id; + +#if TXCOEFF_TIMER + int64_t cum_txcoeff_timer; + int64_t txcoeff_timer; + int txb_count; +#endif // TXCOEFF_TIMER + +#if TXCOEFF_COST_TIMER + int64_t cum_txcoeff_cost_timer; + int64_t txcoeff_cost_timer; + int64_t txcoeff_cost_count; +#endif // TXCOEFF_COST_TIMER +} AV1_COMMON; + +/*!\cond */ + +// TODO(hkuang): Don't need to lock the whole pool after implementing atomic +// frame reference count. +static void lock_buffer_pool(BufferPool *const pool) { +#if CONFIG_MULTITHREAD + pthread_mutex_lock(&pool->pool_mutex); +#else + (void)pool; +#endif +} + +static void unlock_buffer_pool(BufferPool *const pool) { +#if CONFIG_MULTITHREAD + pthread_mutex_unlock(&pool->pool_mutex); +#else + (void)pool; +#endif +} + +static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) { + if (index < 0 || index >= REF_FRAMES) return NULL; + if (cm->ref_frame_map[index] == NULL) return NULL; + return &cm->ref_frame_map[index]->buf; +} + +static INLINE int get_free_fb(AV1_COMMON *cm) { + RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; + int i; + + lock_buffer_pool(cm->buffer_pool); + const int num_frame_bufs = cm->buffer_pool->num_frame_bufs; + for (i = 0; i < num_frame_bufs; ++i) + if (frame_bufs[i].ref_count == 0) break; + + if (i != num_frame_bufs) { + if (frame_bufs[i].buf.use_external_reference_buffers) { + // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the + // external reference buffers. Restore the buffer pointers to point to the + // internally allocated memory. + YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf; + ybf->y_buffer = ybf->store_buf_adr[0]; + ybf->u_buffer = ybf->store_buf_adr[1]; + ybf->v_buffer = ybf->store_buf_adr[2]; + ybf->use_external_reference_buffers = 0; + } + + frame_bufs[i].ref_count = 1; + } else { + // We should never run out of free buffers. If this assertion fails, there + // is a reference leak. + assert(0 && "Ran out of free frame buffers. Likely a reference leak."); + // Reset i to be INVALID_IDX to indicate no free buffer found. + i = INVALID_IDX; + } + + unlock_buffer_pool(cm->buffer_pool); + return i; +} + +static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) { + // Release the previously-used frame-buffer + if (cm->cur_frame != NULL) { + --cm->cur_frame->ref_count; + cm->cur_frame = NULL; + } + + // Assign a new framebuffer + const int new_fb_idx = get_free_fb(cm); + if (new_fb_idx == INVALID_IDX) return NULL; + + cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx]; +#if CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY + aom_invalidate_pyramid(cm->cur_frame->buf.y_pyramid); + av1_invalidate_corner_list(cm->cur_frame->buf.corners); +#endif // CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY + av1_zero(cm->cur_frame->interp_filter_selected); + return cm->cur_frame; +} + +// Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref +// counts accordingly. +static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr, + RefCntBuffer *rhs_ptr) { + RefCntBuffer *const old_ptr = *lhs_ptr; + if (old_ptr != NULL) { + assert(old_ptr->ref_count > 0); + // One less reference to the buffer at 'old_ptr', so decrease ref count. + --old_ptr->ref_count; + } + + *lhs_ptr = rhs_ptr; + // One more reference to the buffer at 'rhs_ptr', so increase ref count. + ++rhs_ptr->ref_count; +} + +static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) { + return cm->current_frame.frame_type == KEY_FRAME || + cm->current_frame.frame_type == INTRA_ONLY_FRAME; +} + +static INLINE int frame_is_sframe(const AV1_COMMON *cm) { + return cm->current_frame.frame_type == S_FRAME; +} + +// These functions take a reference frame label between LAST_FRAME and +// EXTREF_FRAME inclusive. Note that this is different to the indexing +// previously used by the frame_refs[] array. +static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm, + const MV_REFERENCE_FRAME ref_frame) { + return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME) + ? cm->remapped_ref_idx[ref_frame - LAST_FRAME] + : INVALID_IDX; +} + +static INLINE RefCntBuffer *get_ref_frame_buf( + const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { + const int map_idx = get_ref_frame_map_idx(cm, ref_frame); + return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL; +} + +// Both const and non-const versions of this function are provided so that it +// can be used with a const AV1_COMMON if needed. +static INLINE const struct scale_factors *get_ref_scale_factors_const( + const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { + const int map_idx = get_ref_frame_map_idx(cm, ref_frame); + return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL; +} + +static