From 26a029d407be480d791972afb5975cf62c9360a6 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Fri, 19 Apr 2024 02:47:55 +0200 Subject: Adding upstream version 124.0.1. Signed-off-by: Daniel Baumann --- .../rust/metal/examples/raytracing/README.md | 11 + .../rust/metal/examples/raytracing/camera.rs | 20 + .../rust/metal/examples/raytracing/geometry.rs | 448 +++++++++++++++ third_party/rust/metal/examples/raytracing/main.rs | 87 +++ .../rust/metal/examples/raytracing/renderer.rs | 512 ++++++++++++++++++ .../rust/metal/examples/raytracing/scene.rs | 135 +++++ .../rust/metal/examples/raytracing/screenshot.png | Bin 0 -> 2245032 bytes .../rust/metal/examples/raytracing/shaders.metal | 598 +++++++++++++++++++++ .../metal/examples/raytracing/shaders.metallib | Bin 0 -> 211489 bytes 9 files changed, 1811 insertions(+) create mode 100644 third_party/rust/metal/examples/raytracing/README.md create mode 100644 third_party/rust/metal/examples/raytracing/camera.rs create mode 100644 third_party/rust/metal/examples/raytracing/geometry.rs create mode 100644 third_party/rust/metal/examples/raytracing/main.rs create mode 100644 third_party/rust/metal/examples/raytracing/renderer.rs create mode 100644 third_party/rust/metal/examples/raytracing/scene.rs create mode 100644 third_party/rust/metal/examples/raytracing/screenshot.png create mode 100644 third_party/rust/metal/examples/raytracing/shaders.metal create mode 100644 third_party/rust/metal/examples/raytracing/shaders.metallib (limited to 'third_party/rust/metal/examples/raytracing') diff --git a/third_party/rust/metal/examples/raytracing/README.md b/third_party/rust/metal/examples/raytracing/README.md new file mode 100644 index 0000000000..0071e59747 --- /dev/null +++ b/third_party/rust/metal/examples/raytracing/README.md @@ -0,0 +1,11 @@ +## Raytracing + +A good showcase of Metal 3 raytracing features. + +![Screenshot of the final render](./screenshot.png) + +## To Run + +``` +cargo run --example raytracing +``` diff --git a/third_party/rust/metal/examples/raytracing/camera.rs b/third_party/rust/metal/examples/raytracing/camera.rs new file mode 100644 index 0000000000..5548445c06 --- /dev/null +++ b/third_party/rust/metal/examples/raytracing/camera.rs @@ -0,0 +1,20 @@ +use glam::f32::Vec4; + +#[repr(C)] +pub struct Camera { + pub position: Vec4, + pub right: Vec4, + pub up: Vec4, + pub forward: Vec4, +} + +impl Camera { + pub fn new() -> Self { + Self { + position: Vec4::new(0.0, 3.0, 10.0, 0.0), + right: Vec4::new(1.0, 0.0, 0.0, 0.0), + up: Vec4::new(0.0, 1.0, 0.0, 0.0), + forward: Vec4::new(0.0, 0.0, -1.0, 0.0), + } + } +} diff --git a/third_party/rust/metal/examples/raytracing/geometry.rs b/third_party/rust/metal/examples/raytracing/geometry.rs new file mode 100644 index 0000000000..93fdc196d1 --- /dev/null +++ b/third_party/rust/metal/examples/raytracing/geometry.rs @@ -0,0 +1,448 @@ +use std::{ + mem::{size_of, transmute}, + sync::Arc, +}; + +use glam::{ + f32::{Mat4, Vec3, Vec4}, + Vec4Swizzles, +}; + +use metal::*; + +pub const GEOMETRY_MASK_TRIANGLE: u32 = 1; +pub const GEOMETRY_MASK_SPHERE: u32 = 2; +pub const GEOMETRY_MASK_LIGHT: u32 = 4; + +pub const FACE_MASK_NONE: u16 = 0; +pub const FACE_MASK_NEGATIVE_X: u16 = 1 << 0; +pub const FACE_MASK_POSITIVE_X: u16 = 1 << 1; +pub const FACE_MASK_NEGATIVE_Y: u16 = 1 << 2; +pub const FACE_MASK_POSITIVE_Y: u16 = 1 << 3; +pub const FACE_MASK_NEGATIVE_Z: u16 = 1 << 4; +pub const FACE_MASK_POSITIVE_Z: u16 = 1 << 5; +pub const FACE_MASK_ALL: u16 = (1 << 6) - 1; + +pub trait Geometry { + fn upload_to_buffers(&mut self) { + todo!() + } + fn clear(&mut self) { + todo!() + } + fn get_geometry_descriptor(&self) -> AccelerationStructureGeometryDescriptor { + todo!() + } + fn get_resources(&self) -> Vec { + todo!() + } + fn get_intersection_function_name(&self) -> Option<&str> { + None + } +} + +pub fn compute_triangle_normal(v0: &Vec3, v1: &Vec3, v2: &Vec3) -> Vec3 { + let e1 = Vec3::normalize(*v1 - *v0); + let e2 = Vec3::normalize(*v2 - *v0); + return Vec3::cross(e1, e2); +} + +#[derive(Default)] +#[repr(C)] +pub struct Triangle { + pub normals: [Vec4; 3], + pub colours: [Vec4; 3], +} + +pub fn get_managed_buffer_storage_mode() -> MTLResourceOptions { + return MTLResourceOptions::StorageModeManaged; +} + +pub struct TriangleGeometry { + pub device: Device, + pub name: String, + pub index_buffer: Option, + pub vertex_position_buffer: Option, + pub vertex_normal_buffer: Option, + pub vertex_colour_buffer: Option, + pub per_primitive_data_buffer: Option, + pub indices: Vec, + pub vertices: Vec, + pub normals: Vec, + pub colours: Vec, + pub triangles: Vec, +} + +impl TriangleGeometry { + pub fn new(device: Device, name: String) -> Self { + Self { + device, + name, + index_buffer: None, + vertex_position_buffer: None, + vertex_normal_buffer: None, + vertex_colour_buffer: None, + per_primitive_data_buffer: None, + indices: Vec::new(), + vertices: Vec::new(), + normals: Vec::new(), + colours: Vec::new(), + triangles: Vec::new(), + } + } + + pub fn add_cube_face_with_cube_vertices( + &mut self, + cube_vertices: &[Vec3], + colour: Vec3, + i0: u16, + i1: u16, + i2: u16, + i3: u16, + inward_normals: bool, + ) { + let v0 = cube_vertices[i0 as usize]; + let v1 = cube_vertices[i1 as usize]; + let v2 = cube_vertices[i2 as usize]; + let v3 = cube_vertices[i3 as usize]; + + let n0 = compute_triangle_normal(&v0, &v1, &v2) * if inward_normals { -1f32 } else { 1f32 }; + let n1 = compute_triangle_normal(&v0, &v2, &v3) * if inward_normals { -1f32 } else { 1f32 }; + + let first_index = self.indices.len(); + let base_index = self.vertices.len() as u16; + + self.indices.push(base_index + 0); + self.indices.push(base_index + 1); + self.indices.push(base_index + 2); + self.indices.push(base_index + 0); + self.indices.push(base_index + 2); + self.indices.push(base_index + 3); + + self.vertices.push(From::from((v0, 0.0))); + self.vertices.push(From::from((v1, 0.0))); + self.vertices.push(From::from((v2, 0.0))); + self.vertices.push(From::from((v3, 0.0))); + + self.normals + .push(From::from((Vec3::normalize(n0 + n1), 0.0))); + self.normals.push(From::from((n0, 0.0))); + self.normals + .push(From::from((Vec3::normalize(n0 + n1), 0.0))); + self.normals.push(From::from((n1, 0.0))); + + for _ in 0..4 { + self.colours.push(From::from((colour, 0.0))); + } + + for triangle_index in 0..2 { + let mut triangle = Triangle::default(); + for i in 0..3 { + let index = self.indices[first_index + triangle_index * 3 + i]; + triangle.normals[i] = self.normals[index as usize]; + triangle.colours[i] = self.colours[index as usize]; + } + self.triangles.push(triangle); + } + } + + pub fn add_cube_with_faces( + &mut self, + face_mask: u16, + colour: Vec3, + transform: Mat4, + inward_normals: bool, + ) { + let mut cube_vertices = [ + Vec3::new(-0.5, -0.5, -0.5), + Vec3::new(0.5, -0.5, -0.5), + Vec3::new(-0.5, 0.5, -0.5), + Vec3::new(0.5, 0.5, -0.5), + Vec3::new(-0.5, -0.5, 0.5), + Vec3::new(0.5, -0.5, 0.5), + Vec3::new(-0.5, 0.5, 0.5), + Vec3::new(0.5, 0.5, 0.5), + ]; + + for i in 0..8 { + let transformed_vertex = Vec4::from((cube_vertices[i], 1.0)); + let transformed_vertex = transform * transformed_vertex; + cube_vertices[i] = transformed_vertex.xyz(); + } + + const CUBE_INDICES: [[u16; 4]; 6] = [ + [0, 4, 6, 2], + [1, 3, 7, 5], + [0, 1, 5, 4], + [2, 6, 7, 3], + [0, 2, 3, 1], + [4, 5, 7, 6], + ]; + + for face in 0..6 { + if face_mask & (1 << face) != 0 { + self.add_cube_face_with_cube_vertices( + &cube_vertices, + colour, + CUBE_INDICES[face][0], + CUBE_INDICES[face][1], + CUBE_INDICES[face][2], + CUBE_INDICES[face][3], + inward_normals, + ); + } + } + } +} + +impl Geometry for TriangleGeometry { + fn upload_to_buffers(&mut self) { + self.index_buffer = Some(unsafe { + self.device.new_buffer_with_data( + transmute(self.indices.as_ptr()), + (self.indices.len() * size_of::()) as