/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "PathSkia.h" #include "HelpersSkia.h" #include "PathHelpers.h" #include "mozilla/UniquePtr.h" #include "skia/include/core/SkPathUtils.h" #include "skia/src/core/SkGeometry.h" namespace mozilla::gfx { already_AddRefed PathBuilderSkia::Create(FillRule aFillRule) { return MakeAndAddRef(aFillRule); } PathBuilderSkia::PathBuilderSkia(const Matrix& aTransform, const SkPath& aPath, FillRule aFillRule) : mPath(aPath) { SkMatrix matrix; GfxMatrixToSkiaMatrix(aTransform, matrix); mPath.transform(matrix); SetFillRule(aFillRule); } PathBuilderSkia::PathBuilderSkia(FillRule aFillRule) { SetFillRule(aFillRule); } void PathBuilderSkia::SetFillRule(FillRule aFillRule) { mFillRule = aFillRule; if (mFillRule == FillRule::FILL_WINDING) { mPath.setFillType(SkPathFillType::kWinding); } else { mPath.setFillType(SkPathFillType::kEvenOdd); } } void PathBuilderSkia::MoveTo(const Point& aPoint) { mPath.moveTo(SkFloatToScalar(aPoint.x), SkFloatToScalar(aPoint.y)); mCurrentPoint = aPoint; mBeginPoint = aPoint; } void PathBuilderSkia::LineTo(const Point& aPoint) { if (!mPath.countPoints()) { MoveTo(aPoint); } else { mPath.lineTo(SkFloatToScalar(aPoint.x), SkFloatToScalar(aPoint.y)); } mCurrentPoint = aPoint; } void PathBuilderSkia::BezierTo(const Point& aCP1, const Point& aCP2, const Point& aCP3) { if (!mPath.countPoints()) { MoveTo(aCP1); } mPath.cubicTo(SkFloatToScalar(aCP1.x), SkFloatToScalar(aCP1.y), SkFloatToScalar(aCP2.x), SkFloatToScalar(aCP2.y), SkFloatToScalar(aCP3.x), SkFloatToScalar(aCP3.y)); mCurrentPoint = aCP3; } void PathBuilderSkia::QuadraticBezierTo(const Point& aCP1, const Point& aCP2) { if (!mPath.countPoints()) { MoveTo(aCP1); } mPath.quadTo(SkFloatToScalar(aCP1.x), SkFloatToScalar(aCP1.y), SkFloatToScalar(aCP2.x), SkFloatToScalar(aCP2.y)); mCurrentPoint = aCP2; } void PathBuilderSkia::Close() { mPath.close(); mCurrentPoint = mBeginPoint; } void PathBuilderSkia::Arc(const Point& aOrigin, float aRadius, float aStartAngle, float aEndAngle, bool aAntiClockwise) { ArcToBezier(this, aOrigin, Size(aRadius, aRadius), aStartAngle, aEndAngle, aAntiClockwise); } already_AddRefed PathBuilderSkia::Finish() { RefPtr path = MakeAndAddRef(mPath, mFillRule, mCurrentPoint, mBeginPoint); mCurrentPoint = Point(0.0, 0.0); mBeginPoint = Point(0.0, 0.0); return path.forget(); } void PathBuilderSkia::AppendPath(const SkPath& aPath) { mPath.addPath(aPath); } already_AddRefed PathSkia::CopyToBuilder( FillRule aFillRule) const { return TransformedCopyToBuilder(Matrix(), aFillRule); } already_AddRefed PathSkia::TransformedCopyToBuilder( const Matrix& aTransform, FillRule aFillRule) const { RefPtr builder = MakeAndAddRef(aTransform, mPath, aFillRule); builder->mCurrentPoint = aTransform.TransformPoint(mCurrentPoint); builder->mBeginPoint = aTransform.TransformPoint(mBeginPoint); return builder.forget(); } static bool SkPathContainsPoint(const SkPath& aPath, const Point& aPoint, const Matrix& aTransform) { Matrix inverse = aTransform; if (!inverse.Invert()) { return false; } SkPoint point = PointToSkPoint(inverse.TransformPoint(aPoint)); return aPath.contains(point.fX, point.fY); } bool PathSkia::ContainsPoint(const Point& aPoint, const Matrix& aTransform) const { if (!mPath.isFinite()) { return false; } return SkPathContainsPoint(mPath, aPoint, aTransform); } bool PathSkia::GetFillPath(const StrokeOptions& aStrokeOptions, const Matrix& aTransform, SkPath& aFillPath, const Maybe& aClipRect) const { SkPaint paint; if (!StrokeOptionsToPaint(paint, aStrokeOptions)) { return false; } SkMatrix