INLINE struct scale_factors *get_ref_scale_factors( + AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { + const int map_idx = get_ref_frame_map_idx(cm, ref_frame); + return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL; +} + +static INLINE RefCntBuffer *get_primary_ref_frame_buf( + const AV1_COMMON *const cm) { + const int primary_ref_frame = cm->features.primary_ref_frame; + if (primary_ref_frame == PRIMARY_REF_NONE) return NULL; + const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1); + return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL; +} + +// Returns 1 if this frame might allow mvs from some reference frame. +static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) { + return !cm->features.error_resilient_mode && + cm->seq_params->order_hint_info.enable_ref_frame_mvs && + cm->seq_params->order_hint_info.enable_order_hint && + !frame_is_intra_only(cm); +} + +// Returns 1 if this frame might use warped_motion +static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) { + return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) && + cm->seq_params->enable_warped_motion; +} + +static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) { + const int buf_rows = buf->mi_rows; + const int buf_cols = buf->mi_cols; + const CommonModeInfoParams *const mi_params = &cm->mi_params; + + if (buf->mvs == NULL || buf_rows != mi_params->mi_rows || + buf_cols != mi_params->mi_cols) { + aom_free(buf->mvs); + buf->mi_rows = mi_params->mi_rows; + buf->mi_cols = mi_params->mi_cols; + CHECK_MEM_ERROR(cm, buf->mvs, + (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) * + ((mi_params->mi_cols + 1) >> 1), + sizeof(*buf->mvs))); + aom_free(buf->seg_map); + CHECK_MEM_ERROR( + cm, buf->seg_map, + (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols, + sizeof(*buf->seg_map))); + } + + const int mem_size = + ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1); + + if (cm->tpl_mvs == NULL || cm->tpl_mvs_mem_size < mem_size) { + aom_free(cm->tpl_mvs); + CHECK_MEM_ERROR(cm, cm->tpl_mvs, + (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs))); + cm->tpl_mvs_mem_size = mem_size; + } +} + +void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params); + +static INLINE int av1_num_planes(const AV1_COMMON *cm) { + return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE; +} + +static INLINE void av1_init_above_context(CommonContexts *above_contexts, + int num_planes, int tile_row, + MACROBLOCKD *xd) { + for (int i = 0; i < num_planes; ++i) { + xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row]; + } + xd->above_partition_context = above_contexts->partition[tile_row]; + xd->above_txfm_context = above_contexts->txfm[tile_row]; +} + +static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) { + const int num_planes = av1_num_planes(cm); + const CommonQuantParams *const quant_params = &cm->quant_params; + + for (int i = 0; i < num_planes; ++i) { + if (xd->plane[i].plane_type == PLANE_TYPE_Y) { + memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX, + sizeof(quant_params->y_dequant_QTX)); + memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix, + sizeof(quant_params->y_iqmatrix)); + + } else { + if (i == AOM_PLANE_U) { + memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX, + sizeof(quant_params->u_dequant_QTX)); + memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix, + sizeof(quant_params->u_iqmatrix)); + } else { + memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX, + sizeof(quant_params->v_dequant_QTX)); + memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix, + sizeof(quant_params->v_iqmatrix)); + } + } + } + xd->mi_stride = cm->mi_params.mi_stride; + xd->error_info = cm->error; + cfl_init(&xd->cfl, cm->seq_params); +} + +static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col, + const int num_planes) { + int i; + int row_offset = mi_row; + int col_offset = mi_col; + for (i = 0; i < num_planes; ++i) { + struct macroblockd_plane *const pd = &xd->plane[i]; + // Offset the buffer pointer + const BLOCK_SIZE bsize = xd->mi[0]->bsize; + if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1)) + row_offset = mi_row - 1; + if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1)) + col_offset = mi_col - 1; + int above_idx = col_offset; + int left_idx = row_offset & MAX_MIB_MASK; + pd->above_entropy_context = + &xd->above_entropy_context[i][above_idx >> pd->subsampling_x]; + pd->left_entropy_context = + &xd->left_entropy_context[i][left_idx >> pd->subsampling_y]; + } +} + +static INLINE int