NSUInteger, + get_managed_buffer_storage_mode(), + ) + }); + self.vertex_position_buffer = Some(unsafe { + self.device.new_buffer_with_data( + transmute(self.vertices.as_ptr()), + (self.vertices.len() * size_of::()) as NSUInteger, + get_managed_buffer_storage_mode(), + ) + }); + self.vertex_normal_buffer = Some(unsafe { + self.device.new_buffer_with_data( + transmute(self.normals.as_ptr()), + (self.normals.len() * size_of::()) as NSUInteger, + get_managed_buffer_storage_mode(), + ) + }); + self.vertex_colour_buffer = Some(unsafe { + self.device.new_buffer_with_data( + transmute(self.colours.as_ptr()), + (self.colours.len() * size_of::()) as NSUInteger, + get_managed_buffer_storage_mode(), + ) + }); + self.per_primitive_data_buffer = Some(unsafe { + self.device.new_buffer_with_data( + transmute(self.triangles.as_ptr()), + (self.triangles.len() * size_of::()) as NSUInteger, + get_managed_buffer_storage_mode(), + ) + }); + self.index_buffer + .as_ref() + .unwrap() + .did_modify_range(NSRange::new( + 0, + self.index_buffer.as_ref().unwrap().length(), + )); + self.vertex_position_buffer + .as_ref() + .unwrap() + .did_modify_range(NSRange::new( + 0, + self.vertex_position_buffer.as_ref().unwrap().length(), + )); + self.vertex_normal_buffer + .as_ref() + .unwrap() + .did_modify_range(NSRange::new( + 0, + self.vertex_normal_buffer.as_ref().unwrap().length(), + )); + self.vertex_colour_buffer + .as_ref() + .unwrap() + .did_modify_range(NSRange::new( + 0, + self.vertex_colour_buffer.as_ref().unwrap().length(), + )); + self.per_primitive_data_buffer + .as_ref() + .unwrap() + .did_modify_range(NSRange::new( + 0, + self.per_primitive_data_buffer.as_ref().unwrap().length(), + )); + + self.index_buffer + .as_ref() + .unwrap() + .set_label(&format!("index buffer of {}", self.name)); + self.vertex_position_buffer + .as_ref() + .unwrap() + .set_label(&format!("vertex position buffer of {}", self.name)); + self.vertex_normal_buffer + .as_ref() + .unwrap() + .set_label(&format!("vertex normal buffer of {}", self.name)); + self.vertex_colour_buffer + .as_ref() + .unwrap() + .set_label(&format!("vertex colour buffer of {}", self.name)); + self.per_primitive_data_buffer + .as_ref() + .unwrap() + .set_label(&format!("per primitive data buffer of {}", self.name)); + } + + fn clear(&mut self) { + self.indices.clear(); + self.vertices.clear(); + self.normals.clear(); + self.colours.clear(); + self.triangles.clear(); + } + + fn get_geometry_descriptor(&self) -> AccelerationStructureGeometryDescriptor { + let descriptor = AccelerationStructureTriangleGeometryDescriptor::descriptor(); + + descriptor.set_index_buffer(Some(self.index_buffer.as_ref().unwrap())); + descriptor.set_index_type(MTLIndexType::UInt16); + descriptor.set_vertex_buffer(Some(self.vertex_position_buffer.as_ref().unwrap())); + descriptor.set_vertex_stride(size_of::() as NSUInteger); + descriptor.set_triangle_count((self.indices.len() / 3) as NSUInteger); + descriptor + .set_primitive_data_buffer(Some(self.per_primitive_data_buffer.as_ref().unwrap())); + descriptor.set_primitive_data_stride(size_of::() as NSUInteger); + descriptor.set_primitive_data_element_size(size_of::() as NSUInteger); + From::from(descriptor) + } + + fn get_resources(&self) -> Vec { + vec![ + From::from(self.index_buffer.as_ref().unwrap().clone()), + From::from(self.vertex_normal_buffer.as_ref().unwrap().clone()), + From::from(self.vertex_colour_buffer.as_ref().unwrap().clone()), + ] + } +} + +#[repr(C)] +pub struct BoundingBox { + pub min: Vec3, + pub max: Vec3, +} + +#[repr(C)] +pub struct Sphere { + pub origin_radius_squared: Vec4, + pub colour_radius: Vec4, +} + +pub struct SphereGeometry { + pub device: Device, + pub sphere_buffer: Option, + pub bounding_box_buffer: Option, + pub per_primitive_data_buffer: Option, + pub spheres: Vec, +} + +impl SphereGeometry { + pub fn new(device: Device) -> Self { + Self { + device, + sphere_buffer: None, + bounding_box_buffer: None, + per_primitive_data_buffer: None, + spheres: Vec::new(), + } + } + + pub fn add_sphere_with_origin(&mut self, origin: Vec3, radius: f32, colour: Vec3) { + self.spheres.push(Sphere { + origin_radius_squared: Vec4::from((origin, radius * radius)), + colour_radius: Vec4::from((colour, radius)), + }); + } +} + +impl Geometry for SphereGeometry { + fn upload_to_buffers(&mut self) { + self.sphere_buffer = Some(unsafe { + self.device.new_buffer_with_data( + transmute(self.spheres.as_ptr()), + (self.spheres.len() * size_of::()) as NSUInteger, + get_managed_buffer_storage_mode(), + ) + }); + self.sphere_buffer + .as_ref() + .unwrap() + .set_label("sphere buffer"); + let mut bounding_boxes = Vec::new(); + for sphere in &self.spheres { + bounding_boxes.push(BoundingBox { + min: sphere.origin_radius_squared.xyz() - sphere.colour_radius.w, + max: sphere.origin_radius_squared.xyz() + sphere.colour_radius.w, + }); + } + self.bounding_box_buffer = Some(unsafe { + self.device.new_buffer_with_data( + transmute(bounding_boxes.as_ptr()), + (bounding_boxes.len() * size_of::()) as NSUInteger, + get_managed_buffer_storage_mode(), + ) + }); + self.bounding_box_buffer + .as_ref() + .unwrap() + .set_label("bounding box buffer"); + self.sphere_buffer + .as_ref() + .unwrap() + .did_modify_range(NSRange::new( + 0, + self.sphere_buffer.as_ref().unwrap().length(), + )); + self.bounding_box_buffer + .as_ref() + .unwrap() + .did_modify_range(NSRange::new( + 0, + self.bounding_box_buffer.as_ref().unwrap().length(), + )); + } + + fn clear(&mut self) { + self.spheres.clear(); + } + + fn get_geometry_descriptor(&self) -> AccelerationStructureGeometryDescriptor { + let descriptor = AccelerationStructureBoundingBoxGeometryDescriptor::descriptor(); + descriptor.set_bounding_box_buffer(Some(self.bounding_box_buffer.as_ref().unwrap())); + descriptor.set_bounding_box_count(self.spheres.len() as NSUInteger); + descriptor.set_primitive_data_buffer(Some(&self.sphere_buffer.as_ref().unwrap())); + descriptor.set_primitive_data_stride(size_of::() as NSUInteger); + descriptor.set_primitive_data_element_size(size_of::() as NSUInteger); + From::from(descriptor) + } + + fn get_resources(&self) -> Vec { + return vec![From::from(self.sphere_buffer.as_ref().unwrap().clone())]; + } + + fn get_intersection_function_name(&self) -> Option<&str> { + Some("sphereIntersectionFunction") + } +} + +pub struct GeometryInstance { + pub geometry: Arc, + pub transform: Mat4, + pub mask: u32, + pub index_in_scene: NSUInteger, +} + +#[repr(C)] +pub struct AreaLight { + pub position: Vec4, + pub forward: Vec4, + pub right: Vec4, + pub up: Vec4, + pub colour: Vec4, +} diff --git a/third_party/rust/metal/examples/raytracing/main.rs b/third_party/rust/metal/examples/raytracing/main.rs new file mode 100644 index 0000000000..68eaf3df59 --- /dev/null +++ b/third_party/rust/metal/examples/raytracing/main.rs @@ -0,0 +1,87 @@ +extern crate objc; + +use cocoa::{appkit::NSView, base::id as cocoa_id}; +use core_graphics_types::geometry::CGSize; +use metal::*; +use objc::{rc::autoreleasepool, runtime::YES}; +use std::mem; +use winit::{ + event::{Event, WindowEvent}, + event_loop::ControlFlow, + platform::macos::WindowExtMacOS, +}; + +pub mod camera; +pub mod geometry; +pub mod renderer; +pub mod scene; + +fn find_raytracing_supporting_device() -> Device { + for device in Device::all() { + if !device.supports_raytracing() { + continue; + } + if device.is_low_power() { + continue; + } + return device; + } + + panic!