// // Copyright 2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // State.h: Defines the State class, encapsulating raw GL state #ifndef LIBANGLE_STATE_H_ #define LIBANGLE_STATE_H_ #include #include #include "common/Color.h" #include "common/angleutils.h" #include "common/bitset_utils.h" #include "libANGLE/Debug.h" #include "libANGLE/GLES1State.h" #include "libANGLE/Overlay.h" #include "libANGLE/Program.h" #include "libANGLE/ProgramExecutable.h" #include "libANGLE/ProgramPipeline.h" #include "libANGLE/RefCountObject.h" #include "libANGLE/Renderbuffer.h" #include "libANGLE/Sampler.h" #include "libANGLE/Texture.h" #include "libANGLE/TransformFeedback.h" #include "libANGLE/Version.h" #include "libANGLE/VertexArray.h" #include "libANGLE/angletypes.h" namespace egl { class ShareGroup; } // namespace egl namespace gl { class BufferManager; struct Caps; class Context; class FramebufferManager; class MemoryObjectManager; class ProgramPipelineManager; class Query; class RenderbufferManager; class SamplerManager; class SemaphoreManager; class ShaderProgramManager; class SyncManager; class TextureManager; class VertexArray; static constexpr Version ES_1_0 = Version(1, 0); static constexpr Version ES_1_1 = Version(1, 1); static constexpr Version ES_2_0 = Version(2, 0); static constexpr Version ES_3_0 = Version(3, 0); static constexpr Version ES_3_1 = Version(3, 1); static constexpr Version ES_3_2 = Version(3, 2); template using BufferBindingMap = angle::PackedEnumMap; using BoundBufferMap = BufferBindingMap>; using TextureBindingVector = std::vector>; using TextureBindingMap = angle::PackedEnumMap; using ActiveQueryMap = angle::PackedEnumMap>; class ActiveTexturesCache final : angle::NonCopyable { public: ActiveTexturesCache(); ~ActiveTexturesCache(); Texture *operator[](size_t textureIndex) const { return mTextures[textureIndex]; } void clear(); void set(size_t textureIndex, Texture *texture); void reset(size_t textureIndex); bool empty() const; size_t size() const { return mTextures.size(); } private: ActiveTextureArray mTextures; }; class State : angle::NonCopyable { public: State(const State *shareContextState, egl::ShareGroup *shareGroup, TextureManager *shareTextures, SemaphoreManager *shareSemaphores, const OverlayType *overlay, const EGLenum clientType, const Version &clientVersion, EGLint profileMask, bool debug, bool bindGeneratesResourceCHROMIUM, bool clientArraysEnabled, bool robustResourceInit, bool programBinaryCacheEnabled, EGLenum contextPriority, bool hasRobustAccess, bool hasProtectedContent); ~State(); void initialize(Context *context); void reset(const Context *context); // Getters ContextID getContextID() const { return mID; } EGLenum getClientType() const { return mClientType; } EGLint getProfileMask() const { return mProfileMask; } EGLenum getContextPriority() const { return mContextPriority; } bool hasRobustAccess() const { return mHasRobustAccess; } bool hasProtectedContent() const { return mHasProtectedContent; } bool isDebugContext() const { return mIsDebugContext; } GLint getClientMajorVersion() const { return mClientVersion.major; } GLint getClientMinorVersion() const { return mClientVersion.minor; } const Version &getClientVersion() const { return mClientVersion; } const Caps &getCaps() const { return mCaps; } const TextureCapsMap &getTextureCaps() const { return mTextureCaps; } const Extensions &getExtensions() const { return mExtensions; } const Limitations &getLimitations() const { return mLimitations; } egl::ShareGroup *getShareGroup() const { return mShareGroup; } bool isWebGL() const { return mExtensions.webglCompatibilityANGLE; } bool isWebGL1() const { return (isWebGL() && mClientVersion.major == 2); } bool isGLES1() const { return mClientVersion < ES_2_0; } const TextureCaps &getTextureCap(GLenum internalFormat) const { return mTextureCaps.get(internalFormat); } // State chunk getters bool allActiveDrawBufferChannelsMasked() const; bool anyActiveDrawBufferChannelMasked() const; const RasterizerState &getRasterizerState() const; const BlendState &getBlendState() const { return mBlendState; } const BlendStateExt &getBlendStateExt() const { return mBlendStateExt; } const DepthStencilState &getDepthStencilState() const; // Clear behavior setters & state parameter block generation function void setColorClearValue(float red, float green, float blue, float alpha); void setDepthClearValue(float depth); void setStencilClearValue(int stencil); const ColorF &getColorClearValue() const { return mColorClearValue; } float getDepthClearValue() const { return mDepthClearValue; } int getStencilClearValue() const { return mStencilClearValue; } // Write mask manipulation void setColorMask(bool red, bool green, bool blue, bool alpha); void setColorMaskIndexed(bool red, bool green, bool blue, bool alpha, GLuint index); void setDepthMask(bool mask); // Discard toggle & query bool isRasterizerDiscardEnabled() const { return mRasterizer.rasterizerDiscard; } void setRasterizerDiscard(bool enabled); // Primitive restart bool isPrimitiveRestartEnabled() const { return mPrimitiveRestart; } void setPrimitiveRestart(bool enabled); // Face culling state manipulation bool isCullFaceEnabled() const { return mRasterizer.cullFace; } void setCullFace(bool enabled); void setCullMode(CullFaceMode mode); void setFrontFace(GLenum front); // Depth test state