calc_mi_size(int len) { + // len is in mi units. Align to a multiple of SBs. + return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2); +} + +static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, + const int num_planes) { + int i; + for (i = 0; i < num_planes; i++) { + xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x; + xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y; + + xd->plane[i].width = AOMMAX(xd->plane[i].width, 4); + xd->plane[i].height = AOMMAX(xd->plane[i].height, 4); + } +} + +static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, + int mi_row, int bh, int mi_col, int bw, + int mi_rows, int mi_cols) { + xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE); + xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE); + xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE)); + xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE); + + xd->mi_row = mi_row; + xd->mi_col = mi_col; + + // Are edges available for intra prediction? + xd->up_available = (mi_row > tile->mi_row_start); + + const int ss_x = xd->plane[1].subsampling_x; + const int ss_y = xd->plane[1].subsampling_y; + + xd->left_available = (mi_col > tile->mi_col_start); + xd->chroma_up_available = xd->up_available; + xd->chroma_left_available = xd->left_available; + if (ss_x && bw < mi_size_wide[BLOCK_8X8]) + xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start; + if (ss_y && bh < mi_size_high[BLOCK_8X8]) + xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start; + if (xd->up_available) { + xd->above_mbmi = xd->mi[-xd->mi_stride]; + } else { + xd->above_mbmi = NULL; + } + + if (xd->left_available) { + xd->left_mbmi = xd->mi[-1]; + } else { + xd->left_mbmi = NULL; + } + + const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) && + ((mi_col & 0x01) || !(bw & 0x01) || !ss_x); + xd->is_chroma_ref = chroma_ref; + if (chroma_ref) { + // To help calculate the "above" and "left" chroma blocks, note that the + // current block may cover multiple luma blocks (e.g., if partitioned into + // 4x4 luma blocks). + // First, find the top-left-most luma block covered by this chroma block + MB_MODE_INFO **base_mi = + &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)]; + + // Then, we consider the luma region covered by the left or above 4x4 chroma + // prediction. We want to point to the chroma reference block in that + // region, which is the bottom-right-most mi unit. + // This leads to the following offsets: + MB_MODE_INFO *chroma_above_mi = + xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL; + xd->chroma_above_mbmi = chroma_above_mi; + + MB_MODE_INFO *chroma_left_mi = + xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL; + xd->chroma_left_mbmi = chroma_left_mi; + } + + xd->height = bh; + xd->width = bw; + + xd->is_last_vertical_rect = 0; + if (xd->width < xd->height) { + if (!((mi_col + xd->width) & (xd->height - 1))) { + xd->is_last_vertical_rect = 1; + } + } + + xd->is_first_horizontal_rect = 0; + if (xd->width > xd->height) + if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1; +} + +static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx, + const MB_MODE_INFO *above_mi, + const MB_MODE_INFO *left_mi) { + const PREDICTION_MODE above = av1_above_block_mode(above_mi); + const PREDICTION_MODE left = av1_left_block_mode(left_mi); + const int above_ctx = intra_mode_context[above]; + const int left_ctx = intra_mode_context[left]; + return tile_ctx->kf_y_cdf[above_ctx][left_ctx]; +} + +static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row, + int mi_col, BLOCK_SIZE subsize, + BLOCK_SIZE bsize) { + PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col; + PARTITION_CONTEXT *const left_ctx = + xd->left_partition_context + (mi_row & MAX_MIB_MASK); + + const int bw = mi_size_wide[bsize]; + const int bh = mi_size_high[bsize]; + memset(above_ctx, partition_context_lookup[subsize].above, bw); + memset(left_ctx, partition_context_lookup[subsize].left, bh); +} + +static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize, + int subsampling_x, int subsampling_y) { + assert(bsize < BLOCK_SIZES_ALL); + const int bw = mi_size_wide[bsize]; + const int bh = mi_size_high[bsize]; + int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) && + ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x); + return ref_pos; +} + +static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf, + size_t element) { + assert(cdf != NULL); + return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element]; +} + +static INLINE void partition_gather_horz_alike(aom_cdf_prob *out, + const aom_cdf_prob *const