skiaMatrix; GfxMatrixToSkiaMatrix(aTransform, skiaMatrix); Maybe cullRect; if (aClipRect.isSome()) { cullRect = Some(RectToSkRect(aClipRect.ref())); } return skpathutils::FillPathWithPaint(mPath, paint, &aFillPath, cullRect.ptrOr(nullptr), skiaMatrix); } bool PathSkia::StrokeContainsPoint(const StrokeOptions& aStrokeOptions, const Point& aPoint, const Matrix& aTransform) const { if (!mPath.isFinite()) { return false; } SkPath strokePath; if (!GetFillPath(aStrokeOptions, aTransform, strokePath)) { return false; } return SkPathContainsPoint(strokePath, aPoint, aTransform); } Rect PathSkia::GetBounds(const Matrix& aTransform) const { if (!mPath.isFinite()) { return Rect(); } Rect bounds = SkRectToRect(mPath.computeTightBounds()); return aTransform.TransformBounds(bounds); } Rect PathSkia::GetStrokedBounds(const StrokeOptions& aStrokeOptions, const Matrix& aTransform) const { if (!mPath.isFinite()) { return Rect(); } SkPath fillPath; if (!GetFillPath(aStrokeOptions, aTransform, fillPath)) { return Rect(); } Rect bounds = SkRectToRect(fillPath.computeTightBounds()); return aTransform.TransformBounds(bounds); } Rect PathSkia::GetFastBounds(const Matrix& aTransform, const StrokeOptions* aStrokeOptions) const { if (!mPath.isFinite()) { return Rect(); } SkRect bounds = mPath.getBounds(); if (aStrokeOptions) { // If the path is stroked, ensure that the bounds are inflated by any // relevant options such as line width. Avoid using dash path effects // for performance and to ensure computeFastStrokeBounds succeeds. SkPaint paint; if (!StrokeOptionsToPaint(paint, *aStrokeOptions, false)) { return Rect(); } SkRect outBounds = SkRect::MakeEmpty(); bounds = paint.computeFastStrokeBounds(bounds, &outBounds); } return aTransform.TransformBounds(SkRectToRect(bounds)); } int ConvertConicToQuads(const Point& aP0, const Point& aP1, const Point& aP2, float aWeight, std::vector& aQuads) { SkConic conic(PointToSkPoint(aP0), PointToSkPoint(aP1), PointToSkPoint(aP2), aWeight); int pow2 = conic.computeQuadPOW2(0.25f); aQuads.resize(1 + 2 * (1 << pow2)); int numQuads = conic.chopIntoQuadsPOW2(reinterpret_cast(&aQuads[0]), pow2); if (numQuads < 1 << pow2) { aQuads.resize(1 + 2 * numQuads); } return numQuads; } void PathSkia::StreamToSink(PathSink* aSink) const { SkPath::RawIter iter(mPath); SkPoint points[4]; SkPath::Verb currentVerb; while ((currentVerb = iter.next(points)) != SkPath::kDone_Verb) { switch (currentVerb) { case SkPath::kMove_Verb: aSink->MoveTo(SkPointToPoint(points[0])); break; case SkPath::kLine_Verb: aSink->LineTo(SkPointToPoint(points[1])); break; case SkPath::kCubic_Verb: aSink->BezierTo(SkPointToPoint(points[1]), SkPointToPoint(points[2]), SkPointToPoint(points[3])); break; case SkPath::kQuad_Verb: aSink->QuadraticBezierTo(SkPointToPoint(points[1]), SkPointToPoint(points[2])); break; case SkPath::kConic_Verb: { std::vector quads; int numQuads = ConvertConicToQuads( SkPointToPoint(points[0]), SkPointToPoint(points[1]), SkPointToPoint(points[2]), iter.conicWeight(), quads); for (int i = 0; i < numQuads; i++) { aSink->QuadraticBezierTo(quads[2 * i + 1], quads[2 * i + 2]); } break; } case SkPath::kClose_Verb: aSink->Close(); break; default: MOZ_ASSERT(false); // Unexpected verb found in path! } } } Maybe PathSkia::AsRect() const { SkRect rect; if (mPath.isRect(&rect)) { return Some(SkRectToRect(rect)); } return Nothing(); } bool PathSkia::IsEmpty() const { // Move/Close/Done segments are not included in the mask so as long as any // flag is set, we know that the path is non-empty. return mPath.getSegmentMasks() == 0; } } // namespace mozilla::gfx