manipulation bool isDepthTestEnabled() const { return mDepthStencil.depthTest; } bool isDepthWriteEnabled() const { return mDepthStencil.depthTest && mDepthStencil.depthMask; } void setDepthTest(bool enabled); void setDepthFunc(GLenum depthFunc); void setDepthRange(float zNear, float zFar); float getNearPlane() const { return mNearZ; } float getFarPlane() const { return mFarZ; } // Clip control extension void setClipControl(GLenum origin, GLenum depth); bool isClipControlDepthZeroToOne() const { return mClipControlDepth == GL_ZERO_TO_ONE_EXT; } gl::ClipSpaceOrigin getClipSpaceOrigin() const { return mClipControlOrigin == GL_UPPER_LEFT_EXT ? ClipSpaceOrigin::UpperLeft : ClipSpaceOrigin::LowerLeft; } // Blend state manipulation bool isBlendEnabled() const { return mBlendStateExt.getEnabledMask().test(0); } bool isBlendEnabledIndexed(GLuint index) const { ASSERT(static_cast(index) < mBlendStateExt.getDrawBufferCount()); return mBlendStateExt.getEnabledMask().test(index); } DrawBufferMask getBlendEnabledDrawBufferMask() const { return mBlendStateExt.getEnabledMask(); } void setBlend(bool enabled); void setBlendIndexed(bool enabled, GLuint index); void setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha); void setBlendFactorsIndexed(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha, GLuint index); void setBlendColor(float red, float green, float blue, float alpha); void setBlendEquation(GLenum rgbEquation, GLenum alphaEquation); void setBlendEquationIndexed(GLenum rgbEquation, GLenum alphaEquation, GLuint index); const ColorF &getBlendColor() const { return mBlendColor; } // Stencil state maniupulation bool isStencilTestEnabled() const { return mDepthStencil.stencilTest; } void setStencilTest(bool enabled); void setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask); void setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask); void setStencilWritemask(GLuint stencilWritemask); void setStencilBackWritemask(GLuint stencilBackWritemask); void setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass); void setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass); GLint getStencilRef() const { return mStencilRef; } GLint getStencilBackRef() const { return mStencilBackRef; } // Depth bias/polygon offset state manipulation bool isPolygonOffsetFillEnabled() const { return mRasterizer.polygonOffsetFill; } void setPolygonOffsetFill(bool enabled); void setPolygonOffsetParams(GLfloat factor, GLfloat units); // Multisample coverage state manipulation bool isSampleAlphaToCoverageEnabled() const { return mSampleAlphaToCoverage; } void setSampleAlphaToCoverage(bool enabled); bool isSampleCoverageEnabled() const { return mSampleCoverage; } void setSampleCoverage(bool enabled); void setSampleCoverageParams(GLclampf value, bool invert); GLclampf getSampleCoverageValue() const { return mSampleCoverageValue; } bool getSampleCoverageInvert() const { return mSampleCoverageInvert; } // Multisample mask state manipulation. bool isSampleMaskEnabled() const { return mSampleMask; } void setSampleMaskEnabled(bool enabled); void setSampleMaskParams(GLuint maskNumber, GLbitfield mask); GLbitfield getSampleMaskWord(GLuint maskNumber) const { ASSERT(maskNumber < mMaxSampleMaskWords); return mSampleMaskValues[maskNumber]; } SampleMaskArray getSampleMaskValues() const { return mSampleMaskValues; } GLuint getMaxSampleMaskWords() const { return mMaxSampleMaskWords; } // Multisampling/alpha to one manipulation. void setSampleAlphaToOne(bool enabled); bool isSampleAlphaToOneEnabled() const { return mSampleAlphaToOne; } void setMultisampling(bool enabled); bool isMultisamplingEnabled() const { return mMultiSampling; } void setSampleShading(bool enabled); bool isSampleShadingEnabled() const { return mIsSampleShadingEnabled; } void setMinSampleShading(float value); float getMinSampleShading() const { return mMinSampleShading; } // Scissor test state toggle & query bool isScissorTestEnabled() const { return mScissorTest; } void setScissorTest(bool enabled); void setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height); const Rectangle &getScissor() const { return mScissor; } // Dither state toggle & query bool isDitherEnabled() const { return mRasterizer.dither; } void setDither(bool enabled); // Generic state toggle & query void setEnableFeature(GLenum feature, bool enabled); void setEnableFeatureIndexed(GLenum feature, bool enabled, GLuint index); bool getEnableFeature(GLenum feature) const; bool getEnableFeatureIndexed(GLenum feature, GLuint index) const; // Line width state setter void setLineWidth(GLfloat width); float getLineWidth() const { return mLineWidth; } // Hint setters void setGenerateMipmapHint(GLenum hint); GLenum getGenerateMipmapHint() const; void setTextureFilteringHint(GLenum hint); GLenum getTextureFilteringHint() const; GLenum getFragmentShaderDerivativeHint() const { return mFragmentShaderDerivativeHint; } void setFragmentShaderDerivativeHint(GLenum hint); // GL_CHROMIUM_bind_generates_resource bool isBindGeneratesResourceEnabled() const { return mBindGeneratesResource; } // GL_ANGLE_client_arrays bool areClientArraysEnabled() const { return mClientArraysEnabled; } // Viewport state setter/getter void setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height); const Rectangle &getViewport() const { return mViewport; } // Texture