("No device in this machine supports raytracing!") +} + +fn main() { + let events_loop = winit::event_loop::EventLoop::new(); + let size = winit::dpi::LogicalSize::new(800, 600); + + let window = winit::window::WindowBuilder::new() + .with_inner_size(size) + .with_title("Metal Raytracing Example".to_string()) + .build(&events_loop) + .unwrap(); + + let device = find_raytracing_supporting_device(); + + let layer = MetalLayer::new(); + layer.set_device(&device); + layer.set_pixel_format(MTLPixelFormat::RGBA16Float); + layer.set_presents_with_transaction(false); + + unsafe { + let view = window.ns_view() as cocoa_id; + view.setWantsLayer(YES); + view.setLayer(mem::transmute(layer.as_ref())); + } + + let draw_size = window.inner_size(); + let cg_size = CGSize::new(draw_size.width as f64, draw_size.height as f64); + layer.set_drawable_size(cg_size); + + let mut renderer = renderer::Renderer::new(device); + renderer.window_resized(cg_size); + + events_loop.run(move |event, _, control_flow| { + autoreleasepool(|| { + *control_flow = ControlFlow::Poll; + + match event { + Event::WindowEvent { event, .. } => match event { + WindowEvent::CloseRequested => *control_flow = ControlFlow::Exit, + WindowEvent::Resized(size) => { + let size = CGSize::new(size.width as f64, size.height as f64); + layer.set_drawable_size(size); + renderer.window_resized(size); + } + _ => (), + }, + Event::MainEventsCleared => { + window.request_redraw(); + } + Event::RedrawRequested(_) => { + renderer.draw(&layer); + } + _ => {} + } + }); + }); +} diff --git a/third_party/rust/metal/examples/raytracing/renderer.rs b/third_party/rust/metal/examples/raytracing/renderer.rs new file mode 100644 index 0000000000..f483d3e0a8 --- /dev/null +++ b/third_party/rust/metal/examples/raytracing/renderer.rs @@ -0,0 +1,512 @@ +use core_graphics_types::{base::CGFloat, geometry::CGSize}; +use std::{ + collections::BTreeMap, + ffi::c_void, + mem::{size_of, transmute}, + ops::Index, + sync::{Arc, Condvar, Mutex}, +}; + +use glam::{Vec3, Vec4, Vec4Swizzles}; +use rand::{thread_rng, RngCore}; + +use metal::{foreign_types::ForeignType, *}; + +use crate::{camera::Camera, geometry::get_managed_buffer_storage_mode, scene::Scene}; + +#[repr(C)] +struct Uniforms { + pub width: u32, + pub height: u32, + pub frame_index: u32, + pub light_count: u32, + pub camera: Camera, +} + +pub const MAX_FRAMES_IN_FLIGHT: NSUInteger = 3; +pub const ALIGNED_UNIFORMS_SIZE: NSUInteger = (size_of::() as NSUInteger + 255) & !255; +pub const UNIFORM_BUFFER_SIZE: NSUInteger = MAX_FRAMES_IN_FLIGHT * ALIGNED_UNIFORMS_SIZE; + +#[derive(Clone)] +struct Semaphore { + data: Arc<(Mutex, Condvar)>, +} + +impl Semaphore { + fn new(capacity: usize) -> Self { + Self { + data: Arc::new((Mutex::new(capacity), Condvar::new())), + } + } + + fn acquire(&self) { + let mut value = self.data.0.lock().unwrap(); + while *value == 0 { + value = self.data.1.wait(value).unwrap(); + } + *value -= 1; + } + + fn release(&self) { + let mut value = self.data.0.lock().unwrap(); + *value += 1; + self.data.1.notify_one(); + } +} + +pub struct Renderer { + pub device: Device, + pub scene: Scene, + pub uniform_buffer: Buffer, + pub resource_buffer: Buffer, + pub instance_acceleration_structure: AccelerationStructure, + pub accumulation_targets: [Texture; 2], + pub random_texture: Texture, + pub frame_index: NSUInteger, + pub uniform_buffer_index: NSUInteger, + pub uniform_buffer_offset: NSUInteger, + pub size: CGSize, + semaphore: Semaphore, + pub queue: CommandQueue, + instance_buffer: Buffer, + intersection_function_table: IntersectionFunctionTable, + primitive_acceleration_structures: Vec, + raytracing_pipeline: ComputePipelineState, + copy_pipeline: RenderPipelineState, +} + +impl Renderer { + pub fn new(device: Device) -> Self { + let scene = Scene::new(device.clone()); + + let library_path = std::path::PathBuf::from(env!("CARGO_MANIFEST_DIR")) + .join("examples/raytracing/shaders.metallib"); + let library = device.new_library_with_file(library_path).unwrap(); + let queue = device.new_command_queue(); + + let buffer_data = [0u8; UNIFORM_BUFFER_SIZE as usize]; + let uniform_buffer = device.new_buffer_with_data( + buffer_data.as_ptr() as *const c_void, + UNIFORM_BUFFER_SIZE, + get_managed_buffer_storage_mode(), + ); + uniform_buffer.set_label("uniform buffer"); + let resources_stride = { + let mut max = 0; + for geometry in &scene.geometries { + let s = geometry.get_resources().len(); + if s > max { + max = s; + } + } + max + }; + let mut resource_buffer_data = vec![0u64; resources_stride * scene.geometries.len()]; + for geometry_index in 0..scene.geometries.len() { + let geometry = scene.geometries[geometry_index].as_ref(); + let resource_buffer_begin_index = resources_stride * geometry_index; + let resources = geometry.get_resources(); + + for argument_index in 0..resources.len() { + let resource_buffer_index = resource_buffer_begin_index + argument_index; + let resource = resources[argument_index].clone(); + resource_buffer_data[resource_buffer_index] = + if resource.conforms_to_protocol::().unwrap() { + let buffer = unsafe { Buffer::from_ptr(transmute(resource.into_ptr())) }; + buffer.gpu_address() + } else if resource.conforms_to_protocol::().unwrap() { + let texture = unsafe { Texture::from_ptr(transmute(resource.into_ptr())) }; + texture.gpu_resource_id()._impl + } else { + panic!("Unexpected resource!") + } + } + } + let resource_buffer = device.new_buffer_with_data( + resource_buffer_data.as_ptr() as *const c_void, + (resource_buffer_data.len() * size_of::()) as NSUInteger, + get_managed_buffer_storage_mode(), + ); + resource_buffer.set_label("resource buffer"); + resource_buffer.did_modify_range(NSRange::new(0, resource_buffer.length())); + + let mut primitive_acceleration_structures = Vec::new(); + for i in 0..scene.geometries.len() { + let mesh = scene.geometries[i].as_ref(); + let geometry_descriptor = mesh.get_geometry_descriptor(); + geometry_descriptor.set_intersection_function_table_offset(i as NSUInteger); + let geometry_descriptors = Array::from_owned_slice(&[geometry_descriptor]); + let accel_descriptor = PrimitiveAccelerationStructureDescriptor::descriptor(); + accel_descriptor.set_geometry_descriptors(&geometry_descriptors); + let accel_descriptor: AccelerationStructureDescriptor = From::from(accel_descriptor); + primitive_acceleration_structures.push( + Self::new_acceleration_structure_with_descriptor( + &device, + &queue, + &accel_descriptor, + ), + ); + } + + let mut instance_descriptors = vec![ + MTLAccelerationStructureInstanceDescriptor::default(); + scene.geometry_instances.len() + ]; + for instance_index in 0..scene.geometry_instances.len() { + let instance = scene.geometry_instances[instance_index].as_ref(); + let geometry_index = instance.index_in_scene; + instance_descriptors[instance_index].acceleration_structure_index = + geometry_index as u32; + instance_descriptors[instance_index].options = + if instance.geometry.get_intersection_function_name().is_none() { + MTLAccelerationStructureInstanceOptions::Opaque + } else { + MTLAccelerationStructureInstanceOptions::None + }; + instance_descriptors[instance_index].intersection_function_table_offset = 0; + instance_descriptors[instance_index].mask = instance.mask as u32; + for column in 0..4 { + for row in 0..3 { + instance_descriptors[instance_index].transformation_matrix[column][row] = + *instance.transform.col(column).index(row); + } + } + } + let instance_buffer = device.new_buffer_with_data( + instance_descriptors.as_ptr() as *const c_void, + (size_of::() + * scene.geometry_instances.len()) as NSUInteger, + get_managed_buffer_storage_mode(), + ); + instance_buffer.set_label("instance buffer"); + instance_buffer.did_modify_range(NSRange::new(0, instance_buffer.length())); + + let accel_descriptor = InstanceAccelerationStructureDescriptor::descriptor(); + accel_descriptor.set_instanced_acceleration_structures(&Array::from_owned_slice( + &primitive_acceleration_structures, + )); + accel_descriptor.set_instance_count(scene.geometry_instances.len() as NSUInteger); + accel_descriptor.set_instance_descriptor_buffer(&instance_buffer); + let accel_descriptor: AccelerationStructureDescriptor = From::from(accel_descriptor); + let instance_acceleration_structure = + Self::new_acceleration_structure_with_descriptor(&device, &queue, &accel_descriptor); + + let