From 26a029d407be480d791972afb5975cf62c9360a6 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Fri, 19 Apr 2024 02:47:55 +0200 Subject: Adding upstream version 124.0.1. Signed-off-by: Daniel Baumann --- third_party/rust/regex-automata/src/lib.rs | 648 +++++++++++++++++++++++++++++ 1 file changed, 648 insertions(+) create mode 100644 third_party/rust/regex-automata/src/lib.rs (limited to 'third_party/rust/regex-automata/src/lib.rs') diff --git a/third_party/rust/regex-automata/src/lib.rs b/third_party/rust/regex-automata/src/lib.rs new file mode 100644 index 0000000000..62260a5aea --- /dev/null +++ b/third_party/rust/regex-automata/src/lib.rs @@ -0,0 +1,648 @@ +/*! +This crate exposes a variety of regex engines used by the `regex` crate. +It provides a vast, sprawling and "expert" level API to each regex engine. +The regex engines provided by this crate focus heavily on finite automata +implementations and specifically guarantee worst case `O(m * n)` time +complexity for all searches. (Where `m ~ len(regex)` and `n ~ len(haystack)`.) + +The primary goal of this crate is to serve as an implementation detail for the +`regex` crate. A secondary goal is to make its internals available for use by +others. + +# Table of contents + +* [Should I be using this crate?](#should-i-be-using-this-crate) gives some +reasons for and against using this crate. +* [Examples](#examples) provides a small selection of things you can do with +this crate. +* [Available regex engines](#available-regex-engines) provides a hyperlinked +list of all regex engines in this crate. +* [API themes](#api-themes) discusses common elements used throughout this +crate. +* [Crate features](#crate-features) documents the extensive list of Cargo +features available. + +# Should I be using this crate? + +If you find yourself here because you just want to use regexes, then you should +first check out whether the [`regex` crate](https://docs.rs/regex) meets +your needs. It provides a streamlined and difficult-to-misuse API for regex +searching. + +If you're here because there is something specific you want to do that can't +be easily done with `regex` crate, then you are perhaps in the right place. +It's most likely that the first stop you'll want to make is to explore the +[`meta` regex APIs](meta). Namely, the `regex` crate is just a light wrapper +over a [`meta::Regex`], so its API will probably be the easiest to transition +to. In contrast to the `regex` crate, the `meta::Regex` API supports more +search parameters and does multi-pattern searches. However, it isn't quite as +ergonomic. + +Otherwise, the following is an inexhaustive list of reasons to use this crate: + +* You want to analyze or use a [Thompson `NFA`](nfa::thompson::NFA) directly. +* You want more powerful multi-pattern search than what is provided by +`RegexSet` in the `regex` crate. All regex engines in this crate support +multi-pattern searches. +* You want to use one of the `regex` crate's internal engines directly because +of some interesting configuration that isn't possible via the `regex` crate. +For example, a [lazy DFA's configuration](hybrid::dfa::Config) exposes a +dizzying number of options for controlling its execution. +* You want to use the lower level search APIs. For example, both the [lazy +DFA](hybrid::dfa) and [fully compiled DFAs](dfa) support searching by exploring +the automaton one state at a time. This might be useful, for example, for +stream searches or searches of strings stored in non-contiguous in memory. +* You want to build a fully compiled DFA and then [use zero-copy +deserialization](dfa::dense::DFA::from_bytes) to load it into memory and use +it for searching. This use case is supported in core-only no-std/no-alloc +environments. +* You want to run [anchored searches](Input::anchored) without using the `^` +anchor in your regex pattern. +* You need to work-around contention issues with +sharing a regex across multiple threads. The +[`meta::Regex::search_with`](meta::Regex::search_with) API permits bypassing +any kind of synchronization at all by requiring the caller to provide the +mutable scratch spaced needed during a search. +* You want to build your own regex engine on top of the `regex` crate's +infrastructure. + +# Examples + +This section tries to identify a few interesting things you can do with this +crate and demonstrates them. + +### Multi-pattern searches with capture groups + +One of the more frustrating limitations of `RegexSet` in the `regex` crate +(at the time of writing) is that it doesn't report match positions. With this +crate, multi-pattern support was intentionally designed in from the beginning, +which means it works in all regex engines and even for capture groups as well. + +This example shows how to search for matches of multiple regexes, where each +regex uses the same capture group names to parse different key-value formats. + +``` +use regex_automata::{meta::Regex, PatternID}; + +let re = Regex::new_many(&[ + r#"(?m)^(?