binding & active texture unit manipulation void setActiveSampler(unsigned int active); unsigned int getActiveSampler() const { return static_cast(mActiveSampler); } void setSamplerTexture(const Context *context, TextureType type, Texture *texture); Texture *getTargetTexture(TextureType type) const; Texture *getSamplerTexture(unsigned int sampler, TextureType type) const { ASSERT(sampler < mSamplerTextures[type].size()); return mSamplerTextures[type][sampler].get(); } TextureID getSamplerTextureId(unsigned int sampler, TextureType type) const; void detachTexture(const Context *context, const TextureMap &zeroTextures, TextureID texture); void initializeZeroTextures(const Context *context, const TextureMap &zeroTextures); void invalidateTextureBindings(TextureType type); // Sampler object binding manipulation void setSamplerBinding(const Context *context, GLuint textureUnit, Sampler *sampler); SamplerID getSamplerId(GLuint textureUnit) const { ASSERT(textureUnit < mSamplers.size()); return mSamplers[textureUnit].id(); } Sampler *getSampler(GLuint textureUnit) const { return mSamplers[textureUnit].get(); } const SamplerBindingVector &getSamplers() const { return mSamplers; } void detachSampler(const Context *context, SamplerID sampler); // Renderbuffer binding manipulation void setRenderbufferBinding(const Context *context, Renderbuffer *renderbuffer); RenderbufferID getRenderbufferId() const { return mRenderbuffer.id(); } Renderbuffer *getCurrentRenderbuffer() const { return mRenderbuffer.get(); } void detachRenderbuffer(const Context *context, RenderbufferID renderbuffer); // Framebuffer binding manipulation void setReadFramebufferBinding(Framebuffer *framebuffer); void setDrawFramebufferBinding(Framebuffer *framebuffer); Framebuffer *getTargetFramebuffer(GLenum target) const; Framebuffer *getReadFramebuffer() const { return mReadFramebuffer; } Framebuffer *getDrawFramebuffer() const { return mDrawFramebuffer; } Framebuffer *getDefaultFramebuffer() const; bool removeReadFramebufferBinding(FramebufferID framebuffer); bool removeDrawFramebufferBinding(FramebufferID framebuffer); // Vertex array object binding manipulation void setVertexArrayBinding(const Context *context, VertexArray *vertexArray); bool removeVertexArrayBinding(const Context *context, VertexArrayID vertexArray); VertexArrayID getVertexArrayId() const; VertexArray *getVertexArray() const { ASSERT(mVertexArray != nullptr); return mVertexArray; } // QCOM_shading_rate helpers void setShadingRate(GLenum rate); ShadingRate getShadingRate() const { return mShadingRate; } // If both a Program and a ProgramPipeline are bound, the Program will // always override the ProgramPipeline. ProgramExecutable *getProgramExecutable() const { return mExecutable; } ProgramExecutable *getLinkedProgramExecutable(const Context *context) const { if (mProgram) { mProgram->resolveLink(context); } else if (mProgramPipeline.get()) { mProgramPipeline->resolveLink(context); } return mExecutable; } // Program binding manipulation angle::Result setProgram(const Context *context, Program *newProgram); Program *getProgram() const { ASSERT(!mProgram || !mProgram->isLinking()); return mProgram; } Program *getLinkedProgram(const Context *context) const { if (mProgram) { mProgram->resolveLink(context); } return mProgram; } ProgramPipeline *getProgramPipeline() const { return mProgramPipeline.get(); } ProgramPipeline *getLinkedProgramPipeline(const Context *context) const { if (mProgramPipeline.get()) { mProgramPipeline->resolveLink(context); } return mProgramPipeline.get(); } // Transform feedback object (not buffer) binding manipulation void setTransformFeedbackBinding(const Context *context, TransformFeedback *transformFeedback); TransformFeedback *getCurrentTransformFeedback() const { return mTransformFeedback.get(); } ANGLE_INLINE bool isTransformFeedbackActive() const { TransformFeedback *curTransformFeedback = mTransformFeedback.get(); return curTransformFeedback && curTransformFeedback->isActive(); } ANGLE_INLINE bool isTransformFeedbackActiveUnpaused() const { TransformFeedback *curTransformFeedback = mTransformFeedback.get(); return curTransformFeedback && curTransformFeedback->isActive() && !curTransformFeedback->isPaused(); } bool removeTransformFeedbackBinding(const Context *context, TransformFeedbackID transformFeedback); // Query binding manipulation bool isQueryActive(QueryType type) const; bool isQueryActive(Query *query) const; void setActiveQuery(const Context *context, QueryType type, Query *query); QueryID getActiveQueryId(QueryType type) const; Query *getActiveQuery(QueryType type) const; // Program Pipeline binding manipulation angle::Result setProgramPipelineBinding(const Context *context, ProgramPipeline *pipeline); void detachProgramPipeline(const Context *context, ProgramPipelineID pipeline); //// Typed buffer binding point manipulation //// ANGLE_INLINE void setBufferBinding(const Context *context, BufferBinding target, Buffer *buffer) { (this->*(kBufferSetters[target]))(context, buffer); } ANGLE_INLINE Buffer *getTargetBuffer(BufferBinding target) const { switch (target) { case BufferBinding::ElementArray: return getVertexArray()->getElementArrayBuffer(); default: return mBoundBuffers[target].get(); } } ANGLE_INLINE Buffer *getArrayBuffer() const { return getTargetBuffer(BufferBinding::Array); } angle::Result