mut intersection_functions = BTreeMap::::new(); + for geometry in &scene.geometries { + if let Some(name) = geometry.get_intersection_function_name() { + if !intersection_functions.contains_key(name) { + let intersection_function = Self::new_specialised_function_with_name( + &library, + resources_stride as u32, + name, + ); + intersection_functions.insert(name.to_string(), intersection_function); + } + } + } + let raytracing_function = Self::new_specialised_function_with_name( + &library, + resources_stride as u32, + "raytracingKernel", + ); + let intersection_function_array: Vec<&FunctionRef> = intersection_functions + .values() + .map(|f| -> &FunctionRef { f }) + .collect(); + let raytracing_pipeline = Self::new_compute_pipeline_state_with_function( + &device, + &raytracing_function, + &intersection_function_array, + ); + let intersection_function_table_descriptor = IntersectionFunctionTableDescriptor::new(); + intersection_function_table_descriptor + .set_function_count(scene.geometries.len() as NSUInteger); + let intersection_function_table = raytracing_pipeline + .new_intersection_function_table_with_descriptor( + &intersection_function_table_descriptor, + ); + for geometry_index in 0..scene.geometries.len() { + let geometry = scene.geometries[geometry_index].as_ref(); + if let Some(intersection_function_name) = geometry.get_intersection_function_name() { + let intersection_function = &intersection_functions[intersection_function_name]; + let handle = raytracing_pipeline + .function_handle_with_function(intersection_function) + .unwrap(); + intersection_function_table.set_function(handle, geometry_index as NSUInteger); + } + } + let render_descriptor = RenderPipelineDescriptor::new(); + render_descriptor + .set_vertex_function(Some(&library.get_function("copyVertex", None).unwrap())); + render_descriptor + .set_fragment_function(Some(&library.get_function("copyFragment", None).unwrap())); + render_descriptor + .color_attachments() + .object_at(0) + .unwrap() + .set_pixel_format(MTLPixelFormat::RGBA16Float); + let copy_pipeline = device + .new_render_pipeline_state(&render_descriptor) + .unwrap(); + + let texture_descriptor = Self::create_target_descriptor(1024, 1024); + let accumulation_targets = [ + device.new_texture(&texture_descriptor), + device.new_texture(&texture_descriptor), + ]; + let random_texture = device.new_texture(&texture_descriptor); + + Self { + device, + scene, + uniform_buffer, + resource_buffer, + instance_acceleration_structure, + accumulation_targets, + random_texture, + frame_index: 0, + uniform_buffer_index: 0, + uniform_buffer_offset: 0, + size: CGSize::new(1024 as CGFloat, 1024 as CGFloat), + semaphore: Semaphore::new((MAX_FRAMES_IN_FLIGHT - 2) as usize), + instance_buffer, + queue, + intersection_function_table, + primitive_acceleration_structures, + raytracing_pipeline, + copy_pipeline, + } + } + + fn create_target_descriptor(width: NSUInteger, height: NSUInteger) -> TextureDescriptor { + let texture_descriptor = TextureDescriptor::new(); + texture_descriptor.set_pixel_format(MTLPixelFormat::RGBA32Float); + texture_descriptor.set_texture_type(MTLTextureType::D2); + texture_descriptor.set_width(width); + texture_descriptor.set_height(height); + texture_descriptor.set_storage_mode(MTLStorageMode::Private); + texture_descriptor.set_usage(MTLTextureUsage::ShaderRead | MTLTextureUsage::ShaderWrite); + texture_descriptor + } + + pub fn window_resized(&mut self, size: CGSize) { + self.size = size; + let texture_descriptor = + Self::create_target_descriptor(size.width as NSUInteger, size.height as NSUInteger); + self.accumulation_targets[0] = self.device.new_texture(&texture_descriptor); + self.accumulation_targets[1] = self.device.new_texture(&texture_descriptor); + texture_descriptor.set_pixel_format(MTLPixelFormat::R32Uint); + texture_descriptor.set_usage(MTLTextureUsage::ShaderRead); + texture_descriptor.set_storage_mode(MTLStorageMode::Managed); + self.random_texture = self.device.new_texture(&texture_descriptor); + let mut rng = thread_rng(); + let mut random_values = vec![0u32; (size.width * size.height) as usize]; + for v in &mut random_values { + *v = rng.next_u32(); + } + self.random_texture.replace_region( + MTLRegion::new_2d(0, 0, size.width as NSUInteger, size.height as NSUInteger), + 0, + random_values.as_ptr() as *const c_void, + size_of::() as NSUInteger * size.width as NSUInteger, + ); + self.frame_index = 0; + } + + fn update_uniforms(&mut self) { + self.uniform_buffer_offset = ALIGNED_UNIFORMS_SIZE * self.uniform_buffer_index; + + let uniforms = unsafe { + &mut *((self.uniform_buffer.contents() as *mut u8) + .add(self.uniform_buffer_offset as usize) as *mut Uniforms) + }; + + let position = self.scene.camera.position; + let target = self.scene.camera.forward; + let up = self.scene.camera.up; + + let forward = Vec3::normalize(target.xyz() - position.xyz()); + let right = Vec3::normalize(Vec3::cross(forward, up.xyz())); + let up = Vec3::normalize(Vec3::cross(right, forward)); + + uniforms.camera.position = position; + uniforms.camera.forward = Vec4::from((forward, 0.0)); + uniforms.camera.right = Vec4::from((right, 0.0)); + uniforms.camera.up = Vec4::from((up, 0.0)); + + let field_of_view = 45.0 * (std::f32::consts::PI / 180.0); + let aspect_ratio = self.size.width as f32 / self.size.height as f32; + let image_plane_height = f32::tan(field_of_view / 2.0); + let image_plane_width = aspect_ratio * image_plane_height; + + uniforms.camera.right *= image_plane_width; + uniforms.camera.up *= image_plane_height; + + uniforms.width = self.size.width as u32; + uniforms.height = self.size.height as u32; + + uniforms.frame_index = self.frame_index as u32; + self.frame_index += 1; + + uniforms.light_count = self.scene.lights.len() as u32; + + self.uniform_buffer.did_modify_range(NSRange { + location: self.uniform_buffer_offset, + length: ALIGNED_UNIFORMS_SIZE, + }); + + self.uniform_buffer_index = (self.uniform_buffer_index + 1) % MAX_FRAMES_IN_FLIGHT; + } + + pub fn draw(&mut self, layer: &MetalLayer) { + self.semaphore.acquire(); + self.update_uniforms(); + let command_buffer = self.queue.new_command_buffer(); + let sem = self.semaphore.clone(); + let block = block::ConcreteBlock::new(move |_| { + sem.release(); + }) + .copy(); + command_buffer.add_completed_handler(&block); + let width = self.size.width as NSUInteger; + let height = self.size.height as NSUInteger; + let threads_per_thread_group = MTLSize::new(8, 8, 1); + let thread_groups = MTLSize::new( + (width + threads_per_thread_group.width - 1) / threads_per_thread_group.width, + (height + threads_per_thread_group.height - 1) / threads_per_thread_group.height, + 1, + ); + let compute_encoder = command_buffer.new_compute_command_encoder(); + compute_encoder.set_buffer(0, Some(&self.uniform_buffer), self.uniform_buffer_offset); + compute_encoder.set_buffer(2, Some(&self.instance_buffer), 0); + compute_encoder.set_buffer(3, Some(&self.scene.lights_buffer), 0); + compute_encoder.set_acceleration_structure(4, Some(&self.instance_acceleration_structure)); + compute_encoder.set_intersection_function_table(5, Some(&self.intersection_function_table)); + compute_encoder.set_texture(0, Some(&self.random_texture)); + compute_encoder.set_texture(1, Some(&self.accumulation_targets[0])); + compute_encoder.set_texture(2, Some(&self.accumulation_targets[1])); + for geometry in &self.scene.geometries { + for resource in geometry.get_resources() { + compute_encoder.use_resource(&resource, MTLResourceUsage::Read); + } + } + for primitive_acceleration_structure in &self.primitive_acceleration_structures { + let resource: Resource = From::from(primitive_acceleration_structure.clone()); + compute_encoder.use_resource(&resource, MTLResourceUsage::Read); + } + compute_encoder.set_compute_pipeline_state(&self.raytracing_pipeline); + compute_encoder.dispatch_thread_groups(thread_groups, threads_per_thread_group); + compute_encoder.end_encoding(); + (self.accumulation_targets[0], self.accumulation_targets[1]) = ( + self.accumulation_targets[1].clone(), + self.accumulation_targets[0].clone(), + ); + if let Some(drawable) = layer.next_drawable() { + let render_pass_descriptor = RenderPassDescriptor::new(); + let colour_attachment = render_pass_descriptor + .color_attachments() + .object_at(0) + .unwrap(); + colour_attachment.set_texture(Some(drawable.texture())); + colour_attachment.set_load_action(MTLLoadAction::Clear); + colour_attachment.set_clear_color(MTLClearColor::new(0.0, 0.0, 0.0, 1.0)); + let render_encoder = command_buffer.new_render_command_encoder(render_pass_descriptor); + render_encoder.set_render_pipeline_state(&self.copy_pipeline); + render_encoder.set_fragment_texture(0, Some(&self.accumulation_targets[0])); + render_encoder.draw_primitives(MTLPrimitiveType::Triangle, 0, 6); + render_encoder.end_encoding(); + command_buffer.present_drawable(&drawable); + } + command_buffer.commit(); + } + + fn new_acceleration_structure_with_descriptor( + device: &Device, + queue: &CommandQueue, + descriptor: &AccelerationStructureDescriptorRef, + ) -> AccelerationStructure { + let accel_sizes = device.acceleration_structure_sizes_with_descriptor(descriptor); + let acceleration_structure = + device.new_acceleration_structure_with_size(accel_sizes.acceleration_structure_size); + let scratch_buffer = device.new_buffer( + accel_sizes.build_scratch_buffer_size, + MTLResourceOptions::StorageModePrivate, + ); + let command_buffer = queue.new_command_buffer(); + let command_encoder = command_buffer.new_acceleration_structure_command_encoder(); + let compacted_size_buffer = device.new_buffer( + size_of::() as NSUInteger, + MTLResourceOptions::StorageModeShared, + ); + command_encoder.build_acceleration_structure( + &acceleration_structure, + &descriptor, + &scratch_buffer, + 0, + ); + command_encoder.write_compacted_acceleration_structure_size( + &acceleration_structure, + &compacted_size_buffer, + 0, + ); + command_encoder.end_encoding(); + command_buffer.commit(); + command_buffer.wait_until_completed(); + let compacted_size: *const u32 = unsafe { transmute(compacted_size_buffer.contents()) }; + let compacted_size = unsafe { *compacted_size } as NSUInteger; + let compacted_acceleration_structure = + device.new_acceleration_structure_with_size(compacted_size); + let command_buffer = queue.new_command_buffer(); + let command_encoder = command_buffer.new_acceleration_structure_command_encoder(); + command_encoder.copy_and_compact_acceleration_structure( + &acceleration_structure, + &compacted_acceleration_structure, + ); + command_encoder.end_encoding(); + command_buffer.commit(); + compacted_acceleration_structure + } + + fn new_specialised_function_with_name( + library: &Library, + resources_stride: u32, + name: &str, + ) -> Function { + let constants = FunctionConstantValues::new(); + let resources_stride = resources_stride * size_of::() as u32; + constants.set_constant_value_at_index( + &resources_stride as *const u32 as *const c_void, + MTLDataType::UInt, + 0, + ); + let v = true; + constants.set_constant_value_at_index( + &v as *const bool as *const c_void, + MTLDataType::Bool, + 1, + ); + constants.set_constant_value_at_index( + &v as *const bool as *const c_void, + MTLDataType::Bool, + 2, + ); + library.get_function(name, Some(constants)).unwrap() + } + + fn new_compute_pipeline_state_with_function( + device: &Device, + function: &Function, + linked_functions: &[&FunctionRef], + ) -> ComputePipelineState { + let linked_functions = { + let lf = LinkedFunctions::new(); + lf.set_functions(linked_functions); + lf + }; + let descriptor = ComputePipelineDescriptor::new(); + descriptor.set_compute_function(Some(function)); + descriptor.set_linked_functions(linked_functions.as_ref()); + descriptor.set_thread_group_size_is_multiple_of_thread_execution_width(true); + device.new_compute_pipeline_state(&descriptor).unwrap() + } +} diff --git a/third_party/rust/metal/examples/raytracing/scene.rs b/third_party/rust/metal/examples/raytracing/scene.rs new file mode 100644 index 0000000000..8ecf8568de --- /dev/null +++ b/third_party/rust/metal/examples/raytracing/scene.rs @@ -0,0 +1,135 @@ +use std::{ffi::c_void, mem::size_of, sync::Arc}; + +use glam::{Mat4, Vec3, Vec4}; +use rand::{thread_rng, Rng}; + +use metal::{Buffer, Device, NSRange, NSUInteger}; + +use super::{camera::Camera, geometry::*}; + +pub struct Scene { + pub device: Device, + pub camera: Camera, + pub geometries: Vec>, + pub geometry_instances: Vec>, + pub lights: Vec, + pub lights_buffer: Buffer, +} + +impl Scene { + pub fn new(device: Device) -> Self { + let mut geometries = Vec::>::new(); + let mut light_mesh = TriangleGeometry::new(device.clone(), "light".to_string()); + let transform = Mat4::from_translation(Vec3::new(0.0, 1.0, 0.0)) + * Mat4::from_scale(Vec3::new(0.5, 1.98, 0.5)); + light_mesh.add_cube_with_faces( + FACE_MASK_POSITIVE_Y, + Vec3::new(1.0, 1.0, 1.0), + transform, + true, + ); + light_mesh.upload_to_buffers(); + let light_mesh = Arc::new(light_mesh); + geometries.push(light_mesh.clone()); + + let mut geometry_mesh = TriangleGeometry::new(device.clone(), "geometry".to_string()); + let transform = Mat4::from_translation(Vec3::new(0.0, 1.0, 0.0)) + * Mat4::from_scale(Vec3::new(2.0, 2.0, 2.0)); + geometry_mesh.add_cube_with_faces( + FACE_MASK_NEGATIVE_Y | FACE_MASK_POSITIVE_Y | FACE_MASK_NEGATIVE_Z, + Vec3::new(0.725, 0.71, 0.68), + transform, + true, + ); + geometry_mesh.add_cube_with_faces( + FACE_MASK_NEGATIVE_X, + Vec3::new(0.63, 0.065, 0.05), + transform, + true, + ); + geometry_mesh.add_cube_with_faces( + FACE_MASK_POSITIVE_X, + Vec3::new(0.14, 0.45, 0.091), + transform, + true, + ); + let transform = Mat4::from_translation(Vec3::new(-0.335, 0.6, -0.29)) + * Mat4::from_rotation_y(0.3) + * Mat4::from_scale(Vec3::new(0.6, 1.2, 0.6)); + geometry_mesh.add_cube_with_faces( + FACE_MASK_ALL, + Vec3::new(0.725, 0.71, 0.68), + transform, + false, + ); + geometry_mesh.upload_to_buffers(); + let geometry_mesh = Arc::new(geometry_mesh); + geometries.push(geometry_mesh.clone()); + + let mut sphere_geometry = SphereGeometry::new(device.clone()); + sphere_geometry.add_sphere_with_origin( + Vec3::new(0.3275, 0.3, 0.3725), + 0.3, + Vec3::new(0.725, 0.71, 0.68), + ); + sphere_geometry.upload_to_buffers(); + let sphere_geometry = Arc::new(sphere_geometry); + geometries.push(sphere_geometry.clone()); + + let mut rng = thread_rng(); + let mut geometry_instances = Vec::new(); + let mut lights = Vec::new(); + for y in -1..2 { + for x in -1..2 { + let transform = + Mat4::from_translation(Vec3::new(x as f32 * 2.5, y as f32 * 2.5, 0.0)); + geometry_instances.push(Arc::new(GeometryInstance { + geometry: light_mesh.clone(), + transform, + mask: GEOMETRY_MASK_LIGHT, + index_in_scene: 0, + })); + geometry_instances.push(Arc::new(GeometryInstance { + geometry: geometry_mesh.clone(), + transform, + mask: GEOMETRY_MASK_TRIANGLE, + index_in_scene: 1, + })); + geometry_instances.push(Arc::new(GeometryInstance { + geometry: sphere_geometry.clone(), + transform, + mask: GEOMETRY_MASK_SPHERE, + index_in_scene: 2, + })); + lights.push(AreaLight { + position: Vec4::new(x as f32 * 2.5, y as f32 * 2.5 + 1.98, 0.0, 0.0), + forward: Vec4::new(0.0, -1.0, 0.0, 0.0), + right: Vec4::new(0.25, 0.0, 0.0, 0.0), + up: Vec4::new(0.0, 0.0, 0.25, 0.0), + colour: Vec4::new( + rng.gen_range(0f32..=1.0), + rng.gen_range(0f32..=1.0), + rng.gen_range(0f32..