/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ "use strict"; /** * Returns a matrix for the scaling given. * Calling `scale()` or `scale(1) returns a new identity matrix. * * @param {Number} [sx = 1] * the abscissa of the scaling vector. * If unspecified, it will equal to `1`. * @param {Number} [sy = sx] * The ordinate of the scaling vector. * If not present, its default value is `sx`, leading to a uniform scaling. * @return {Array} * The new matrix. */ const scale = (sx = 1, sy = sx) => [sx, 0, 0, 0, sy, 0, 0, 0, 1]; exports.scale = scale; /** * Returns a matrix for the translation given. * Calling `translate()` or `translate(0) returns a new identity matrix. * * @param {Number} [tx = 0] * The abscissa of the translating vector. * If unspecified, it will equal to `0`. * @param {Number} [ty = tx] * The ordinate of the translating vector. * If unspecified, it will equal to `tx`. * @return {Array} * The new matrix. */ const translate = (tx = 0, ty = tx) => [1, 0, tx, 0, 1, ty, 0, 0, 1]; exports.translate = translate; /** * Returns a matrix that reflects about the Y axis. For example, the point (x1, y1) would * become (-x1, y1). * * @return {Array} * The new matrix. */ const reflectAboutY = () => [-1, 0, 0, 0, 1, 0, 0, 0, 1]; exports.reflectAboutY = reflectAboutY; /** * Returns a matrix for the rotation given. * Calling `rotate()` or `rotate(0)` returns a new identity matrix. * * @param {Number} [angle = 0] * The angle, in radians, for which to return a corresponding rotation matrix. * If unspecified, it will equal `0`. * @return {Array} * The new matrix. */ const rotate = (angle = 0) => { const cos = Math.cos(angle); const sin = Math.sin(angle); return [cos, sin, 0, -sin, cos, 0, 0, 0, 1]; }; exports.rotate = rotate; /** * Returns a new identity matrix. * * @return {Array} * The new matrix. */ const identity = () => [1, 0, 0, 0, 1, 0, 0, 0, 1]; exports.identity = identity; /** * Multiplies two matrices and returns a new matrix with the result. * * @param {Array} M1 * The first operand. * @param {Array} M2 * The second operand. * @return {Array} * The resulting matrix. */ const multiply = (M1, M2) => { const c11 = M1[0] * M2[0] + M1[1] * M2[3] + M1[2] * M2[6]; const c12 = M1[0] * M2[1] + M1[1] * M2[4] + M1[2] * M2[7]; const c13 = M1[0] * M2[2] + M1[1] * M2[5] + M1[2] * M2[8]; const c21 = M1[3] * M2[0] + M1[4] * M2[3] + M1[5] * M2[6]; const c22 = M1[3] * M2[1] + M1[4] * M2[4] + M1[5] * M2[7]; const c23 = M1[3] * M2[2] + M1[4] * M2[5] + M1[5] * M2[8]; const c31 = M1[6] * M2[0] + M1[7] * M2[3] + M1[8] * M2[6]; const c32 = M1[6] * M2[1] + M1[7] * M2[4] + M1[8] * M2[7]; const c33 = M1[6] * M2[2] + M1[7] * M2[5] + M1[8] * M2[8]; return [c11, c12, c13, c21, c22, c23, c31, c32, c33]; }; exports.multiply = multiply; /** * Applies the given matrix to a point. * * @param {Array} M * The matrix to apply. * @param {Array} P * The point's vector. * @return {Array} * The resulting point's vector. */ const apply = (M, P) => [ M[0] * P[0] + M[1] * P[1] + M[2], M[3] * P[0] + M[4] * P[1] + M[5], ]; exports.apply = apply; /** * Returns `true` if the given matrix is a identity matrix. * * @param {Array} M * The matrix to check * @return {Boolean} * `true` if the matrix passed is a identity matrix, `false` otherwise. */ const isIdentity = M => M[0] === 1 && M[1] === 0 && M[2] === 0 && M[3] === 0 && M[4] === 1 && M[5] === 0 && M[6] === 0 && M[7] === 0 && M[8] === 1; exports.isIdentity = isIdentity; /** * Get the change of basis matrix and inverted change of basis matrix * for the coordinate system based on the two given vectors, as well as * the lengths of the two given vectors. * * @param {Array} u * The first vector, serving as the "x axis" of the coordinate system. * @param {Array} v * The second vector, serving as the "y axis" of the coordinate system. * @return {Object} * { basis, invertedBasis, uLength, vLength } * basis and invertedBasis are the change of basis matrices. uLength