setIndexedBufferBinding(const Context *context, BufferBinding target, GLuint index, Buffer *buffer, GLintptr offset, GLsizeiptr size); size_t getAtomicCounterBufferCount() const { return mAtomicCounterBuffers.size(); } ANGLE_INLINE bool hasValidAtomicCounterBuffer() const { return mBoundAtomicCounterBuffersMask.any(); } const OffsetBindingPointer &getIndexedUniformBuffer(size_t index) const; const OffsetBindingPointer &getIndexedAtomicCounterBuffer(size_t index) const; const OffsetBindingPointer &getIndexedShaderStorageBuffer(size_t index) const; const angle::BitSet &getUniformBuffersMask() const { return mBoundUniformBuffersMask; } const angle::BitSet &getAtomicCounterBuffersMask() const { return mBoundAtomicCounterBuffersMask; } const angle::BitSet &getShaderStorageBuffersMask() const { return mBoundShaderStorageBuffersMask; } // Detach a buffer from all bindings angle::Result detachBuffer(Context *context, const Buffer *buffer); // Vertex attrib manipulation void setEnableVertexAttribArray(unsigned int attribNum, bool enabled); void setVertexAttribf(GLuint index, const GLfloat values[4]); void setVertexAttribu(GLuint index, const GLuint values[4]); void setVertexAttribi(GLuint index, const GLint values[4]); ANGLE_INLINE void setVertexAttribPointer(const Context *context, unsigned int attribNum, Buffer *boundBuffer, GLint size, VertexAttribType type, bool normalized, GLsizei stride, const void *pointer) { mVertexArray->setVertexAttribPointer(context, attribNum, boundBuffer, size, type, normalized, stride, pointer); mDirtyObjects.set(DIRTY_OBJECT_VERTEX_ARRAY); } ANGLE_INLINE void setVertexAttribIPointer(const Context *context, unsigned int attribNum, Buffer *boundBuffer, GLint size, VertexAttribType type, GLsizei stride, const void *pointer) { mVertexArray->setVertexAttribIPointer(context, attribNum, boundBuffer, size, type, stride, pointer); mDirtyObjects.set(DIRTY_OBJECT_VERTEX_ARRAY); } void setVertexAttribDivisor(const Context *context, GLuint index, GLuint divisor); const VertexAttribCurrentValueData &getVertexAttribCurrentValue(size_t attribNum) const { ASSERT(attribNum < mVertexAttribCurrentValues.size()); return mVertexAttribCurrentValues[attribNum]; } const std::vector &getVertexAttribCurrentValues() const { return mVertexAttribCurrentValues; } const void *getVertexAttribPointer(unsigned int attribNum) const; void bindVertexBuffer(const Context *context, GLuint bindingIndex, Buffer *boundBuffer, GLintptr offset, GLsizei stride); void setVertexAttribFormat(GLuint attribIndex, GLint size, VertexAttribType type, bool normalized, bool pureInteger, GLuint relativeOffset); void setVertexAttribBinding(const Context *context, GLuint attribIndex, GLuint bindingIndex) { mVertexArray->setVertexAttribBinding(context, attribIndex, bindingIndex); mDirtyObjects.set(DIRTY_OBJECT_VERTEX_ARRAY); } void setVertexBindingDivisor(const Context *context, GLuint bindingIndex, GLuint divisor); // Pixel pack state manipulation void setPackAlignment(GLint alignment); GLint getPackAlignment() const { return mPack.alignment; } void setPackReverseRowOrder(bool reverseRowOrder); bool getPackReverseRowOrder() const { return mPack.reverseRowOrder; } void setPackRowLength(GLint rowLength); GLint getPackRowLength() const { return mPack.rowLength; } void setPackSkipRows(GLint skipRows); GLint getPackSkipRows() const { return mPack.skipRows; } void setPackSkipPixels(GLint skipPixels); GLint getPackSkipPixels() const { return mPack.skipPixels; } const PixelPackState &getPackState() const { return mPack; } PixelPackState &getPackState() { return mPack; } // Pixel unpack state manipulation void setUnpackAlignment(GLint alignment); GLint getUnpackAlignment() const { return mUnpack.alignment; } void setUnpackRowLength(GLint rowLength); GLint getUnpackRowLength() const { return mUnpack.rowLength; } void setUnpackImageHeight(GLint imageHeight); GLint getUnpackImageHeight() const { return mUnpack.imageHeight; } void setUnpackSkipImages(GLint skipImages); GLint getUnpackSkipImages() const { return mUnpack.skipImages; } void setUnpackSkipRows(GLint skipRows); GLint getUnpackSkipRows() const { return mUnpack.skipRows; } void setUnpackSkipPixels(GLint skipPixels); GLint getUnpackSkipPixels() const { return mUnpack.skipPixels; } const PixelUnpackState &getUnpackState() const { return mUnpack; } PixelUnpackState &getUnpackState() { return mUnpack; } // Debug state const Debug &getDebug() const { return mDebug; } Debug &getDebug() { return mDebug; } // CHROMIUM_framebuffer_mixed_samples coverage modulation void setCoverageModulation(GLenum components); GLenum getCoverageModulation() const { return mCoverageModulation; } // GL_EXT_sRGB_write_control void setFramebufferSRGB(bool sRGB); bool getFramebufferSRGB() const { return mFramebufferSRGB; } // GL_KHR_parallel_shader_compile void setMaxShaderCompilerThreads(GLuint count); GLuint getMaxShaderCompilerThreads() const { return mMaxShaderCompilerThreads; } // GL_EXT_tessellation_shader void setPatchVertices(GLuint value); GLuint getPatchVertices() const { return mPatchVertices; } // GL_ANGLE_shader_pixel_local_storage void setPixelLocalStorageActive(bool active); bool getPixelLocalStorageActive() const { return mPixelLocalStorageActive; } // State query functions void getBooleanv(GLenum pname, GLboolean *params) const; void