=1.0), + 0.0, + ), + }); + } + } + let lights_buffer = device.new_buffer_with_data( + lights.as_ptr() as *const c_void, + (lights.len() * size_of::()) as NSUInteger, + get_managed_buffer_storage_mode(), + ); + lights_buffer.did_modify_range(NSRange::new(0, lights_buffer.length())); + lights_buffer.set_label("lights buffer"); + + Self { + device, + camera: Camera::new(), + geometries, + geometry_instances, + lights, + lights_buffer, + } + } +} diff --git a/third_party/rust/metal/examples/raytracing/screenshot.png b/third_party/rust/metal/examples/raytracing/screenshot.png new file mode 100644 index 0000000000..417a1d746d Binary files /dev/null and b/third_party/rust/metal/examples/raytracing/screenshot.png differ diff --git a/third_party/rust/metal/examples/raytracing/shaders.metal b/third_party/rust/metal/examples/raytracing/shaders.metal new file mode 100644 index 0000000000..54aa2a4f47 --- /dev/null +++ b/third_party/rust/metal/examples/raytracing/shaders.metal @@ -0,0 +1,598 @@ +/* +See LICENSE folder for this sample’s licensing information. + +Abstract: +The Metal shaders used for this sample. +*/ + +#include +#include + +using namespace metal; + +using namespace raytracing; + + +#define GEOMETRY_MASK_TRIANGLE 1 +#define GEOMETRY_MASK_SPHERE 2 +#define GEOMETRY_MASK_LIGHT 4 + +#define GEOMETRY_MASK_GEOMETRY (GEOMETRY_MASK_TRIANGLE | GEOMETRY_MASK_SPHERE) + +#define RAY_MASK_PRIMARY (GEOMETRY_MASK_GEOMETRY | GEOMETRY_MASK_LIGHT) +#define RAY_MASK_SHADOW GEOMETRY_MASK_GEOMETRY +#define RAY_MASK_SECONDARY GEOMETRY_MASK_GEOMETRY + +struct Camera { + vector_float3 position; + vector_float3 right; + vector_float3 up; + vector_float3 forward; +}; + +struct AreaLight { + vector_float3 position; + vector_float3 forward; + vector_float3 right; + vector_float3 up; + vector_float3 color; +}; + +struct Uniforms { + unsigned int width; + unsigned int height; + unsigned int frameIndex; + unsigned int lightCount; + Camera camera; +}; + +struct Sphere { + packed_float3 origin; + float radiusSquared; + packed_float3 color; + float radius; +}; + +struct Triangle { + vector_float3 normals[3]; + vector_float3 colors[3]; +}; + +constant unsigned int resourcesStride [[function_constant(0)]]; +constant bool useIntersectionFunctions [[function_constant(1)]]; +constant bool usePerPrimitiveData [[function_constant(2)]]; +constant bool useResourcesBuffer = !usePerPrimitiveData; + +constant unsigned int primes[] = { + 2, 3, 5, 7, + 11, 13, 17, 19, + 23, 29, 31, 37, + 41, 43, 47, 53, + 59, 61, 67, 71, + 73, 79, 83, 89 +}; + +// Returns the i'th element of the Halton sequence using the d'th prime number as a +// base. The Halton sequence is a low discrepency sequence: the values appear +// random, but are more evenly distributed than a purely random sequence. Each random +// value used to render the image uses a different independent dimension, `d`, +// and each sample (frame) uses a different index `i`. To decorrelate each pixel, +// you can apply a random offset to `i`. +float halton(unsigned int i, unsigned int d) { + unsigned int b = primes[d]; + + float f = 1.0f; + float invB = 1.0f / b; + + float r = 0; + + while (i > 0) { + f = f * invB; + r = r + f * (i % b); + i = i / b; + } + + return r; +} + +// Interpolates the vertex attribute of an arbitrary type across the surface of a triangle +// given the barycentric coordinates and triangle index in an intersection structure. +template +inline T interpolateVertexAttribute(device T *attributes, + IndexType i0, + IndexType i1, + IndexType i2, + float2 uv) { + // Look up value for each vertex. + const T T0 = attributes[i0]; + const T T1 = attributes[i1]; + const T T2 = attributes[i2]; + + // Compute the sum of the vertex attributes weighted by the barycentric coordinates. + // The barycentric coordinates sum to one. + return (1.0f - uv.x - uv.y) * T0 + uv.x * T1 + uv.y * T2; +} + +template +inline T interpolateVertexAttribute(thread T *attributes, float2 uv) { + // Look up the value for each vertex. + const T T0 = attributes[0]; + const T T1 = attributes[1]; + const T T2 = attributes[2]; + + // Compute the sum of the vertex attributes weighted by the barycentric coordinates. + // The barycentric coordinates sum to one. + return (1.0f - uv.x - uv.y) * T0 + uv.x * T1 + uv.y * T2; +} + +// Uses the inversion method to map two uniformly random numbers to a 3D +// unit hemisphere, where the probability of a given sample is proportional to the cosine +// of the angle between the sample direction and the "up" direction (0, 1, 0). +inline float3 sampleCosineWeightedHemisphere(float2 u) { + float phi = 2.0f * M_PI_F * u.x; + + float cos_phi; + float sin_phi = sincos(phi, cos_phi); + + float cos_theta = sqrt(u.y); + float sin_theta = sqrt(1.0f - cos_theta * cos_theta); + + return float3(sin_theta * cos_phi, cos_theta, sin_theta * sin_phi); +} + +// Maps two uniformly random numbers to the surface of a 2D area light +// source and returns the direction to this point, the amount of light that travels +// between the intersection point and the sample point on the light source, as well +// as the distance between these two points. + +inline void sampleAreaLight(constant AreaLight & light, + float2 u, + float3 position, + thread float3 & lightDirection, + thread float3 & lightColor, + thread float & lightDistance) +{ + // Map to -1..1 + u = u * 2.0f - 1.0f; + + // Transform into the light's coordinate system. + float3 samplePosition = light.position + + light.right * u.x + + light.up * u.y; + + // Compute the vector from sample point on the light source to intersection point. + lightDirection = samplePosition - position; + + lightDistance = length(lightDirection); + + float inverseLightDistance = 1.0f / max(lightDistance, 1e-3f); + + // Normalize the light direction. + lightDirection *= inverseLightDistance; + + // Start with the light's color. + lightColor = light.color; + + // Light falls off with the inverse square of the distance to the intersection point. + lightColor *= (inverseLightDistance * inverseLightDistance); + + // Light also falls off with the cosine of the angle between the intersection point + // and the light source. + lightColor *= saturate(dot(-lightDirection, light.forward)); +} + +// Aligns a direction on the unit hemisphere such that the hemisphere's "up" direction +// (0, 1, 0) maps to the given surface normal direction. +inline float3 alignHemisphereWithNormal(float3 sample, float3 normal) { + // Set the "up" vector to the normal + float3 up = normal; + + // Find an arbitrary direction perpendicular to the normal, which becomes the + // "right" vector. + float3 right = normalize(cross(normal, float3(0.0072f, 1.0f, 0.0034f))); + + // Find a third vector perpendicular to the previous two, which becomes the + // "forward" vector. + float3 forward = cross(right, up); + + // Map the direction on the unit hemisphere to the coordinate system aligned + // with the normal. + return sample.x * right + sample.y * up + sample.z * forward; +} + +// Return the type for a bounding box intersection function. +struct BoundingBoxIntersection { + bool accept [[accept_intersection]]; // Whether to accept or reject the intersection. + float distance [[distance]]; // Distance from the ray origin to the intersection point. +}; + +// Resources for a piece of triangle geometry. +struct TriangleResources { + device uint16_t *indices; + device float3 *vertexNormals; + device float3 *vertexColors; +}; + +// Resources for a piece of sphere geometry. +struct SphereResources { + device Sphere *spheres; +}; + +/* + Custom sphere intersection function. The [[intersection]] keyword marks this as an intersection + function. The [[bounding_box]] keyword means that this intersection function handles intersecting rays + with bounding box primitives. To create sphere primitives, the sample creates bounding boxes that + enclose the sphere primitives. + + The [[triangle_data]] and [[instancing]] keywords indicate that the intersector that calls this + intersection function returns barycentric coordinates for triangle intersections and traverses + an instance acceleration structure. These keywords must match between the intersection functions, + intersection