[[:word:]]+)=(?[[:word:]]+)$"#, + r#"(?m)^(?[[:word:]]+)="(?[^"]+)"$"#, + r#"(?m)^(?[[:word:]]+)='(?[^']+)'$"#, + r#"(?m)^(?[[:word:]]+):\s*(?[[:word:]]+)$"#, +])?; +let hay = r#" +best_album="Blow Your Face Out" +best_quote='"then as it was, then again it will be"' +best_year=1973 +best_simpsons_episode: HOMR +"#; +let mut kvs = vec![]; +for caps in re.captures_iter(hay) { + // N.B. One could use capture indices '1' and '2' here + // as well. Capture indices are local to each pattern. + // (Just like names are.) + let key = &hay[caps.get_group_by_name("key").unwrap()]; + let val = &hay[caps.get_group_by_name("val").unwrap()]; + kvs.push((key, val)); +} +assert_eq!(kvs, vec![ + ("best_album", "Blow Your Face Out"), + ("best_quote", "\"then as it was, then again it will be\""), + ("best_year", "1973"), + ("best_simpsons_episode", "HOMR"), +]); + +# Ok::<(), Box>(()) +``` + +### Build a full DFA and walk it manually + +One of the regex engines in this crate is a fully compiled DFA. It takes worst +case exponential time to build, but once built, it can be easily explored and +used for searches. Here's a simple example that uses its lower level APIs to +implement a simple anchored search by hand. + +``` +use regex_automata::{dfa::{Automaton, dense}, Input}; + +let dfa = dense::DFA::new(r"(?-u)\b[A-Z]\w+z\b")?; +let haystack = "Quartz"; + +// The start state is determined by inspecting the position and the +// initial bytes of the haystack. +let mut state = dfa.start_state_forward(&Input::new(haystack))?; +// Walk all the bytes in the haystack. +for &b in haystack.as_bytes().iter() { + state = dfa.next_state(state, b); +} +// DFAs in this crate require an explicit +// end-of-input transition if a search reaches +// the end of a haystack. +state = dfa.next_eoi_state(state); +assert!(dfa.is_match_state(state)); + +# Ok::<(), Box>(()) +``` + +Or do the same with a lazy DFA that avoids exponential worst case compile time, +but requires mutable scratch space to lazily build the DFA during the search. + +``` +use regex_automata::{hybrid::dfa::DFA, Input}; + +let dfa = DFA::new(r"(?-u)\b[A-Z]\w+z\b")?; +let mut cache = dfa.create_cache(); +let hay = "Quartz"; + +// The start state is determined by inspecting the position and the +// initial bytes of the haystack. +let mut state = dfa.start_state_forward(&mut cache, &Input::new(hay))?; +// Walk all the bytes in the haystack. +for &b in hay.as_bytes().iter() { + state = dfa.next_state(&mut cache, state, b)?; +} +// DFAs in this crate require an explicit +// end-of-input transition if a search reaches +// the end of a haystack. +state = dfa.next_eoi_state(&mut cache, state)?; +assert!(state.is_match()); + +# Ok::<(), Box>(()) +``` + +### Find all overlapping matches + +This example shows how to build a DFA and use it to find all possible matches, +including overlapping matches. A similar example will work with a lazy DFA as +well. This also works with multiple patterns and will report all matches at the +same position where multiple patterns match. + +``` +use regex_automata::{ + dfa::{dense, Automaton, OverlappingState}, + Input, MatchKind, +}; + +let dfa = dense::DFA::builder() + .configure(dense::DFA::config().match_kind(MatchKind::All)) + .build(r"(?-u)\w{3,}")?; +let input = Input::new("homer marge bart lisa maggie"); +let mut state = OverlappingState::start(); + +let mut matches = vec![]; +while let Some(hm) = { + dfa.try_search_overlapping_fwd(&input, &mut state)?; + state.get_match() +} { + matches.push(hm.offset()); +} +assert_eq!