getFloatv(GLenum pname, GLfloat *params) const; angle::Result getIntegerv(const Context *context, GLenum pname, GLint *params) const; void getPointerv(const Context *context, GLenum pname, void **params) const; void getIntegeri_v(const Context *context, GLenum target, GLuint index, GLint *data) const; void getInteger64i_v(GLenum target, GLuint index, GLint64 *data) const; void getBooleani_v(GLenum target, GLuint index, GLboolean *data) const; bool isRobustResourceInitEnabled() const { return mRobustResourceInit; } bool isDrawFramebufferBindingDirty() const { return mDirtyBits.test(DIRTY_BIT_DRAW_FRAMEBUFFER_BINDING); } // Sets the dirty bit for the program executable. angle::Result onProgramExecutableChange(const Context *context, Program *program); // Sets the dirty bit for the program pipeline executable. angle::Result onProgramPipelineExecutableChange(const Context *context); enum DirtyBitType { // Note: process draw framebuffer binding first, so that other dirty bits whose effect // depend on the current draw framebuffer are not processed while the old framebuffer is // still bound. DIRTY_BIT_DRAW_FRAMEBUFFER_BINDING, DIRTY_BIT_READ_FRAMEBUFFER_BINDING, DIRTY_BIT_SCISSOR_TEST_ENABLED, DIRTY_BIT_SCISSOR, DIRTY_BIT_VIEWPORT, DIRTY_BIT_DEPTH_RANGE, DIRTY_BIT_BLEND_ENABLED, DIRTY_BIT_BLEND_COLOR, DIRTY_BIT_BLEND_FUNCS, DIRTY_BIT_BLEND_EQUATIONS, DIRTY_BIT_COLOR_MASK, DIRTY_BIT_SAMPLE_ALPHA_TO_COVERAGE_ENABLED, DIRTY_BIT_SAMPLE_COVERAGE_ENABLED, DIRTY_BIT_SAMPLE_COVERAGE, DIRTY_BIT_SAMPLE_MASK_ENABLED, DIRTY_BIT_SAMPLE_MASK, DIRTY_BIT_DEPTH_TEST_ENABLED, DIRTY_BIT_DEPTH_FUNC, DIRTY_BIT_DEPTH_MASK, DIRTY_BIT_STENCIL_TEST_ENABLED, DIRTY_BIT_STENCIL_FUNCS_FRONT, DIRTY_BIT_STENCIL_FUNCS_BACK, DIRTY_BIT_STENCIL_OPS_FRONT, DIRTY_BIT_STENCIL_OPS_BACK, DIRTY_BIT_STENCIL_WRITEMASK_FRONT, DIRTY_BIT_STENCIL_WRITEMASK_BACK, DIRTY_BIT_CULL_FACE_ENABLED, DIRTY_BIT_CULL_FACE, DIRTY_BIT_FRONT_FACE, DIRTY_BIT_POLYGON_OFFSET_FILL_ENABLED, DIRTY_BIT_POLYGON_OFFSET, DIRTY_BIT_RASTERIZER_DISCARD_ENABLED, DIRTY_BIT_LINE_WIDTH, DIRTY_BIT_PRIMITIVE_RESTART_ENABLED, DIRTY_BIT_CLEAR_COLOR, DIRTY_BIT_CLEAR_DEPTH, DIRTY_BIT_CLEAR_STENCIL, DIRTY_BIT_UNPACK_STATE, DIRTY_BIT_UNPACK_BUFFER_BINDING, DIRTY_BIT_PACK_STATE, DIRTY_BIT_PACK_BUFFER_BINDING, DIRTY_BIT_DITHER_ENABLED, DIRTY_BIT_RENDERBUFFER_BINDING, DIRTY_BIT_VERTEX_ARRAY_BINDING, DIRTY_BIT_DRAW_INDIRECT_BUFFER_BINDING, DIRTY_BIT_DISPATCH_INDIRECT_BUFFER_BINDING, // TODO(jmadill): Fine-grained dirty bits for each index. DIRTY_BIT_PROGRAM_BINDING, // Must be before DIRTY_BIT_PROGRAM_EXECUTABLE DIRTY_BIT_PROGRAM_EXECUTABLE, // TODO(jmadill): Fine-grained dirty bits for each texture/sampler. DIRTY_BIT_SAMPLER_BINDINGS, DIRTY_BIT_TEXTURE_BINDINGS, DIRTY_BIT_IMAGE_BINDINGS, DIRTY_BIT_TRANSFORM_FEEDBACK_BINDING, DIRTY_BIT_UNIFORM_BUFFER_BINDINGS, DIRTY_BIT_SHADER_STORAGE_BUFFER_BINDING, DIRTY_BIT_ATOMIC_COUNTER_BUFFER_BINDING, DIRTY_BIT_MULTISAMPLING, DIRTY_BIT_SAMPLE_ALPHA_TO_ONE, DIRTY_BIT_COVERAGE_MODULATION, // CHROMIUM_framebuffer_mixed_samples DIRTY_BIT_FRAMEBUFFER_SRGB_WRITE_CONTROL_MODE, // GL_EXT_sRGB_write_control DIRTY_BIT_CURRENT_VALUES, DIRTY_BIT_PROVOKING_VERTEX, DIRTY_BIT_SAMPLE_SHADING, DIRTY_BIT_PATCH_VERTICES, DIRTY_BIT_EXTENDED, // clip distances, mipmap generation hint, derivative hint, // EXT_clip_control DIRTY_BIT_INVALID, DIRTY_BIT_MAX = DIRTY_BIT_INVALID, }; static_assert(DIRTY_BIT_MAX <= 64, "State dirty bits must be capped at 64"); enum ExtendedDirtyBitType { EXTENDED_DIRTY_BIT_CLIP_CONTROL, // EXT_clip_control EXTENDED_DIRTY_BIT_CLIP_DISTANCES, // clip distances EXTENDED_DIRTY_BIT_MIPMAP_GENERATION_HINT, // mipmap generation hint EXTENDED_DIRTY_BIT_SHADER_DERIVATIVE_HINT, // shader derivative hint EXTENDED_DIRTY_BIT_SHADING_RATE, // QCOM_shading_rate EXTENDED_DIRTY_BIT_LOGIC_OP_ENABLED, // ANGLE_logic_op EXTENDED_DIRTY_BIT_LOGIC_OP, // ANGLE_logic_op EXTENDED_DIRTY_BIT_INVALID, EXTENDED_DIRTY_BIT_MAX = EXTENDED_DIRTY_BIT_INVALID, }; static_assert(EXTENDED_DIRTY_BIT_MAX <= 32, "State extended dirty bits must be capped at 32"); // TODO(jmadill): Consider storing dirty objects in a list instead of by binding. enum DirtyObjectType { DIRTY_OBJECT_ACTIVE_TEXTURES, // Top-level dirty bit. Also see mDirtyActiveTextures. DIRTY_OBJECT_TEXTURES_INIT, DIRTY_OBJECT_IMAGES_INIT, DIRTY_OBJECT_READ_ATTACHMENTS, DIRTY_OBJECT_DRAW_ATTACHMENTS, DIRTY_OBJECT_READ_FRAMEBUFFER, DIRTY_OBJECT_DRAW_FRAMEBUFFER, DIRTY_OBJECT_VERTEX_ARRAY, DIRTY_OBJECT_TEXTURES, // Top-level dirty bit. Also see mDirtyTextures. DIRTY_OBJECT_IMAGES, // Top-level dirty bit. Also see mDirtyImages. DIRTY_OBJECT_SAMPLERS, // Top-level dirty bit. Also see mDirtySamplers. DIRTY_OBJECT_PROGRAM, DIRTY_OBJECT_PROGRAM_PIPELINE_OBJECT, DIRTY_OBJECT_UNKNOWN, DIRTY_OBJECT_MAX = DIRTY_OBJECT_UNKNOWN, }; using DirtyBits = angle::BitSet; const DirtyBits &getDirtyBits() const { return mDirtyBits; } void clearDirtyBits() { mDirtyBits.reset(); } void clearDirtyBits(const DirtyBits &bitset) { mDirtyBits &= ~bitset; } void setAllDirtyBits() { mDirtyBits.set(); mExtendedDirtyBits.set(); mDirtyCurrentValues.set(); } using ExtendedDirtyBits = angle::BitSet32; const ExtendedDirtyBits &getExtendedDirtyBits() const { return mExtendedDirtyBits; } // TODO(https://anglebug.com/5631): Handle extended dirty bits on non-vulkan backends ExtendedDirtyBits getAndResetExtendedDirtyBits() const; void