function table, intersector, and intersection result to ensure that Metal propagates + data correctly between stages. Using fewer tags when possible may result in better performance, + as Metal may need to store less data and pass less data between stages. For example, if you do not + need barycentric coordinates, omitting [[triangle_data]] means Metal can avoid computing and storing + them. + + The arguments to the intersection function contain information about the ray, primitive to be + tested, and so on. The ray intersector provides this datas when it calls the intersection function. + Metal provides other built-in arguments, but this sample doesn't use them. + */ +[[intersection(bounding_box, triangle_data, instancing)]] +BoundingBoxIntersection sphereIntersectionFunction(// Ray parameters passed to the ray intersector below + float3 origin [[origin]], + float3 direction [[direction]], + float minDistance [[min_distance]], + float maxDistance [[max_distance]], + // Information about the primitive. + unsigned int primitiveIndex [[primitive_id]], + unsigned int geometryIndex [[geometry_intersection_function_table_offset]], + // Custom resources bound to the intersection function table. + device void *resources [[buffer(0), function_constant(useResourcesBuffer)]] + ,const device void* perPrimitiveData [[primitive_data]]) +{ + Sphere sphere; + // Look up the resources for this piece of sphere geometry. + if (usePerPrimitiveData) { + // Per-primitive data points to data from the specified buffer as was configured in the MTLAccelerationStructureBoundingBoxGeometryDescriptor. + sphere = *(const device Sphere*)perPrimitiveData; + } else + { + device SphereResources& sphereResources = *(device SphereResources *)((device char *)resources + resourcesStride * geometryIndex); + // Get the actual sphere enclosed in this bounding box. + sphere = sphereResources.spheres[primitiveIndex]; + } + + // Check for intersection between the ray and sphere mathematically. + float3 oc = origin - sphere.origin; + + float a = dot(direction, direction); + float b = 2 * dot(oc, direction); + float c = dot(oc, oc) - sphere.radiusSquared; + + float disc = b * b - 4 * a * c; + + BoundingBoxIntersection ret; + + if (disc <= 0.0f) { + // If the ray missed the sphere, return false. + ret.accept = false; + } + else { + // Otherwise, compute the intersection distance. + ret.distance = (-b - sqrt(disc)) / (2 * a); + + // The intersection function must also check whether the intersection distance is + // within the acceptable range. Intersection functions do not run in any particular order, + // so the maximum distance may be different from the one passed into the ray intersector. + ret.accept = ret.distance >= minDistance && ret.distance <= maxDistance; + } + + return ret; +} + +__attribute__((always_inline)) +float3 transformPoint(float3 p, float4x4 transform) { + return (transform * float4(p.x, p.y, p.z, 1.0f)).xyz; +} + +__attribute__((always_inline)) +float3 transformDirection(float3 p, float4x4 transform) { + return (transform * float4(p.x, p.y, p.z, 0.0f)).xyz; +} + +// Main ray tracing kernel. +kernel void raytracingKernel( + uint2 tid [[thread_position_in_grid]], + constant Uniforms & uniforms [[buffer(0)]], + texture2d randomTex [[texture(0)]], + texture2d prevTex [[texture(1)]], + texture2d dstTex [[texture(2)]], + device void *resources [[buffer(1), function_constant(useResourcesBuffer)]], + constant MTLAccelerationStructureInstanceDescriptor *instances [[buffer(2)]], + constant AreaLight *areaLights [[buffer(3)]], + instance_acceleration_structure accelerationStructure [[buffer(4)]], + intersection_function_table intersectionFunctionTable [[buffer(5)]] +) +{ + // The sample aligns the thread count to the threadgroup size, which means the thread count + // may be different than the bounds of the texture. Test to make sure this thread + // is referencing a pixel within the bounds of the texture. + if (tid.x >= uniforms.width || tid.y >= uniforms.height) return; + + // The ray to cast. + ray ray; + + // Pixel coordinates for this thread. + float2 pixel = (float2)tid; + + // Apply a random offset to the random number index to decorrelate pixels. + unsigned int offset = randomTex.read(tid).x; + + // Add a random offset to the pixel coordinates for antialiasing. + float2 r = float2(halton(offset + uniforms.frameIndex, 0), + halton(offset + uniforms.frameIndex, 1)); + + pixel += r; + + // Map pixel coordinates to -1..1. + float2 uv = (float2)pixel / float2(uniforms.width, uniforms.height); + uv = uv * 2.0f - 1.0f; + + constant Camera & camera = uniforms.camera; + + // Rays start at the camera position. + ray.origin = camera.position; + + // Map normalized pixel coordinates into camera's coordinate system. + ray.direction = normalize(uv.x * camera.right + + uv.y * camera.up + + camera.forward); + + // Don't limit intersection distance. + ray.max_distance = INFINITY; + + // Start with a fully white color. The kernel scales the light each time the + // ray bounces off of a surface, based on how much of each light component + // the surface absorbs. + float3 color = float3(1.0f, 1.0f, 1.0f); + + float3 accumulatedColor = float3(0.0f, 0.0f, 0.0f); + + // Create an intersector to test for intersection between the ray and the geometry in the scene. + intersector i; + + // If the sample isn't using intersection functions, provide some hints to Metal for + // better performance. + if (!useIntersectionFunctions) { + i.assume_geometry_type(geometry_type::triangle); + i.force_opacity(forced_opacity::opaque); + } + + typename intersector::result_type intersection; + + // Simulate up to three ray bounces. Each bounce propagates light backward along the + // ray's path toward the camera. + for (int bounce = 0; bounce < 3; bounce++) { + // Get the closest intersection, not the first intersection. This is the default, but + // the sample adjusts this property below when it casts shadow rays. + i.accept_any_intersection(false); + + // Check for intersection between the ray and the acceleration structure. If the sample + // isn't using intersection functions, it doesn't need to include one. + if (useIntersectionFunctions) + intersection = i.intersect(ray, accelerationStructure, bounce == 0 ? RAY_MASK_PRIMARY : RAY_MASK_SECONDARY, intersectionFunctionTable); + else + intersection = i.intersect(ray, accelerationStructure, bounce == 0 ? RAY_MASK_PRIMARY : RAY_MASK_SECONDARY); + + // Stop if the ray didn't hit anything and has bounced out of the scene. + if (intersection.type == intersection_type::none) + break; + + unsigned int instanceIndex = intersection.instance_id; + + // Look up the mask for this instance, which indicates what type of geometry the ray hit. + unsigned int mask = instances[instanceIndex].mask; + + // If the ray hit a light source, set the color to white, and stop immediately. + if (mask == GEOMETRY_MASK_LIGHT) { + accumulatedColor = float3(1.0f, 1.0f, 1.0f); + break; + } + + // The ray hit something. Look up the transformation matrix for this instance. + float4x4 objectToWorldSpaceTransform(1.0f); + + for (int column = 0; column < 4; column++) + for (int row = 0; row < 3; row++) + objectToWorldSpaceTransform[column][row] = instances[instanceIndex].transformationMatrix[column][row]; + + // Compute the intersection point in world space. + float3 worldSpaceIntersectionPoint = ray.origin + ray.direction * intersection.distance; + + unsigned primitiveIndex = intersection.primitive_id; + unsigned int geometryIndex = instances[instanceIndex].accelerationStructureIndex; + float2 barycentric_coords = intersection.triangle_barycentric_coord; + + float3 worldSpaceSurfaceNormal = 0.0f; + float3 surfaceColor = 0.0f; + + if (mask & GEOMETRY_MASK_TRIANGLE) { + Triangle triangle; + + float3 objectSpaceSurfaceNormal; + if (usePerPrimitiveData) { + // Per-primitive data