in, + BLOCK_SIZE bsize) { + (void)bsize; + out[0] = CDF_PROB_TOP; + out[0] -= cdf_element_prob(in, PARTITION_HORZ); + out[0] -= cdf_element_prob(in, PARTITION_SPLIT); + out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); + out[0] -= cdf_element_prob(in, PARTITION_HORZ_B); + out[0] -= cdf_element_prob(in, PARTITION_VERT_A); + if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4); + out[0] = AOM_ICDF(out[0]); + out[1] = AOM_ICDF(CDF_PROB_TOP); +} + +static INLINE void partition_gather_vert_alike(aom_cdf_prob *out, + const aom_cdf_prob *const in, + BLOCK_SIZE bsize) { + (void)bsize; + out[0] = CDF_PROB_TOP; + out[0] -= cdf_element_prob(in, PARTITION_VERT); + out[0] -= cdf_element_prob(in, PARTITION_SPLIT); + out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); + out[0] -= cdf_element_prob(in, PARTITION_VERT_A); + out[0] -= cdf_element_prob(in, PARTITION_VERT_B); + if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4); + out[0] = AOM_ICDF(out[0]); + out[1] = AOM_ICDF(CDF_PROB_TOP); +} + +static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row, + int mi_col, BLOCK_SIZE subsize, + BLOCK_SIZE bsize, + PARTITION_TYPE partition) { + if (bsize >= BLOCK_8X8) { + const int hbs = mi_size_wide[bsize] / 2; + BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); + switch (partition) { + case PARTITION_SPLIT: + if (bsize != BLOCK_8X8) break; + AOM_FALLTHROUGH_INTENDED; + case PARTITION_NONE: + case PARTITION_HORZ: + case PARTITION_VERT: + case PARTITION_HORZ_4: + case PARTITION_VERT_4: + update_partition_context(xd, mi_row, mi_col, subsize, bsize); + break; + case PARTITION_HORZ_A: + update_partition_context(xd, mi_row, mi_col, bsize2, subsize); + update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); + break; + case PARTITION_HORZ_B: + update_partition_context(xd, mi_row, mi_col, subsize, subsize); + update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); + break; + case PARTITION_VERT_A: + update_partition_context(xd, mi_row, mi_col, bsize2, subsize); + update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); + break; + case PARTITION_VERT_B: + update_partition_context(xd, mi_row, mi_col, subsize, subsize); + update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); + break; + default: assert(0 && "Invalid partition type"); + } + } +} + +static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row, + int mi_col, BLOCK_SIZE bsize) { + const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col; + const PARTITION_CONTEXT *left_ctx = + xd->left_partition_context + (mi_row & MAX_MIB_MASK); + // Minimum partition point is 8x8. Offset the bsl accordingly. + const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8]; + int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; + + assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]); + assert(bsl >= 0); + + return (left * 2 + above) + bsl * PARTITION_PLOFFSET; +} + +// Return the number of elements in the partition CDF when +// partitioning the (square) block with luma block size of bsize. +static INLINE int partition_cdf_length(BLOCK_SIZE bsize) { + if (bsize <= BLOCK_8X8) + return PARTITION_TYPES; + else if (bsize == BLOCK_128X128) + return EXT_PARTITION_TYPES - 2; + else + return EXT_PARTITION_TYPES; +} + +static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize, + int plane) { + assert(bsize < BLOCK_SIZES_ALL); + int max_blocks_wide = block_size_wide[bsize]; + + if (xd->mb_to_right_edge < 0) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x); + } + + // Scale the width in the transform block unit. + return max_blocks_wide >> MI_SIZE_LOG2; +} + +static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize, + int plane) { + int max_blocks_high = block_size_high[bsize]; + + if (xd->mb_to_bottom_edge < 0) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y); + } + + // Scale the height in the transform block unit. + return max_blocks_high >> MI_SIZE_LOG2; +} + +static INLINE void av1_zero_above_context(AV1_COMMON *const cm, + const MACROBLOCKD *xd, + int mi_col_start, int mi_col_end, + const int tile_row) { + const SequenceHeader *const seq_params = cm->seq_params; + const int num_planes = av1_num_planes(cm); + const int width = mi_col_end - mi_col_start; + const int aligned_width = + ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2); + const int offset_y = mi_col_start; + const int width_y = aligned_width; + const int offset_uv = offset_y >> seq_params->subsampling_x; + const int width_uv = width_y >> seq_params->subsampling_x; + CommonContexts *const above_contexts = &cm->above_contexts; + + av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y); + if (num_planes > 1) { + if (above_contexts->entropy[1][tile_row] && + above_contexts->entropy[2][tile_row]) { + av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv, + width_uv); + av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv, + width_uv); + } else { + aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, + "Invalid value of planes"); + } + } + + av1_zero_array(above_contexts->partition[tile_row] + mi_col_start, + aligned_width); + + memset(above_contexts->txfm[tile_row] + mi_col_start, + tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT)); +} + +static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) { + av1_zero(xd->left_entropy_context); + av1_zero(xd->left_partition_context); + + memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST], + sizeof(xd->left_txfm_context_buffer)); +} + +static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) { + int i; + for (i = 0; i < len; ++i) txfm_ctx[i] = txs; +} + +static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip, + const MACROBLOCKD *xd) { + uint8_t bw = tx_size_wide[tx_size]; + uint8_t bh = tx_size_high[tx_size]; + + if (skip) { + bw = n4_w * MI_SIZE; + bh = n4_h * MI_SIZE; + } + + set_txfm_ctx(xd->above_txfm_context, bw, n4_w); + set_txfm_ctx(xd->left_txfm_context, bh, n4_h); +} + +static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params, + int mi_row, int mi_col) { + return mi_row * mi_params->mi_stride + mi_col; +} + +static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params, + int mi_row, int mi_col) { + const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize]; + const int mi_alloc_row = mi_row / mi_alloc_size_1d; + const int mi_alloc_col = mi_col / mi_alloc_size_1d; + + return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col; +} + +// For this partition block, set pointers in mi_params->mi_grid_base and xd->mi. +static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params, + MACROBLOCKD *const xd, int mi_row, + int mi_col) { + // 'mi_grid_base' should point to appropriate memory in 'mi'. + const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col); + const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col); + mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx]; + // 'xd->mi' should point to an offset in 'mi_grid_base'; + xd->mi = mi_params->mi_grid_base + mi_grid_idx; + // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'. + xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx; + xd->tx_type_map_stride = mi_params->mi_stride; +} + +static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx, + TXFM_CONTEXT *left_ctx, + TX_SIZE tx_size, TX_SIZE txb_size) { + BLOCK_SIZE bsize = txsize_to_bsize[txb_size]; + int bh = mi_size_high[bsize]; + int bw = mi_size_wide[bsize]; + uint8_t txw = tx_size_wide[tx_size]; + uint8_t txh = tx_size_high[tx_size]; + int i; + for (i = 0; i < bh; ++i) left_ctx[i] = txh; + for (i = 0; i < bw; ++i) above_ctx[i] = txw; +} + +static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) { + switch (tx_dim) { + case 128: + case 64: return TX_64X64; break; + case 32: return TX_32X32; break; + case 16: return TX_16X16; break; + case 8: return TX_8X8; break; + default: return TX_4X4; + } +} + +static INLINE TX_SIZE get_tx_size(int width, int height) { + if (width == height) { + return get_sqr_tx_size(width); + } + if (width < height) { + if (width + width == height) { + switch (width) { + case 4: return TX_4X8; break; + case 8: return TX_8X16; break; + case 16: return TX_16X32; break; + case 32: return TX_32X64; break; + } + } else { + switch (width) { + case 4: return TX_4X16; break; + case 8: return TX_8X32; break; + case 16: return TX_16X64; break; + } + } + } else { + if (height + height == width) { + switch (height) { + case 4: return TX_8X4; break; + case 8: return TX_16X8; break; + case 16: return TX_32X16; break; + case 32: return TX_64X32; break; + } + } else { + switch (height) { + case 4: return TX_16X4; break; + case 8: return TX_32X8; break; + case 16: return TX_64X16; break; + } + } + } + assert(0); + return TX_4X4; +} + +static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx, + const TXFM_CONTEXT *const left_ctx, + BLOCK_SIZE bsize, TX_SIZE tx_size) { + const uint8_t txw = tx_size_wide[tx_size]; + const uint8_t txh = tx_size_high[tx_size]; + const int above = *above_ctx < txw; + const int left = *left_ctx < txh; + int category = TXFM_PARTITION_CONTEXTS; + + // dummy return, not used by others. + if (tx_size <= TX_4X4) return 0; + + TX_SIZE max_tx_size = + get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize])); + + if (max_tx_size >= TX_8X8) { + category = + (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) + + (TX_SIZES - 1 - max_tx_size) * 2; + } + assert(category != TXFM_PARTITION_CONTEXTS); + return category * 3 + above + left; +} + +// Compute the next partition in the direction of the sb_type stored in the mi +// array, starting with bsize. +static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm, + int mi_row, int mi_col, + BLOCK_SIZE bsize) { + const CommonModeInfoParams *const mi_params = &cm->mi_params; + if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) + return PARTITION_INVALID; + + const int offset = mi_row * mi_params->mi_stride + mi_col; + MB_MODE_INFO **mi = mi_params->mi_grid_base + offset; + const BLOCK_SIZE subsize = mi[0]->bsize; + + assert(bsize < BLOCK_SIZES_ALL); + + if (subsize == bsize) return PARTITION_NONE; + + const int bhigh = mi_size_high[bsize]; + const int bwide = mi_size_wide[bsize]; + const int sshigh = mi_size_high[subsize]; + const int sswide = mi_size_wide[subsize]; + + if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows && + mi_col + bhigh / 2 < mi_params->mi_cols) { + // In this case, the block might be using an extended partition + // type. + const MB_MODE_INFO *const mbmi_right = mi[bwide / 2]; + const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride]; + + if (sswide == bwide) { + // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or + // PARTITION_HORZ_B. To distinguish the latter two, check if the lower + // half was split. + if (sshigh * 4 == bhigh) return PARTITION_HORZ_4; + assert(sshigh * 2 == bhigh); + + if (mbmi_below->bsize == subsize) + return PARTITION_HORZ; + else + return PARTITION_HORZ_B; + } else if (sshigh == bhigh) { + // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or + // PARTITION_VERT_B. To distinguish the latter two, check if the right + // half was split. + if (sswide * 4 == bwide) return PARTITION_VERT_4; + assert(sswide * 2 == bhigh); + + if (mbmi_right->bsize == subsize) + return PARTITION_VERT; + else + return PARTITION_VERT_B; + } else { + // Smaller width and smaller height. Might be PARTITION_SPLIT or could be + // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both + // dimensions, we immediately know this is a split (which will recurse to + // get to subsize). Otherwise look down and to the right. With + // PARTITION_VERT_A, the right block will have height bhigh; with + // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise + // it's PARTITION_SPLIT. + if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT; + + if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A; + if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A; + + return PARTITION_SPLIT; + } + } + const int vert_split = sswide < bwide; + const int horz_split = sshigh < bhigh; + const int split_idx = (vert_split << 1) | horz_split; + assert(split_idx != 0); + + static const PARTITION_TYPE base_partitions[4] = { + PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT + }; + + return base_partitions[split_idx]; +} + +static INLINE void set_sb_size(SequenceHeader *const seq_params, + BLOCK_SIZE sb_size) { + seq_params->sb_size = sb_size; + seq_params->mib_size = mi_size_wide[seq_params->sb_size]; + seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size]; +} + +// Returns true if the frame is fully lossless at the coded resolution. +// Note: If super-resolution is used, such a frame will still NOT be lossless at +// the upscaled resolution. +static INLINE int is_coded_lossless(const AV1_COMMON *cm, + const MACROBLOCKD *xd) { + int coded_lossless = 1; + if (cm->seg.enabled) { + for (int i = 0; i < MAX_SEGMENTS; ++i) { + if (!xd->lossless[i]) { + coded_lossless = 0; + break; + } + } + } else { + coded_lossless = xd->lossless[0]; + } + return coded_lossless; +} + +static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) { + return seq_level_idx == SEQ_LEVEL_MAX || + (seq_level_idx < SEQ_LEVELS && + // The following levels are currently undefined. + seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 && + seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 && + seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3 +#if !CONFIG_CWG_C013 + && seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 && + seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3 && + seq_level_idx != SEQ_LEVEL_8_0 && seq_level_idx != SEQ_LEVEL_8_1 && + seq_level_idx != SEQ_LEVEL_8_2 && seq_level_idx != SEQ_LEVEL_8_3 +#endif + ); +} + +/*!\endcond */ + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_ -- cgit v1.2.3