(matches, vec![ + 3, 4, 5, // hom, home, homer + 9, 10, 11, // mar, marg, marge + 15, 16, // bar, bart + 20, 21, // lis, lisa + 25, 26, 27, 28, // mag, magg, maggi, maggie +]); + +# Ok::<(), Box>(()) +``` + +# Available regex engines + +The following is a complete list of all regex engines provided by this crate, +along with a very brief description of it and why you might want to use it. + +* [`dfa::regex::Regex`] is a regex engine that works on top of either +[dense](dfa::dense) or [sparse](dfa::sparse) fully compiled DFAs. You might +use a DFA if you need the fastest possible regex engine in this crate and can +afford the exorbitant memory usage usually required by DFAs. Low level APIs on +fully compiled DFAs are provided by the [`Automaton` trait](dfa::Automaton). +Fully compiled dense DFAs can handle all regexes except for searching a regex +with a Unicode word boundary on non-ASCII haystacks. A fully compiled DFA based +regex can only report the start and end of each match. +* [`hybrid::regex::Regex`] is a regex engine that works on top of a lazily +built DFA. Its performance profile is very similar to that of fully compiled +DFAs, but can be slower in some pathological cases. Fully compiled DFAs are +also amenable to more optimizations, such as state acceleration, that aren't +available in a lazy DFA. You might use this lazy DFA if you can't abide the +worst case exponential compile time of a full DFA, but still want the DFA +search performance in the vast majority of cases. A lazy DFA based regex can +only report the start and end of each match. +* [`dfa::onepass::DFA`] is a regex engine that is implemented as a DFA, but +can report the matches of each capture group in addition to the start and end +of each match. The catch is that it only works on a somewhat small subset of +regexes known as "one-pass." You'll want to use this for cases when you need +capture group matches and the regex is one-pass since it is likely to be faster +than any alternative. A one-pass DFA can handle all types of regexes, but does +have some reasonable limits on the number of capture groups it can handle. +* [`nfa::thompson::backtrack::BoundedBacktracker`] is a regex engine that uses +backtracking, but keeps track of the work it has done to avoid catastrophic +backtracking. Like the one-pass DFA, it provides the matches of each capture +group. It retains the `O(m * n)` worst case time bound. This tends to be slower +than the one-pass DFA regex engine, but faster than the PikeVM. It can handle +all types of regexes, but usually only works well with small haystacks and +small regexes due to the memory required to avoid redoing work. +* [`nfa::thompson::pikevm::PikeVM`] is a regex engine that can handle all +regexes, of all sizes and provides capture group matches. It tends to be a tool +of last resort because it is also usually the slowest regex engine. +* [`meta::Regex`] is the meta regex engine that combines *all* of the above +engines into one. The reason for this is that each of the engines above have +their own caveats such as, "only handles a subset of regexes" or "is generally +slow." The meta regex engine accounts for all of these caveats and composes +the engines in a way that attempts to mitigate each engine's weaknesses while +emphasizing its strengths. For example, it will attempt to run a lazy DFA even +if it might fail. In which case, it will restart the search with a likely +slower but more capable regex engine. The meta regex engine is what you should +default to. Use one of the above engines directly only if you have a specific +reason to. + +# API themes + +While each regex engine has its own APIs and configuration options, there are +some general themes followed by all of them. + +### The `Input` abstraction + +Most search routines in this crate accept anything that implements +`Into`. Both `&str` and `&[u8]` haystacks satisfy this constraint, which +means that things like `engine.search("foo")` will work as you would expect. + +By virtue of accepting an `Into` though, callers can provide more than +just a haystack. Indeed, the [`Input`] type has more details, but briefly, +callers can use it to configure various aspects of the search: + +* The span of the haystack to search via [`Input::span`] or [`Input::range`], +which might be a substring of the haystack. +* Whether to run an anchored search or not via [`Input::anchored`]. This +permits one to require matches to start at the same offset that the search +started. +* Whether to ask the regex engine to stop as soon as a match is seen via +[`Input::earliest`]. This can be used to find the offset of a match as soon +as it is known without waiting for the full leftmost-first match to be found. +This can also be used to avoid the worst case `O(m * n^2)` time complexity +of iteration. + +Some lower level search routines accept an `&Input` for performance reasons. +In which case, `&Input::new("haystack")` can be used for