and * vLength are the lengths of u and v. */ const getBasis = (u, v) => { const uLength = Math.abs(Math.sqrt(u[0] ** 2 + u[1] ** 2)); const vLength = Math.abs(Math.sqrt(v[0] ** 2 + v[1] ** 2)); const basis = [ u[0] / uLength, v[0] / vLength, 0, u[1] / uLength, v[1] / vLength, 0, 0, 0, 1, ]; const determinant = 1 / (basis[0] * basis[4] - basis[1] * basis[3]); const invertedBasis = [ basis[4] / determinant, -basis[1] / determinant, 0, -basis[3] / determinant, basis[0] / determinant, 0, 0, 0, 1, ]; return { basis, invertedBasis, uLength, vLength }; }; exports.getBasis = getBasis; /** * Convert the given matrix to a new coordinate system, based on the change of basis * matrix. * * @param {Array} M * The matrix to convert * @param {Array} basis * The change of basis matrix * @param {Array} invertedBasis * The inverted change of basis matrix * @return {Array} * The converted matrix. */ const changeMatrixBase = (M, basis, invertedBasis) => { return multiply(invertedBasis, multiply(M, basis)); }; exports.changeMatrixBase = changeMatrixBase; /** * Returns the transformation matrix for the given node, relative to the ancestor passed * as second argument; considering the ancestor transformation too. * If no ancestor is specified, it will returns the transformation matrix relative to the * node's parent element. * * @param {DOMNode} node * The node. * @param {DOMNode} ancestor * The ancestor of the node given. * @return {Array} * The transformation matrix. */ function getNodeTransformationMatrix(node, ancestor = node.parentElement) { const { a, b, c, d, e, f } = ancestor .getTransformToParent() .multiply(node.getTransformToAncestor(ancestor)); return [a, c, e, b, d, f, 0, 0, 1]; } exports.getNodeTransformationMatrix = getNodeTransformationMatrix; /** * Returns the matrix to rotate, translate, and reflect (if needed) from the element's * top-left origin into the actual writing mode and text direction applied to the element. * * @param {Object} size * An element's untransformed content `width` and `height` (excluding any margin, * borders, or padding). * @param {Object} style * The computed `writingMode` and `direction` properties for the element. * @return {Array} * The matrix with adjustments for writing mode and text direction, if any. */ function getWritingModeMatrix(size, style) { let currentMatrix = identity(); const { width, height } = size; const { direction, writingMode } = style; switch (writingMode) { case "horizontal-tb": // This is the initial value. No further adjustment needed. break; case "vertical-rl": currentMatrix = multiply(translate(width, 0), rotate(-Math.PI / 2)); break; case "vertical-lr": currentMatrix = multiply(reflectAboutY(), rotate(-Math.PI / 2)); break; case "sideways-rl": currentMatrix = multiply(translate(width, 0), rotate(-Math.PI / 2)); break; case "sideways-lr": currentMatrix = multiply(rotate(Math.PI / 2), translate(-height, 0)); break; default: console.error(`Unexpected writing-mode: ${writingMode}`); } switch (direction) { case "ltr": // This is the initial value. No further adjustment needed. break; case "rtl": let rowLength = width; if (writingMode != "horizontal-tb") { rowLength = height; } currentMatrix = multiply(currentMatrix, translate(rowLength, 0)); currentMatrix = multiply(currentMatrix, reflectAboutY()); break; default: console.error(`Unexpected direction: ${direction}`); } return currentMatrix; } exports.getWritingModeMatrix = getWritingModeMatrix; /** * Convert from the matrix format used in this module: * a, c, e, * b, d, f, * 0, 0, 1 * to the format used by the `matrix()` CSS transform function: * a, b, c, d, e, f * * @param {Array} M * The matrix in this module's 9 element format. * @return {String} * The matching 6 element CSS transform function. */ function getCSSMatrixTransform(M) { const [a, c, e, b, d, f] = M; return `matrix(${a}, ${b}, ${c}, ${d}, ${e}, ${f})`; } exports.getCSSMatrixTransform = getCSSMatrixTransform;