clearExtendedDirtyBits() { mExtendedDirtyBits.reset(); } using DirtyObjects = angle::BitSet; void clearDirtyObjects() { mDirtyObjects.reset(); } void setAllDirtyObjects() { mDirtyObjects.set(); } angle::Result syncDirtyObjects(const Context *context, const DirtyObjects &bitset, Command command); angle::Result syncDirtyObject(const Context *context, GLenum target); void setObjectDirty(GLenum target); void setTextureDirty(size_t textureUnitIndex); void setSamplerDirty(size_t samplerIndex); ANGLE_INLINE void setReadFramebufferDirty() { mDirtyObjects.set(DIRTY_OBJECT_READ_FRAMEBUFFER); mDirtyObjects.set(DIRTY_OBJECT_READ_ATTACHMENTS); } ANGLE_INLINE void setDrawFramebufferDirty() { mDirtyObjects.set(DIRTY_OBJECT_DRAW_FRAMEBUFFER); mDirtyObjects.set(DIRTY_OBJECT_DRAW_ATTACHMENTS); } // This actually clears the current value dirty bits. // TODO(jmadill): Pass mutable dirty bits into Impl. AttributesMask getAndResetDirtyCurrentValues() const; void setImageUnit(const Context *context, size_t unit, Texture *texture, GLint level, GLboolean layered, GLint layer, GLenum access, GLenum format); const ImageUnit &getImageUnit(size_t unit) const { return mImageUnits[unit]; } const ActiveTexturesCache &getActiveTexturesCache() const { return mActiveTexturesCache; } ComponentTypeMask getCurrentValuesTypeMask() const { return mCurrentValuesTypeMask; } // "onActiveTextureChange" is called when a texture binding changes. void onActiveTextureChange(const Context *context, size_t textureUnit); // "onActiveTextureStateChange" is called when the Texture changed but the binding did not. void onActiveTextureStateChange(const Context *context, size_t textureUnit); void onImageStateChange(const Context *context, size_t unit); void onUniformBufferStateChange(size_t uniformBufferIndex); void onAtomicCounterBufferStateChange(size_t atomicCounterBufferIndex); void onShaderStorageBufferStateChange(size_t shaderStorageBufferIndex); bool isCurrentTransformFeedback(const TransformFeedback *tf) const { return tf == mTransformFeedback.get(); } bool isCurrentVertexArray(const VertexArray *va) const { return va == mVertexArray; } GLES1State &gles1() { return mGLES1State; } const GLES1State &gles1() const { return mGLES1State; } // Helpers for setting bound buffers. They should all have the same signature. // Not meant to be called externally. Used for local helpers in State.cpp. template void setGenericBufferBindingWithBit(const Context *context, Buffer *buffer); template void setGenericBufferBinding(const Context *context, Buffer *buffer); using BufferBindingSetter = void (State::*)(const Context *, Buffer *); ANGLE_INLINE bool validateSamplerFormats() const { return (!mExecutable || !(mTexturesIncompatibleWithSamplers.intersects( mExecutable->getActiveSamplersMask()))); } ProvokingVertexConvention getProvokingVertex() const { return mProvokingVertex; } void setProvokingVertex(ProvokingVertexConvention val) { mDirtyBits.set(State::DIRTY_BIT_PROVOKING_VERTEX); mProvokingVertex = val; } ANGLE_INLINE void setReadFramebufferBindingDirty() { mDirtyBits.set(State::DIRTY_BIT_READ_FRAMEBUFFER_BINDING); } ANGLE_INLINE void setDrawFramebufferBindingDirty() { mDirtyBits.set(State::DIRTY_BIT_DRAW_FRAMEBUFFER_BINDING); } using ClipDistanceEnableBits = angle::BitSet32; const ClipDistanceEnableBits &getEnabledClipDistances() const { return mClipDistancesEnabled; } void setClipDistanceEnable(int idx, bool enable); const OverlayType *getOverlay() const { return mOverlay; } // Not for general use. const BufferManager &getBufferManagerForCapture() const { return *mBufferManager; } const BoundBufferMap &getBoundBuffersForCapture() const { return mBoundBuffers; } const TextureManager &getTextureManagerForCapture() const { return *mTextureManager; } const TextureBindingMap &getBoundTexturesForCapture() const { return mSamplerTextures; } const RenderbufferManager &getRenderbufferManagerForCapture() const { return *mRenderbufferManager; } const FramebufferManager &getFramebufferManagerForCapture() const { return *mFramebufferManager; } const ShaderProgramManager &getShaderProgramManagerForCapture() const { return *mShaderProgramManager; } const SyncManager &getSyncManagerForCapture() const { return *mSyncManager; } const SamplerManager &getSamplerManagerForCapture() const { return *mSamplerManager; } const ProgramPipelineManager *getProgramPipelineManagerForCapture() const { return mProgramPipelineManager; } const SamplerBindingVector &getSamplerBindingsForCapture() const { return mSamplers; } const ActiveQueryMap &getActiveQueriesForCapture() const { return mActiveQueries; } void initializeForCapture(const Context *context); bool hasConstantAlphaBlendFunc() const { return (mBlendFuncConstantAlphaDrawBuffers & mBlendStateExt.getEnabledMask()).any(); } bool hasSimultaneousConstantColorAndAlphaBlendFunc() const { return (mBlendFuncConstantColorDrawBuffers & mBlendStateExt.getEnabledMask()).any() && hasConstantAlphaBlendFunc(); } bool noSimultaneousConstantColorAndAlphaBlendFunc() const { return mNoSimultaneousConstantColorAndAlphaBlendFunc; } const BufferVector &getOffsetBindingPointerUniformBuffers() const { return mUniformBuffers; } const BufferVector &getOffsetBindingPointerAtomicCounterBuffers() const { return mAtomicCounterBuffers; } const BufferVector &getOffsetBindingPointerShaderStorageBuffers() const { return mShaderStorageBuffers; } ActiveTextureMask getTexturesIncompatibleWithSamplers() const { return mTexturesIncompatibleWithSamplers; } bool isProgramBinaryCacheEnabled() const { return mProgramBinaryCacheEnabled; } bool isTextureRectangleEnabled() const { return mTextureRectangleEnabled; } DrawBufferMask getBlendFuncConstantAlphaDrawBuffers() const { return mBlendFuncConstantAlphaDrawBuffers; } DrawBufferMask getBlendFuncConstantColorDrawBuffers() const { return mBlendFuncConstantColorDrawBuffers; } const std::vector &getImageUnits() const { return mImageUnits; } bool hasDisplayTextureShareGroup() const { return mDisplayTextureShareGroup; } void setLogicOpEnabled(bool enabled); bool isLogicOpEnabled() const { return mLogicOpEnabled; } void setLogicOp(LogicalOperation opcode); LogicalOperation getLogicOp() const { return mLogicOp; } private: friend class Context; void unsetActiveTextures(const ActiveTextureMask &textureMask); void setActiveTextureDirty(size_t textureIndex, Texture *texture); void updateTextureBinding(const Context *context, size_t textureIndex, Texture *texture); void updateActiveTextureStateOnSync(const Context *context, size_t textureIndex, const Sampler *sampler, Texture *texture); Texture *getTextureForActiveSampler(TextureType type, size_t index); bool hasConstantColor(GLenum sourceRGB, GLenum destRGB) const; bool hasConstantAlpha(GLenum sourceRGB, GLenum destRGB) const; // Functions to synchronize dirty states angle::Result syncActiveTextures(const Context *context, Command command); angle::Result syncTexturesInit(const Context *context, Command command); angle::Result syncImagesInit(const Context *context, Command command); angle::Result syncReadAttachments(const Context *context, Command command); angle::Result syncDrawAttachments(const Context *context, Command command); angle::Result syncReadFramebuffer(const Context *context, Command command); angle::Result syncDrawFramebuffer(const Context *context, Command command); angle::Result syncVertexArray(const Context *context, Command command); angle::Result syncTextures(const Context *context, Command command); angle::Result syncImages(const Context *context, Command command); angle::Result syncSamplers(const Context *context, Command command); angle::Result syncProgram(const Context *context, Command command); angle::Result syncProgramPipelineObject(const Context *context, Command command); using DirtyObjectHandler = angle::Result (State::*)(const Context *context, Command command); static constexpr DirtyObjectHandler kDirtyObjectHandlers[DIRTY_OBJECT_MAX] = { &State::syncActiveTextures, &State::syncTexturesInit, &State::syncImagesInit, &State::syncReadAttachments, &State::syncDrawAttachments, &State::syncReadFramebuffer, &State::syncDrawFramebuffer, &State::syncVertexArray, &State::syncTextures, &State::syncImages, &State::syncSamplers, &State::syncProgram, &State::syncProgramPipelineObject}; // Robust init must happen before Framebuffer init for the Vulkan back-end. static_assert(DIRTY_OBJECT_ACTIVE_TEXTURES < DIRTY_OBJECT_TEXTURES_INIT, "init order"); static_assert(DIRTY_OBJECT_TEXTURES_INIT < DIRTY_OBJECT_DRAW_FRAMEBUFFER, "init order"); static_assert(DIRTY_OBJECT_IMAGES_INIT < DIRTY_OBJECT_DRAW_FRAMEBUFFER, "init order"); static_assert(DIRTY_OBJECT_DRAW_ATTACHMENTS < DIRTY_OBJECT_DRAW_FRAMEBUFFER, "init order"); static_assert(DIRTY_OBJECT_READ_ATTACHMENTS < DIRTY_OBJECT_READ_FRAMEBUFFER, "init order"); static_assert(DIRTY_OBJECT_ACTIVE_TEXTURES == 0, "check DIRTY_OBJECT_ACTIVE_TEXTURES index"); static_assert(DIRTY_OBJECT_TEXTURES_INIT == 1, "check DIRTY_OBJECT_TEXTURES_INIT index"); static_assert(DIRTY_OBJECT_IMAGES_INIT == 2, "check DIRTY_OBJECT_IMAGES_INIT index"); static_assert(DIRTY_OBJECT_READ_ATTACHMENTS == 3, "check DIRTY_OBJECT_READ_ATTACHMENTS index"); static_assert(DIRTY_OBJECT_DRAW_ATTACHMENTS == 4, "check DIRTY_OBJECT_DRAW_ATTACHMENTS index"); static_assert(DIRTY_OBJECT_READ_FRAMEBUFFER == 5, "check DIRTY_OBJECT_READ_FRAMEBUFFER index"); static_assert(DIRTY_OBJECT_DRAW_FRAMEBUFFER == 6, "check DIRTY_OBJECT_DRAW_FRAMEBUFFER index"); static_assert(DIRTY_OBJECT_VERTEX_ARRAY == 7, "check DIRTY_OBJECT_VERTEX_ARRAY index"); static_assert(DIRTY_OBJECT_TEXTURES == 8, "check DIRTY_OBJECT_TEXTURES index"); static_assert(DIRTY_OBJECT_IMAGES == 9, "check DIRTY_OBJECT_IMAGES index"); static_assert(DIRTY_OBJECT_SAMPLERS == 10, "check DIRTY_OBJECT_SAMPLERS index"); static_assert(DIRTY_OBJECT_PROGRAM == 11, "check DIRTY_OBJECT_PROGRAM index"); static_assert(DIRTY_OBJECT_PROGRAM_PIPELINE_OBJECT == 12, "check DIRTY_OBJECT_PROGRAM_PIPELINE_OBJECT index"); // Dispatch table for buffer update functions. static const angle::PackedEnumMap kBufferSetters; ContextID mID; EGLenum mClientType; EGLint mProfileMask; EGLenum mContextPriority; bool mHasRobustAccess; bool mHasProtectedContent; bool mIsDebugContext; Version mClientVersion; // Caps to use for validation Caps mCaps; TextureCapsMap mTextureCaps; Extensions mExtensions; Limitations mLimitations; egl::ShareGroup *mShareGroup; // Resource managers. BufferManager *mBufferManager; ShaderProgramManager *mShaderProgramManager; TextureManager *mTextureManager; RenderbufferManager *mRenderbufferManager; SamplerManager *mSamplerManager; SyncManager *mSyncManager; FramebufferManager *mFramebufferManager; ProgramPipelineManager *mProgramPipelineManager; MemoryObjectManager *mMemoryObjectManager; SemaphoreManager *mSemaphoreManager; ColorF mColorClearValue; GLfloat mDepthClearValue; int mStencilClearValue; RasterizerState mRasterizer; bool mScissorTest; Rectangle mScissor; bool mNoUnclampedBlendColor; BlendState mBlendState; // Buffer zero blend state legacy struct BlendStateExt mBlendStateExt; ColorF mBlendColor; bool mSampleAlphaToCoverage; bool mSampleCoverage; GLfloat mSampleCoverageValue; bool mSampleCoverageInvert; bool mSampleMask; GLuint mMaxSampleMaskWords; SampleMaskArray mSampleMaskValues; bool mIsSampleShadingEnabled; float mMinSampleShading; DepthStencilState mDepthStencil; GLint mStencilRef; GLint mStencilBackRef; GLfloat mLineWidth; GLenum mGenerateMipmapHint; GLenum mTextureFilteringHint; GLenum mFragmentShaderDerivativeHint; const bool mBindGeneratesResource; const bool mClientArraysEnabled; Rectangle mViewport; float mNearZ; float mFarZ; GLenum mClipControlOrigin; GLenum mClipControlDepth; Framebuffer *mReadFramebuffer; Framebuffer *mDrawFramebuffer; BindingPointer mRenderbuffer; Program *mProgram; BindingPointer mProgramPipeline; ProgramExecutable *mExecutable; // GL_ANGLE_provoking_vertex ProvokingVertexConvention mProvokingVertex; using VertexAttribVector = std::vector; VertexAttribVector mVertexAttribCurrentValues; // From glVertexAttrib VertexArray *mVertexArray; ComponentTypeMask mCurrentValuesTypeMask; // Texture and sampler bindings GLint mActiveSampler; // Active texture unit selector - GL_TEXTURE0 TextureBindingMap mSamplerTextures; // Active Textures Cache // --------------------- // The active textures cache gives ANGLE components access to a complete array of textures // on a draw call. gl::State implements angle::Observer and watches gl::Texture for state // changes via the onSubjectStateChange method above. We update the cache before draws. // See Observer.h and the design doc linked there for more info on Subject/Observer events. // // On state change events (re-binding textures, samplers, programs etc) we clear the cache // and flag dirty bits. nullptr indicates unbound or incomplete. ActiveTexturesCache mActiveTexturesCache; std::vector mCompleteTextureBindings; ActiveTextureMask mTexturesIncompatibleWithSamplers; SamplerBindingVector mSamplers; // It would be nice to merge the image and observer binding. Same for textures. std::vector mImageUnits; ActiveQueryMap mActiveQueries; // Stores the currently bound buffer for each binding point. It has an entry for the element // array buffer but it should not be used. Instead this bind point is owned by the current // vertex array object. BoundBufferMap mBoundBuffers; BufferVector mUniformBuffers; BufferVector mAtomicCounterBuffers; BufferVector mShaderStorageBuffers; angle::BitSet mBoundUniformBuffersMask; angle::BitSet mBoundAtomicCounterBuffersMask; angle::BitSet mBoundShaderStorageBuffersMask; BindingPointer mTransformFeedback; PixelUnpackState mUnpack; PixelPackState mPack; bool mPrimitiveRestart; Debug mDebug; bool mMultiSampling; bool mSampleAlphaToOne; GLenum mCoverageModulation; // GL_EXT_sRGB_write_control bool mFramebufferSRGB; // GL_ANGLE_robust_resource_initialization const bool mRobustResourceInit; // GL_ANGLE_program_cache_control const bool mProgramBinaryCacheEnabled; // GL_ANGLE_webgl_compatibility bool mTextureRectangleEnabled; // GL_ANGLE_logic_op bool mLogicOpEnabled; LogicalOperation mLogicOp; // GL_KHR_parallel_shader_compile GLuint mMaxShaderCompilerThreads; // GL_APPLE_clip_distance/GL_EXT_clip_cull_distance ClipDistanceEnableBits mClipDistancesEnabled; // GL_EXT_tessellation_shader GLuint mPatchVertices; // GL_ANGLE_shader_pixel_local_storage bool mPixelLocalStorageActive; // GLES1 emulation: state specific to GLES1 GLES1State mGLES1State; DirtyBits mDirtyBits; mutable ExtendedDirtyBits mExtendedDirtyBits; DirtyObjects mDirtyObjects; mutable AttributesMask mDirtyCurrentValues; ActiveTextureMask mDirtyActiveTextures; ActiveTextureMask mDirtyTextures; ActiveTextureMask mDirtySamplers; ImageUnitMask mDirtyImages; // The Overlay object, used by the backend to render the overlay. const OverlayType *mOverlay; // OES_draw_buffers_indexed DrawBufferMask mBlendFuncConstantAlphaDrawBuffers; DrawBufferMask mBlendFuncConstantColorDrawBuffers; bool mNoSimultaneousConstantColorAndAlphaBlendFunc; // Whether the indexed variants of setBlend* have been called. If so, the call to the // non-indexed variants are not no-oped. bool mSetBlendIndexedInvoked; bool mSetBlendFactorsIndexedInvoked; bool mSetBlendEquationsIndexedInvoked; bool mDisplayTextureShareGroup; // GL_EXT_primitive_bounding_box GLfloat mBoundingBoxMinX; GLfloat mBoundingBoxMinY; GLfloat mBoundingBoxMinZ; GLfloat mBoundingBoxMinW; GLfloat mBoundingBoxMaxX; GLfloat mBoundingBoxMaxY; GLfloat mBoundingBoxMaxZ; GLfloat mBoundingBoxMaxW; // QCOM_shading_rate bool mShadingRatePreserveAspectRatio; ShadingRate mShadingRate; }; ANGLE_INLINE angle::Result State::syncDirtyObjects(const Context *context, const DirtyObjects &bitset, Command command) { const DirtyObjects &dirtyObjects = mDirtyObjects & bitset; for (size_t dirtyObject : dirtyObjects) { ANGLE_TRY((this->*kDirtyObjectHandlers[dirtyObject])(context, command)); } mDirtyObjects &= ~dirtyObjects; return angle::Result::Continue; } } // namespace gl #endif // LIBANGLE_STATE_H_