a simple search. + +### Error reporting + +Most, but not all, regex engines in this crate can fail to execute a search. +When a search fails, callers cannot determine whether or not a match exists. +That is, the result is indeterminate. + +Search failure, in all cases in this crate, is represented by a [`MatchError`]. +Routines that can fail start with the `try_` prefix in their name. For example, +[`hybrid::regex::Regex::try_search`] can fail for a number of reasons. +Conversely, routines that either can't fail or can panic on failure lack the +`try_` prefix. For example, [`hybrid::regex::Regex::find`] will panic in +cases where [`hybrid::regex::Regex::try_search`] would return an error, and +[`meta::Regex::find`] will never panic. Therefore, callers need to pay close +attention to the panicking conditions in the documentation. + +In most cases, the reasons that a search fails are either predictable or +configurable, albeit at some additional cost. + +An example of predictable failure is +[`BoundedBacktracker::try_search`](nfa::thompson::backtrack::BoundedBacktracker::try_search). +Namely, it fails whenever the multiplication of the haystack, the regex and some +constant exceeds the +[configured visited capacity](nfa::thompson::backtrack::Config::visited_capacity). +Callers can predict the failure in terms of haystack length via the +[`BoundedBacktracker::max_haystack_len`](nfa::thompson::backtrack::BoundedBacktracker::max_haystack_len) +method. While this form of failure is technically avoidable by increasing the +visited capacity, it isn't practical to do so for all inputs because the +memory usage required for larger haystacks becomes impractically large. So in +practice, if one is using the bounded backtracker, you really do have to deal +with the failure. + +An example of configurable failure happens when one enables heuristic support +for Unicode word boundaries in a DFA. Namely, since the DFAs in this crate +(except for the one-pass DFA) do not support Unicode word boundaries on +non-ASCII haystacks, building a DFA from an NFA that contains a Unicode word +boundary will itself fail. However, one can configure DFAs to still be built in +this case by +[configuring heuristic support for Unicode word boundaries](hybrid::dfa::Config::unicode_word_boundary). +If the NFA the DFA is built from contains a Unicode word boundary, then the +DFA will still be built, but special transitions will be added to every state +that cause the DFA to fail if any non-ASCII byte is seen. This failure happens +at search time and it requires the caller to opt into this. + +There are other ways for regex engines to fail in this crate, but the above +two should represent the general theme of failures one can find. Dealing +with these failures is, in part, one the responsibilities of the [meta regex +engine](meta). Notice, for example, that the meta regex engine exposes an API +that never returns an error nor panics. It carefully manages all of the ways +in which the regex engines can fail and either avoids the predictable ones +entirely (e.g., the bounded backtracker) or reacts to configured failures by +falling back to a different engine (e.g., the lazy DFA quitting because it saw +a non-ASCII byte). + +### Configuration and Builders + +Most of the regex engines in this crate come with two types to facilitate +building the regex engine: a `Config` and a `Builder`. A `Config` is usually +specific to that particular regex engine, but other objects such as parsing and +NFA compilation have `Config` types too. A `Builder` is the thing responsible +for taking inputs (either pattern strings or already-parsed patterns or even +NFAs directly) and turning them into an actual regex engine that can be used +for searching. + +The main reason why building a regex engine is a bit complicated is because +of the desire to permit composition with de-coupled components. For example, +you might want to [manually construct a Thompson NFA](nfa::thompson::Builder) +and then build a regex engine from it without ever using a regex parser +at all. On the other hand, you might also want to build a regex engine directly +from the concrete syntax. This demonstrates why regex engine construction is +so flexible: it needs to support not just convenient construction, but also +construction from parts built elsewhere. + +This is also in turn why there are many different `Config` structs in this +crate. Let's look more closely at an example: [`hybrid::regex::Builder`]. It +accepts three different `Config` types for configuring construction of a lazy +DFA regex: + +* [`hybrid::regex::Builder::syntax`] accepts a +[`util::syntax::Config`] for configuring the options found in the +[`regex-syntax`](regex_syntax) crate. For example, whether to match +case insensitively. +* [`hybrid::regex::Builder::thompson`] accepts a [`nfa::thompson::Config`] for +configuring construction of a [Thompson NFA](nfa::thompson::NFA). For example, +whether to build an NFA that matches the reverse language described by the +regex. +* [`hybrid::regex::Builder::dfa`] accept a [`hybrid::dfa::Config`] for +configuring construction of the pair of underlying lazy DFAs that make up the +lazy DFA regex engine. For example, changing the capacity of the cache used to +store the transition table. + +The lazy DFA regex engine uses all three of those configuration objects for +methods like [`hybrid::regex::Builder::build`], which accepts a pattern +string containing the concrete syntax of your regex. It uses the syntax +configuration to parse it into an AST and translate it into an HIR. Then the +NFA configuration when compiling the HIR into an NFA. And then finally the DFA +configuration when lazily determinizing the NFA into a DFA. + +Notice though that the builder also has a +[`hybrid::regex::Builder::build_from_dfas`] constructor. This permits callers +to build the underlying pair of lazy DFAs themselves (one for the forward +searching to find the end of a match and one for the reverse searching to find +the start of a match), and then build the regex engine from them. The lazy +DFAs, in turn, have their own builder that permits [construction directly from +a Thompson NFA](hybrid::dfa::Builder::build_from_nfa). Continuing down the +rabbit hole, a Thompson NFA has its own compiler that permits [construction +directly from an HIR](nfa::thompson::Compiler::build_from_hir). The lazy DFA +regex engine builder lets you follow this rabbit hole all the way down, but +also provides convenience routines that do it for you when you don't need +precise control over every component. + +The [meta regex engine](meta) is a good example of something that utilizes the +full flexibility of these builders. It often needs not only precise control +over each component, but also shares them across multiple regex engines. +(Most sharing is done by internal reference accounting. For example, an +[`NFA`](nfa::thompson::NFA) is reference counted internally which makes cloning +cheap.) + +### Size limits + +Unlike the `regex` crate, the `regex-automata` crate specifically does not +enable any size limits by default. That means users of this crate need to +be quite careful when using untrusted patterns. Namely, because bounded +repetitions can grow exponentially by stacking them, it is possible to build a +very large internal regex object from just a small pattern string. For example, +the NFA built from the pattern `a{10}{10}{10}{10}{10}{10}{10}` is over 240MB. + +There are multiple size limit options in this crate. If one or more size limits +are relevant for the object you're building, they will be configurable via +methods on a corresponding `Config` type. + +# Crate features + +This crate has a dizzying number of features. The main idea is to be able to +control how much stuff you pull in for your specific use case, since the full +crate is quite large and can dramatically increase compile times and binary +size. + +The most barebones but useful configuration is to disable all default features +and enable only `dfa-search`. This will bring in just the DFA deserialization +and search routines without any dependency on `std` or `alloc`. This does +require generating and serializing a DFA, and then storing it somewhere, but +it permits regex searches in freestanding or embedded environments. + +Because there are so many features, they are split into a few groups. + +The default set of features is: `std`, `syntax`, `perf`, `unicode`, `meta`, +`nfa`, `dfa` and `hybrid`. Basically, the default is to enable everything +except for development related features like `logging`. + +### Ecosystem features + +* **std** - Enables use of the standard library. In terms of APIs, this usually +just means that error types implement the `std::error::Error` trait. Otherwise, +`std` sometimes enables the code to be faster, for example, using a `HashMap` +instead of a `BTreeMap`. (The `std` feature matters more for dependencies like +`aho-corasick` and `memchr`, where `std` is required to enable certain classes +of SIMD optimizations.) Enabling `std` automatically enables `alloc`. +* **alloc** - Enables use of the `alloc` library. This is required for most +APIs in this crate. The main exception is deserializing and searching with +fully compiled DFAs. +* **logging** - Adds a dependency on the `log` crate and makes this crate emit +log messages of varying degrees of utility. The log messages are especially +useful in trying to understand what the meta regex engine is doing. + +### Performance features + +* **perf** - Enables all of the below features. +* **perf-inline** - When enabled, `inline(always)` is used in (many) strategic +locations to help performance at the expense of longer compile times and +increased binary size. +* **perf-literal** - Enables all literal related optimizations. + * **perf-literal-substring** - Enables all single substring literal + optimizations. This includes adding a dependency on the `memchr` crate. + * **perf-literal-multisubstring** - Enables all multiple substring literal + optimizations. This includes adding a dependency on the `aho-corasick` + crate. + +### Unicode features + +* **unicode** - + Enables all Unicode features. This feature is enabled by default, and will + always cover all Unicode features, even if more are added in the future. +* **unicode-age** - + Provide the data for the + [Unicode `Age` property](https://www.unicode.org/reports/tr44/tr44-24.html#Character_Age). + This makes it possible to use classes like `\p{Age:6.0}` to refer to all + codepoints first introduced in Unicode 6.0 +* **unicode-bool** - + Provide the data for numerous Unicode boolean properties. The full list + is not included here, but contains properties like `Alphabetic`, `Emoji`, + `Lowercase`, `Math`, `Uppercase` and `White_Space`. +* **unicode-case** - + Provide the data for case insensitive matching using + [Unicode's "simple loose matches" specification](https://www.unicode.org/reports/tr18/#Simple_Loose_Matches). +* **unicode-gencat** - + Provide the data for + [Unicode general categories](https://www.unicode.org/reports/tr44/tr44-24.html#General_Category_Values). + This includes, but is not limited to, `Decimal_Number`, `Letter`, + `Math_Symbol`, `Number` and `Punctuation`. +* **unicode-perl** - + Provide the data for supporting the Unicode-aware Perl character classes, + corresponding to `\w`, `\s` and `\d`. This is also necessary for using + Unicode-aware word boundary assertions. Note that if this feature is + disabled, the `\s` and `\d` character classes are still available if the + `unicode-bool` and `unicode-gencat` features are enabled, respectively. +* **unicode-script** - + Provide the data for + [Unicode scripts and script extensions](https://www.unicode.org/reports/tr24/). + This includes, but is not limited to, `Arabic`, `Cyrillic`, `Hebrew`, + `Latin` and `Thai`. +* **unicode-segment** - + Provide the data necessary to provide the properties used to implement the + [Unicode text segmentation algorithms](https://www.unicode.org/reports/tr29/). + This enables using classes like `\p{gcb=Extend}`, `\p{wb=Katakana}` and + `\p{sb=ATerm}`. +* **unicode-word-boundary** - + Enables support for Unicode word boundaries, i.e., `\b`, in regexes. When + this and `unicode-perl` are enabled, then data tables from `regex-syntax` are + used to implement Unicode word boundaries. However, if `regex-syntax` isn't + enabled as a dependency then one can still enable this feature. It will + cause `regex-automata` to bundle its own data table that would otherwise be + redundant with `regex-syntax`'s table. + +### Regex engine features + +* **syntax** - Enables a dependency on `regex-syntax`. This makes APIs +for building regex engines from pattern strings available. Without the +`regex-syntax` dependency, the only way to build a regex engine is generally +to deserialize a previously built DFA or to hand assemble an NFA using its +[builder API](nfa::thompson::Builder). Once you have an NFA, you can build any +of the regex engines in this crate. The `syntax` feature also enables `alloc`. +* **meta** - Enables the meta regex engine. This also enables the `syntax` and +`nfa-pikevm` features, as both are the minimal requirements needed. The meta +regex engine benefits from enabling any of the other regex engines and will +use them automatically when appropriate. +* **nfa** - Enables all NFA related features below. + * **nfa-thompson** - Enables the Thompson NFA APIs. This