From 26a029d407be480d791972afb5975cf62c9360a6 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Fri, 19 Apr 2024 02:47:55 +0200 Subject: Adding upstream version 124.0.1. Signed-off-by: Daniel Baumann --- .../audio_processing/aec3/adaptive_fir_filter.cc | 744 +++++++++++++++++++++ 1 file changed, 744 insertions(+) create mode 100644 third_party/libwebrtc/modules/audio_processing/aec3/adaptive_fir_filter.cc (limited to 'third_party/libwebrtc/modules/audio_processing/aec3/adaptive_fir_filter.cc') diff --git a/third_party/libwebrtc/modules/audio_processing/aec3/adaptive_fir_filter.cc b/third_party/libwebrtc/modules/audio_processing/aec3/adaptive_fir_filter.cc new file mode 100644 index 0000000000..917aa951ee --- /dev/null +++ b/third_party/libwebrtc/modules/audio_processing/aec3/adaptive_fir_filter.cc @@ -0,0 +1,744 @@ +/* + * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "modules/audio_processing/aec3/adaptive_fir_filter.h" + +// Defines WEBRTC_ARCH_X86_FAMILY, used below. +#include "rtc_base/system/arch.h" + +#if defined(WEBRTC_HAS_NEON) +#include +#endif +#if defined(WEBRTC_ARCH_X86_FAMILY) +#include +#endif +#include + +#include +#include + +#include "modules/audio_processing/aec3/fft_data.h" +#include "rtc_base/checks.h" + +namespace webrtc { + +namespace aec3 { + +// Computes and stores the frequency response of the filter. +void ComputeFrequencyResponse( + size_t num_partitions, + const std::vector>& H, + std::vector>* H2) { + for (auto& H2_ch : *H2) { + H2_ch.fill(0.f); + } + + const size_t num_render_channels = H[0].size(); + RTC_DCHECK_EQ(H.size(), H2->capacity()); + for (size_t p = 0; p < num_partitions; ++p) { + RTC_DCHECK_EQ(kFftLengthBy2Plus1, (*H2)[p].size()); + for (size_t ch = 0; ch < num_render_channels; ++ch) { + for (size_t j = 0; j < kFftLengthBy2Plus1; ++j) { + float tmp = + H[p][ch].re[j] * H[p][ch].re[j] + H[p][ch].im[j] * H[p][ch].im[j]; + (*H2)[p][j] = std::max((*H2)[p][j], tmp); + } + } + } +} + +#if defined(WEBRTC_HAS_NEON) +// Computes and stores the frequency response of the filter. +void ComputeFrequencyResponse_Neon( + size_t num_partitions, + const std::vector>& H, + std::vector>* H2) { + for (auto& H2_ch : *H2) { + H2_ch.fill(0.f); + } + + const size_t num_render_channels = H[0].size(); + RTC_DCHECK_EQ(H.size(), H2->capacity()); + for (size_t p = 0; p < num_partitions; ++p) { + RTC_DCHECK_EQ(kFftLengthBy2Plus1, (*H2)[p].size()); + auto& H2_p = (*H2)[p]; + for (size_t ch = 0; ch < num_render_channels; ++ch) { + const FftData& H_p_ch = H[p][ch]; + for (size_t j = 0; j < kFftLengthBy2; j += 4) { + const float32x4_t re = vld1q_f32(&H_p_ch.re[j]); + const float32x4_t im = vld1q_f32(&H_p_ch.im[j]); + float32x4_t H2_new = vmulq_f32(re, re); + H2_new = vmlaq_f32(H2_new, im, im); + float32x4_t H2_p_j = vld1q_f32(&H2_p[j]); + H2_p_j = vmaxq_f32(H2_p_j, H2_new); + vst1q_f32(&H2_p[j], H2_p_j); + } + float H2_new = H_p_ch.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] + + H_p_ch.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2]; + H2_p[kFftLengthBy2] = std::max(H2_p[kFftLengthBy2], H2_new); + } + } +} +#endif + +#if defined(WEBRTC_ARCH_X86_FAMILY) +// Computes and stores the frequency response of the filter. +void ComputeFrequencyResponse_Sse2( + size_t num_partitions, + const std::vector>& H, + std::vector>* H2) { + for (auto& H2_ch : *H2) { + H2_ch.fill(0.f); + } + + const size_t num_render_channels = H[0].size(); + RTC_DCHECK_EQ(H.size(), H2->capacity()); + // constexpr __mmmask8 kMaxMask = static_cast<__mmmask8>(256u); + for (size_t p = 0; p < num_partitions; ++p) { + RTC_DCHECK_EQ(kFftLengthBy2Plus1, (*H2)[p].size()); + auto& H2_p = (*H2)[p]; + for (size_t ch = 0; ch < num_render_channels; ++ch) { + const FftData& H_p_ch = H[p][ch]; + for (size_t j = 0; j < kFftLengthBy2; j += 4) { + const __m128 re = _mm_loadu_ps(&H_p_ch.re[j]); + const __m128 re2 = _mm_mul_ps(re, re); + const __m128 im = _mm_loadu_ps(&H_p_ch.im[j]); + const __m128 im2 = _mm_mul_ps(im, im); + const __m128 H2_new = _mm_add_ps(re2, im2); + __m128 H2_k_j = _mm_loadu_ps(&H2_p[j]); + H2_k_j = _mm_max_ps(H2_k_j, H2_new); + _mm_storeu_ps(&H2_p[j], H2_k_j); + } + float H2_new = H_p_ch.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] + + H_p_ch.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2]; + H2_p[kFftLengthBy2] = std::max(H2_p[kFftLengthBy2], H2_new); + } + } +} +#endif + +// Adapts the filter partitions as H(t+1)=H(t)+G(t)*conj(X(t)). +void AdaptPartitions(const RenderBuffer& render_buffer, + const FftData& G, + size_t num_partitions, + std::vector>* H) { + rtc::ArrayView> render_buffer_data = + render_buffer.GetFftBuffer(); + size_t index = render_buffer.Position(); + const size_t num_render_channels = render_buffer_data[index].size(); + for (size_t p = 0; p < num_partitions; ++p) { + for (size_t ch = 0; ch < num_render_channels; ++ch) { + const FftData& X_p_ch = render_buffer_data[index][ch]; + FftData& H_p_ch = (*H)[p][ch]; + for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { + H_p_ch.re[k] += X_p_ch.re[k] * G.re[k] + X_p_ch.im[k] * G.im[k]; + H_p_ch.im[k] += X_p_ch.re[k] * G.im[k] - X_p_ch.im[k] * G.re[k]; + } + } + index = index < (render_buffer_data.size() - 1) ? index + 1 : 0; + } +} + +#if defined(WEBRTC_HAS_NEON) +// Adapts the filter partitions. (Neon variant) +void AdaptPartitions_Neon(const RenderBuffer& render_buffer, + const FftData& G, + size_t num_partitions, + std::vector>* H) { + rtc::ArrayView> render_buffer_data = + render_buffer.GetFftBuffer(); + const size_t num_render_channels = render_buffer_data[0].size(); + const size_t lim1 = std::min( + render_buffer_data.size() - render_buffer.Position(), num_partitions); + const size_t lim2 = num_partitions; + constexpr size_t kNumFourBinBands = kFftLengthBy2 / 4; + + size_t X_partition = render_buffer.Position(); + size_t limit = lim1; + size_t p = 0; + do { + for (; p < limit; ++p, ++X_partition) { + for (size_t ch = 0; ch < num_render_channels; ++ch) { + FftData& H_p_ch = (*H)[p][ch]; + const FftData& X = render_buffer_data[X_partition][ch]; + for (size_t k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) { + const float32x4_t G_re = vld1q_f32(&G.re[k]); + const float32x4_t G_im = vld1q_f32(&G.im[k]); + const float32x4_t X_re = vld1q_f32(&X.re[k]); + const float32x4_t X_im = vld1q_f32(&X.im[k]); + const float32x4_t H_re = vld1q_f32(&H_p_ch.re[k]); + const float32x4_t H_im = vld1q_f32(&H_p_ch.im[k]); + const float32x4_t a = vmulq_f32(X_re, G_re); + const float32x4_t e = vmlaq_f32(a, X_im, G_im); + const float32x4_t c = vmulq_f32(X_re, G_im); + const float32x4_t f = vmlsq_f32(c, X_im, G_re); + const float32x4_t g = vaddq_f32(H_re, e); + const float32x4_t h = vaddq_f32(H_im, f); + vst1q_f32(&H_p_ch.re[k], g); + vst1q_f32(&H_p_ch.im[k], h); + } + } + } + + X_partition = 0; + limit = lim2; + } while (p < lim2); + + X_partition = render_buffer.Position(); + limit = lim1; + p = 0; + do { + for (; p < limit; ++p, ++X_partition) { + for (size_t ch = 0; ch < num_render_channels; ++ch) { + FftData& H_p_ch = (*H)[p][ch]; + const FftData& X = render_buffer_data[X_partition][ch]; + + H_p_ch.re[kFftLengthBy2] += X.re[kFftLengthBy2] * G.re[kFftLengthBy2] + + X.im[kFftLengthBy2] * G.im[kFftLengthBy2]; + H_p_ch.im[kFftLengthBy2] += X.re[kFftLengthBy2] * G.im[kFftLengthBy2] - + X.im[kFftLengthBy2] * G.re[kFftLengthBy2]; + } + } + X_partition = 0; + limit = lim2; + } while (p < lim2); +} +#endif + +#if defined(WEBRTC_ARCH_X86_FAMILY) +// Adapts the filter partitions. (SSE2 variant) +void AdaptPartitions_Sse2(const RenderBuffer& render_buffer, + const FftData& G, + size_t num_partitions, + std::vector>* H) { + rtc::ArrayView> render_buffer_data = + render_buffer.GetFftBuffer(); + const size_t num_render_channels = render_buffer_data[0].size(); + const size_t lim1 = std::min( + render_buffer_data.size() - render_buffer.Position(), num_partitions); + const size_t lim2 = num_partitions; + constexpr size_t kNumFourBinBands = kFftLengthBy2 / 4; + + size_t X_partition = render_buffer.Position(); + size_t limit = lim1; + size_t p = 0; + do { + for (; p < limit; ++p, ++X_partition) { + for (size_t ch = 0; ch < num_render_channels; ++ch) { + FftData& H_p_ch = (*H)[p][ch]; + const FftData& X = render_buffer_data[X_partition][ch]; + + for (size_t k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) { + const __m128 G_re = _mm_loadu_ps(&G.re[k]); + const __m128 G_im = _mm_loadu_ps(&G.im[k]); + const __m128 X_re = _mm_loadu_ps(&X.re[k]); + const __m128 X_im = _mm_loadu_ps(&X.im[k]); + const __m128 H_re = _mm_loadu_ps(&H_p_ch.re[k]); + const __m128 H_im = _mm_loadu_ps(&H_p_ch.im[k]); + const __m128 a = _mm_mul_ps(X_re, G_re); + const __m128 b = _mm_mul_ps(X_im, G_im); + const __m128 c = _mm_mul_ps(X_re, G_im); + const __m128 d = _mm_mul_ps(X_im, G_re); + const __m128 e = _mm_add_ps(a, b); + const __m128 f = _mm_sub_ps(c, d); + const __m128 g = _mm_add_ps(H_re, e); + const __m128 h = _mm_add_ps(H_im, f); + _mm_storeu_ps(&H_p_ch.re[k], g); + _mm_storeu_ps(&H_p_ch.im[k], h); + } + } + } + X_partition = 0; + limit = lim2; + } while (p < lim2); + + X_partition = render_buffer.Position(); + limit = lim1; + p = 0; + do { + for (; p < limit; ++p, ++X_partition) { + for (size_t ch = 0; ch < num_render_channels; ++ch) { + FftData& H_p_ch = (*H)[p][ch]; + const FftData& X = render_buffer_data[X_partition][ch]; + + H_p_ch.re[kFftLengthBy2] += X.re[kFftLengthBy2] * G.re[kFftLengthBy2] + + X.im[kFftLengthBy2] * G.im[kFftLengthBy2]; + H_p_ch.im[kFftLengthBy2] += X.re[kFftLengthBy2] * G.im[kFftLengthBy2] - + X.im[kFftLengthBy2] * G.re[kFftLengthBy2]; + } + } + + X_partition = 0; + limit = lim2; + } while (p < lim2); +} +#endif + +// Produces the filter output. +void ApplyFilter(const RenderBuffer& render_buffer, + size_t num_partitions, + const std::vector>& H, + FftData* S) { + S->re.fill(0.f); + S->im.fill(0.f); + + rtc::ArrayView> render_buffer_data = + render_buffer.GetFftBuffer(); + size_t index = render_buffer.Position(); + const size_t num_render_channels = render_buffer_data[index].size(); + for (size_t p = 0; p < num_partitions; ++p) { + RTC_DCHECK_EQ(num_render_channels, H[p].size()); + for (size_t ch = 0; ch < num_render_channels; ++ch) { + const FftData& X_p_ch = render_buffer_data[index][ch]; + const FftData& H_p_ch = H[p][ch]; + for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { + S->re[k] += X_p_ch.re[k] * H_p_ch.re[k] - X_p_ch.im[k] * H_p_ch.im[k]; + S->im[k] += X_p_ch.re[k] * H_p_ch.im[k] + X_p_ch.im[k] * H_p_ch.re[k]; + } + } + index = index < (render_buffer_data.size() - 1) ? index + 1 : 0; + } +} + +#if defined(WEBRTC_HAS_NEON) +// Produces the filter output (Neon variant). +void ApplyFilter_Neon(const RenderBuffer& render_buffer, + size_t num_partitions, + const std::vector>& H, + FftData* S) { + // const RenderBuffer& render_buffer, + // rtc::ArrayView H, + // FftData* S) { + RTC_DCHECK_GE(H.size(), H.size() - 1); + S->Clear(); + + rtc::ArrayView> render_buffer_data = + render_buffer.GetFftBuffer(); + const size_t num_render_channels = render_buffer_data[0].size(); + const size_t lim1 = std::min( + render_buffer_data.size() - render_buffer.Position(), num_partitions); + const size_t lim2 = num_partitions; + constexpr size_t kNumFourBinBands = kFftLengthBy2 / 4; + + size_t X_partition = render_buffer.Position(); + size_t p = 0; + size_t limit = lim1; + do { + for (; p < limit; ++p, ++X_partition) { + for (size_t ch = 0; ch < num_render_channels; ++ch) { + const FftData& H_p_ch = H[p][ch]; + const FftData& X = render_buffer_data[X_partition][ch]; + for (size_t k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) { + const float32x4_t X_re = vld1q_f32(&X.re[k]); + const float32x4_t X_im = vld1q_f32(&X.im[k]); + const float32x4_t H_re = vld1q_f32(&H_p_ch.re[k]); + const float32x4_t H_im = vld1q_f32(&H_p_ch.im[k]); + const float32x4_t S_re = vld1q_f32(&S->re[k]); + const float32x4_t S_im = vld1q_f32(&S->im[k]); + const float32x4_t a = vmulq_f32(X_re, H_re); + const float32x4_t e = vmlsq_f32(a, X_im, H_im); + const float32x4_t c = vmulq_f32(X_re, H_im); + const float32x4_t f = vmlaq_f32(c, X_im, H_re); + const float32x4_t g = vaddq_f32(S_re, e); + const float32x4_t h = vaddq_f32(S_im, f); + vst1q_f32(&S->re[k], g); + vst1q_f32(&S->im[k], h); + } + } + } + limit = lim2; + X_partition = 0; + } while (p < lim2); + + X_partition = render_buffer.Position(); + p = 0; + limit = lim1; + do { + for (; p < limit; ++p, ++X_partition) { + for (size_t ch = 0; ch < num_render_channels; ++ch) { + const FftData& H_p_ch = H[p][ch]; + const FftData& X = render_buffer_data[X_partition][ch]; + S->re[kFftLengthBy2] += X.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] - + X.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2]; + S->im[kFftLengthBy2] += X.re[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2] + + X.im[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2]; + } + } + limit = lim2; + X_partition = 0; + } while (p < lim2); +} +#endif + +#if defined(WEBRTC_ARCH_X86_FAMILY) +// Produces the filter output (SSE2 variant). +void ApplyFilter_Sse2(const RenderBuffer& render_buffer, + size_t num_partitions, + const std::vector>& H, + FftData* S) { + // const RenderBuffer& render_buffer, + // rtc::ArrayView H, + // FftData* S) { + RTC_DCHECK_GE(H.size(), H.size() - 1); + S->re.fill(0.f); + S->im.fill(0.f); + + rtc::ArrayView> render_buffer_data = + render_buffer.GetFftBuffer(); + const size_t num_render_channels = render_buffer_data[0].size(); + const size_t lim1 = std::min( + render_buffer_data.size() - render_buffer.Position(), num_partitions); + const size_t lim2 = num_partitions; + constexpr size_t kNumFourBinBands = kFftLengthBy2 / 4; + + size_t X_partition = render_buffer.Position(); + size_t p = 0; + size_t limit = lim1; + do { + for (; p < limit; ++p, ++X_partition) { + for (size_t ch = 0; ch < num_render_channels; ++ch) { + const FftData& H_p_ch = H[p][ch]; + const FftData& X = render_buffer_data[X_partition][ch]; + for (size_t k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) { + const __m128 X_re = _mm_loadu_ps(&X.re[k]); + const __m128 X_im = _mm_loadu_ps(&X.im[k]); + const __m128 H_re = _mm_loadu_ps(&H_p_ch.re[k]); + const __m128 H_im = _mm_loadu_ps(&H_p_ch.im[k]); + const __m128 S_re = _mm_loadu_ps(&S->re[k]); + const __m128 S_im = _mm_loadu_ps(&S->im[k]); + const __m128 a = _mm_mul_ps(X_re, H_re); + const __m128 b = _mm_mul_ps(X_im, H_im); + const __m128 c = _mm_mul_ps(X_re, H_im); + const __m128 d = _mm_mul_ps(X_im, H_re); + const __m128 e = _mm_sub_ps(a, b); + const __m128 f = _mm_add_ps(c, d); + const __m128 g = _mm_add_ps(S_re, e); + const __m128 h = _mm_add_ps(S_im, f); + _mm_storeu_ps(&S->re[k], g); + _mm_storeu_ps(&S->im[k], h); + } + } + } + limit = lim2; + X_partition = 0; + } while (p < lim2); + + X_partition = render_buffer.Position(); + p = 0; + limit = lim1; + do { + for (; p < limit; ++p, ++X_partition) { + for (size_t ch = 0; ch < num_render_channels; ++ch) { + const FftData& H_p_ch = H[p][ch]; + const FftData& X = render_buffer_data[X_partition][ch]; + S->re[kFftLengthBy2] += X.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] - + X.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2]; + S->im[kFftLengthBy2] += X.re[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2] + + X.im[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2]; + } + } + limit = lim2; + X_partition = 0; + } while (p < lim2); +} +#endif + +} // namespace aec3 + +namespace { + +// Ensures that the newly added filter partitions after a size increase are set +// to zero. +void ZeroFilter(size_t old_size, + size_t new_size, + std::vector>* H) { + RTC_DCHECK_GE(H->size(), old_size); + RTC_DCHECK_GE(H->size(), new_size); + + for (size_t p = old_size; p < new_size; ++p) { + RTC_DCHECK_EQ((*H)[p].size(), (*H)[0].size()); + for (size_t ch = 0; ch < (*H)[0].size(); ++ch) { + (*H)[p][ch].Clear(); + } + } +} + +} // namespace + +AdaptiveFirFilter::AdaptiveFirFilter(size_t max_size_partitions, + size_t initial_size_partitions, + size_t size_change_duration_blocks, + size_t num_render_channels, + Aec3Optimization optimization, + ApmDataDumper* data_dumper) + : data_dumper_(data_dumper), + fft_(), + optimization_(optimization), + num_render_channels_(num_render_channels), + max_size_partitions_(max_size_partitions), + size_change_duration_blocks_( + static_cast(size_change_duration_blocks)), + current_size_partitions_(initial_size_partitions), + target_size_partitions_(initial_size_partitions), + old_target_size_partitions_(initial_size_partitions), + H_(max_size_partitions_, std::vector(num_render_channels_)) { + RTC_DCHECK(data_dumper_); + RTC_DCHECK_GE(max_size_partitions, initial_size_partitions); + + RTC_DCHECK_LT(0, size_change_duration_blocks_); + one_by_size_change_duration_blocks_ = 1.f / size_change_duration_blocks_; + + ZeroFilter(0, max_size_partitions_, &H_); + + SetSizePartitions(current_size_partitions_, true); +} + +AdaptiveFirFilter::~AdaptiveFirFilter() = default; + +void AdaptiveFirFilter::HandleEchoPathChange() { + // TODO(peah): Check the value and purpose of the code below. + ZeroFilter(current_size_partitions_, max_size_partitions_, &H_); +} + +void AdaptiveFirFilter::SetSizePartitions(size_t size, bool immediate_effect) { + RTC_DCHECK_EQ(max_size_partitions_, H_.capacity()); + RTC_DCHECK_LE(size, max_size_partitions_); + + target_size_partitions_ = std::min(max_size_partitions_, size); + if (immediate_effect) { + size_t old_size_partitions_ = current_size_partitions_; + current_size_partitions_ = old_target_size_partitions_ = + target_size_partitions_; + ZeroFilter(old_size_partitions_, current_size_partitions_, &H_); + + partition_to_constrain_ = + std::min(partition_to_constrain_, current_size_partitions_ - 1); + size_change_counter_ = 0; + } else { + size_change_counter_ = size_change_duration_blocks_; + } +} + +void AdaptiveFirFilter::UpdateSize() { + RTC_DCHECK_GE(size_change_duration_blocks_, size_change_counter_); + size_t old_size_partitions_ = current_size_partitions_; + if (size_change_counter_ > 0) { + --size_change_counter_; + + auto average = [](float from, float to, float from_weight) { + return from * from_weight + to * (1.f - from_weight); + }; + + float change_factor = + size_change_counter_ * one_by_size_change_duration_blocks_; + + current_size_partitions_ = average(old_target_size_partitions_, + target_size_partitions_, change_factor); + + partition_to_constrain_ = + std::min(partition_to_constrain_, current_size_partitions_ - 1); + } else { + current_size_partitions_ = old_target_size_partitions_ = + target_size_partitions_; + } + ZeroFilter(old_size_partitions_, current_size_partitions_, &H_); + RTC_DCHECK_LE(0, size_change_counter_); +} + +void AdaptiveFirFilter::Filter(const RenderBuffer& render_buffer, + FftData* S) const { + RTC_DCHECK(S); + switch (optimization_) { +#if defined(WEBRTC_ARCH_X86_FAMILY) + case Aec3Optimization::kSse2: + aec3::ApplyFilter_Sse2(render_buffer, current_size_partitions_, H_, S); + break; + case Aec3Optimization::kAvx2: + aec3::ApplyFilter_Avx2(render_buffer, current_size_partitions_, H_, S); + break; +#endif +#if defined(WEBRTC_HAS_NEON) + case Aec3Optimization::kNeon: + aec3::ApplyFilter_Neon(render_buffer, current_size_partitions_, H_, S); + break; +#endif + default: + aec3::ApplyFilter(render_buffer, current_size_partitions_, H_, S); + } +} + +void AdaptiveFirFilter::Adapt(const RenderBuffer& render_buffer, + const FftData& G) { + // Adapt the filter and update the filter size. + AdaptAndUpdateSize(render_buffer, G); + + // Constrain the filter partitions in a cyclic manner. + Constrain(); +} + +void AdaptiveFirFilter::Adapt(const RenderBuffer& render_buffer, + const FftData& G, + std::vector* impulse_response) { + // Adapt the filter and update the filter size. + AdaptAndUpdateSize(render_buffer, G); + + // Constrain the filter partitions in a cyclic manner. + ConstrainAndUpdateImpulseResponse(impulse_response); +} + +void AdaptiveFirFilter::ComputeFrequencyResponse( + std::vector>* H2) const { + RTC_DCHECK_GE(max_size_partitions_, H2->capacity()); + + H2->resize(current_size_partitions_); + + switch (optimization_) { +#if defined(WEBRTC_ARCH_X86_FAMILY) + case Aec3Optimization::kSse2: + aec3::ComputeFrequencyResponse_Sse2(current_size_partitions_, H_, H2); + break; + case Aec3Optimization::kAvx2: + aec3::ComputeFrequencyResponse_Avx2(current_size_partitions_, H_, H2); + break; +#endif +#if defined(WEBRTC_HAS_NEON) + case Aec3Optimization::kNeon: + aec3::ComputeFrequencyResponse_Neon(current_size_partitions_, H_, H2); + break; +#endif + default: + aec3::ComputeFrequencyResponse(current_size_partitions_, H_, H2); + } +} + +void AdaptiveFirFilter::AdaptAndUpdateSize(const RenderBuffer& render_buffer, + const FftData& G) { + // Update the filter size if needed. + UpdateSize(); + + // Adapt the filter. + switch (optimization_) { +#if defined(WEBRTC_ARCH_X86_FAMILY) + case Aec3Optimization::kSse2: + aec3::AdaptPartitions_Sse2(render_buffer, G, current_size_partitions_, + &H_); + break; + case