points to data from the specified buffer as was configured in the MTLAccelerationStructureTriangleGeometryDescriptor. + triangle = *(const device Triangle*)intersection.primitive_data; + } else + { + // The ray hit a triangle. Look up the corresponding geometry's normal and UV buffers. + device TriangleResources & triangleResources = *(device TriangleResources *)((device char *)resources + resourcesStride * geometryIndex); + + triangle.normals[0] = triangleResources.vertexNormals[triangleResources.indices[primitiveIndex * 3 + 0]]; + triangle.normals[1] = triangleResources.vertexNormals[triangleResources.indices[primitiveIndex * 3 + 1]]; + triangle.normals[2] = triangleResources.vertexNormals[triangleResources.indices[primitiveIndex * 3 + 2]]; + + triangle.colors[0] = triangleResources.vertexColors[triangleResources.indices[primitiveIndex * 3 + 0]]; + triangle.colors[1] = triangleResources.vertexColors[triangleResources.indices[primitiveIndex * 3 + 1]]; + triangle.colors[2] = triangleResources.vertexColors[triangleResources.indices[primitiveIndex * 3 + 2]]; + } + + // Interpolate the vertex normal at the intersection point. + objectSpaceSurfaceNormal = interpolateVertexAttribute(triangle.normals, barycentric_coords); + + // Interpolate the vertex color at the intersection point. + surfaceColor = interpolateVertexAttribute(triangle.colors, barycentric_coords); + + // Transform the normal from object to world space. + worldSpaceSurfaceNormal = normalize(transformDirection(objectSpaceSurfaceNormal, objectToWorldSpaceTransform)); + } + else if (mask & GEOMETRY_MASK_SPHERE) { + Sphere sphere; + if (usePerPrimitiveData) { + // Per-primitive data points to data from the specified buffer as was configured in the MTLAccelerationStructureBoundingBoxGeometryDescriptor. + sphere = *(const device Sphere*)intersection.primitive_data; + } else + { + // The ray hit a sphere. Look up the corresponding sphere buffer. + device SphereResources & sphereResources = *(device SphereResources *)((device char *)resources + resourcesStride * geometryIndex); + sphere = sphereResources.spheres[primitiveIndex]; + } + + // Transform the sphere's origin from object space to world space. + float3 worldSpaceOrigin = transformPoint(sphere.origin, objectToWorldSpaceTransform); + + // Compute the surface normal directly in world space. + worldSpaceSurfaceNormal = normalize(worldSpaceIntersectionPoint - worldSpaceOrigin); + + // The sphere is a uniform color, so you don't need to interpolate the color across the surface. + surfaceColor = sphere.color; + } + + dstTex.write(float4(accumulatedColor, 1.0f), tid); + + // Choose a random light source to sample. + float lightSample = halton(offset + uniforms.frameIndex, 2 + bounce * 5 + 0); + unsigned int lightIndex = min((unsigned int)(lightSample * uniforms.lightCount), uniforms.lightCount - 1); + + // Choose a random point to sample on the light source. + float2 r = float2(halton(offset + uniforms.frameIndex, 2 + bounce * 5 + 1), + halton(offset + uniforms.frameIndex, 2 + bounce * 5 + 2)); + + float3 worldSpaceLightDirection; + float3 lightColor; + float lightDistance; + + // Sample the lighting between the intersection point and the point on the area light. + sampleAreaLight(areaLights[lightIndex], r, worldSpaceIntersectionPoint, worldSpaceLightDirection, + lightColor, lightDistance); + + // Scale the light color by the cosine of the angle between the light direction and + // surface normal. + lightColor *= saturate(dot(worldSpaceSurfaceNormal, worldSpaceLightDirection)); + + // Scale the light color by the number of lights to compensate for the fact that + // the sample samples only one light source at random. + lightColor *= uniforms.lightCount; + + // Scale the ray color by the color of the surface to simulate the surface absorbing light. + color *= surfaceColor; + + // Compute the shadow ray. The shadow ray checks whether the sample position on the + // light source is visible from the current intersection point. + // If it is, the kernel adds lighting to the output image. + struct ray shadowRay; + + // Add a small offset to the intersection point to avoid intersecting the same + // triangle again. + shadowRay.origin = worldSpaceIntersectionPoint + worldSpaceSurfaceNormal * 1e-3f; + + // Travel toward the light source. + shadowRay.direction = worldSpaceLightDirection; + + // Don't overshoot the light source. + shadowRay.max_distance = lightDistance - 1e-3f; + + // Shadow rays check only whether there is an object between the intersection point + // and the light source. Tell Metal to return after finding any intersection. + i.accept_any_intersection(true); + + if (useIntersectionFunctions) + intersection = i.intersect(shadowRay, accelerationStructure, RAY_MASK_SHADOW, intersectionFunctionTable); + else + intersection = i.intersect(shadowRay, accelerationStructure, RAY_MASK_SHADOW); + + // If there was no intersection, then the light source is visible from the original + // intersection point. Add the light's contribution to the image. + if (intersection.type == intersection_type::none) + accumulatedColor += lightColor * color; + + // Choose a random direction to continue the path of the ray. This causes light to + // bounce between surfaces. An app might evaluate a more complicated equation to + // calculate the amount of light that reflects between intersection points. However, + // all the math in this kernel cancels out because this app assumes a simple diffuse + // BRDF and samples the rays with a cosine distribution over the hemisphere (importance + // sampling). This requires that the kernel only multiply the colors together. This + // sampling strategy also reduces the amount of noise in the output image. + r = float2(halton(offset + uniforms.frameIndex, 2 + bounce * 5 + 3), + halton(offset + uniforms.frameIndex, 2 + bounce * 5 + 4)); + + float3 worldSpaceSampleDirection = sampleCosineWeightedHemisphere(r); + worldSpaceSampleDirection = alignHemisphereWithNormal(worldSpaceSampleDirection, worldSpaceSurfaceNormal); + + ray.origin = worldSpaceIntersectionPoint + worldSpaceSurfaceNormal * 1e-3f; + ray.direction = worldSpaceSampleDirection; + } + + // Average this frame's sample with all of the previous frames. + if (uniforms.frameIndex > 0) { + float3 prevColor = prevTex.read(tid).xyz; + prevColor *= uniforms.frameIndex; + + accumulatedColor += prevColor; + accumulatedColor /= (uniforms.frameIndex + 1); + } + + dstTex.write(float4(accumulatedColor, 1.0f), tid); +} + +// Screen filling quad in normalized device coordinates. +constant float2 quadVertices[] = { + float2(-1, -1), + float2(-1, 1), + float2( 1, 1), + float2(-1, -1), + float2( 1, 1), + float2( 1, -1) +}; + +struct CopyVertexOut { + float4 position [[position]]; + float2 uv; +}; + +// Simple vertex shader that passes through NDC quad positions. +vertex CopyVertexOut copyVertex(unsigned short vid [[vertex_id]]) { + float2 position = quadVertices[vid]; + + CopyVertexOut out; + + out.position = float4(position, 0, 1); + out.uv = position * 0.5f + 0.5f; + + return out; +} + +// Simple fragment shader that copies a texture and applies a simple tonemapping function. +fragment float4 copyFragment(CopyVertexOut in [[stage_in]], + texture2d tex) +{ + constexpr sampler sam(min_filter::nearest, mag_filter::nearest, mip_filter::none); + + float3 color = tex.sample(sam, in.uv).xyz; + + // Apply a simple tonemapping function to reduce the dynamic range of the + // input image into a range which the screen can display. + color = color / (1.0f + color); + + return float4(color, 1.0f); +} diff --git a/third_party/rust/metal/examples/raytracing/shaders.metallib b/third_party/rust/metal/examples/raytracing/shaders.metallib new file mode 100644 index 0000000000..0965a64ff5 Binary files /dev/null and b/third_party/rust/metal/examples/raytracing/shaders.metallib differ -- cgit v1.2.3