enables `alloc`. + * **nfa-pikevm** - Enables the PikeVM regex engine. This enables + `nfa-thompson`. + * **nfa-backtrack** - Enables the bounded backtracker regex engine. This + enables `nfa-thompson`. +* **dfa** - Enables all DFA related features below. + * **dfa-build** - Enables APIs for determinizing DFAs from NFAs. This + enables `nfa-thompson` and `dfa-search`. + * **dfa-search** - Enables APIs for searching with DFAs. + * **dfa-onepass** - Enables the one-pass DFA API. This enables + `nfa-thompson`. +* **hybrid** - Enables the hybrid NFA/DFA or "lazy DFA" regex engine. This +enables `alloc` and `nfa-thompson`. + +*/ + +// We are no_std. +#![no_std] +// All APIs need docs! +#![deny(missing_docs)] +// Some intra-doc links are broken when certain features are disabled, so we +// only bleat about it when most (all?) features are enabled. But when we do, +// we block the build. Links need to work. +#![cfg_attr( + all( + feature = "std", + feature = "nfa", + feature = "dfa", + feature = "hybrid" + ), + deny(rustdoc::broken_intra_doc_links) +)] +// Broken rustdoc links are very easy to come by when you start disabling +// features. Namely, features tend to change imports, and imports change what's +// available to link to. +// +// Basically, we just don't support rustdoc for anything other than the maximal +// feature configuration. Other configurations will work, they just won't be +// perfect. +// +// So here, we specifically allow them so we don't even get warned about them. +#![cfg_attr( + not(all( + feature = "std", + feature = "nfa", + feature = "dfa", + feature = "hybrid" + )), + allow(rustdoc::broken_intra_doc_links) +)] +// Kinda similar, but eliminating all of the dead code and unused import +// warnings for every feature combo is a fool's errand. Instead, we just +// suppress those, but still let them through in a common configuration when we +// build most of everything. +// +// This does actually suggest that when features are disabled, we are actually +// compiling more code than we need to be. And this is perhaps not so great +// because disabling features is usually done in order to reduce compile times +// by reducing the amount of code one compiles... However, usually, most of the +// time this dead code is a relatively small amount from the 'util' module. +// But... I confess... There isn't a ton of visibility on this. +// +// I'm happy to try to address this in a different way, but "let's annotate +// every function in 'util' with some non-local combination of features" just +// cannot be the way forward. +#![cfg_attr( + not(all( + feature = "std", + feature = "nfa", + feature = "dfa", + feature = "hybrid", + feature = "perf-literal-substring", + feature = "perf-literal-multisubstring", + )), + allow(dead_code, unused_imports, unused_variables) +)] +// We generally want all types to impl Debug. +#![warn(missing_debug_implementations)] +// No clue why this thing is still unstable because it's pretty amazing. This +// adds Cargo feature annotations to items in the rustdoc output. Which is +// sadly hugely beneficial for this crate due to the number of features. +#![cfg_attr(docsrs, feature(doc_auto_cfg))] + +// I have literally never tested this crate on 16-bit, so it is quite +// suspicious to advertise support for it. But... the regex crate, at time +// of writing, at least claims to support it by not doing any conditional +// compilation based on the target pointer width. So I guess I remain +// consistent with that here. +// +// If you are here because you're on a 16-bit system and you were somehow using +// the regex crate previously, please file an issue. Please be prepared to +// provide some kind of reproduction or carve out some path to getting 16-bit +// working in CI. (Via qemu?) +#[cfg(not(any( + target_pointer_width = "16", + target_pointer_width = "32", + target_pointer_width = "64" +)))] +compile_error!("not supported on non-{16,32,64}, please file an issue"); + +#[cfg(any(test, feature = "std"))] +extern crate std; + +#[cfg(feature = "alloc")] +extern crate alloc; + +#[cfg(doctest)] +doc_comment::doctest!("../README.md"); + +#[doc(inline)] +pub use crate::util::primitives::PatternID; +pub use crate::util::search::*; + +#[macro_use] +mod macros; + +#[cfg(any(feature = "dfa-search", feature = "dfa-onepass"))] +pub mod dfa; +#[cfg(feature = "hybrid")] +pub mod hybrid; +#[cfg(feature = "meta")] +pub mod meta; +#[cfg(feature = "nfa-thompson")] +pub mod nfa; +pub mod util; -- cgit v1.2.3