Aec3Optimization::kAvx2: + aec3::AdaptPartitions_Avx2(render_buffer, G, current_size_partitions_, + &H_); + break; +#endif +#if defined(WEBRTC_HAS_NEON) + case Aec3Optimization::kNeon: + aec3::AdaptPartitions_Neon(render_buffer, G, current_size_partitions_, + &H_); + break; +#endif + default: + aec3::AdaptPartitions(render_buffer, G, current_size_partitions_, &H_); + } +} + +// Constrains the partition of the frequency domain filter to be limited in +// time via setting the relevant time-domain coefficients to zero and updates +// the corresponding values in an externally stored impulse response estimate. +void AdaptiveFirFilter::ConstrainAndUpdateImpulseResponse( + std::vector* impulse_response) { + RTC_DCHECK_EQ(GetTimeDomainLength(max_size_partitions_), + impulse_response->capacity()); + impulse_response->resize(GetTimeDomainLength(current_size_partitions_)); + std::array h; + impulse_response->resize(GetTimeDomainLength(current_size_partitions_)); + std::fill( + impulse_response->begin() + partition_to_constrain_ * kFftLengthBy2, + impulse_response->begin() + (partition_to_constrain_ + 1) * kFftLengthBy2, + 0.f); + + for (size_t ch = 0; ch < num_render_channels_; ++ch) { + fft_.Ifft(H_[partition_to_constrain_][ch], &h); + + static constexpr float kScale = 1.0f / kFftLengthBy2; + std::for_each(h.begin(), h.begin() + kFftLengthBy2, + [](float& a) { a *= kScale; }); + std::fill(h.begin() + kFftLengthBy2, h.end(), 0.f); + + if (ch == 0) { + std::copy( + h.begin(), h.begin() + kFftLengthBy2, + impulse_response->begin() + partition_to_constrain_ * kFftLengthBy2); + } else { + for (size_t k = 0, j = partition_to_constrain_ * kFftLengthBy2; + k < kFftLengthBy2; ++k, ++j) { + if (fabsf((*impulse_response)[j]) < fabsf(h[k])) { + (*impulse_response)[j] = h[k]; + } + } + } + + fft_.Fft(&h, &H_[partition_to_constrain_][ch]); + } + + partition_to_constrain_ = + partition_to_constrain_ < (current_size_partitions_ - 1) + ? partition_to_constrain_ + 1 + : 0; +} + +// Constrains the a partiton of the frequency domain filter to be limited in +// time via setting the relevant time-domain coefficients to zero. +void AdaptiveFirFilter::Constrain() { + std::array h; + for (size_t ch = 0; ch < num_render_channels_; ++ch) { + fft_.Ifft(H_[partition_to_constrain_][ch], &h); + + static constexpr float kScale = 1.0f / kFftLengthBy2; + std::for_each(h.begin(), h.begin() + kFftLengthBy2, + [](float& a) { a *= kScale; }); + std::fill(h.begin() + kFftLengthBy2, h.end(), 0.f); + + fft_.Fft(&h, &H_[partition_to_constrain_][ch]); + } + + partition_to_constrain_ = + partition_to_constrain_ < (current_size_partitions_ - 1) + ? partition_to_constrain_ + 1 + : 0; +} + +void AdaptiveFirFilter::ScaleFilter(float factor) { + for (auto& H_p : H_) { + for (auto& H_p_ch : H_p) { + for (auto& re : H_p_ch.re) { + re *= factor; + } + for (auto& im : H_p_ch.im) { + im *= factor; + } + } + } +} + +// Set the filter coefficients. +void AdaptiveFirFilter::SetFilter(size_t num_partitions, + const std::vector>& H) { + const size_t min_num_partitions = + std::min(current_size_partitions_, num_partitions); + for (size_t p = 0; p < min_num_partitions; ++p) { + RTC_DCHECK_EQ(H_[p].size(), H[p].size()); + RTC_DCHECK_EQ(num_render_channels_, H_[p].size()); + + for (size_t ch = 0; ch < num_render_channels_; ++ch) { + std::copy(H[p][ch].re.begin(), H[p][ch].re.end(), H_[p][ch].re.begin()); + std::copy(H[p][ch].im.begin(), H[p][ch].im.end(), H_[p][ch].im.begin()); + } + } +} + +} // namespace webrtc -- cgit v1.2.3